Results bayesian estimating of variance components with Stan program, on 66.788 records of visit length time at the feeder from 6 trials, including locations (2 per trial), median weight as fixed effects and Eartag (118) and followers (118) as random effects in the models. iter = 12000, chain= 3, burn-in = 2000, Thin=1.

1. Mixed model: Location + Median wt + Eartag

1.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
 "var_eartag","var_error","prp_var_eartag","prp_var_error")))

autocorr.diag(outp1)
##             Loc1_t_1      Loc1_t_2      Loc1_t_3     Loc1_t_4
## Lag 0   1.0000000000  1.0000000000  1.0000000000  1.000000000
## Lag 1  -0.1471087846 -0.0732679942 -0.0903091327 -0.168101632
## Lag 5  -0.0013865537  0.0064696105 -0.0052886663 -0.003085494
## Lag 10 -0.0004056016  0.0002101426 -0.0064972652  0.006270659
## Lag 50  0.0095696977 -0.0115891740 -0.0006608415 -0.003299075
##             Loc1_t_5     Loc1_t_6      Loc2_t_1     Loc2_t_2     Loc2_t_3
## Lag 0   1.0000000000  1.000000000  1.0000000000  1.000000000  1.000000000
## Lag 1  -0.1576735352 -0.167466817 -0.1249448175 -0.091310126 -0.110954905
## Lag 5   0.0004148363 -0.002615544 -0.0007691954  0.002380314  0.002054322
## Lag 10 -0.0041770850 -0.005311132 -0.0008523821  0.005635538  0.003587318
## Lag 50 -0.0068091912 -0.009599190  0.0033201149  0.005839662 -0.001348789
##            Loc2_t_4     Loc2_t_5     Loc2_t_6 Median Weight    var_eartag
## Lag 0   1.000000000  1.000000000  1.000000000  1.0000000000  1.0000000000
## Lag 1  -0.162096122 -0.197137328 -0.139462238  0.0005343875  0.0628949588
## Lag 5  -0.003185497  0.010059382  0.005479880 -0.0065520315 -0.0003994407
## Lag 10 -0.008138205 -0.005912223 -0.006605805 -0.0004538409 -0.0013517849
## Lag 50 -0.001796362 -0.012676014 -0.003613669 -0.0006002109 -0.0046814530
##           var_error prp_var_eartag prp_var_error         lp__
## Lag 0   1.000000000   1.0000000000  1.0000000000  1.000000000
## Lag 1  -0.010628532   0.0580406038  0.0580406038  0.489826650
## Lag 5  -0.005053202  -0.0007058289 -0.0007058289  0.027630730
## Lag 10 -0.003881897  -0.0016326874 -0.0016326874 -0.010112585
## Lag 50  0.002083661  -0.0033205231 -0.0033205231 -0.007768452
effectiveSize(outp1)
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       43936.58       36760.72       36655.08       42869.75       39172.92 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       42521.17       38855.17       36748.43       36963.68       43947.09 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       45641.55       40864.56       30584.68       24626.22       30460.43 
## prp_var_eartag  prp_var_error           lp__ 
##       25174.92       25174.92       10127.43
geweke.diag(outp1)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -0.27922       -1.72199       -0.96672       -1.74382        0.40273 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##        0.41265        0.32945        1.43042       -0.58987        0.13493 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       -0.31106       -0.62678       -0.32678        0.32195       -1.28358 
## prp_var_eartag  prp_var_error           lp__ 
##        0.35320       -0.35320        0.08677 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##         1.5796         0.5326        -0.5708         0.3733         0.7997 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##         0.7577        -0.0771         0.1930         1.4573         1.4353 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##        -1.1317        -0.8819        -0.7057         0.5718        -1.3023 
## prp_var_eartag  prp_var_error           lp__ 
##         0.5971        -0.5971        -0.5174 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -1.29541        0.40753        0.08778        0.09720       -0.32688 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##        1.05565       -0.28786       -0.50399       -0.55452       -1.78947 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##        0.72070       -0.81843        0.42240       -1.06572        1.52031 
## prp_var_eartag  prp_var_error           lp__ 
##       -1.18914        1.18914       -0.30042
#gelman.diag(outp1)
traplot(outp1,col =c("red1","blue4","purple3"))

denplot(outp1)

1.2. Summary Posterior Distribution

summary(outp1)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                      Mean       SD  Naive SE Time-series SE
## Loc1_t_1        1.354e+01 0.912104 5.266e-03      4.614e-03
## Loc1_t_2        7.653e+00 0.930848 5.374e-03      5.233e-03
## Loc1_t_3        1.049e+01 0.929341 5.366e-03      5.130e-03
## Loc1_t_4        8.459e+00 1.071551 6.187e-03      5.403e-03
## Loc1_t_5        9.494e+00 1.082744 6.251e-03      5.820e-03
## Loc1_t_6        5.357e+00 1.004754 5.801e-03      4.997e-03
## Loc2_t_1        1.112e+01 0.890776 5.143e-03      4.754e-03
## Loc2_t_2        8.372e+00 0.923649 5.333e-03      5.149e-03
## Loc2_t_3        1.531e+01 0.922397 5.325e-03      5.045e-03
## Loc2_t_4        7.582e+00 1.078935 6.229e-03      5.494e-03
## Loc2_t_5        1.005e+01 1.085097 6.265e-03      5.314e-03
## Loc2_t_6        7.275e+00 1.005811 5.807e-03      5.219e-03
## Median Weight   6.087e-03 0.001561 9.011e-06      8.928e-06
## var_eartag      9.203e+00 1.307650 7.550e-03      8.340e-03
## var_error       4.376e+01 0.239816 1.385e-03      1.375e-03
## prp_var_eartag  1.733e-01 0.020185 1.165e-04      1.274e-04
## prp_var_error   8.267e-01 0.020185 1.165e-04      1.274e-04
## lp__           -1.598e+05 8.215213 4.743e-02      8.167e-02
## 
## 2. Quantiles for each variable:
## 
##                      2.5%        25%        50%        75%      97.5%
## Loc1_t_1        1.174e+01  1.293e+01  1.354e+01  1.415e+01  1.533e+01
## Loc1_t_2        5.815e+00  7.036e+00  7.652e+00  8.275e+00  9.475e+00
## Loc1_t_3        8.657e+00  9.883e+00  1.049e+01  1.111e+01  1.232e+01
## Loc1_t_4        6.347e+00  7.740e+00  8.459e+00  9.187e+00  1.057e+01
## Loc1_t_5        7.339e+00  8.776e+00  9.487e+00  1.022e+01  1.162e+01
## Loc1_t_6        3.377e+00  4.683e+00  5.356e+00  6.036e+00  7.315e+00
## Loc2_t_1        9.356e+00  1.051e+01  1.111e+01  1.172e+01  1.286e+01
## Loc2_t_2        6.544e+00  7.757e+00  8.366e+00  8.989e+00  1.020e+01
## Loc2_t_3        1.350e+01  1.470e+01  1.531e+01  1.593e+01  1.714e+01
## Loc2_t_4        5.472e+00  6.857e+00  7.583e+00  8.299e+00  9.710e+00
## Loc2_t_5        7.921e+00  9.322e+00  1.005e+01  1.078e+01  1.219e+01
## Loc2_t_6        5.314e+00  6.601e+00  7.268e+00  7.956e+00  9.233e+00
## Median Weight   3.014e-03  5.041e-03  6.096e-03  7.148e-03  9.143e-03
## var_eartag      6.984e+00  8.282e+00  9.082e+00  9.993e+00  1.211e+01
## var_error       4.330e+01  4.360e+01  4.376e+01  4.392e+01  4.424e+01
## prp_var_eartag  1.377e-01  1.591e-01  1.719e-01  1.859e-01  2.168e-01
## prp_var_error   7.832e-01  8.141e-01  8.281e-01  8.409e-01  8.623e-01
## lp__           -1.598e+05 -1.598e+05 -1.598e+05 -1.598e+05 -1.598e+05
print(Et.model)
## Inference for Stan model: Eartagtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                      mean se_mean   sd       2.5%        25%        50%
## beta[1]             13.54    0.00 0.91      11.74      12.93      13.54
## beta[2]              7.65    0.01 0.93       5.81       7.04       7.65
## beta[3]             10.49    0.01 0.93       8.66       9.88      10.49
## beta[4]              8.46    0.01 1.07       6.35       7.74       8.46
## beta[5]              9.49    0.01 1.08       7.34       8.78       9.49
## beta[6]              5.36    0.00 1.00       3.38       4.68       5.36
## beta[7]             11.12    0.00 0.89       9.36      10.51      11.11
## beta[8]              8.37    0.01 0.92       6.54       7.76       8.37
## beta[9]             15.31    0.01 0.92      13.50      14.70      15.31
## beta[10]             7.58    0.01 1.08       5.47       6.86       7.58
## beta[11]            10.05    0.01 1.09       7.92       9.32      10.05
## beta[12]             7.28    0.01 1.01       5.31       6.60       7.27
## beta[13]             0.01    0.00 0.00       0.00       0.01       0.01
## var_eartag           9.20    0.01 1.31       6.98       8.28       9.08
## var_error           43.76    0.00 0.24      43.30      43.60      43.76
## prp_var_eartag       0.17    0.00 0.02       0.14       0.16       0.17
## prp_var_error        0.83    0.00 0.02       0.78       0.81       0.83
## lp__           -159767.12    0.08 8.22 -159783.94 -159772.56 -159766.73
##                       75%      97.5% n_eff Rhat
## beta[1]             14.15      15.33 37302    1
## beta[2]              8.27       9.47 30940    1
## beta[3]             11.11      12.32 33375    1
## beta[4]              9.19      10.57 35610    1
## beta[5]             10.22      11.62 34484    1
## beta[6]              6.04       7.32 40489    1
## beta[7]             11.72      12.86 34982    1
## beta[8]              8.99      10.20 30562    1
## beta[9]             15.93      17.14 32164    1
## beta[10]             8.30       9.71 38432    1
## beta[11]            10.78      12.19 40682    1
## beta[12]             7.96       9.23 37120    1
## beta[13]             0.01       0.01 29969    1
## var_eartag           9.99      12.11 24537    1
## var_error           43.92      44.24 29738    1
## prp_var_eartag       0.19       0.22 24881    1
## prp_var_error        0.84       0.86 24881    1
## lp__           -159761.38 -159752.03 10326    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 09:04:11 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.75)

2. Mixed model: Location + Median wt + Eartag + Follower

## [1] "mcmc.list"

2.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
             "var_eartag", "var_follower", "var_error",
             "prp_var_eartag","prp_var_follower","prp_var_error")))

autocorr.diag(outp2)
##           Loc1_t_1     Loc1_t_2    Loc1_t_3    Loc1_t_4    Loc1_t_5
## Lag 0  1.000000000  1.000000000 1.000000000  1.00000000  1.00000000
## Lag 1  0.594002608  0.618300364 0.639921465  0.58903279  0.59315420
## Lag 5  0.143892653  0.158340994 0.163086715  0.11255210  0.12902442
## Lag 10 0.032271950  0.041433346 0.036490151  0.01985852  0.01850784
## Lag 50 0.004215207 -0.002853048 0.006197219 -0.01276794 -0.01263318
##            Loc1_t_6     Loc2_t_1     Loc2_t_2    Loc2_t_3     Loc2_t_4
## Lag 0   1.000000000  1.000000000  1.000000000 1.000000000  1.000000000
## Lag 1   0.639825327  0.606355419  0.623261740 0.617011771  0.598034082
## Lag 5   0.161308123  0.135673113  0.158599043 0.154108266  0.120278300
## Lag 10  0.035861957  0.025648976  0.051095396 0.036564891  0.024250692
## Lag 50 -0.008846938 -0.005996926 -0.003731802 0.001050777 -0.002535053
##           Loc2_t_5    Loc2_t_6 Median Weight   var_eartag var_follower
## Lag 0  1.000000000 1.000000000   1.000000000  1.000000000  1.000000000
## Lag 1  0.571115813 0.622484311  -0.325457757  0.007039815  0.032155487
## Lag 5  0.114004812 0.154890123   0.003143067  0.026226007  0.028048595
## Lag 10 0.023716365 0.033294392   0.005613138 -0.001739518 -0.006046875
## Lag 50 0.002476578 0.002289386  -0.001579031  0.002985799 -0.005553047
##            var_error prp_var_eartag prp_var_follower prp_var_error
## Lag 0   1.0000000000   1.0000000000      1.000000000  1.0000000000
## Lag 1  -0.2722801360   0.0001802698      0.032527274 -0.0001569912
## Lag 5  -0.0020284288   0.0257939502      0.026363432  0.0270425119
## Lag 10  0.0004952582  -0.0013706333     -0.006734379 -0.0007329823
## Lag 50 -0.0011531812   0.0028527428     -0.005571189  0.0029827281
##               lp__
## Lag 0  1.000000000
## Lag 1  0.505119433
## Lag 5  0.048943214
## Lag 10 0.011836083
## Lag 50 0.009907233
effectiveSize(outp2)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         6401.532         5848.650         5967.566         7084.777 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         6699.894         5764.725         6355.171         5953.901 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         6107.235         6908.411         7292.276         6155.945 
##    Median Weight       var_eartag     var_follower        var_error 
##        58949.799        20831.665        19326.915        52492.818 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##        21151.015        19473.568        21106.489         9864.223
geweke.diag(outp2)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##           0.5777          -0.4235           1.3525          -1.5509 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##           0.5631          -1.3873           0.3729          -0.7813 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##           1.1437           0.2879          -2.0518           0.9542 
##    Median Weight       var_eartag     var_follower        var_error 
##           0.7693          -0.5184           0.5412           2.1732 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##          -0.6573           0.6127           0.5788           0.2980 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          1.09723          1.76390         -1.35289          0.67903 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.33461          1.24954          0.30048          0.84359 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.08648         -1.02497          1.04759         -0.88728 
##    Median Weight       var_eartag     var_follower        var_error 
##         -1.60636          1.72855          1.02087         -0.43271 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##          1.73276          0.76178         -1.94014         -0.34260 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.57982          1.09614          0.19825         -0.23838 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         -0.66364          0.05591          1.28029         -0.21406 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.13724          0.94658          0.71199         -0.35630 
##    Median Weight       var_eartag     var_follower        var_error 
##         -0.47151         -0.98352          0.22910          0.45921 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         -1.03208          0.41784          0.98461          1.32510
gelman.diag(outp2)
## Potential scale reduction factors:
## 
##                  Point est. Upper C.I.
## Loc1_t_1                  1       1.00
## Loc1_t_2                  1       1.01
## Loc1_t_3                  1       1.00
## Loc1_t_4                  1       1.00
## Loc1_t_5                  1       1.00
## Loc1_t_6                  1       1.00
## Loc2_t_1                  1       1.00
## Loc2_t_2                  1       1.00
## Loc2_t_3                  1       1.00
## Loc2_t_4                  1       1.00
## Loc2_t_5                  1       1.01
## Loc2_t_6                  1       1.00
## Median Weight             1       1.00
## var_eartag                1       1.00
## var_follower              1       1.00
## var_error                 1       1.00
## prp_var_eartag            1       1.00
## prp_var_follower          1       1.00
## prp_var_error             1       1.00
## lp__                      1       1.00
## 
## Multivariate psrf
## 
## 1.01
traplot(outp2, col = c("red1","purple1","blue4"))

denplot(outp2,col = c("red1","purple1","blue4"))

## 2.2. Summary Posterior Distribution

summary(outp2)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.358e+01  0.934862 5.397e-03      1.188e-02
## Loc1_t_2          7.621e+00  0.959333 5.539e-03      1.287e-02
## Loc1_t_3          1.040e+01  0.961302 5.550e-03      1.290e-02
## Loc1_t_4          8.473e+00  1.128124 6.513e-03      1.393e-02
## Loc1_t_5          9.546e+00  1.125146 6.496e-03      1.414e-02
## Loc1_t_6          5.407e+00  1.080693 6.239e-03      1.462e-02
## Loc2_t_1          1.142e+01  0.922965 5.329e-03      1.175e-02
## Loc2_t_2          8.395e+00  0.964322 5.568e-03      1.307e-02
## Loc2_t_3          1.539e+01  0.953857 5.507e-03      1.254e-02
## Loc2_t_4          7.503e+00  1.120811 6.471e-03      1.385e-02
## Loc2_t_5          9.987e+00  1.125537 6.498e-03      1.347e-02
## Loc2_t_6          7.529e+00  1.068002 6.166e-03      1.424e-02
## Median Weight     6.026e-03  0.001554 8.971e-06      6.402e-06
## var_eartag        9.093e+00  1.295966 7.482e-03      9.069e-03
## var_follower      8.662e-01  0.136249 7.866e-04      9.802e-04
## var_error         4.300e+01  0.235474 1.360e-03      1.028e-03
## prp_var_eartag    1.712e-01  0.020064 1.158e-04      1.393e-04
## prp_var_follower  1.636e-02  0.002564 1.480e-05      1.837e-05
## prp_var_error     8.124e-01  0.019756 1.141e-04      1.374e-04
## lp__             -1.592e+05 11.483490 6.630e-02      1.157e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.172e+01  1.296e+01  1.358e+01  1.421e+01  1.538e+01
## Loc1_t_2          5.743e+00  6.985e+00  7.621e+00  8.251e+00  9.524e+00
## Loc1_t_3          8.526e+00  9.755e+00  1.040e+01  1.105e+01  1.230e+01
## Loc1_t_4          6.260e+00  7.720e+00  8.476e+00  9.215e+00  1.069e+01
## Loc1_t_5          7.329e+00  8.795e+00  9.543e+00  1.030e+01  1.176e+01
## Loc1_t_6          3.261e+00  4.682e+00  5.414e+00  6.132e+00  7.526e+00
## Loc2_t_1          9.607e+00  1.080e+01  1.143e+01  1.204e+01  1.321e+01
## Loc2_t_2          6.479e+00  7.745e+00  8.403e+00  9.046e+00  1.026e+01
## Loc2_t_3          1.352e+01  1.476e+01  1.539e+01  1.604e+01  1.727e+01
## Loc2_t_4          5.285e+00  6.760e+00  7.490e+00  8.262e+00  9.719e+00
## Loc2_t_5          7.765e+00  9.231e+00  9.998e+00  1.074e+01  1.218e+01
## Loc2_t_6          5.452e+00  6.816e+00  7.525e+00  8.241e+00  9.631e+00
## Median Weight     2.972e-03  4.982e-03  6.019e-03  7.073e-03  9.077e-03
## var_eartag        6.890e+00  8.176e+00  8.979e+00  9.884e+00  1.195e+01
## var_follower      6.337e-01  7.704e-01  8.536e-01  9.485e-01  1.167e+00
## var_error         4.254e+01  4.284e+01  4.300e+01  4.316e+01  4.347e+01
## prp_var_eartag    1.357e-01  1.571e-01  1.699e-01  1.839e-01  2.141e-01
## prp_var_follower  1.198e-02  1.456e-02  1.613e-02  1.793e-02  2.199e-02
## prp_var_error     7.702e-01  8.000e-01  8.137e-01  8.263e-01  8.476e-01
## lp__             -1.593e+05 -1.592e+05 -1.592e+05 -1.592e+05 -1.592e+05
print(Foll.model)
## Inference for Stan model: EFtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.58    0.01  0.93      11.72      12.96      13.58
## beta[2]                7.62    0.01  0.96       5.74       6.98       7.62
## beta[3]               10.40    0.01  0.96       8.53       9.75      10.40
## beta[4]                8.47    0.01  1.13       6.26       7.72       8.48
## beta[5]                9.55    0.01  1.13       7.33       8.80       9.54
## beta[6]                5.41    0.01  1.08       3.26       4.68       5.41
## beta[7]               11.42    0.01  0.92       9.61      10.80      11.43
## beta[8]                8.40    0.01  0.96       6.48       7.75       8.40
## beta[9]               15.39    0.01  0.95      13.52      14.76      15.39
## beta[10]               7.50    0.01  1.12       5.29       6.76       7.49
## beta[11]               9.99    0.01  1.13       7.76       9.23      10.00
## beta[12]               7.53    0.01  1.07       5.45       6.82       7.53
## beta[13]               0.01    0.00  0.00       0.00       0.00       0.01
## var_eartag             9.09    0.01  1.30       6.89       8.18       8.98
## var_follower           0.87    0.00  0.14       0.63       0.77       0.85
## var_error             43.00    0.00  0.24      42.54      42.84      43.00
## prp_var_eartag         0.17    0.00  0.02       0.14       0.16       0.17
## prp_var_follower       0.02    0.00  0.00       0.01       0.01       0.02
## prp_var_error          0.81    0.00  0.02       0.77       0.80       0.81
## lp__             -159229.37    0.12 11.48 -159252.76 -159236.88 -159229.09
##                         75%      97.5% n_eff Rhat
## beta[1]               14.21      15.38  5980    1
## beta[2]                8.25       9.52  5393    1
## beta[3]               11.05      12.30  5178    1
## beta[4]                9.22      10.69  6609    1
## beta[5]               10.30      11.76  6173    1
## beta[6]                6.13       7.53  5515    1
## beta[7]               12.04      13.21  5906    1
## beta[8]                9.05      10.26  5426    1
## beta[9]               16.04      17.27  5594    1
## beta[10]               8.26       9.72  6520    1
## beta[11]              10.74      12.18  6847    1
## beta[12]               8.24       9.63  5630    1
## beta[13]               0.01       0.01 57242    1
## var_eartag             9.88      11.95 20155    1
## var_follower           0.95       1.17 19172    1
## var_error             43.16      43.47 53180    1
## prp_var_eartag         0.18       0.21 20446    1
## prp_var_follower       0.02       0.02 19266    1
## prp_var_error          0.83       0.85 20360    1
## lp__             -159221.53 -159207.60  9068    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 03:45:39 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.75)

3. Mixed model: Location + Median wt + Eartag + Follower + covariance between eartag and follower random effects

3.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
                      "rho", "var_eartag","var_follower", "var_error",
                      "prp_var_eartag","prp_var_follower", "prp_var_error")))

autocorr.diag(outp3)
##           Loc1_t_1    Loc1_t_2   Loc1_t_3   Loc1_t_4   Loc1_t_5
## Lag 0   1.00000000 1.000000000 1.00000000 1.00000000 1.00000000
## Lag 1   0.61860344 0.670766419 0.66216005 0.62488624 0.60780882
## Lag 5   0.17781019 0.225939350 0.19704306 0.15431546 0.15758009
## Lag 10  0.04138631 0.069112818 0.03683993 0.03414666 0.03494142
## Lag 50 -0.01135936 0.007389174 0.02682615 0.01335822 0.01071376
##           Loc1_t_6     Loc2_t_1     Loc2_t_2    Loc2_t_3   Loc2_t_4
## Lag 0  1.000000000  1.000000000 1.0000000000  1.00000000 1.00000000
## Lag 1  0.656078546  0.617990719 0.6553304565  0.64454478 0.61432343
## Lag 5  0.186447136  0.176769406 0.2138857890  0.18831438 0.15624435
## Lag 10 0.062029492  0.059820956 0.0692007090  0.04507550 0.03089223
## Lag 50 0.001010602 -0.007224273 0.0003442391 -0.00942489 0.01212918
##           Loc2_t_5     Loc2_t_6 Median Weight         rho   var_eartag
## Lag 0  1.000000000  1.000000000   1.000000000 1.000000000  1.000000000
## Lag 1  0.606332923  0.642690825  -0.337047152 0.035353019  0.011332317
## Lag 5  0.132409011  0.187686625  -0.009086360 0.015448157  0.026623969
## Lag 10 0.026056938  0.054659868   0.001830421 0.005032227 -0.002153371
## Lag 50 0.005396061 -0.003549437   0.013549159 0.007607342 -0.006895332
##        var_follower    var_error prp_var_eartag prp_var_follower
## Lag 0   1.000000000  1.000000000    1.000000000      1.000000000
## Lag 1   0.044131219 -0.287035420    0.001622168      0.038775791
## Lag 5   0.016251067 -0.022551156    0.026483227      0.017650602
## Lag 10  0.002443573  0.001646444   -0.001656122      0.003473616
## Lag 50  0.001775547 -0.006015079   -0.007437080      0.001512490
##        prp_var_error          lp__
## Lag 0    1.000000000  1.0000000000
## Lag 1    0.005168091  0.5009938120
## Lag 5    0.025515323  0.0427589382
## Lag 10  -0.002170438 -0.0010363361
## Lag 50  -0.007339322  0.0009184027
effectiveSize(outp3)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         6193.227         5194.153         5729.208         6276.004 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         6489.591         5751.292         6221.700         5487.164 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         5920.647         6732.954         6914.040         6179.950 
##    Median Weight              rho       var_eartag     var_follower 
##        60556.214        21775.197        20090.471        20307.905 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##        54037.431        20435.764        20420.498        20217.172 
##             lp__ 
##         9858.165
traplot(outp3,col =c("red1","blue4","purple3"))

geweke.diag(outp3)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##           0.7466          -0.3187          -4.0814           1.9540 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          -1.1884          -1.4185           1.9389           0.2663 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##          -2.5897          -0.4564           1.1675           0.3609 
##    Median Weight              rho       var_eartag     var_follower 
##          -1.7180          -2.1725           0.3222           0.9613 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          -2.1611           0.4195           0.9206          -0.5420 
##             lp__ 
##          -0.6094 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          1.30399          1.74579         -0.44428         -1.33039 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.32080          0.13947         -0.04603         -1.21169 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.99788          0.91100         -0.13264         -0.39034 
##    Median Weight              rho       var_eartag     var_follower 
##          0.33713         -1.93620         -1.24825         -0.24059 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          0.25971         -1.26234         -0.03771          1.28407 
##             lp__ 
##         -0.99320 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.22681         -1.49278          0.20749         -0.23288 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.15888          0.48129         -0.63671          1.09432 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.53911          1.43280         -0.30301          0.02446 
##    Median Weight              rho       var_eartag     var_follower 
##          0.85535          0.12719          0.37711         -0.43710 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##         -0.00472          0.45078         -0.45093         -0.39220 
##             lp__ 
##          0.33149
#gelman.diag(outp3)
denplot(outp3,col = c("red1","blue4","purple3"))

3.2. Summary Posterior Distribution

summary(outp3)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.354e+01  0.960095 5.543e-03      1.344e-02
## Loc1_t_2          7.635e+00  0.981886 5.669e-03      1.488e-02
## Loc1_t_3          1.041e+01  0.978042 5.647e-03      1.392e-02
## Loc1_t_4          8.481e+00  1.143923 6.604e-03      1.531e-02
## Loc1_t_5          9.562e+00  1.158813 6.690e-03      1.530e-02
## Loc1_t_6          5.414e+00  1.081300 6.243e-03      1.533e-02
## Loc2_t_1          1.146e+01  0.949496 5.482e-03      1.300e-02
## Loc2_t_2          8.376e+00  0.986848 5.698e-03      1.459e-02
## Loc2_t_3          1.537e+01  0.984655 5.685e-03      1.367e-02
## Loc2_t_4          7.525e+00  1.133340 6.543e-03      1.493e-02
## Loc2_t_5          9.992e+00  1.145833 6.615e-03      1.467e-02
## Loc2_t_6          7.549e+00  1.094912 6.321e-03      1.548e-02
## Median Weight     6.045e-03  0.001574 9.086e-06      6.402e-06
## rho               7.103e-02  0.105076 6.067e-04      7.193e-04
## var_eartag        9.169e+00  1.321209 7.628e-03      9.399e-03
## var_follower      8.753e-01  0.138160 7.977e-04      9.751e-04
## var_error         4.300e+01  0.236620 1.366e-03      1.019e-03
## prp_var_eartag    1.723e-01  0.020352 1.175e-04      1.436e-04
## prp_var_follower  1.650e-02  0.002588 1.494e-05      1.825e-05
## prp_var_error     8.111e-01  0.020090 1.160e-04      1.424e-04
## lp__             -1.592e+05 11.427947 6.598e-02      1.151e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.166e+01  1.291e+01  1.355e+01  1.419e+01  1.541e+01
## Loc1_t_2          5.724e+00  6.970e+00  7.633e+00  8.303e+00  9.540e+00
## Loc1_t_3          8.448e+00  9.758e+00  1.042e+01  1.106e+01  1.231e+01
## Loc1_t_4          6.230e+00  7.714e+00  8.503e+00  9.258e+00  1.069e+01
## Loc1_t_5          7.288e+00  8.780e+00  9.558e+00  1.033e+01  1.187e+01
## Loc1_t_6          3.284e+00  4.698e+00  5.404e+00  6.141e+00  7.550e+00
## Loc2_t_1          9.598e+00  1.082e+01  1.145e+01  1.211e+01  1.332e+01
## Loc2_t_2          6.464e+00  7.705e+00  8.380e+00  9.035e+00  1.032e+01
## Loc2_t_3          1.346e+01  1.471e+01  1.536e+01  1.602e+01  1.732e+01
## Loc2_t_4          5.275e+00  6.763e+00  7.540e+00  8.297e+00  9.712e+00
## Loc2_t_5          7.760e+00  9.222e+00  9.992e+00  1.077e+01  1.225e+01
## Loc2_t_6          5.384e+00  6.815e+00  7.552e+00  8.282e+00  9.692e+00
## Median Weight     2.948e-03  4.993e-03  6.047e-03  7.100e-03  9.123e-03
## rho              -1.380e-01  9.629e-04  7.127e-02  1.430e-01  2.721e-01
## var_eartag        6.924e+00  8.240e+00  9.049e+00  9.960e+00  1.212e+01
## var_follower      6.442e-01  7.783e-01  8.620e-01  9.582e-01  1.184e+00
## var_error         4.254e+01  4.284e+01  4.300e+01  4.316e+01  4.347e+01
## prp_var_eartag    1.363e-01  1.581e-01  1.710e-01  1.850e-01  2.167e-01
## prp_var_follower  1.216e-02  1.468e-02  1.627e-02  1.806e-02  2.228e-02
## prp_var_error     7.678e-01  7.987e-01  8.125e-01  8.252e-01  8.468e-01
## lp__             -1.593e+05 -1.592e+05 -1.592e+05 -1.592e+05 -1.592e+05
print(EFcov.model)
## Inference for Stan model: covEartFolltrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.54    0.01  0.96      11.66      12.91      13.55
## beta[2]                7.63    0.01  0.98       5.72       6.97       7.63
## beta[3]               10.41    0.01  0.98       8.45       9.76      10.42
## beta[4]                8.48    0.02  1.14       6.23       7.71       8.50
## beta[5]                9.56    0.02  1.16       7.29       8.78       9.56
## beta[6]                5.41    0.02  1.08       3.28       4.70       5.40
## beta[7]               11.46    0.01  0.95       9.60      10.82      11.45
## beta[8]                8.38    0.01  0.99       6.46       7.70       8.38
## beta[9]               15.37    0.01  0.98      13.46      14.71      15.36
## beta[10]               7.53    0.02  1.13       5.28       6.76       7.54
## beta[11]               9.99    0.01  1.15       7.76       9.22       9.99
## beta[12]               7.55    0.02  1.09       5.38       6.82       7.55
## beta[13]               0.01    0.00  0.00       0.00       0.00       0.01
## rho                    0.07    0.00  0.11      -0.14       0.00       0.07
## var_eartag             9.17    0.01  1.32       6.92       8.24       9.05
## var_follower           0.88    0.00  0.14       0.64       0.78       0.86
## var_error             43.00    0.00  0.24      42.54      42.84      43.00
## prp_var_eartag         0.17    0.00  0.02       0.14       0.16       0.17
## prp_var_follower       0.02    0.00  0.00       0.01       0.01       0.02
## prp_var_error          0.81    0.00  0.02       0.77       0.80       0.81
## lp__             -159230.53    0.12 11.43 -159253.75 -159238.00 -159230.30
##                         75%      97.5% n_eff Rhat
## beta[1]               14.19      15.41  5311    1
## beta[2]                8.30       9.54  4399    1
## beta[3]               11.06      12.31  4399    1
## beta[4]                9.26      10.69  5718    1
## beta[5]               10.33      11.87  5598    1
## beta[6]                6.14       7.55  4714    1
## beta[7]               12.11      13.32  5110    1
## beta[8]                9.03      10.32  4482    1
## beta[9]               16.02      17.32  5181    1
## beta[10]               8.30       9.71  5707    1
## beta[11]              10.77      12.25  5970    1
## beta[12]               8.28       9.69  4553    1
## beta[13]               0.01       0.01 61991    1
## rho                    0.14       0.27 20727    1
## var_eartag             9.96      12.12 19063    1
## var_follower           0.96       1.18 19549    1
## var_error             43.16      43.47 55476    1
## prp_var_eartag         0.19       0.22 19352    1
## prp_var_follower       0.02       0.02 19752    1
## prp_var_error          0.83       0.85 19159    1
## lp__             -159222.57 -159209.16  9539    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 04:04:44 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.75 )