Results bayesian estimating of variance components (proportion of variance) with Stan program, on 6340 records of visit length time at the feeder when the next visit was greater than or equal to 600 sc, from 6 trials, including locations (2 per trial), median weight as fixed effects and Eartag (118) and followers (118) as random effects in the models. iter = 12000, chain= 3, burn-in = 2000, Thin=1.

1. Mixed model: Location + Median wt + Eartag

1.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
"var_eartag","var_error","prp_var_eartag" ,"prp_var_error")))

autocorr.diag(outp1)
##            Loc1_t_1     Loc1_t_2      Loc1_t_3      Loc1_t_4     Loc1_t_5
## Lag 0   1.000000000  1.000000000  1.0000000000  1.0000000000  1.000000000
## Lag 1  -0.123219351  0.030606405 -0.0027361820  0.0277572751 -0.042774155
## Lag 5  -0.003719797  0.005388703  0.0004586849  0.0031132885  0.001276780
## Lag 10 -0.003289315 -0.002384619 -0.0123514165  0.0037294188  0.011243352
## Lag 50 -0.002556636  0.009619004  0.0048439521 -0.0003218926  0.000844602
##            Loc1_t_6     Loc2_t_1      Loc2_t_2     Loc2_t_3     Loc2_t_4
## Lag 0   1.000000000  1.000000000  1.0000000000  1.000000000  1.000000000
## Lag 1   0.088885363 -0.152710721  0.0969594107 -0.040774306  0.012355589
## Lag 5  -0.004751602  0.010558704  0.0008419433  0.001473400 -0.002832736
## Lag 10 -0.004902686 -0.013772505  0.0071626593  0.006899904  0.008814537
## Lag 50 -0.013929373 -0.007107068 -0.0061876952 -0.004377233 -0.008986992
##            Loc2_t_5      Loc2_t_6 Median Weight   var_eartag     var_error
## Lag 0   1.000000000  1.0000000000   1.000000000  1.000000000  1.0000000000
## Lag 1  -0.064942550  0.0902470819  -0.242858516 -0.052990045 -0.0506629856
## Lag 5   0.006004856 -0.0046901289  -0.002714338 -0.001559744 -0.0004506333
## Lag 10 -0.009275450  0.0012285914  -0.004339515 -0.009737167 -0.0185931108
## Lag 50 -0.001465892  0.0006513584  -0.003297619  0.002778049  0.0099192557
##        prp_var_eartag prp_var_error        lp__
## Lag 0    1.0000000000  1.0000000000 1.000000000
## Lag 1   -0.0592111009 -0.0592111009 0.466606858
## Lag 5   -0.0009034701 -0.0009034701 0.025307346
## Lag 10  -0.0111778705 -0.0111778705 0.007658301
## Lag 50   0.0014477176  0.0014477176 0.003917856
effectiveSize(outp1)
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       37985.03       27656.69       30128.92       28455.50       32688.36 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       24062.25       38725.60       24301.97       32295.20       28016.88 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       31873.65       26053.69       48842.10       30358.05       32486.45 
## prp_var_eartag  prp_var_error           lp__ 
##       30878.61       30878.61       10913.35
geweke.diag(outp1)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -0.36396       -1.85268        0.07577       -0.09846        1.08525 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       -0.52947        0.87057        1.93327        1.17557       -0.39824 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       -0.39121       -0.46271       -1.47142        0.81954        0.22433 
## prp_var_eartag  prp_var_error           lp__ 
##        0.86875       -0.86875       -0.62494 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       0.595030       0.632443       1.394575       1.131809      -0.263163 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##      -0.074885       0.619106      -0.204757       0.113504      -0.007772 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       1.442023      -1.476442      -0.342529      -0.520152      -1.434722 
## prp_var_eartag  prp_var_error           lp__ 
##      -0.364132       0.364132       0.808282 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -1.11566       -0.65446       -0.84040       -0.55622        0.51736 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       -0.79585        1.35607        0.53859       -0.39525        1.22817 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##        0.06132        0.22072        0.45356        0.65454        0.26027 
## prp_var_eartag  prp_var_error           lp__ 
##        0.72174       -0.72174       -0.05650
#gelman.diag(outp1)
traplot(outp1,col =c("red1","blue4","purple3"))

denplot(outp1)

1.2. Summary Posterior Distribution

summary(outp1)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                      Mean       SD  Naive SE Time-series SE
## Loc1_t_1        1.597e+01 1.162377 6.711e-03      5.966e-03
## Loc1_t_2        1.110e+01 1.078043 6.224e-03      6.485e-03
## Loc1_t_3        1.200e+01 1.098629 6.343e-03      6.336e-03
## Loc1_t_4        1.093e+01 1.241993 7.171e-03      7.387e-03
## Loc1_t_5        1.234e+01 1.260559 7.278e-03      6.975e-03
## Loc1_t_6        8.193e+00 1.158840 6.691e-03      7.476e-03
## Loc2_t_1        1.534e+01 1.165684 6.730e-03      5.927e-03
## Loc2_t_2        1.107e+01 1.077227 6.219e-03      6.911e-03
## Loc2_t_3        1.853e+01 1.117674 6.453e-03      6.228e-03
## Loc2_t_4        1.169e+01 1.253040 7.234e-03      7.490e-03
## Loc2_t_5        1.222e+01 1.267159 7.316e-03      7.099e-03
## Loc2_t_6        1.009e+01 1.184568 6.839e-03      7.401e-03
## Median Weight  -2.543e-02 0.005109 2.949e-05      2.321e-05
## var_eartag      1.077e+01 1.780594 1.028e-02      1.023e-02
## var_error       4.499e+01 0.804623 4.645e-03      4.470e-03
## prp_var_eartag  1.923e-01 0.025555 1.475e-04      1.455e-04
## prp_var_error   8.077e-01 0.025555 1.475e-04      1.455e-04
## lp__           -1.543e+04 8.437806 4.872e-02      8.083e-02
## 
## 2. Quantiles for each variable:
## 
##                      2.5%        25%        50%        75%      97.5%
## Loc1_t_1        1.371e+01  1.518e+01  1.597e+01  1.675e+01  1.825e+01
## Loc1_t_2        8.964e+00  1.037e+01  1.110e+01  1.183e+01  1.321e+01
## Loc1_t_3        9.829e+00  1.126e+01  1.200e+01  1.273e+01  1.416e+01
## Loc1_t_4        8.493e+00  1.009e+01  1.092e+01  1.176e+01  1.336e+01
## Loc1_t_5        9.841e+00  1.150e+01  1.235e+01  1.319e+01  1.479e+01
## Loc1_t_6        5.930e+00  7.422e+00  8.193e+00  8.956e+00  1.049e+01
## Loc2_t_1        1.305e+01  1.456e+01  1.534e+01  1.612e+01  1.762e+01
## Loc2_t_2        8.954e+00  1.035e+01  1.107e+01  1.180e+01  1.318e+01
## Loc2_t_3        1.635e+01  1.779e+01  1.852e+01  1.928e+01  2.073e+01
## Loc2_t_4        9.230e+00  1.085e+01  1.169e+01  1.252e+01  1.416e+01
## Loc2_t_5        9.716e+00  1.137e+01  1.223e+01  1.307e+01  1.470e+01
## Loc2_t_6        7.756e+00  9.281e+00  1.010e+01  1.089e+01  1.241e+01
## Median Weight  -3.541e-02 -2.889e-02 -2.542e-02 -2.194e-02 -1.552e-02
## var_eartag      7.783e+00  9.515e+00  1.060e+01  1.183e+01  1.475e+01
## var_error       4.344e+01  4.444e+01  4.499e+01  4.553e+01  4.659e+01
## prp_var_eartag  1.472e-01  1.745e-01  1.907e-01  2.085e-01  2.475e-01
## prp_var_error   7.525e-01  7.915e-01  8.093e-01  8.255e-01  8.528e-01
## lp__           -1.545e+04 -1.544e+04 -1.543e+04 -1.543e+04 -1.542e+04
print(Et600.model)
## Inference for Stan model: Eartagtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                     mean se_mean   sd      2.5%       25%       50%
## beta[1]            15.97    0.01 1.16     13.71     15.18     15.97
## beta[2]            11.10    0.01 1.08      8.96     10.37     11.10
## beta[3]            12.00    0.01 1.10      9.83     11.26     12.00
## beta[4]            10.93    0.01 1.24      8.49     10.09     10.92
## beta[5]            12.34    0.01 1.26      9.84     11.50     12.35
## beta[6]             8.19    0.01 1.16      5.93      7.42      8.19
## beta[7]            15.34    0.01 1.17     13.05     14.56     15.34
## beta[8]            11.07    0.01 1.08      8.95     10.35     11.07
## beta[9]            18.53    0.01 1.12     16.35     17.79     18.52
## beta[10]           11.69    0.01 1.25      9.23     10.85     11.69
## beta[11]           12.22    0.01 1.27      9.72     11.37     12.23
## beta[12]           10.09    0.01 1.18      7.76      9.28     10.10
## beta[13]           -0.03    0.00 0.01     -0.04     -0.03     -0.03
## var_eartag         10.77    0.01 1.78      7.78      9.51     10.60
## var_error          44.99    0.00 0.80     43.44     44.44     44.99
## prp_var_eartag      0.19    0.00 0.03      0.15      0.17      0.19
## prp_var_error       0.81    0.00 0.03      0.75      0.79      0.81
## lp__           -15430.80    0.08 8.44 -15448.30 -15436.31 -15430.43
##                      75%     97.5% n_eff Rhat
## beta[1]            16.75     18.25 37311    1
## beta[2]            11.83     13.21 27315    1
## beta[3]            12.73     14.16 29892    1
## beta[4]            11.76     13.36 27934    1
## beta[5]            13.19     14.79 32093    1
## beta[6]             8.96     10.49 24289    1
## beta[7]            16.12     17.62 38792    1
## beta[8]            11.80     13.18 23752    1
## beta[9]            19.28     20.73 32118    1
## beta[10]           12.52     14.16 27929    1
## beta[11]           13.07     14.70 32621    1
## beta[12]           10.89     12.41 24645    1
## beta[13]           -0.02     -0.02 49445    1
## var_eartag         11.83     14.75 30522    1
## var_error          45.53     46.59 32199    1
## prp_var_eartag      0.21      0.25 30968    1
## prp_var_error       0.83      0.85 30968    1
## lp__           -15425.01 -15415.17 10419    1
## 
## Samples were drawn using NUTS(diag_e) at Sat Sep 28 15:35:50 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.6)

2. Mixed model: Location + Median wt + Eartag + Follower

2.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
  "var_eartag","var_follower", "var_error","prp_var_eartag","prp_var_follower",  "prp_var_error")))

autocorr.diag(outp2)
##           Loc1_t_1      Loc1_t_2     Loc1_t_3     Loc1_t_4    Loc1_t_5
## Lag 0  1.000000000  1.0000000000 1.0000000000  1.000000000 1.000000000
## Lag 1  0.277345544  0.4196344490 0.3973699491  0.409145035 0.350193933
## Lag 5  0.053244766  0.0966399305 0.0944191369  0.102381788 0.065670571
## Lag 10 0.001044912  0.0197189427 0.0127843476  0.031434276 0.012203519
## Lag 50 0.005506888 -0.0005492996 0.0008222674 -0.006504922 0.001073529
##            Loc1_t_6     Loc2_t_1   Loc2_t_2      Loc2_t_3      Loc2_t_4
## Lag 0   1.000000000  1.000000000 1.00000000  1.0000000000  1.0000000000
## Lag 1   0.469502395  0.238090616 0.44391085  0.3445634150  0.4060235543
## Lag 5   0.121053517  0.045584304 0.10689896  0.0612964999  0.0844277861
## Lag 10  0.014685136  0.001459716 0.01739168  0.0120646482  0.0308657487
## Lag 50 -0.008235679 -0.001566534 0.01384540 -0.0003546347 -0.0009485515
##             Loc2_t_5    Loc2_t_6 Median Weight   var_eartag var_follower
## Lag 0   1.0000000000  1.00000000   1.000000000  1.000000000    1.0000000
## Lag 1   0.3429667309  0.43166446   0.049522596  0.018164104    0.9273889
## Lag 5   0.0583932280  0.10904637   0.010668537  0.009894689    0.8106728
## Lag 10  0.0020727306  0.02226329   0.002916006 -0.004022975    0.7013771
## Lag 50 -0.0004777744 -0.00918393  -0.001098588  0.004222454    0.3599078
##            var_error prp_var_eartag prp_var_follower prp_var_error
## Lag 0   1.0000000000    1.000000000        1.0000000   1.000000000
## Lag 1  -0.1212494014    0.011235743        0.9264340   0.013518961
## Lag 5   0.0147830142    0.010596576        0.8105582   0.012513035
## Lag 10  0.0017169946   -0.004806980        0.7007018  -0.002894323
## Lag 50  0.0006702087    0.003552112        0.3608713   0.004078517
##             lp__
## Lag 0  1.0000000
## Lag 1  0.9871143
## Lag 5  0.9513092
## Lag 10 0.9149820
## Lag 50 0.7138857
effectiveSize(outp2)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##       11743.4250        8096.9579        8523.7487        7894.6461 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##       10193.9699        7340.7163       13190.4084        8078.8760 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##        9950.1580        8265.6068       10192.7366        7975.5620 
##    Median Weight       var_eartag     var_follower        var_error 
##       20948.2100       21308.3968         314.6344       34543.7098 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##       21626.7402         313.5091       21341.4385         119.0512
geweke.diag(outp2)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.92024          0.85663         -1.80129         -0.26708 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         -0.13450          1.37329          0.15194         -1.09330 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.43670          0.56791          1.56347          0.07124 
##    Median Weight       var_eartag     var_follower        var_error 
##         -0.32501         -1.44362        -11.03370          0.26964 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         -1.23112        -11.01760          2.50750          8.11959 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -1.13201         -0.76172          1.03205          0.25712 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.16436          0.50142          1.67090          1.27928 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##          0.20274         -0.05022         -0.03729         -0.65809 
##    Median Weight       var_eartag     var_follower        var_error 
##         -1.68008         -0.39777          0.62514         -0.07591 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         -0.43531          0.63709          0.23502         -0.17239 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##        -0.662166         0.326359         0.107180         0.070864 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##        -0.669161        -0.008255        -0.897337         0.731771 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         0.227043        -0.867101         0.307943        -0.177592 
##    Median Weight       var_eartag     var_follower        var_error 
##         0.933469         0.504168        -6.772088         1.566189 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         0.647419        -6.835494         0.581293         4.246211
gelman.diag(outp2)
## Potential scale reduction factors:
## 
##                  Point est. Upper C.I.
## Loc1_t_1               1.00       1.00
## Loc1_t_2               1.00       1.00
## Loc1_t_3               1.00       1.00
## Loc1_t_4               1.00       1.00
## Loc1_t_5               1.00       1.00
## Loc1_t_6               1.00       1.00
## Loc2_t_1               1.00       1.00
## Loc2_t_2               1.00       1.00
## Loc2_t_3               1.00       1.00
## Loc2_t_4               1.00       1.00
## Loc2_t_5               1.00       1.00
## Loc2_t_6               1.00       1.00
## Median Weight          1.00       1.00
## var_eartag             1.00       1.00
## var_follower           1.04       1.14
## var_error              1.00       1.00
## prp_var_eartag         1.00       1.00
## prp_var_follower       1.04       1.13
## prp_var_error          1.00       1.00
## lp__                   1.08       1.23
## 
## Multivariate psrf
## 
## 1.05
traplot(outp2, col = c("red1","purple1","blue4"))

denplot(outp2,col = c("red1","purple1","blue4"))

## 2.2. Summary Posterior Distribution

summary(outp2)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.598e+01  1.161324 6.705e-03      1.088e-02
## Loc1_t_2          1.110e+01  1.084175 6.259e-03      1.220e-02
## Loc1_t_3          1.198e+01  1.124449 6.492e-03      1.236e-02
## Loc1_t_4          1.094e+01  1.255333 7.248e-03      1.424e-02
## Loc1_t_5          1.236e+01  1.281745 7.400e-03      1.284e-02
## Loc1_t_6          8.182e+00  1.174839 6.783e-03      1.379e-02
## Loc2_t_1          1.535e+01  1.170864 6.760e-03      1.030e-02
## Loc2_t_2          1.104e+01  1.084434 6.261e-03      1.221e-02
## Loc2_t_3          1.855e+01  1.114696 6.436e-03      1.124e-02
## Loc2_t_4          1.166e+01  1.262317 7.288e-03      1.391e-02
## Loc2_t_5          1.225e+01  1.267830 7.320e-03      1.258e-02
## Loc2_t_6          1.011e+01  1.192722 6.886e-03      1.348e-02
## Median Weight    -2.551e-02  0.005174 2.987e-05      3.584e-05
## var_eartag        1.079e+01  1.777894 1.026e-02      1.219e-02
## var_follower      6.588e-02  0.076956 4.443e-04      4.362e-03
## var_error         4.496e+01  0.816196 4.712e-03      4.427e-03
## prp_var_eartag    1.926e-01  0.025549 1.475e-04      1.738e-04
## prp_var_follower  1.180e-03  0.001378 7.953e-06      7.820e-05
## prp_var_error     8.062e-01  0.025548 1.475e-04      1.750e-04
## lp__             -1.528e+04 92.418753 5.336e-01      8.954e+00
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.374e+01  1.520e+01  1.597e+01  1.675e+01  1.829e+01
## Loc1_t_2          8.979e+00  1.037e+01  1.109e+01  1.182e+01  1.322e+01
## Loc1_t_3          9.781e+00  1.122e+01  1.197e+01  1.273e+01  1.420e+01
## Loc1_t_4          8.466e+00  1.010e+01  1.094e+01  1.178e+01  1.338e+01
## Loc1_t_5          9.850e+00  1.152e+01  1.237e+01  1.321e+01  1.489e+01
## Loc1_t_6          5.887e+00  7.388e+00  8.182e+00  8.980e+00  1.048e+01
## Loc2_t_1          1.305e+01  1.455e+01  1.535e+01  1.613e+01  1.764e+01
## Loc2_t_2          8.929e+00  1.031e+01  1.103e+01  1.175e+01  1.320e+01
## Loc2_t_3          1.637e+01  1.779e+01  1.855e+01  1.930e+01  2.073e+01
## Loc2_t_4          9.197e+00  1.080e+01  1.165e+01  1.251e+01  1.415e+01
## Loc2_t_5          9.755e+00  1.140e+01  1.224e+01  1.309e+01  1.475e+01
## Loc2_t_6          7.742e+00  9.308e+00  1.011e+01  1.091e+01  1.244e+01
## Median Weight    -3.561e-02 -2.900e-02 -2.552e-02 -2.203e-02 -1.535e-02
## var_eartag        7.773e+00  9.539e+00  1.063e+01  1.187e+01  1.475e+01
## var_follower      5.118e-04  1.097e-02  3.763e-02  9.407e-02  2.778e-01
## var_error         4.338e+01  4.441e+01  4.495e+01  4.551e+01  4.659e+01
## prp_var_eartag    1.469e-01  1.746e-01  1.910e-01  2.089e-01  2.471e-01
## prp_var_follower  9.171e-06  1.967e-04  6.729e-04  1.685e-03  4.979e-03
## prp_var_error     7.516e-01  7.899e-01  8.079e-01  8.242e-01  8.518e-01
## lp__             -1.541e+04 -1.535e+04 -1.530e+04 -1.522e+04 -1.505e+04
print(Fol600.model)
## Inference for Stan model: EFtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                       mean se_mean    sd      2.5%       25%       50%
## beta[1]              15.98    0.01  1.16     13.74     15.20     15.97
## beta[2]              11.10    0.01  1.08      8.98     10.37     11.09
## beta[3]              11.98    0.01  1.12      9.78     11.22     11.97
## beta[4]              10.94    0.01  1.26      8.47     10.10     10.94
## beta[5]              12.36    0.01  1.28      9.85     11.52     12.37
## beta[6]               8.18    0.01  1.17      5.89      7.39      8.18
## beta[7]              15.35    0.01  1.17     13.05     14.55     15.35
## beta[8]              11.04    0.01  1.08      8.93     10.31     11.03
## beta[9]              18.55    0.01  1.11     16.37     17.79     18.55
## beta[10]             11.66    0.01  1.26      9.20     10.80     11.65
## beta[11]             12.25    0.01  1.27      9.76     11.40     12.24
## beta[12]             10.11    0.01  1.19      7.74      9.31     10.11
## beta[13]             -0.03    0.00  0.01     -0.04     -0.03     -0.03
## var_eartag           10.79    0.01  1.78      7.77      9.54     10.63
## var_follower          0.07    0.01  0.08      0.00      0.01      0.04
## var_error            44.96    0.00  0.82     43.38     44.41     44.95
## prp_var_eartag        0.19    0.00  0.03      0.15      0.17      0.19
## prp_var_follower      0.00    0.00  0.00      0.00      0.00      0.00
## prp_var_error         0.81    0.00  0.03      0.75      0.79      0.81
## lp__             -15277.16   15.14 92.42 -15407.26 -15347.24 -15295.64
##                        75%     97.5% n_eff Rhat
## beta[1]              16.75     18.29 11740 1.00
## beta[2]              11.82     13.22  7942 1.00
## beta[3]              12.73     14.20  8313 1.00
## beta[4]              11.78     13.38  7668 1.00
## beta[5]              13.21     14.89  9829 1.00
## beta[6]               8.98     10.48  7242 1.00
## beta[7]              16.13     17.64 12509 1.00
## beta[8]              11.75     13.20  7695 1.00
## beta[9]              19.30     20.73  9986 1.00
## beta[10]             12.51     14.15  7936 1.00
## beta[11]             13.09     14.75 10285 1.00
## beta[12]             10.91     12.44  7292 1.00
## beta[13]             -0.02     -0.02 20521 1.00
## var_eartag           11.87     14.75 21251 1.00
## var_follower          0.09      0.28    91 1.05
## var_error            45.51     46.59 31992 1.00
## prp_var_eartag        0.21      0.25 21487 1.00
## prp_var_follower      0.00      0.00    92 1.05
## prp_var_error         0.82      0.85 21010 1.00
## lp__             -15224.75 -15046.17    37 1.12
## 
## Samples were drawn using NUTS(diag_e) at Sat Sep 28 16:00:36 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.6)

3. Mixed model: Location + Median wt + Eartag + Follower + covariance between eartag and follower random effects

3.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
      "rho","var_eartag","var_follower", "var_error", 
      "prp_var_eartag", "prp_var_follower", "prp_var_error")))

autocorr.diag(outp3)
##           Loc1_t_1    Loc1_t_2   Loc1_t_3   Loc1_t_4   Loc1_t_5
## Lag 0  1.000000000 1.000000000 1.00000000 1.00000000 1.00000000
## Lag 1  0.388345783 0.561278010 0.51619089 0.53824081 0.49825772
## Lag 5  0.074619105 0.183451619 0.14950699 0.14613662 0.11616679
## Lag 10 0.021652150 0.058778096 0.05452070 0.03799377 0.02004265
## Lag 50 0.002627114 0.003250855 0.00579956 0.01314557 0.00634679
##           Loc1_t_6     Loc2_t_1     Loc2_t_2     Loc2_t_3      Loc2_t_4
## Lag 0   1.00000000  1.000000000  1.000000000  1.000000000  1.0000000000
## Lag 1   0.58742137  0.377316482  0.553900659  0.466116672  0.5267186525
## Lag 5   0.18107311  0.081115100  0.168560182  0.113149751  0.1473224912
## Lag 10  0.06577199  0.022176431  0.035531630  0.025288026  0.0294788540
## Lag 50 -0.00473355 -0.005777988 -0.007080582 -0.003507294 -0.0006505342
##            Loc2_t_5     Loc2_t_6 Median Weight       rho    var_eartag
## Lag 0   1.000000000  1.000000000  1.0000000000 1.0000000  1.0000000000
## Lag 1   0.488803596  0.539506172  0.1763347200 0.8425725  0.0695928519
## Lag 5   0.130016402  0.150394201  0.0180483298 0.5608405  0.0180952709
## Lag 10  0.029333830  0.032027190  0.0007420065 0.3775070  0.0094963702
## Lag 50 -0.007257083 -0.001264897  0.0006501307 0.1007295 -0.0002404154
##        var_follower    var_error prp_var_eartag prp_var_follower
## Lag 0     1.0000000  1.000000000   1.0000000000        1.0000000
## Lag 1     0.8956518 -0.060174177   0.0637359686        0.8967390
## Lag 5     0.7311775  0.001253008   0.0188491955        0.7326070
## Lag 10    0.6126288  0.008911430   0.0104061956        0.6138267
## Lag 50    0.2362441 -0.003697967   0.0001498439        0.2360492
##        prp_var_error      lp__
## Lag 0    1.000000000 1.0000000
## Lag 1    0.066564607 0.9714803
## Lag 5    0.021511206 0.8919174
## Lag 10   0.012872261 0.8100203
## Lag 50   0.002574868 0.3747367
effectiveSize(outp3)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##        8896.0346        5430.8242        6228.6199        6277.7030 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##        7232.8533        5433.8754        8908.7473        5835.7185 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##        7483.8863        6302.1433        6963.3690        6246.2011 
##    Median Weight              rho       var_eartag     var_follower 
##       15785.0523        1456.4451       18105.5747         525.2394 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##       31297.5247       18170.5661         525.2657       17650.9187 
##             lp__ 
##         297.2521
traplot(outp3,col =c("red1","blue4","purple3"))

geweke.diag(outp3)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -1.27431          0.07056         -0.11132          2.10192 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         -0.37715          0.24376         -1.04813         -1.24940 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.51429          2.18446          1.64316         -2.41339 
##    Median Weight              rho       var_eartag     var_follower 
##         -0.40416          0.14330          0.71262         -0.41287 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          1.62776          0.63326         -0.43210         -0.44679 
##             lp__ 
##          1.15415 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -0.16258         -0.79322          0.35383         -1.46624 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.73680         -0.07457         -0.68298          0.58418 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.15568         -0.54302          0.25337          0.46109 
##    Median Weight              rho       var_eartag     var_follower 
##          1.07663          0.18811         -0.97623         -0.28084 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          0.60169         -0.96307         -0.26369          1.03082 
##             lp__ 
##          0.27574 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          -0.5168           0.2442          -0.8276          -0.4234 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          -0.7211           0.6097          -0.9469           1.3834 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##          -1.4617          -0.2312          -0.6740           0.8537 
##    Median Weight              rho       var_eartag     var_follower 
##           1.8139           0.6791          -1.1441          -0.3619 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          -2.3285          -0.9241          -0.3272           1.0329 
##             lp__ 
##           0.6467
#gelman.diag(outp3)
denplot(outp3,col = c("red1","blue4","purple3"))

3.2. Summary Posterior Distribution

summary(outp3)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.599e+01  1.149357 6.636e-03      1.243e-02
## Loc1_t_2          1.109e+01  1.074233 6.202e-03      1.475e-02
## Loc1_t_3          1.202e+01  1.095814 6.327e-03      1.402e-02
## Loc1_t_4          1.092e+01  1.221481 7.052e-03      1.545e-02
## Loc1_t_5          1.238e+01  1.267039 7.315e-03      1.507e-02
## Loc1_t_6          8.233e+00  1.143845 6.604e-03      1.551e-02
## Loc2_t_1          1.536e+01  1.156957 6.680e-03      1.232e-02
## Loc2_t_2          1.103e+01  1.072370 6.191e-03      1.421e-02
## Loc2_t_3          1.854e+01  1.103172 6.369e-03      1.297e-02
## Loc2_t_4          1.169e+01  1.218158 7.033e-03      1.543e-02
## Loc2_t_5          1.225e+01  1.242491 7.174e-03      1.500e-02
## Loc2_t_6          1.009e+01  1.156800 6.679e-03      1.470e-02
## Median Weight    -2.566e-02  0.005171 2.986e-05      4.150e-05
## rho              -3.602e-01  0.392439 2.266e-03      1.048e-02
## var_eartag        1.087e+01  1.783456 1.030e-02      1.332e-02
## var_follower      7.555e-02  0.069811 4.031e-04      3.078e-03
## var_error         4.496e+01  0.814365 4.702e-03      4.737e-03
## prp_var_eartag    1.938e-01  0.025545 1.475e-04      1.904e-04
## prp_var_follower  1.350e-03  0.001244 7.184e-06      5.486e-05
## prp_var_error     8.049e-01  0.025581 1.477e-04      1.932e-04
## lp__             -1.529e+04 62.217342 3.592e-01      3.600e+00
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.374e+01  1.522e+01  1.600e+01  1.677e+01  1.827e+01
## Loc1_t_2          9.010e+00  1.036e+01  1.109e+01  1.182e+01  1.318e+01
## Loc1_t_3          9.855e+00  1.128e+01  1.202e+01  1.276e+01  1.417e+01
## Loc1_t_4          8.532e+00  1.010e+01  1.092e+01  1.174e+01  1.332e+01
## Loc1_t_5          9.880e+00  1.153e+01  1.238e+01  1.323e+01  1.483e+01
## Loc1_t_6          6.000e+00  7.461e+00  8.223e+00  8.999e+00  1.048e+01
## Loc2_t_1          1.308e+01  1.460e+01  1.537e+01  1.614e+01  1.762e+01
## Loc2_t_2          8.906e+00  1.031e+01  1.103e+01  1.174e+01  1.312e+01
## Loc2_t_3          1.637e+01  1.781e+01  1.854e+01  1.927e+01  2.070e+01
## Loc2_t_4          9.324e+00  1.086e+01  1.169e+01  1.250e+01  1.410e+01
## Loc2_t_5          9.821e+00  1.142e+01  1.225e+01  1.308e+01  1.470e+01
## Loc2_t_6          7.818e+00  9.318e+00  1.010e+01  1.087e+01  1.236e+01
## Median Weight    -3.576e-02 -2.915e-02 -2.564e-02 -2.216e-02 -1.562e-02
## rho              -9.373e-01 -6.679e-01 -4.124e-01 -1.106e-01  5.394e-01
## var_eartag        7.846e+00  9.624e+00  1.070e+01  1.195e+01  1.484e+01
## var_follower      1.118e-02  2.624e-02  5.326e-02  1.006e-01  2.678e-01
## var_error         4.340e+01  4.440e+01  4.494e+01  4.550e+01  4.659e+01
## prp_var_eartag    1.482e-01  1.760e-01  1.921e-01  2.099e-01  2.486e-01
## prp_var_follower  2.009e-04  4.702e-04  9.529e-04  1.801e-03  4.761e-03
## prp_var_error     7.500e-01  7.888e-01  8.066e-01  8.228e-01  8.505e-01
## lp__             -1.540e+04 -1.534e+04 -1.529e+04 -1.525e+04 -1.516e+04
print(efcov600.model)
## Inference for Stan model: covEartFolltrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                       mean se_mean    sd      2.5%       25%       50%
## beta[1]              15.99    0.01  1.15     13.74     15.22     16.00
## beta[2]              11.09    0.02  1.07      9.01     10.36     11.09
## beta[3]              12.02    0.01  1.10      9.86     11.28     12.02
## beta[4]              10.92    0.02  1.22      8.53     10.10     10.92
## beta[5]              12.38    0.02  1.27      9.88     11.53     12.38
## beta[6]               8.23    0.02  1.14      6.00      7.46      8.22
## beta[7]              15.36    0.01  1.16     13.08     14.60     15.37
## beta[8]              11.03    0.01  1.07      8.91     10.31     11.03
## beta[9]              18.54    0.01  1.10     16.37     17.81     18.54
## beta[10]             11.69    0.02  1.22      9.32     10.86     11.69
## beta[11]             12.25    0.02  1.24      9.82     11.42     12.25
## beta[12]             10.09    0.01  1.16      7.82      9.32     10.10
## beta[13]             -0.03    0.00  0.01     -0.04     -0.03     -0.03
## rho                  -0.36    0.01  0.39     -0.94     -0.67     -0.41
## var_eartag           10.87    0.01  1.78      7.85      9.62     10.70
## var_follower          0.08    0.00  0.07      0.01      0.03      0.05
## var_error            44.96    0.00  0.81     43.40     44.40     44.94
## prp_var_eartag        0.19    0.00  0.03      0.15      0.18      0.19
## prp_var_follower      0.00    0.00  0.00      0.00      0.00      0.00
## prp_var_error         0.80    0.00  0.03      0.75      0.79      0.81
## lp__             -15289.86    3.86 62.22 -15397.39 -15336.14 -15293.52
##                        75%     97.5% n_eff Rhat
## beta[1]              16.77     18.27  8506 1.00
## beta[2]              11.82     13.18  5051 1.00
## beta[3]              12.76     14.17  5619 1.00
## beta[4]              11.74     13.32  5828 1.00
## beta[5]              13.23     14.83  6646 1.00
## beta[6]               9.00     10.48  4950 1.00
## beta[7]              16.14     17.62  8650 1.00
## beta[8]              11.74     13.12  5338 1.00
## beta[9]              19.27     20.70  7259 1.00
## beta[10]             12.50     14.10  6064 1.00
## beta[11]             13.08     14.70  6570 1.00
## beta[12]             10.87     12.36  6092 1.00
## beta[13]             -0.02     -0.02 15110 1.00
## rho                  -0.11      0.54   954 1.00
## var_eartag           11.95     14.84 17799 1.00
## var_follower          0.10      0.27   413 1.00
## var_error            45.50     46.59 29891 1.00
## prp_var_eartag        0.21      0.25 17992 1.00
## prp_var_follower      0.00      0.00   413 1.00
## prp_var_error         0.82      0.85 17302 1.00
## lp__             -15248.28 -15156.53   259 1.01
## 
## Samples were drawn using NUTS(diag_e) at Sat Sep 28 15:58:22 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.6)