psych::VSS.scree(cor(cordat5))

factanal(x = cordat5, factors = 2, rotation = "varimax")
## 
## Call:
## factanal(x = cordat5, factors = 2, rotation = "varimax")
## 
## Uniquenesses:
##     unemp   poverty    medinc  ownerocc     black h.density        hs 
##     0.508     0.183     0.441     0.005     0.739     0.805     0.493 
## 
## Loadings:
##           Factor1 Factor2
## unemp      0.701         
## poverty    0.863  -0.268 
## medinc    -0.720   0.199 
## ownerocc  -0.450   0.890 
## black      0.503         
## h.density         -0.441 
## hs        -0.708         
## 
##                Factor1 Factor2
## SS loadings      2.714   1.110
## Proportion Var   0.388   0.159
## Cumulative Var   0.388   0.546
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 92285.95 on 8 degrees of freedom.
## The p-value is 0
fitAfterRotation <- factanal(cordat5, factors = 2, rotation = "varimax")
print(fitAfterRotation$loadings, cutoff = .40, sort = TRUE)
## 
## Loadings:
##           Factor1 Factor2
## unemp      0.701         
## poverty    0.863         
## medinc    -0.720         
## black      0.503         
## hs        -0.708         
## ownerocc  -0.450   0.890 
## h.density         -0.441 
## 
##                Factor1 Factor2
## SS loadings      2.714   1.110
## Proportion Var   0.388   0.159
## Cumulative Var   0.388   0.546
f <- factanal(cordat5, factors=2, rotation="varimax", scores="regression")
binded2 <- cbind(binded2, f$scores)
agg.dat <- aggregate(NPO1~labels, data=reg.dat, FUN="mean")
agg.dat <- merge(agg.dat, aggregate(NPO2~labels, data=reg.dat, FUN="mean"), by="labels")
plot(agg.dat$NPO1,agg.dat$NPO2, col="white",
     bty="l", main="Relationship of Vulnerability and Urbanity by NTEE Code",
     xlab="Vulnerability",
     ylab="Urbanity")
text(agg.dat$NPO1,agg.dat$NPO2, labels = agg.dat$labels, cex=.6)

reg.dat <- read.csv("~/Dropbox (ASU)/Political Economy of NP Startups/data-and-analysis/data-prepped/RegressionData.csv")
pander(head(reg.dat))
Table continues below
X EIN labels unemp poverty medinc ownerocc
1 111667771 Religion 0.02291 0.03907 140221 0.8599
2 111667771 Religion 0.02291 0.03907 140221 0.8599
3 112405741 Sports 0.1316 0.2773 47835 0.4931
4 112405741 Sports 0.1316 0.2773 47835 0.4931
5 112411617 Human Services 0.08865 0.04206 85714 0.8557
6 112411617 Human Services 0.08865 0.04206 85714 0.8557
Table continues below
black h.density hs BMS1 BMS2 NPO1 NPO2
0.003371 268 0.9846 -0.7308 -0.5122 -1.23 -0.4577
0.003371 268 0.9846 -0.6698 -0.4209 -1.23 -0.4577
0.5219 1919 0.6683 0.6721 0.5889 1.564 -0.04123
0.5219 1919 0.6683 0.6721 0.5889 1.564 -0.04123
0.9141 2396 0.8813 -0.6054 -0.6911 -0.101 -1.003
0.9141 2396 0.8813 -0.729 -0.7828 -0.101 -1.003
cbsaname dist.to.npo ave.dist
New York-Newark-Jersey City, NY-NJ-PA 2.612 0.7237
New York-Newark-Jersey City, NY-NJ-PA 2.612 0.7237
New York-Newark-Jersey City, NY-NJ-PA 0.5226 0.837
New York-Newark-Jersey City, NY-NJ-PA 0.5226 0.837
New York-Newark-Jersey City, NY-NJ-PA 391.7 778.7
New York-Newark-Jersey City, NY-NJ-PA 391.7 778.7

Making factors into zscores below…

reg.dat$BMS1Z <- scale(reg.dat$BMS1)
reg.dat$BMS2Z <- scale(reg.dat$BMS2)
reg.dat$NPO1Z <- scale(reg.dat$NPO1)
reg.dat$NPO2Z <- scale(reg.dat$NPO2)

Regression for Board Member Vulnerability

reg1a <- (lm(BMS1Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) ,data=reg.dat))
reg1b <- (lm(BMS1Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels),data=reg.dat))
reg1c <- (lm(BMS1Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(cbsaname),data=reg.dat))
reg1d <- (lm(BMS1Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels)+factor(cbsaname),data=reg.dat))

stargazer(reg1a, reg1b, reg1c, reg1d,type="text",title ="Board Member Community Vulnerability",
          keep.stat=c("n", "adj.rsq"),
          omit=c("labels", "cbsaname"),
          covariate.labels=c("Nonprofit Neighborhood Vulneraility",
                             "Nonprofit Neighborhood Urbanity",
                             "Average Distance of Board Members to NPO (log)",
                             "Average Distance Between Board Members (log)"),
          add.lines=list(c("NTEE Code","", "Yes", "","Yes"), c("MSA?", "", "", "Yes", "Yes")))
## 
## Board Member Community Vulnerability
## ======================================================================================
##                                                          Dependent variable:          
##                                                ---------------------------------------
##                                                                 BMS1Z                 
##                                                   (1)       (2)       (3)       (4)   
## --------------------------------------------------------------------------------------
## Nonprofit Neighborhood Vulneraility            0.368***  0.352***  0.313***  0.297*** 
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Nonprofit Neighborhood Urbanity                -0.054*** -0.055*** -0.016*** -0.017***
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Average Distance of Board Members to NPO (log) -0.033*** -0.034*** -0.037*** -0.038***
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Average Distance Between Board Members (log)   0.019***  0.017***  0.021***  0.019*** 
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Constant                                       0.024***   0.038*   0.182***  0.194*** 
##                                                 (0.005)   (0.022)   (0.017)   (0.027) 
##                                                                                       
## --------------------------------------------------------------------------------------
## NTEE Code                                                   Yes                 Yes   
## MSA?                                                                  Yes       Yes   
## Observations                                    104,483   104,483   104,483   104,483 
## Adjusted R2                                      0.137     0.146     0.164     0.172  
## ======================================================================================
## Note:                                                      *p<0.1; **p<0.05; ***p<0.01

Regressions for Board Member Urbanity

reg2a <- (lm(BMS2Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) ,data=reg.dat))
reg2b <- (lm(BMS2Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels),data=reg.dat))
reg2c <- (lm(BMS2Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(cbsaname),data=reg.dat))
reg2d <- (lm(BMS2Z~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels)+factor(cbsaname),data=reg.dat))

stargazer(reg2a, reg2b, reg2c, reg2d,type="text",title ="Board Member Community Urbanity",
          keep.stat=c("n", "adj.rsq"),
          omit=c("labels", "cbsaname"),
          covariate.labels=c("Nonprofit Neighborhood Vulneraility",
                             "Nonprofit Neighborhood Urbanity",
                             "Average Distance of Board Members to NPO (log)",
                             "Average Distance Between Board Members (log)"),
          add.lines=list(c("NTEE Code?","", "Yes", "","Yes"), c("MSA?", "", "", "Yes", "Yes")))
## 
## Board Member Community Urbanity
## ======================================================================================
##                                                          Dependent variable:          
##                                                ---------------------------------------
##                                                                 BMS2Z                 
##                                                   (1)       (2)       (3)       (4)   
## --------------------------------------------------------------------------------------
## Nonprofit Neighborhood Vulneraility            -0.039*** -0.044*** 0.022***  0.016*** 
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Nonprofit Neighborhood Urbanity                0.256***  0.246***  0.177***  0.170*** 
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Average Distance of Board Members to NPO (log)  -0.007    -0.008*    0.001    0.0003  
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Average Distance Between Board Members (log)   0.032***  0.029***  0.025***  0.022*** 
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Constant                                       -0.070*** -0.178*** -0.448*** -0.512***
##                                                 (0.006)   (0.023)   (0.018)   (0.028) 
##                                                                                       
## --------------------------------------------------------------------------------------
## NTEE Code?                                                  Yes                 Yes   
## MSA?                                                                  Yes       Yes   
## Observations                                    104,483   104,483   104,483   104,483 
## Adjusted R2                                      0.067     0.074     0.110     0.115  
## ======================================================================================
## Note:                                                      *p<0.1; **p<0.05; ***p<0.01

Regressions for Board Member Urbanity

reg.dat$facdiff <- reg.dat$BMS1Z-reg.dat$NPO1Z

reg2a <- (lm(facdiff~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) ,data=reg.dat))
reg2b <- (lm(facdiff~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels),data=reg.dat))
reg2c <- (lm(facdiff~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(cbsaname),data=reg.dat))
reg2d <- (lm(facdiff~NPO1Z+NPO2Z+log(dist.to.npo)+log(ave.dist+1) +factor(labels)+factor(cbsaname),data=reg.dat))

stargazer(reg2a, reg2b, reg2c, reg2d,type="text",title ="Difference in Board Member and Community Vulnerability",
          keep.stat=c("n", "adj.rsq"),
          omit=c("labels", "cbsaname"),
          covariate.labels=c("Nonprofit Neighborhood Vulneraility",
                             "Nonprofit Neighborhood Urbanity",
                             "Average Distance of Board Members to NPO (log)",
                             "Average Distance Between Board Members (log)"),
          add.lines=list(c("NTEE Code?","", "Yes", "","Yes"), c("MSA?", "", "", "Yes", "Yes")))
## 
## Difference in Board Member and Community Vulnerability
## ======================================================================================
##                                                          Dependent variable:          
##                                                ---------------------------------------
##                                                                facdiff                
##                                                   (1)       (2)       (3)       (4)   
## --------------------------------------------------------------------------------------
## Nonprofit Neighborhood Vulneraility            -0.632*** -0.648*** -0.687*** -0.703***
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Nonprofit Neighborhood Urbanity                -0.054*** -0.055*** -0.016*** -0.017***
##                                                 (0.003)   (0.003)   (0.003)   (0.003) 
##                                                                                       
## Average Distance of Board Members to NPO (log) -0.033*** -0.034*** -0.037*** -0.038***
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Average Distance Between Board Members (log)   0.019***  0.017***  0.021***  0.019*** 
##                                                 (0.004)   (0.004)   (0.004)   (0.004) 
##                                                                                       
## Constant                                       0.024***   0.038*   0.182***  0.194*** 
##                                                 (0.005)   (0.022)   (0.017)   (0.027) 
##                                                                                       
## --------------------------------------------------------------------------------------
## NTEE Code?                                                  Yes                 Yes   
## MSA?                                                                  Yes       Yes   
## Observations                                    104,483   104,483   104,483   104,483 
## Adjusted R2                                      0.321     0.328     0.342     0.348  
## ======================================================================================
## Note:                                                      *p<0.1; **p<0.05; ***p<0.01