Results bayesian estimating of variance components with Stan program, on 66.788 records of visit length time at the feeder from 6 trials, including locations (2 per trial), median weight as fixed effects and Eartag (118) and followers (118) as random effects in the models. iter = 12000, chain= 3, burn-in = 2000, Thin=1.
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_error","prp_var_eartag","prp_var_error")))
autocorr.diag(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## Lag 0 1.0000000000 1.0000000000 1.0000000000 1.000000000
## Lag 1 -0.1471087846 -0.0732679942 -0.0903091327 -0.168101632
## Lag 5 -0.0013865537 0.0064696105 -0.0052886663 -0.003085494
## Lag 10 -0.0004056016 0.0002101426 -0.0064972652 0.006270659
## Lag 50 0.0095696977 -0.0115891740 -0.0006608415 -0.003299075
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3
## Lag 0 1.0000000000 1.000000000 1.0000000000 1.000000000 1.000000000
## Lag 1 -0.1576735352 -0.167466817 -0.1249448175 -0.091310126 -0.110954905
## Lag 5 0.0004148363 -0.002615544 -0.0007691954 0.002380314 0.002054322
## Lag 10 -0.0041770850 -0.005311132 -0.0008523821 0.005635538 0.003587318
## Lag 50 -0.0068091912 -0.009599190 0.0033201149 0.005839662 -0.001348789
## Loc2_t_4 Loc2_t_5 Loc2_t_6 Median Weight var_eartag
## Lag 0 1.000000000 1.000000000 1.000000000 1.0000000000 1.0000000000
## Lag 1 -0.162096122 -0.197137328 -0.139462238 0.0005343875 0.0628949588
## Lag 5 -0.003185497 0.010059382 0.005479880 -0.0065520315 -0.0003994407
## Lag 10 -0.008138205 -0.005912223 -0.006605805 -0.0004538409 -0.0013517849
## Lag 50 -0.001796362 -0.012676014 -0.003613669 -0.0006002109 -0.0046814530
## var_error prp_var_eartag prp_var_error lp__
## Lag 0 1.000000000 1.0000000000 1.0000000000 1.000000000
## Lag 1 -0.010628532 0.0580406038 0.0580406038 0.489826650
## Lag 5 -0.005053202 -0.0007058289 -0.0007058289 0.027630730
## Lag 10 -0.003881897 -0.0016326874 -0.0016326874 -0.010112585
## Lag 50 0.002083661 -0.0033205231 -0.0033205231 -0.007768452
effectiveSize(outp1)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 43936.58 36760.72 36655.08 42869.75 39172.92
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## 42521.17 38855.17 36748.43 36963.68 43947.09
## Loc2_t_5 Loc2_t_6 Median Weight var_eartag var_error
## 45641.55 40864.56 30584.68 24626.22 30460.43
## prp_var_eartag prp_var_error lp__
## 25174.92 25174.92 10127.43
geweke.diag(outp1)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## -0.27922 -1.72199 -0.96672 -1.74382 0.40273
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## 0.41265 0.32945 1.43042 -0.58987 0.13493
## Loc2_t_5 Loc2_t_6 Median Weight var_eartag var_error
## -0.31106 -0.62678 -0.32678 0.32195 -1.28358
## prp_var_eartag prp_var_error lp__
## 0.35320 -0.35320 0.08677
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## 1.5796 0.5326 -0.5708 0.3733 0.7997
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## 0.7577 -0.0771 0.1930 1.4573 1.4353
## Loc2_t_5 Loc2_t_6 Median Weight var_eartag var_error
## -1.1317 -0.8819 -0.7057 0.5718 -1.3023
## prp_var_eartag prp_var_error lp__
## 0.5971 -0.5971 -0.5174
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## -1.29541 0.40753 0.08778 0.09720 -0.32688
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## 1.05565 -0.28786 -0.50399 -0.55452 -1.78947
## Loc2_t_5 Loc2_t_6 Median Weight var_eartag var_error
## 0.72070 -0.81843 0.42240 -1.06572 1.52031
## prp_var_eartag prp_var_error lp__
## -1.18914 1.18914 -0.30042
#gelman.diag(outp1)
traplot(outp1,col =c("red1","blue4","purple3"))
denplot(outp1)
summary(outp1)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.354e+01 0.912104 5.266e-03 4.614e-03
## Loc1_t_2 7.653e+00 0.930848 5.374e-03 5.233e-03
## Loc1_t_3 1.049e+01 0.929341 5.366e-03 5.130e-03
## Loc1_t_4 8.459e+00 1.071551 6.187e-03 5.403e-03
## Loc1_t_5 9.494e+00 1.082744 6.251e-03 5.820e-03
## Loc1_t_6 5.357e+00 1.004754 5.801e-03 4.997e-03
## Loc2_t_1 1.112e+01 0.890776 5.143e-03 4.754e-03
## Loc2_t_2 8.372e+00 0.923649 5.333e-03 5.149e-03
## Loc2_t_3 1.531e+01 0.922397 5.325e-03 5.045e-03
## Loc2_t_4 7.582e+00 1.078935 6.229e-03 5.494e-03
## Loc2_t_5 1.005e+01 1.085097 6.265e-03 5.314e-03
## Loc2_t_6 7.275e+00 1.005811 5.807e-03 5.219e-03
## Median Weight 6.087e-03 0.001561 9.011e-06 8.928e-06
## var_eartag 9.203e+00 1.307650 7.550e-03 8.340e-03
## var_error 4.376e+01 0.239816 1.385e-03 1.375e-03
## prp_var_eartag 1.733e-01 0.020185 1.165e-04 1.274e-04
## prp_var_error 8.267e-01 0.020185 1.165e-04 1.274e-04
## lp__ -1.598e+05 8.215213 4.743e-02 8.167e-02
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.174e+01 1.293e+01 1.354e+01 1.415e+01 1.533e+01
## Loc1_t_2 5.815e+00 7.036e+00 7.652e+00 8.275e+00 9.475e+00
## Loc1_t_3 8.657e+00 9.883e+00 1.049e+01 1.111e+01 1.232e+01
## Loc1_t_4 6.347e+00 7.740e+00 8.459e+00 9.187e+00 1.057e+01
## Loc1_t_5 7.339e+00 8.776e+00 9.487e+00 1.022e+01 1.162e+01
## Loc1_t_6 3.377e+00 4.683e+00 5.356e+00 6.036e+00 7.315e+00
## Loc2_t_1 9.356e+00 1.051e+01 1.111e+01 1.172e+01 1.286e+01
## Loc2_t_2 6.544e+00 7.757e+00 8.366e+00 8.989e+00 1.020e+01
## Loc2_t_3 1.350e+01 1.470e+01 1.531e+01 1.593e+01 1.714e+01
## Loc2_t_4 5.472e+00 6.857e+00 7.583e+00 8.299e+00 9.710e+00
## Loc2_t_5 7.921e+00 9.322e+00 1.005e+01 1.078e+01 1.219e+01
## Loc2_t_6 5.314e+00 6.601e+00 7.268e+00 7.956e+00 9.233e+00
## Median Weight 3.014e-03 5.041e-03 6.096e-03 7.148e-03 9.143e-03
## var_eartag 6.984e+00 8.282e+00 9.082e+00 9.993e+00 1.211e+01
## var_error 4.330e+01 4.360e+01 4.376e+01 4.392e+01 4.424e+01
## prp_var_eartag 1.377e-01 1.591e-01 1.719e-01 1.859e-01 2.168e-01
## prp_var_error 7.832e-01 8.141e-01 8.281e-01 8.409e-01 8.623e-01
## lp__ -1.598e+05 -1.598e+05 -1.598e+05 -1.598e+05 -1.598e+05
print(Et.model)
## Inference for Stan model: Eartagtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 13.54 0.00 0.91 11.74 12.93 13.54
## beta[2] 7.65 0.01 0.93 5.81 7.04 7.65
## beta[3] 10.49 0.01 0.93 8.66 9.88 10.49
## beta[4] 8.46 0.01 1.07 6.35 7.74 8.46
## beta[5] 9.49 0.01 1.08 7.34 8.78 9.49
## beta[6] 5.36 0.00 1.00 3.38 4.68 5.36
## beta[7] 11.12 0.00 0.89 9.36 10.51 11.11
## beta[8] 8.37 0.01 0.92 6.54 7.76 8.37
## beta[9] 15.31 0.01 0.92 13.50 14.70 15.31
## beta[10] 7.58 0.01 1.08 5.47 6.86 7.58
## beta[11] 10.05 0.01 1.09 7.92 9.32 10.05
## beta[12] 7.28 0.01 1.01 5.31 6.60 7.27
## beta[13] 0.01 0.00 0.00 0.00 0.01 0.01
## var_eartag 9.20 0.01 1.31 6.98 8.28 9.08
## var_error 43.76 0.00 0.24 43.30 43.60 43.76
## prp_var_eartag 0.17 0.00 0.02 0.14 0.16 0.17
## prp_var_error 0.83 0.00 0.02 0.78 0.81 0.83
## lp__ -159767.12 0.08 8.22 -159783.94 -159772.56 -159766.73
## 75% 97.5% n_eff Rhat
## beta[1] 14.15 15.33 37302 1
## beta[2] 8.27 9.47 30940 1
## beta[3] 11.11 12.32 33375 1
## beta[4] 9.19 10.57 35610 1
## beta[5] 10.22 11.62 34484 1
## beta[6] 6.04 7.32 40489 1
## beta[7] 11.72 12.86 34982 1
## beta[8] 8.99 10.20 30562 1
## beta[9] 15.93 17.14 32164 1
## beta[10] 8.30 9.71 38432 1
## beta[11] 10.78 12.19 40682 1
## beta[12] 7.96 9.23 37120 1
## beta[13] 0.01 0.01 29969 1
## var_eartag 9.99 12.11 24537 1
## var_error 43.92 44.24 29738 1
## prp_var_eartag 0.19 0.22 24881 1
## prp_var_error 0.84 0.86 24881 1
## lp__ -159761.38 -159752.03 10326 1
##
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 09:04:11 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.75)
## [1] "mcmc.list"
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
"var_eartag", "var_follower", "var_error",
"prp_var_eartag","prp_var_follower","prp_var_error")))
autocorr.diag(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.000000000 1.000000000 1.000000000 1.00000000 1.00000000
## Lag 1 0.594002608 0.618300364 0.639921465 0.58903279 0.59315420
## Lag 5 0.143892653 0.158340994 0.163086715 0.11255210 0.12902442
## Lag 10 0.032271950 0.041433346 0.036490151 0.01985852 0.01850784
## Lag 50 0.004215207 -0.002853048 0.006197219 -0.01276794 -0.01263318
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.639825327 0.606355419 0.623261740 0.617011771 0.598034082
## Lag 5 0.161308123 0.135673113 0.158599043 0.154108266 0.120278300
## Lag 10 0.035861957 0.025648976 0.051095396 0.036564891 0.024250692
## Lag 50 -0.008846938 -0.005996926 -0.003731802 0.001050777 -0.002535053
## Loc2_t_5 Loc2_t_6 Median Weight var_eartag var_follower
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.571115813 0.622484311 -0.325457757 0.007039815 0.032155487
## Lag 5 0.114004812 0.154890123 0.003143067 0.026226007 0.028048595
## Lag 10 0.023716365 0.033294392 0.005613138 -0.001739518 -0.006046875
## Lag 50 0.002476578 0.002289386 -0.001579031 0.002985799 -0.005553047
## var_error prp_var_eartag prp_var_follower prp_var_error
## Lag 0 1.0000000000 1.0000000000 1.000000000 1.0000000000
## Lag 1 -0.2722801360 0.0001802698 0.032527274 -0.0001569912
## Lag 5 -0.0020284288 0.0257939502 0.026363432 0.0270425119
## Lag 10 0.0004952582 -0.0013706333 -0.006734379 -0.0007329823
## Lag 50 -0.0011531812 0.0028527428 -0.005571189 0.0029827281
## lp__
## Lag 0 1.000000000
## Lag 1 0.505119433
## Lag 5 0.048943214
## Lag 10 0.011836083
## Lag 50 0.009907233
effectiveSize(outp2)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 6401.532 5848.650 5967.566 7084.777
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 6699.894 5764.725 6355.171 5953.901
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## 6107.235 6908.411 7292.276 6155.945
## Median Weight var_eartag var_follower var_error
## 58949.799 20831.665 19326.915 52492.818
## prp_var_eartag prp_var_follower prp_var_error lp__
## 21151.015 19473.568 21106.489 9864.223
geweke.diag(outp2)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.5777 -0.4235 1.3525 -1.5509
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 0.5631 -1.3873 0.3729 -0.7813
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## 1.1437 0.2879 -2.0518 0.9542
## Median Weight var_eartag var_follower var_error
## 0.7693 -0.5184 0.5412 2.1732
## prp_var_eartag prp_var_follower prp_var_error lp__
## -0.6573 0.6127 0.5788 0.2980
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 1.09723 1.76390 -1.35289 0.67903
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 0.33461 1.24954 0.30048 0.84359
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## -0.08648 -1.02497 1.04759 -0.88728
## Median Weight var_eartag var_follower var_error
## -1.60636 1.72855 1.02087 -0.43271
## prp_var_eartag prp_var_follower prp_var_error lp__
## 1.73276 0.76178 -1.94014 -0.34260
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.57982 1.09614 0.19825 -0.23838
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## -0.66364 0.05591 1.28029 -0.21406
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## -0.13724 0.94658 0.71199 -0.35630
## Median Weight var_eartag var_follower var_error
## -0.47151 -0.98352 0.22910 0.45921
## prp_var_eartag prp_var_follower prp_var_error lp__
## -1.03208 0.41784 0.98461 1.32510
gelman.diag(outp2)
## Potential scale reduction factors:
##
## Point est. Upper C.I.
## Loc1_t_1 1 1.00
## Loc1_t_2 1 1.01
## Loc1_t_3 1 1.00
## Loc1_t_4 1 1.00
## Loc1_t_5 1 1.00
## Loc1_t_6 1 1.00
## Loc2_t_1 1 1.00
## Loc2_t_2 1 1.00
## Loc2_t_3 1 1.00
## Loc2_t_4 1 1.00
## Loc2_t_5 1 1.01
## Loc2_t_6 1 1.00
## Median Weight 1 1.00
## var_eartag 1 1.00
## var_follower 1 1.00
## var_error 1 1.00
## prp_var_eartag 1 1.00
## prp_var_follower 1 1.00
## prp_var_error 1 1.00
## lp__ 1 1.00
##
## Multivariate psrf
##
## 1.01
traplot(outp2, col = c("red1","purple1","blue4"))
denplot(outp2,col = c("red1","purple1","blue4"))
## 2.2. Summary Posterior Distribution
summary(outp2)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.358e+01 0.934862 5.397e-03 1.188e-02
## Loc1_t_2 7.621e+00 0.959333 5.539e-03 1.287e-02
## Loc1_t_3 1.040e+01 0.961302 5.550e-03 1.290e-02
## Loc1_t_4 8.473e+00 1.128124 6.513e-03 1.393e-02
## Loc1_t_5 9.546e+00 1.125146 6.496e-03 1.414e-02
## Loc1_t_6 5.407e+00 1.080693 6.239e-03 1.462e-02
## Loc2_t_1 1.142e+01 0.922965 5.329e-03 1.175e-02
## Loc2_t_2 8.395e+00 0.964322 5.568e-03 1.307e-02
## Loc2_t_3 1.539e+01 0.953857 5.507e-03 1.254e-02
## Loc2_t_4 7.503e+00 1.120811 6.471e-03 1.385e-02
## Loc2_t_5 9.987e+00 1.125537 6.498e-03 1.347e-02
## Loc2_t_6 7.529e+00 1.068002 6.166e-03 1.424e-02
## Median Weight 6.026e-03 0.001554 8.971e-06 6.402e-06
## var_eartag 9.093e+00 1.295966 7.482e-03 9.069e-03
## var_follower 8.662e-01 0.136249 7.866e-04 9.802e-04
## var_error 4.300e+01 0.235474 1.360e-03 1.028e-03
## prp_var_eartag 1.712e-01 0.020064 1.158e-04 1.393e-04
## prp_var_follower 1.636e-02 0.002564 1.480e-05 1.837e-05
## prp_var_error 8.124e-01 0.019756 1.141e-04 1.374e-04
## lp__ -1.592e+05 11.483490 6.630e-02 1.157e-01
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.172e+01 1.296e+01 1.358e+01 1.421e+01 1.538e+01
## Loc1_t_2 5.743e+00 6.985e+00 7.621e+00 8.251e+00 9.524e+00
## Loc1_t_3 8.526e+00 9.755e+00 1.040e+01 1.105e+01 1.230e+01
## Loc1_t_4 6.260e+00 7.720e+00 8.476e+00 9.215e+00 1.069e+01
## Loc1_t_5 7.329e+00 8.795e+00 9.543e+00 1.030e+01 1.176e+01
## Loc1_t_6 3.261e+00 4.682e+00 5.414e+00 6.132e+00 7.526e+00
## Loc2_t_1 9.607e+00 1.080e+01 1.143e+01 1.204e+01 1.321e+01
## Loc2_t_2 6.479e+00 7.745e+00 8.403e+00 9.046e+00 1.026e+01
## Loc2_t_3 1.352e+01 1.476e+01 1.539e+01 1.604e+01 1.727e+01
## Loc2_t_4 5.285e+00 6.760e+00 7.490e+00 8.262e+00 9.719e+00
## Loc2_t_5 7.765e+00 9.231e+00 9.998e+00 1.074e+01 1.218e+01
## Loc2_t_6 5.452e+00 6.816e+00 7.525e+00 8.241e+00 9.631e+00
## Median Weight 2.972e-03 4.982e-03 6.019e-03 7.073e-03 9.077e-03
## var_eartag 6.890e+00 8.176e+00 8.979e+00 9.884e+00 1.195e+01
## var_follower 6.337e-01 7.704e-01 8.536e-01 9.485e-01 1.167e+00
## var_error 4.254e+01 4.284e+01 4.300e+01 4.316e+01 4.347e+01
## prp_var_eartag 1.357e-01 1.571e-01 1.699e-01 1.839e-01 2.141e-01
## prp_var_follower 1.198e-02 1.456e-02 1.613e-02 1.793e-02 2.199e-02
## prp_var_error 7.702e-01 8.000e-01 8.137e-01 8.263e-01 8.476e-01
## lp__ -1.593e+05 -1.592e+05 -1.592e+05 -1.592e+05 -1.592e+05
print(Foll.model)
## Inference for Stan model: EFtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 13.58 0.01 0.93 11.72 12.96 13.58
## beta[2] 7.62 0.01 0.96 5.74 6.98 7.62
## beta[3] 10.40 0.01 0.96 8.53 9.75 10.40
## beta[4] 8.47 0.01 1.13 6.26 7.72 8.48
## beta[5] 9.55 0.01 1.13 7.33 8.80 9.54
## beta[6] 5.41 0.01 1.08 3.26 4.68 5.41
## beta[7] 11.42 0.01 0.92 9.61 10.80 11.43
## beta[8] 8.40 0.01 0.96 6.48 7.75 8.40
## beta[9] 15.39 0.01 0.95 13.52 14.76 15.39
## beta[10] 7.50 0.01 1.12 5.29 6.76 7.49
## beta[11] 9.99 0.01 1.13 7.76 9.23 10.00
## beta[12] 7.53 0.01 1.07 5.45 6.82 7.53
## beta[13] 0.01 0.00 0.00 0.00 0.00 0.01
## var_eartag 9.09 0.01 1.30 6.89 8.18 8.98
## var_follower 0.87 0.00 0.14 0.63 0.77 0.85
## var_error 43.00 0.00 0.24 42.54 42.84 43.00
## prp_var_eartag 0.17 0.00 0.02 0.14 0.16 0.17
## prp_var_follower 0.02 0.00 0.00 0.01 0.01 0.02
## prp_var_error 0.81 0.00 0.02 0.77 0.80 0.81
## lp__ -159229.37 0.12 11.48 -159252.76 -159236.88 -159229.09
## 75% 97.5% n_eff Rhat
## beta[1] 14.21 15.38 5980 1
## beta[2] 8.25 9.52 5393 1
## beta[3] 11.05 12.30 5178 1
## beta[4] 9.22 10.69 6609 1
## beta[5] 10.30 11.76 6173 1
## beta[6] 6.13 7.53 5515 1
## beta[7] 12.04 13.21 5906 1
## beta[8] 9.05 10.26 5426 1
## beta[9] 16.04 17.27 5594 1
## beta[10] 8.26 9.72 6520 1
## beta[11] 10.74 12.18 6847 1
## beta[12] 8.24 9.63 5630 1
## beta[13] 0.01 0.01 57242 1
## var_eartag 9.88 11.95 20155 1
## var_follower 0.95 1.17 19172 1
## var_error 43.16 43.47 53180 1
## prp_var_eartag 0.18 0.21 20446 1
## prp_var_follower 0.02 0.02 19266 1
## prp_var_error 0.83 0.85 20360 1
## lp__ -159221.53 -159207.60 9068 1
##
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 03:45:39 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.75)
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))
ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
"rho", "var_eartag","var_follower", "var_error",
"prp_var_eartag","prp_var_follower", "prp_var_error")))
autocorr.diag(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4 Loc1_t_5
## Lag 0 1.00000000 1.000000000 1.00000000 1.00000000 1.00000000
## Lag 1 0.61860344 0.670766419 0.66216005 0.62488624 0.60780882
## Lag 5 0.17781019 0.225939350 0.19704306 0.15431546 0.15758009
## Lag 10 0.04138631 0.069112818 0.03683993 0.03414666 0.03494142
## Lag 50 -0.01135936 0.007389174 0.02682615 0.01335822 0.01071376
## Loc1_t_6 Loc2_t_1 Loc2_t_2 Loc2_t_3 Loc2_t_4
## Lag 0 1.000000000 1.000000000 1.0000000000 1.00000000 1.00000000
## Lag 1 0.656078546 0.617990719 0.6553304565 0.64454478 0.61432343
## Lag 5 0.186447136 0.176769406 0.2138857890 0.18831438 0.15624435
## Lag 10 0.062029492 0.059820956 0.0692007090 0.04507550 0.03089223
## Lag 50 0.001010602 -0.007224273 0.0003442391 -0.00942489 0.01212918
## Loc2_t_5 Loc2_t_6 Median Weight rho var_eartag
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.606332923 0.642690825 -0.337047152 0.035353019 0.011332317
## Lag 5 0.132409011 0.187686625 -0.009086360 0.015448157 0.026623969
## Lag 10 0.026056938 0.054659868 0.001830421 0.005032227 -0.002153371
## Lag 50 0.005396061 -0.003549437 0.013549159 0.007607342 -0.006895332
## var_follower var_error prp_var_eartag prp_var_follower
## Lag 0 1.000000000 1.000000000 1.000000000 1.000000000
## Lag 1 0.044131219 -0.287035420 0.001622168 0.038775791
## Lag 5 0.016251067 -0.022551156 0.026483227 0.017650602
## Lag 10 0.002443573 0.001646444 -0.001656122 0.003473616
## Lag 50 0.001775547 -0.006015079 -0.007437080 0.001512490
## prp_var_error lp__
## Lag 0 1.000000000 1.0000000000
## Lag 1 0.005168091 0.5009938120
## Lag 5 0.025515323 0.0427589382
## Lag 10 -0.002170438 -0.0010363361
## Lag 50 -0.007339322 0.0009184027
effectiveSize(outp3)
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 6193.227 5194.153 5729.208 6276.004
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 6489.591 5751.292 6221.700 5487.164
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## 5920.647 6732.954 6914.040 6179.950
## Median Weight rho var_eartag var_follower
## 60556.214 21775.197 20090.471 20307.905
## var_error prp_var_eartag prp_var_follower prp_var_error
## 54037.431 20435.764 20420.498 20217.172
## lp__
## 9858.165
traplot(outp3,col =c("red1","blue4","purple3"))
geweke.diag(outp3)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.7466 -0.3187 -4.0814 1.9540
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## -1.1884 -1.4185 1.9389 0.2663
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## -2.5897 -0.4564 1.1675 0.3609
## Median Weight rho var_eartag var_follower
## -1.7180 -2.1725 0.3222 0.9613
## var_error prp_var_eartag prp_var_follower prp_var_error
## -2.1611 0.4195 0.9206 -0.5420
## lp__
## -0.6094
##
##
## [[2]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 1.30399 1.74579 -0.44428 -1.33039
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 0.32080 0.13947 -0.04603 -1.21169
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## -0.99788 0.91100 -0.13264 -0.39034
## Median Weight rho var_eartag var_follower
## 0.33713 -1.93620 -1.24825 -0.24059
## var_error prp_var_eartag prp_var_follower prp_var_error
## 0.25971 -1.26234 -0.03771 1.28407
## lp__
## -0.99320
##
##
## [[3]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Loc1_t_1 Loc1_t_2 Loc1_t_3 Loc1_t_4
## 0.22681 -1.49278 0.20749 -0.23288
## Loc1_t_5 Loc1_t_6 Loc2_t_1 Loc2_t_2
## 0.15888 0.48129 -0.63671 1.09432
## Loc2_t_3 Loc2_t_4 Loc2_t_5 Loc2_t_6
## -0.53911 1.43280 -0.30301 0.02446
## Median Weight rho var_eartag var_follower
## 0.85535 0.12719 0.37711 -0.43710
## var_error prp_var_eartag prp_var_follower prp_var_error
## -0.00472 0.45078 -0.45093 -0.39220
## lp__
## 0.33149
#gelman.diag(outp3)
denplot(outp3,col = c("red1","blue4","purple3"))
summary(outp3)
##
## Iterations = 2001:12000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 10000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Loc1_t_1 1.354e+01 0.960095 5.543e-03 1.344e-02
## Loc1_t_2 7.635e+00 0.981886 5.669e-03 1.488e-02
## Loc1_t_3 1.041e+01 0.978042 5.647e-03 1.392e-02
## Loc1_t_4 8.481e+00 1.143923 6.604e-03 1.531e-02
## Loc1_t_5 9.562e+00 1.158813 6.690e-03 1.530e-02
## Loc1_t_6 5.414e+00 1.081300 6.243e-03 1.533e-02
## Loc2_t_1 1.146e+01 0.949496 5.482e-03 1.300e-02
## Loc2_t_2 8.376e+00 0.986848 5.698e-03 1.459e-02
## Loc2_t_3 1.537e+01 0.984655 5.685e-03 1.367e-02
## Loc2_t_4 7.525e+00 1.133340 6.543e-03 1.493e-02
## Loc2_t_5 9.992e+00 1.145833 6.615e-03 1.467e-02
## Loc2_t_6 7.549e+00 1.094912 6.321e-03 1.548e-02
## Median Weight 6.045e-03 0.001574 9.086e-06 6.402e-06
## rho 7.103e-02 0.105076 6.067e-04 7.193e-04
## var_eartag 9.169e+00 1.321209 7.628e-03 9.399e-03
## var_follower 8.753e-01 0.138160 7.977e-04 9.751e-04
## var_error 4.300e+01 0.236620 1.366e-03 1.019e-03
## prp_var_eartag 1.723e-01 0.020352 1.175e-04 1.436e-04
## prp_var_follower 1.650e-02 0.002588 1.494e-05 1.825e-05
## prp_var_error 8.111e-01 0.020090 1.160e-04 1.424e-04
## lp__ -1.592e+05 11.427947 6.598e-02 1.151e-01
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Loc1_t_1 1.166e+01 1.291e+01 1.355e+01 1.419e+01 1.541e+01
## Loc1_t_2 5.724e+00 6.970e+00 7.633e+00 8.303e+00 9.540e+00
## Loc1_t_3 8.448e+00 9.758e+00 1.042e+01 1.106e+01 1.231e+01
## Loc1_t_4 6.230e+00 7.714e+00 8.503e+00 9.258e+00 1.069e+01
## Loc1_t_5 7.288e+00 8.780e+00 9.558e+00 1.033e+01 1.187e+01
## Loc1_t_6 3.284e+00 4.698e+00 5.404e+00 6.141e+00 7.550e+00
## Loc2_t_1 9.598e+00 1.082e+01 1.145e+01 1.211e+01 1.332e+01
## Loc2_t_2 6.464e+00 7.705e+00 8.380e+00 9.035e+00 1.032e+01
## Loc2_t_3 1.346e+01 1.471e+01 1.536e+01 1.602e+01 1.732e+01
## Loc2_t_4 5.275e+00 6.763e+00 7.540e+00 8.297e+00 9.712e+00
## Loc2_t_5 7.760e+00 9.222e+00 9.992e+00 1.077e+01 1.225e+01
## Loc2_t_6 5.384e+00 6.815e+00 7.552e+00 8.282e+00 9.692e+00
## Median Weight 2.948e-03 4.993e-03 6.047e-03 7.100e-03 9.123e-03
## rho -1.380e-01 9.629e-04 7.127e-02 1.430e-01 2.721e-01
## var_eartag 6.924e+00 8.240e+00 9.049e+00 9.960e+00 1.212e+01
## var_follower 6.442e-01 7.783e-01 8.620e-01 9.582e-01 1.184e+00
## var_error 4.254e+01 4.284e+01 4.300e+01 4.316e+01 4.347e+01
## prp_var_eartag 1.363e-01 1.581e-01 1.710e-01 1.850e-01 2.167e-01
## prp_var_follower 1.216e-02 1.468e-02 1.627e-02 1.806e-02 2.228e-02
## prp_var_error 7.678e-01 7.987e-01 8.125e-01 8.252e-01 8.468e-01
## lp__ -1.593e+05 -1.592e+05 -1.592e+05 -1.592e+05 -1.592e+05
print(EFcov.model)
## Inference for Stan model: covEartFolltrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1;
## post-warmup draws per chain=10000, total post-warmup draws=30000.
##
## mean se_mean sd 2.5% 25% 50%
## beta[1] 13.54 0.01 0.96 11.66 12.91 13.55
## beta[2] 7.63 0.01 0.98 5.72 6.97 7.63
## beta[3] 10.41 0.01 0.98 8.45 9.76 10.42
## beta[4] 8.48 0.02 1.14 6.23 7.71 8.50
## beta[5] 9.56 0.02 1.16 7.29 8.78 9.56
## beta[6] 5.41 0.02 1.08 3.28 4.70 5.40
## beta[7] 11.46 0.01 0.95 9.60 10.82 11.45
## beta[8] 8.38 0.01 0.99 6.46 7.70 8.38
## beta[9] 15.37 0.01 0.98 13.46 14.71 15.36
## beta[10] 7.53 0.02 1.13 5.28 6.76 7.54
## beta[11] 9.99 0.01 1.15 7.76 9.22 9.99
## beta[12] 7.55 0.02 1.09 5.38 6.82 7.55
## beta[13] 0.01 0.00 0.00 0.00 0.00 0.01
## rho 0.07 0.00 0.11 -0.14 0.00 0.07
## var_eartag 9.17 0.01 1.32 6.92 8.24 9.05
## var_follower 0.88 0.00 0.14 0.64 0.78 0.86
## var_error 43.00 0.00 0.24 42.54 42.84 43.00
## prp_var_eartag 0.17 0.00 0.02 0.14 0.16 0.17
## prp_var_follower 0.02 0.00 0.00 0.01 0.01 0.02
## prp_var_error 0.81 0.00 0.02 0.77 0.80 0.81
## lp__ -159230.53 0.12 11.43 -159253.75 -159238.00 -159230.30
## 75% 97.5% n_eff Rhat
## beta[1] 14.19 15.41 5311 1
## beta[2] 8.30 9.54 4399 1
## beta[3] 11.06 12.31 4399 1
## beta[4] 9.26 10.69 5718 1
## beta[5] 10.33 11.87 5598 1
## beta[6] 6.14 7.55 4714 1
## beta[7] 12.11 13.32 5110 1
## beta[8] 9.03 10.32 4482 1
## beta[9] 16.02 17.32 5181 1
## beta[10] 8.30 9.71 5707 1
## beta[11] 10.77 12.25 5970 1
## beta[12] 8.28 9.69 4553 1
## beta[13] 0.01 0.01 61991 1
## rho 0.14 0.27 20727 1
## var_eartag 9.96 12.12 19063 1
## var_follower 0.96 1.18 19549 1
## var_error 43.16 43.47 55476 1
## prp_var_eartag 0.19 0.22 19352 1
## prp_var_follower 0.02 0.02 19752 1
## prp_var_error 0.83 0.85 19159 1
## lp__ -159222.57 -159209.16 9539 1
##
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 04:04:44 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.75 )