The interval \(\left[0,1\right]\) is a subset of \(\\R\). B is a continuous random variables with probability \(p\left( 0\le B\le 1 \right) =\quad 1\\\) in one dimension.
Considere a point (B,C) in a plane where the density of probability is:
\(\\f\left[ \left( B,C \right) \right] =\begin{cases} 1\quad if\quad (B,C)\quad \epsilon \quad \left[ 0,1 \right] { \times \left[ 0,1 \right] } \\ 0\quad otherwise \end{cases}\\\)
The density function is well defined, then B and C form a proper probability distribution.
Instead of B and C I will use x and y.\(\\p\left[ \left( 0\le x\le 1 \right) and\left( 0\le y\le 1 \right) \right] \quad =\quad 1\) or We have \({ \int { f(x,y) } }_{ { \left[ 0,1 \right] }^{ 2 } }\quad =\quad 1\\\)
Find the probability that:
x <- c(0:1000/1000)
y <- -1*x + 1/2
a <- c(0:1000/2000)
b <- ifelse(a+y<2,t<-a+y,s<-a+y)
qplot(x, y, xlim = c(0,1),ylim = c(0,1)) + geom_area(fill = "Yellow")
## Warning: Removed 500 rows containing missing values (position_stack).
## Warning: Removed 500 rows containing missing values (geom_point).
The probability is given by \(\\p(a)\quad =\quad \int _{ 0 }^{ 1/2 }{ \left( -x\quad +\quad 1/2 \right) dx\quad =\quad 1/8 }\\\)
df <- data.frame(x,y)
g <- ggplot(df, aes(x,y))
g + geom_area(fill = "Blue") + coord_cartesian(xlim = c(0,1), ylim = c(0,1))
y <- 1/(2*x)
qplot(x, y, xlim = c(0,1),ylim = c(0,1), color = I("Blue")) + geom_area(fill = "Magenta")
## Warning: Removed 499 rows containing missing values (position_stack).
## Warning: Removed 499 rows containing missing values (geom_point).
y <- x + 1/2
y[501:length(x)] <- x[501:length(x)] - 1/2
qplot(x, y, xlim = c(0,1),ylim = c(0,1), color = I("Blue")) + geom_area(fill = "Green")
The area between the upper blue-line and the x-axis and the area between the axis x = 1 and the lower blue=line represent our probability. ### p(c) = 1 = .5*.5 = .75
y[1:501] = 0.5
y[501:length(x)] <- 0
quickplot(x, y, xlim = c(0,1),ylim = c(0,1),color = I("Blue")) + geom_area(fill = "Blue")
The area between the horizontal lines and the x=axis represents our probability. ### p(d) = .5 *.5 = .25
y[1:501] = 1
y[501:length(x)] <- .5
quickplot(x, y, xlim = c(0,1),ylim = c(0,1),color = I("Blue")) + geom_area(fill = "Cyan")
The area between the horizontal lines and the x-axis is our probability. ### p(e) = .5x1 + .5x.5 = .75 or p(e) = 1 - .25 = .75