Simulate some data wfor pre- and post- treatment
set.seed(1234)
n <- 9
pre <- round(rnorm(n,50,2))
pre
## [1] 48 51 52 45 51 51 49 49 49
post <- pre+1+round(rnorm(n))
post
## [1] 48 52 52 45 52 53 50 49 49
Show the data
d <- post-pre
(X <- cbind(pre,post,d))
## pre post d
## [1,] 48 48 0
## [2,] 51 52 1
## [3,] 52 52 0
## [4,] 45 45 0
## [5,] 51 52 1
## [6,] 51 53 2
## [7,] 49 50 1
## [8,] 49 49 0
## [9,] 49 49 0
Descriptive statistics
(xbar <- round(apply(X,2,mean),2))
## pre post d
## 49.44 50.00 0.56
(sd <- round(apply(X,2,sd),2))
## pre post d
## 2.13 2.55 0.73
(se <- round(sd/sqrt(n),2))
## pre post d
## 0.71 0.85 0.24
sqrt(sum(se[1:2]^2)) # se of difference
## [1] 1.10752
Test the mean difference
t.test(d)
##
## One Sample t-test
##
## data: d
## t = 2.2942, df = 8, p-value = 0.05093
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.002868833 1.113979944
## sample estimates:
## mean of x
## 0.5555556
Test the difference of means
t.test(pre,post)
##
## Welch Two Sample t-test
##
## data: pre and post
## t = -0.5019, df = 15.504, p-value = 0.6228
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.908271 1.797160
## sample estimates:
## mean of x mean of y
## 49.44444 50.00000