Results bayesian estimating of variance components (proportion variance) with Stan program, on 50.652 records of visit length time at the feeder when the next visit was less than or equal to 60 sc, from 6 trials, including locations (2 per trial), median weight as fixed effects and Eartag (118) and followers (118) as random effects in the models. iter = 12000, chain= 3, burn-in = 2000, Thin=1.

1. Mixed model: Location + Median wt + Eartag

1.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp1)%>%filter(Parameter%in%c("Median Weight",
   "var_eartag","var_error","prp_var_eartag","prp_var_error")))

autocorr.diag(outp1)
##            Loc1_t_1     Loc1_t_2     Loc1_t_3     Loc1_t_4      Loc1_t_5
## Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.0000000000
## Lag 1  -0.053520258 -0.026699057 -0.014540080 -0.106724350 -0.1031963576
## Lag 5   0.001912211  0.006751670 -0.001425002 -0.004764342  0.0002281415
## Lag 10 -0.004219859 -0.005566081 -0.003052252 -0.002097684  0.0065955717
## Lag 50 -0.002862487  0.006692880  0.003148512  0.005422867 -0.0022644799
##            Loc1_t_6     Loc2_t_1     Loc2_t_2     Loc2_t_3      Loc2_t_4
## Lag 0   1.000000000  1.000000000  1.000000000  1.000000000  1.0000000000
## Lag 1  -0.052864110 -0.062506923 -0.035828054 -0.058568008 -0.0816098781
## Lag 5  -0.010122011 -0.008026948 -0.002173820  0.008026601 -0.0054999953
## Lag 10  0.001729631  0.003461891 -0.004464009 -0.004365728  0.0020364902
## Lag 50 -0.010867604 -0.007486873 -0.003710631  0.001711360 -0.0002447055
##             Loc2_t_5      Loc2_t_6 Median Weight  var_eartag    var_error
## Lag 0   1.0000000000  1.0000000000  1.0000000000 1.000000000  1.000000000
## Lag 1  -0.1078918601 -0.0630542963 -0.0240560196 0.040477671 -0.029523640
## Lag 5  -0.0046690647 -0.0106300812 -0.0056101527 0.008217066  0.007306181
## Lag 10 -0.0006233047  0.0007291921 -0.0007126617 0.005068373 -0.002467750
## Lag 50  0.0047798070  0.0044880138  0.0042085058 0.006887534  0.004261828
##        prp_var_eartag prp_var_error         lp__
## Lag 0     1.000000000   1.000000000  1.000000000
## Lag 1     0.035519546   0.035519546  0.484270060
## Lag 5     0.008115665   0.008115665  0.031489292
## Lag 10    0.005656528   0.005656528 -0.011538117
## Lag 50    0.006046834   0.006046834 -0.004943733
effectiveSize(outp1)
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       31772.48       30990.20       30722.21       35205.96       36318.47 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       32043.86       33997.60       31364.11       32984.14       34253.98 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##       35860.91       33086.11       32293.40       25590.69       33186.42 
## prp_var_eartag  prp_var_error           lp__ 
##       25969.98       25969.98       10683.10
geweke.diag(outp1)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##         0.5524         0.1605         1.2579        -0.3541         1.3996 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##        -1.8086         1.8697        -0.7270        -0.7338         0.7833 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##        -0.6753         0.7579        -0.5933        -0.6769        -0.7365 
## prp_var_eartag  prp_var_error           lp__ 
##        -0.6981         0.6981        -0.7321 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       0.521652       0.257457      -0.132030      -0.313235       1.450455 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##      -1.344776       2.081424       1.096200       0.267589      -0.260193 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##      -1.034951       0.357642      -0.720075      -0.069250      -0.618758 
## prp_var_eartag  prp_var_error           lp__ 
##      -0.007772       0.007772      -0.257783 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##       Loc1_t_1       Loc1_t_2       Loc1_t_3       Loc1_t_4       Loc1_t_5 
##       -0.74415        0.66401        0.04275       -1.52141        0.23677 
##       Loc1_t_6       Loc2_t_1       Loc2_t_2       Loc2_t_3       Loc2_t_4 
##       -1.00319        0.29206        1.78139        1.64796       -0.76271 
##       Loc2_t_5       Loc2_t_6  Median Weight     var_eartag      var_error 
##        1.59985        1.62973       -0.65397        0.82819       -0.39917 
## prp_var_eartag  prp_var_error           lp__ 
##        0.69576       -0.69576        0.37153
#gelman.diag(outp1)
traplot(outp1,col =c("red1","blue4","purple3"))

denplot(outp1)

1.2. Summary Posterior Distribution

summary(outp1)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                      Mean       SD  Naive SE Time-series SE
## Loc1_t_1        1.312e+01 0.913084 5.272e-03      5.134e-03
## Loc1_t_2        6.873e+00 0.937390 5.412e-03      5.344e-03
## Loc1_t_3        1.003e+01 0.932175 5.382e-03      5.398e-03
## Loc1_t_4        7.950e+00 1.093682 6.314e-03      5.835e-03
## Loc1_t_5        8.798e+00 1.112973 6.426e-03      5.854e-03
## Loc1_t_6        4.615e+00 1.018996 5.883e-03      5.732e-03
## Loc2_t_1        1.004e+01 0.905182 5.226e-03      4.937e-03
## Loc2_t_2        7.698e+00 0.927600 5.356e-03      5.283e-03
## Loc2_t_3        1.449e+01 0.929405 5.366e-03      5.163e-03
## Loc2_t_4        6.638e+00 1.097447 6.336e-03      5.931e-03
## Loc2_t_5        9.357e+00 1.097559 6.337e-03      5.798e-03
## Loc2_t_6        6.649e+00 1.032631 5.962e-03      5.716e-03
## Median Weight   1.498e-02 0.001799 1.039e-05      1.003e-05
## var_eartag      9.351e+00 1.341264 7.744e-03      8.396e-03
## var_error       4.281e+01 0.271617 1.568e-03      1.492e-03
## prp_var_eartag  1.787e-01 0.020855 1.204e-04      1.296e-04
## prp_var_error   8.213e-01 0.020855 1.204e-04      1.296e-04
## lp__           -1.207e+05 8.224933 4.749e-02      7.960e-02
## 
## 2. Quantiles for each variable:
## 
##                      2.5%        25%        50%        75%      97.5%
## Loc1_t_1        1.133e+01  1.250e+01  1.312e+01  1.373e+01  1.490e+01
## Loc1_t_2        5.037e+00  6.247e+00  6.868e+00  7.496e+00  8.717e+00
## Loc1_t_3        8.194e+00  9.412e+00  1.003e+01  1.066e+01  1.187e+01
## Loc1_t_4        5.813e+00  7.223e+00  7.952e+00  8.675e+00  1.011e+01
## Loc1_t_5        6.617e+00  8.059e+00  8.797e+00  9.550e+00  1.097e+01
## Loc1_t_6        2.629e+00  3.921e+00  4.618e+00  5.304e+00  6.621e+00
## Loc2_t_1        8.249e+00  9.434e+00  1.004e+01  1.065e+01  1.181e+01
## Loc2_t_2        5.848e+00  7.077e+00  7.707e+00  8.320e+00  9.518e+00
## Loc2_t_3        1.266e+01  1.387e+01  1.450e+01  1.511e+01  1.631e+01
## Loc2_t_4        4.476e+00  5.895e+00  6.645e+00  7.386e+00  8.767e+00
## Loc2_t_5        7.200e+00  8.616e+00  9.350e+00  1.010e+01  1.151e+01
## Loc2_t_6        4.612e+00  5.944e+00  6.649e+00  7.348e+00  8.668e+00
## Median Weight   1.146e-02  1.376e-02  1.500e-02  1.621e-02  1.846e-02
## var_eartag      7.088e+00  8.409e+00  9.227e+00  1.017e+01  1.232e+01
## var_error       4.228e+01  4.263e+01  4.281e+01  4.299e+01  4.335e+01
## prp_var_eartag  1.420e-01  1.642e-01  1.773e-01  1.919e-01  2.236e-01
## prp_var_error   7.764e-01  8.081e-01  8.227e-01  8.358e-01  8.580e-01
## lp__           -1.207e+05 -1.207e+05 -1.207e+05 -1.206e+05 -1.206e+05
print(Et60.model)
## Inference for Stan model: Eartagtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                      mean se_mean   sd       2.5%        25%        50%
## beta[1]             13.12    0.01 0.91      11.33      12.50      13.12
## beta[2]              6.87    0.01 0.94       5.04       6.25       6.87
## beta[3]             10.03    0.01 0.93       8.19       9.41      10.03
## beta[4]              7.95    0.01 1.09       5.81       7.22       7.95
## beta[5]              8.80    0.01 1.11       6.62       8.06       8.80
## beta[6]              4.62    0.01 1.02       2.63       3.92       4.62
## beta[7]             10.04    0.00 0.91       8.25       9.43      10.04
## beta[8]              7.70    0.01 0.93       5.85       7.08       7.71
## beta[9]             14.49    0.01 0.93      12.66      13.87      14.50
## beta[10]             6.64    0.01 1.10       4.48       5.89       6.64
## beta[11]             9.36    0.01 1.10       7.20       8.62       9.35
## beta[12]             6.65    0.01 1.03       4.61       5.94       6.65
## beta[13]             0.01    0.00 0.00       0.01       0.01       0.01
## var_eartag           9.35    0.01 1.34       7.09       8.41       9.23
## var_error           42.81    0.00 0.27      42.28      42.63      42.81
## prp_var_eartag       0.18    0.00 0.02       0.14       0.16       0.18
## prp_var_error        0.82    0.00 0.02       0.78       0.81       0.82
## lp__           -120655.46    0.08 8.22 -120672.53 -120660.77 -120655.12
##                       75%      97.5% n_eff Rhat
## beta[1]             13.73      14.90 31526    1
## beta[2]              7.50       8.72 30667    1
## beta[3]             10.66      11.87 29390    1
## beta[4]              8.67      10.11 35019    1
## beta[5]              9.55      10.97 35375    1
## beta[6]              5.30       6.62 30992    1
## beta[7]             10.65      11.81 33783    1
## beta[8]              8.32       9.52 30511    1
## beta[9]             15.11      16.31 33269    1
## beta[10]             7.39       8.77 34025    1
## beta[11]            10.10      11.51 35436    1
## beta[12]             7.35       8.67 32428    1
## beta[13]             0.02       0.02 31489    1
## var_eartag          10.17      12.32 25270    1
## var_error           42.99      43.35 31893    1
## prp_var_eartag       0.19       0.22 25585    1
## prp_var_error        0.84       0.86 25585    1
## lp__           -120649.73 -120640.29 10425    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 04:28:54 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp1,col = terrain.colors(15,0.5,T), cex.axis=0.6)

2. Mixed model: Location + Median wt + Eartag + Follower

## [1] "mcmc.list"

2.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp2)%>%filter(Parameter%in%c("Median Weight",
                    "var_eartag", "var_follower", "var_error",
                    "prp_var_eartag","prp_var_follower", "prp_var_error")))

autocorr.diag(outp2)
##            Loc1_t_1     Loc1_t_2    Loc1_t_3     Loc1_t_4    Loc1_t_5
## Lag 0   1.000000000  1.000000000 1.000000000  1.000000000 1.000000000
## Lag 1   0.377117880  0.453263694 0.427486047  0.375352826 0.369683801
## Lag 5   0.055756685  0.096934275 0.076770262  0.058160031 0.064573861
## Lag 10  0.017395144  0.027381864 0.014469473  0.019143553 0.015307764
## Lag 50 -0.008731512 -0.006140862 0.004252904 -0.009703487 0.001107061
##           Loc1_t_6     Loc2_t_1     Loc2_t_2     Loc2_t_3    Loc2_t_4
## Lag 0  1.000000000  1.000000000  1.000000000  1.000000000 1.000000000
## Lag 1  0.426314049  0.390124248  0.441244537  0.427401625 0.407438645
## Lag 5  0.078738380  0.057413925  0.078059044  0.076684062 0.056706058
## Lag 10 0.016968271  0.006250382  0.006915195  0.025973166 0.005953313
## Lag 50 0.008991662 -0.002644904 -0.004490229 -0.002711335 0.016301553
##           Loc2_t_5     Loc2_t_6 Median Weight   var_eartag  var_follower
## Lag 0  1.000000000  1.000000000   1.000000000  1.000000000  1.0000000000
## Lag 1  0.363303856  0.433689538  -0.237711952 -0.009679289 -0.0027234557
## Lag 5  0.050667922  0.073877380  -0.018429534  0.013833812  0.0147671353
## Lag 10 0.012552248  0.007815358   0.006212836  0.009174978 -0.0006653534
## Lag 50 0.008497186 -0.006701009   0.001694136 -0.007489232  0.0063146359
##            var_error prp_var_eartag prp_var_follower prp_var_error
## Lag 0   1.0000000000    1.000000000      1.000000000   1.000000000
## Lag 1  -0.2075573300   -0.017736747     -0.001748862  -0.019776420
## Lag 5  -0.0081777182    0.013664086      0.016245786   0.011592696
## Lag 10  0.0003269274    0.008406133     -0.001055915   0.008540258
## Lag 50  0.0003319606   -0.007813497      0.006121308  -0.008043339
##                lp__
## Lag 0   1.000000000
## Lag 1   0.508824253
## Lag 5   0.035082500
## Lag 10 -0.002597973
## Lag 50 -0.001954400
effectiveSize(outp2)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##        13060.774        10630.067        11566.723        13254.020 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##        12957.775        11022.102        12577.363        11078.210 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##        11550.935        11786.698        13268.711        11436.613 
##    Median Weight       var_eartag     var_follower        var_error 
##        49276.419        24373.682        24582.324        46096.070 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##        24885.395        23950.323        25324.460         9765.314
geweke.diag(outp2)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.70356          0.08103          0.73264          1.26423 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          0.50454          0.57848         -0.11711          0.01697 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.67500          0.14421          0.23861         -2.05708 
##    Median Weight       var_eartag     var_follower        var_error 
##         -0.61733         -0.76319          0.12699          0.01774 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         -0.76253          0.27133          0.84928         -1.38319 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         -1.23121          0.90463          2.76037          0.55138 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         -0.55219          0.13998          0.23249         -0.02847 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##          0.46894         -0.67786          0.56023          1.50323 
##    Median Weight       var_eartag     var_follower        var_error 
##          2.67679         -0.53389          0.14650          0.99022 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##         -0.53996          0.23139          0.50965         -0.57114 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##           1.1391           0.2436           0.8825          -1.0724 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##           0.3234          -1.0836           1.2353           1.5316 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##           0.4733          -0.6425          -1.3802           1.5064 
##    Median Weight       var_eartag     var_follower        var_error 
##          -0.4329           0.3880          -0.7080          -0.6170 
##   prp_var_eartag prp_var_follower    prp_var_error             lp__ 
##           0.4170          -0.7531          -0.2925           1.0022
#gelman.diag(outp2)
traplot(outp2, col = c("red1","purple1","blue4"))

denplot(outp2,col = c("red1","purple1","blue4"))

## 2.2. Summary Posterior Distribution

summary(outp2)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.309e+01  0.971747 5.610e-03      9.752e-03
## Loc1_t_2          6.782e+00  0.985517 5.690e-03      1.094e-02
## Loc1_t_3          9.917e+00  0.982857 5.675e-03      1.043e-02
## Loc1_t_4          7.945e+00  1.135793 6.558e-03      1.124e-02
## Loc1_t_5          8.915e+00  1.164037 6.721e-03      1.152e-02
## Loc1_t_6          4.672e+00  1.087614 6.279e-03      1.157e-02
## Loc2_t_1          1.041e+01  0.949926 5.484e-03      9.447e-03
## Loc2_t_2          7.722e+00  0.979697 5.656e-03      1.083e-02
## Loc2_t_3          1.457e+01  0.976955 5.640e-03      1.041e-02
## Loc2_t_4          6.507e+00  1.139368 6.578e-03      1.181e-02
## Loc2_t_5          9.234e+00  1.161044 6.703e-03      1.147e-02
## Loc2_t_6          6.985e+00  1.070987 6.183e-03      1.147e-02
## Median Weight     1.540e-02  0.001781 1.028e-05      8.024e-06
## var_eartag        9.152e+00  1.306253 7.542e-03      8.487e-03
## var_follower      1.192e+00  0.185264 1.070e-03      1.193e-03
## var_error         4.175e+01  0.260801 1.506e-03      1.216e-03
## prp_var_eartag    1.752e-01  0.020474 1.182e-04      1.316e-04
## prp_var_follower  2.289e-02  0.003523 2.034e-05      2.286e-05
## prp_var_error     8.019e-01  0.020088 1.160e-04      1.285e-04
## lp__             -1.201e+05 11.452101 6.612e-02      1.159e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.119e+01  1.243e+01  1.309e+01  1.374e+01  1.501e+01
## Loc1_t_2          4.843e+00  6.111e+00  6.790e+00  7.442e+00  8.711e+00
## Loc1_t_3          7.973e+00  9.259e+00  9.915e+00  1.058e+01  1.186e+01
## Loc1_t_4          5.706e+00  7.185e+00  7.942e+00  8.713e+00  1.016e+01
## Loc1_t_5          6.659e+00  8.134e+00  8.912e+00  9.685e+00  1.120e+01
## Loc1_t_6          2.519e+00  3.941e+00  4.678e+00  5.408e+00  6.792e+00
## Loc2_t_1          8.522e+00  9.781e+00  1.042e+01  1.105e+01  1.226e+01
## Loc2_t_2          5.812e+00  7.056e+00  7.728e+00  8.382e+00  9.632e+00
## Loc2_t_3          1.262e+01  1.392e+01  1.457e+01  1.522e+01  1.646e+01
## Loc2_t_4          4.269e+00  5.741e+00  6.507e+00  7.269e+00  8.737e+00
## Loc2_t_5          6.981e+00  8.442e+00  9.235e+00  1.003e+01  1.147e+01
## Loc2_t_6          4.888e+00  6.257e+00  6.989e+00  7.709e+00  9.076e+00
## Median Weight     1.187e-02  1.419e-02  1.540e-02  1.659e-02  1.889e-02
## var_eartag        6.938e+00  8.230e+00  9.022e+00  9.948e+00  1.203e+01
## var_follower      8.800e-01  1.061e+00  1.175e+00  1.305e+00  1.604e+00
## var_error         4.124e+01  4.157e+01  4.175e+01  4.193e+01  4.226e+01
## prp_var_eartag    1.390e-01  1.608e-01  1.736e-01  1.881e-01  2.191e-01
## prp_var_follower  1.687e-02  2.040e-02  2.258e-02  2.506e-02  3.069e-02
## prp_var_error     7.592e-01  7.889e-01  8.034e-01  8.161e-01  8.374e-01
## lp__             -1.201e+05 -1.201e+05 -1.201e+05 -1.201e+05 -1.201e+05
print(Follower.model)
## Inference for Stan model: EFtrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.09    0.01  0.97      11.19      12.43      13.09
## beta[2]                6.78    0.01  0.99       4.84       6.11       6.79
## beta[3]                9.92    0.01  0.98       7.97       9.26       9.91
## beta[4]                7.94    0.01  1.14       5.71       7.19       7.94
## beta[5]                8.92    0.01  1.16       6.66       8.13       8.91
## beta[6]                4.67    0.01  1.09       2.52       3.94       4.68
## beta[7]               10.41    0.01  0.95       8.52       9.78      10.42
## beta[8]                7.72    0.01  0.98       5.81       7.06       7.73
## beta[9]               14.57    0.01  0.98      12.62      13.92      14.57
## beta[10]               6.51    0.01  1.14       4.27       5.74       6.51
## beta[11]               9.23    0.01  1.16       6.98       8.44       9.24
## beta[12]               6.98    0.01  1.07       4.89       6.26       6.99
## beta[13]               0.02    0.00  0.00       0.01       0.01       0.02
## var_eartag             9.15    0.01  1.31       6.94       8.23       9.02
## var_follower           1.19    0.00  0.19       0.88       1.06       1.18
## var_error             41.75    0.00  0.26      41.24      41.57      41.75
## prp_var_eartag         0.18    0.00  0.02       0.14       0.16       0.17
## prp_var_follower       0.02    0.00  0.00       0.02       0.02       0.02
## prp_var_error          0.80    0.00  0.02       0.76       0.79       0.80
## lp__             -120088.62    0.12 11.45 -120112.00 -120096.20 -120088.31
##                         75%      97.5% n_eff Rhat
## beta[1]               13.74      15.01  9730    1
## beta[2]                7.44       8.71  7082    1
## beta[3]               10.58      11.86  8772    1
## beta[4]                8.71      10.16  9006    1
## beta[5]                9.68      11.20  9687    1
## beta[6]                5.41       6.79  8109    1
## beta[7]               11.05      12.26  9828    1
## beta[8]                8.38       9.63  8452    1
## beta[9]               15.22      16.46  8197    1
## beta[10]               7.27       8.74  9806    1
## beta[11]              10.03      11.47 10177    1
## beta[12]               7.71       9.08  8650    1
## beta[13]               0.02       0.02 50193    1
## var_eartag             9.95      12.03 23579    1
## var_follower           1.30       1.60 22935    1
## var_error             41.93      42.26 46738    1
## prp_var_eartag         0.19       0.22 24028    1
## prp_var_follower       0.03       0.03 22929    1
## prp_var_error          0.82       0.84 24017    1
## lp__             -120080.69 -120067.18  9828    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 00:23:57 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp2,col = terrain.colors(15,0.5,T), cex.axis=0.6)

3. Mixed model: Location + Median wt + Eartag + Follower + covariance between eartag and follower random effects

3.1.Convergence Diagnostic

Check autorrelation, effective sample size, traceplot

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt1))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%lt2))

ggs_autocorrelation(ggs(outp3)%>%filter(Parameter%in%c("Median Weight",
                          "rho","var_eartag","var_follower", "var_error", 
                          "prp_var_eartag","prp_var_follower", "prp_var_error")))

autocorr.diag(outp3)
##           Loc1_t_1    Loc1_t_2     Loc1_t_3     Loc1_t_4     Loc1_t_5
## Lag 0  1.000000000  1.00000000  1.000000000  1.000000000  1.000000000
## Lag 1  0.168130534  0.26903839  0.266627418  0.152903352  0.153772285
## Lag 5  0.026400353  0.03258695  0.040566404  0.018737280  0.006553161
## Lag 10 0.003959782 -0.00678998 -0.002915155 -0.004489188 -0.008857719
## Lag 50 0.001144777 -0.01656762 -0.012533959  0.004660287  0.004533442
##            Loc1_t_6    Loc2_t_1     Loc2_t_2    Loc2_t_3    Loc2_t_4
## Lag 0   1.000000000 1.000000000  1.000000000 1.000000000 1.000000000
## Lag 1   0.250295014 0.194558746  0.248695259 0.275141406 0.197986858
## Lag 5   0.030377042 0.032770954  0.028296171 0.035202781 0.025810052
## Lag 10 -0.007155641 0.007228013 -0.005074405 0.007872586 0.015711364
## Lag 50 -0.010870764 0.002217106  0.005040667 0.015899293 0.002586386
##            Loc2_t_5    Loc2_t_6 Median Weight           rho   var_eartag
## Lag 0   1.000000000 1.000000000  1.0000000000  1.0000000000  1.000000000
## Lag 1   0.132597542 0.222101039 -0.0938128372 -0.0487818622 -0.017833739
## Lag 5   0.023198654 0.019674625 -0.0003264389 -0.0005144541  0.006316356
## Lag 10 -0.002164482 0.001340779 -0.0005038793 -0.0001617244  0.006135414
## Lag 50 -0.001363070 0.005242995 -0.0043491407  0.0104301372 -0.001753063
##        var_follower     var_error prp_var_eartag prp_var_follower
## Lag 0   1.000000000  1.0000000000    1.000000000      1.000000000
## Lag 1  -0.008166733 -0.0868910001   -0.023865249     -0.008241664
## Lag 5   0.016810847  0.0002127597    0.006875355      0.017967816
## Lag 10 -0.000216908 -0.0020724564    0.006670404      0.001749950
## Lag 50 -0.012025465 -0.0013802112   -0.001751193     -0.011367186
##        prp_var_error          lp__
## Lag 0    1.000000000  1.0000000000
## Lag 1   -0.024484309  0.4936763054
## Lag 5    0.005837479  0.0335236818
## Lag 10   0.004125365 -0.0040603061
## Lag 50  -0.002601158 -0.0006830644
effectiveSize(outp3)
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##         21624.44         17750.62         17870.99         23709.58 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##         23110.20         18682.25         19471.02         18439.59 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         17146.43         21287.36         24563.02         20123.25 
##    Median Weight              rho       var_eartag     var_follower 
##         38007.38         30184.60         28680.60         25870.22 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##         37877.26         28967.27         25981.53         29072.10 
##             lp__ 
##         10014.85
traplot(outp3,col =c("red1","blue4","purple3"))

geweke.diag(outp3)
## [[1]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          -1.1703          -0.3475          -1.3908           0.9851 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          -0.9116          -1.4209          -0.5475          -0.8801 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##           1.1797          -1.3497          -1.1651          -0.5686 
##    Median Weight              rho       var_eartag     var_follower 
##           0.3488           1.5646           0.5015           0.5061 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          -0.3350           0.5256           0.4369          -0.6180 
##             lp__ 
##           0.9248 
## 
## 
## [[2]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##          0.70524         -0.03717          1.33995          0.92621 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##          1.22781          0.25841         -0.22075         -0.15434 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##         -0.33871          1.56975          1.22530         -0.49539 
##    Median Weight              rho       var_eartag     var_follower 
##          0.01062          0.99905         -0.57156          0.14814 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          0.88104         -0.66111          0.27311          0.62586 
##             lp__ 
##         -2.06380 
## 
## 
## [[3]]
## 
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5 
## 
##         Loc1_t_1         Loc1_t_2         Loc1_t_3         Loc1_t_4 
##           0.3195           1.0096          -1.7538           0.2336 
##         Loc1_t_5         Loc1_t_6         Loc2_t_1         Loc2_t_2 
##           1.9619           0.2364          -0.4832          -1.5188 
##         Loc2_t_3         Loc2_t_4         Loc2_t_5         Loc2_t_6 
##          -2.6167          -0.4848          -0.6498          -2.7052 
##    Median Weight              rho       var_eartag     var_follower 
##           0.2125          -1.1743           0.6832          -2.3846 
##        var_error   prp_var_eartag prp_var_follower    prp_var_error 
##          -0.3239           0.7700          -2.5137          -0.4066 
##             lp__ 
##           0.1487
gelman.diag(outp3)
## Potential scale reduction factors:
## 
##                  Point est. Upper C.I.
## Loc1_t_1                  1       1.00
## Loc1_t_2                  1       1.00
## Loc1_t_3                  1       1.00
## Loc1_t_4                  1       1.00
## Loc1_t_5                  1       1.00
## Loc1_t_6                  1       1.00
## Loc2_t_1                  1       1.00
## Loc2_t_2                  1       1.00
## Loc2_t_3                  1       1.00
## Loc2_t_4                  1       1.00
## Loc2_t_5                  1       1.00
## Loc2_t_6                  1       1.01
## Median Weight             1       1.00
## rho                       1       1.00
## var_eartag                1       1.00
## var_follower              1       1.00
## var_error                 1       1.00
## prp_var_eartag            1       1.00
## prp_var_follower          1       1.00
## prp_var_error             1       1.00
## lp__                      1       1.00
## 
## Multivariate psrf
## 
## 1
denplot(outp3,col = c("red1","blue4","purple3"))

3.2. Summary Posterior Distribution

summary(outp3)
## 
## Iterations = 2001:12000
## Thinning interval = 1 
## Number of chains = 3 
## Sample size per chain = 10000 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                        Mean        SD  Naive SE Time-series SE
## Loc1_t_1          1.308e+01  0.978454 5.649e-03      7.637e-03
## Loc1_t_2          6.798e+00  1.005698 5.806e-03      8.373e-03
## Loc1_t_3          9.946e+00  1.002927 5.790e-03      8.669e-03
## Loc1_t_4          7.947e+00  1.174178 6.779e-03      8.786e-03
## Loc1_t_5          8.927e+00  1.175839 6.789e-03      8.759e-03
## Loc1_t_6          4.664e+00  1.107966 6.397e-03      9.234e-03
## Loc2_t_1          1.044e+01  0.977253 5.642e-03      7.942e-03
## Loc2_t_2          7.731e+00  0.993977 5.739e-03      8.278e-03
## Loc2_t_3          1.457e+01  1.002283 5.787e-03      8.654e-03
## Loc2_t_4          6.524e+00  1.170760 6.759e-03      9.168e-03
## Loc2_t_5          9.235e+00  1.179620 6.811e-03      8.958e-03
## Loc2_t_6          7.010e+00  1.112924 6.425e-03      9.101e-03
## Median Weight     1.539e-02  0.001785 1.031e-05      9.447e-06
## rho               6.096e-02  0.104055 6.008e-04      6.033e-04
## var_eartag        9.230e+00  1.318650 7.613e-03      7.837e-03
## var_follower      1.207e+00  0.187968 1.085e-03      1.173e-03
## var_error         4.175e+01  0.263514 1.521e-03      1.404e-03
## prp_var_eartag    1.763e-01  0.020574 1.188e-04      1.216e-04
## prp_var_follower  2.313e-02  0.003559 2.055e-05      2.215e-05
## prp_var_error     8.005e-01  0.020220 1.167e-04      1.193e-04
## lp__             -1.201e+05 11.538696 6.662e-02      1.153e-01
## 
## 2. Quantiles for each variable:
## 
##                        2.5%        25%        50%        75%      97.5%
## Loc1_t_1          1.116e+01  1.243e+01  1.309e+01  1.375e+01  1.501e+01
## Loc1_t_2          4.812e+00  6.130e+00  6.805e+00  7.465e+00  8.790e+00
## Loc1_t_3          7.979e+00  9.266e+00  9.942e+00  1.063e+01  1.189e+01
## Loc1_t_4          5.635e+00  7.165e+00  7.935e+00  8.733e+00  1.027e+01
## Loc1_t_5          6.631e+00  8.133e+00  8.929e+00  9.720e+00  1.123e+01
## Loc1_t_6          2.494e+00  3.916e+00  4.666e+00  5.410e+00  6.836e+00
## Loc2_t_1          8.535e+00  9.776e+00  1.044e+01  1.109e+01  1.236e+01
## Loc2_t_2          5.776e+00  7.068e+00  7.738e+00  8.400e+00  9.667e+00
## Loc2_t_3          1.258e+01  1.390e+01  1.458e+01  1.525e+01  1.651e+01
## Loc2_t_4          4.214e+00  5.735e+00  6.531e+00  7.308e+00  8.812e+00
## Loc2_t_5          6.912e+00  8.436e+00  9.234e+00  1.003e+01  1.153e+01
## Loc2_t_6          4.835e+00  6.263e+00  7.011e+00  7.762e+00  9.179e+00
## Median Weight     1.189e-02  1.420e-02  1.539e-02  1.661e-02  1.886e-02
## rho              -1.435e-01 -9.268e-03  6.184e-02  1.322e-01  2.622e-01
## var_eartag        6.989e+00  8.301e+00  9.104e+00  1.002e+01  1.216e+01
## var_follower      8.876e-01  1.073e+00  1.190e+00  1.322e+00  1.619e+00
## var_error         4.124e+01  4.157e+01  4.175e+01  4.193e+01  4.227e+01
## prp_var_eartag    1.399e-01  1.620e-01  1.749e-01  1.891e-01  2.207e-01
## prp_var_follower  1.707e-02  2.061e-02  2.283e-02  2.531e-02  3.093e-02
## prp_var_error     7.571e-01  7.879e-01  8.019e-01  8.146e-01  8.367e-01
## lp__             -1.201e+05 -1.201e+05 -1.201e+05 -1.201e+05 -1.201e+05
print(covEartfoll.model)
## Inference for Stan model: covEartFolltrp_model.
## 3 chains, each with iter=12000; warmup=2000; thin=1; 
## post-warmup draws per chain=10000, total post-warmup draws=30000.
## 
##                        mean se_mean    sd       2.5%        25%        50%
## beta[1]               13.08    0.01  0.98      11.16      12.43      13.09
## beta[2]                6.80    0.01  1.01       4.81       6.13       6.80
## beta[3]                9.95    0.01  1.00       7.98       9.27       9.94
## beta[4]                7.95    0.01  1.17       5.63       7.16       7.93
## beta[5]                8.93    0.01  1.18       6.63       8.13       8.93
## beta[6]                4.66    0.01  1.11       2.49       3.92       4.67
## beta[7]               10.44    0.01  0.98       8.53       9.78      10.44
## beta[8]                7.73    0.01  0.99       5.78       7.07       7.74
## beta[9]               14.57    0.01  1.00      12.58      13.90      14.58
## beta[10]               6.52    0.01  1.17       4.21       5.74       6.53
## beta[11]               9.23    0.01  1.18       6.91       8.44       9.23
## beta[12]               7.01    0.01  1.11       4.84       6.26       7.01
## beta[13]               0.02    0.00  0.00       0.01       0.01       0.02
## rho                    0.06    0.00  0.10      -0.14      -0.01       0.06
## var_eartag             9.23    0.01  1.32       6.99       8.30       9.10
## var_follower           1.21    0.00  0.19       0.89       1.07       1.19
## var_error             41.75    0.00  0.26      41.24      41.57      41.75
## prp_var_eartag         0.18    0.00  0.02       0.14       0.16       0.17
## prp_var_follower       0.02    0.00  0.00       0.02       0.02       0.02
## prp_var_error          0.80    0.00  0.02       0.76       0.79       0.80
## lp__             -120089.69    0.12 11.54 -120113.25 -120097.27 -120089.38
##                         75%      97.5% n_eff Rhat
## beta[1]               13.75      15.01 15998    1
## beta[2]                7.46       8.79 14409    1
## beta[3]               10.63      11.89 13401    1
## beta[4]                8.73      10.27 17746    1
## beta[5]                9.72      11.23 18276    1
## beta[6]                5.41       6.84 14506    1
## beta[7]               11.09      12.36 14859    1
## beta[8]                8.40       9.67 14353    1
## beta[9]               15.25      16.51 12894    1
## beta[10]               7.31       8.81 15922    1
## beta[11]              10.03      11.53 17348    1
## beta[12]               7.76       9.18 15254    1
## beta[13]               0.02       0.02 35357    1
## rho                    0.13       0.26 29567    1
## var_eartag            10.02      12.16 27455    1
## var_follower           1.32       1.62 25350    1
## var_error             41.93      42.27 35185    1
## prp_var_eartag         0.19       0.22 27834    1
## prp_var_follower       0.03       0.03 25471    1
## prp_var_error          0.81       0.84 27959    1
## lp__             -120081.66 -120068.21 10011    1
## 
## Samples were drawn using NUTS(diag_e) at Sun Sep 29 02:30:54 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).

Posterior Correlation of model parameters

parcorplot(outp3,col = terrain.colors(15,0.5,T), cex.axis=0.6)