Manipulating data with dplyr

Let’s use mtcars, a built in dataset of cars and their horsepowers, mileage, etc.

mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Exercise: Summarise the overall MPG across the entire dataset.

mtcars %>%
  summarise(mean = mean(mpg))
##       mean
## 1 20.09062

Exercise: Summarise the overall MPG, broken down by the number of cylinders.

mtcars %>%
  group_by(cyl) %>%
  summarise(mean = mean(mpg))
## # A tibble: 3 x 2
##     cyl  mean
##   <dbl> <dbl>
## 1     4  26.7
## 2     6  19.7
## 3     8  15.1

Exercise: Add standard deviations to this summary.

mtcars %>%
  group_by(cyl) %>%
  summarise(mean = mean(mpg), 
            sd = sd(mpg))
## # A tibble: 3 x 3
##     cyl  mean    sd
##   <dbl> <dbl> <dbl>
## 1     4  26.7  4.51
## 2     6  19.7  1.45
## 3     8  15.1  2.56

BONUS: Use ggplot to make a scatter plot of mpg by horsepower and add a smoothing line.

ggplot(mtcars, 
       aes(x = hp, y = mpg)) + 
  geom_point() + 
  geom_smooth() 
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Reshaping with tidyr

From long to wide and back again

Use data from informative communication experiment.

http://langcog.stanford.edu/papers/FG-cogpsych2014.pdf

info <- read_csv("https://raw.githubusercontent.com/mcfrank/info_kid/master/data/info_e2_data.csv")
## Parsed with column specification:
## cols(
##   subid = col_double(),
##   gender = col_character(),
##   age_months = col_double(),
##   `age group` = col_double(),
##   order = col_double(),
##   set = col_double(),
##   item = col_character(),
##   type = col_character(),
##   target = col_character(),
##   `novel word` = col_character(),
##   comment = col_character(),
##   `target train side` = col_character(),
##   `target test side` = col_character(),
##   correct = col_double()
## )

info is in tidy format. Make this into wide data.

info_wide <- info %>%
  spread(item, correct) 

Now make it back into tidy data.

info_long <- info_wide %>%
  gather(item, correct, bear:rocket)

From wide to long without seeing the tidy version

From wide to long without seeing the tidy version

These are pre-post data on children’s arithemtic scores from an RCT in which they were assigned either to CNTL (control) or MA (mental abacus math intervention). They were tested twice, once in 2015 and once in 2016.

https://jnc.psychopen.eu/article/view/106

majic <- read_csv("data/majic.csv")
## Parsed with column specification:
## cols(
##   subid = col_character(),
##   grade = col_character(),
##   group = col_character(),
##   `2015` = col_double(),
##   `2016` = col_double()
## )

Make these tidy.

majic %>%
  gather(year, score, `2015`, `2016`)
## # A tibble: 328 x 5
##    subid    grade       group year  score
##    <chr>    <chr>       <chr> <chr> <dbl>
##  1 S1-02-03 first grade CNTL  2015      0
##  2 S1-02-08 first grade CNTL  2015      0
##  3 S1-02-17 first grade CNTL  2015      8
##  4 S1-03-05 first grade MA    2015      4
##  5 S1-03-14 first grade MA    2015      3
##  6 S1-03-15 first grade MA    2015      0
##  7 S1-04-01 first grade MA    2015      0
##  8 S1-04-03 first grade MA    2015      3
##  9 S1-04-04 first grade MA    2015      3
## 10 S1-04-07 first grade MA    2015      1
## # … with 318 more rows