packages

library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'ggplot2' was built under R version 3.4.4package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages -------------------------------------------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats
library("tidyverse")
library("irr")
Loading required package: lpSolve

df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSrk7fAsC2u880LPwwyLGo8nz56h8JH3BAr5FmIZpBJfiDD4_CjQHq6wjxAWoyPwMb9hXLoLTcYhVOQ/pub?gid=633331745&single=true&output=csv")

selecciono columnas

Calculo ICC para las medidas

icc(df1, model = "twoway", type = "agreement")
 Single Score Intraclass Correlation

   Model: twoway 
   Type : agreement 

   Subjects = 217 
     Raters = 2 
   ICC(A,1) = 0.999

 F-Test, H0: r0 = 0 ; H1: r0 > 0 
 F(216,217) = 1440 , p = 2.52e-279 

 95%-Confidence Interval for ICC Population Values:
  0.998 < ICC < 0.999

el kappa para clase molar

select

creo un df para las 3 observaciones

el kappa

df2 %>% 
  kappam.fleiss(df2, detail=TRUE)
la condici'on tiene longitud > 1 y s'olo el primer elemento ser'a usadola condici'on tiene longitud > 1 y s'olo el primer elemento ser'a usadola condici'on tiene longitud > 1 y s'olo el primer elemento ser'a usado
 Fleiss' Kappa for m Raters (exact value)

 Subjects = 14 
   Raters = 3 
    Kappa = 1 
LS0tCnRpdGxlOiAiMjAxOSBJQ0NfSW5lcyBQZXJleiIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojcGFja2FnZXMKYGBge3J9CmxpYnJhcnkoInRpZHl2ZXJzZSIpCmxpYnJhcnkoImlyciIpCmBgYAojZGYgCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlNyazdmQXNDMnU4ODBMUHd3eUxHbzhuejU2aDhKSDNCQXI1Rm1JWnBCSmZpREQ0X0NqUUhxNndqeEFXb3lQd01iOWhYTG9MVGNZaFZPUS9wdWI/Z2lkPTYzMzMzMTc0NSZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNzZWxlY2Npb25vIGNvbHVtbmFzCmBgYHtyfQpkZiAlPiUgCiAgc2VsZWN0KE1lZGlkYTEsIE1lZGlkYTIpCmBgYAojQ2FsY3VsbyBJQ0MgcGFyYSBsYXMgbWVkaWRhcwpgYGB7cn0KZGYxIDwtIGRmICU+JSAKICBzZWxlY3QoTWVkaWRhMSwgTWVkaWRhMikKaWNjKGRmMSwgbW9kZWwgPSAidHdvd2F5IiwgdHlwZSA9ICJhZ3JlZW1lbnQiKQpgYGAKI2VsIGthcHBhIHBhcmEgY2xhc2UgbW9sYXIKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2UkU3RHdNQXp4dTFHMU92a1FjZGdvU04xRTJIdDdQMGt3NnVVc2JycjhZOHVYU1pLYnptT0ZDNktxQ1JTTXZKNEttVVN3OFpTRWZSR3d1L3B1Yj9naWQ9MjE2MzkxNjAxJnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI3NlbGVjdCAKYGBge3J9CmRmICU+JSAKICBzZWxlY3QoT2JzZXJ2YWRvcjE6T2JzZXJ2YWRvcjMpCmBgYAojY3JlbyB1biBkZiBwYXJhIGxhcyAzIG9ic2VydmFjaW9uZXMKYGBge3J9CmRmMiA8LSBkZiAlPiUgCiAgc2VsZWN0KE9ic2VydmFkb3IxOk9ic2VydmFkb3IzKQpgYGAKCiNlbCBrYXBwYQpgYGB7cn0KZGYyICU+JSAKICBrYXBwYW0uZmxlaXNzKGRmMiwgZGV0YWlsPVRSVUUpCmBgYAoKCg==