knitr::opts_chunk$set(fig.width=12, fig.height=8, fig.path='Figs/',
                      echo=FALSE, warning=FALSE, message=FALSE)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.2
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tsibble)
## 
## Attaching package: 'tsibble'
## The following object is masked from 'package:dplyr':
## 
##     id
library(forecast)
## Registered S3 method overwritten by 'xts':
##   method     from
##   as.zoo.xts zoo
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Registered S3 methods overwritten by 'forecast':
##   method             from    
##   fitted.fracdiff    fracdiff
##   residuals.fracdiff fracdiff
# import data from txt
rain <- read.table(header=T, 'time_series_rain_ubatuba.txt')

# remove the accumulated for the year and remove the year in the row
d <- rain[,2:13]

# transform in a tsibble
values <- c(t(d)) # get the values as a vector
# remove NAs
values <- values[!is.na(values)]
date <- yearmonth('1935 Jan') + 0:( length(values) - 1) # create the date index
raining <- tsibble(date = date, value = values) # create the tsibble 
## Using `date` as index variable.

Dataset

Consist of \(67*12\) observable accumulated rain for each month starting january 1935 and finish Jul 2001.

Visualization for the entire date range

The entire date range.

Visualization for each season (year)

For each year how rain behaved.

Using Polar coordinates

Visualization continuation…

Formula for correlation between x and y. $ r = $