Pregunta 1-Primera urgencia dental
odd<- epi.2by2(matrix(c(203,6,8,8), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 203 6 209 97.1 33.8
Exposed - 8 8 16 50.0 1.0
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 1.94 (1.19, 3.17)
Odds ratio 33.83 (9.48, 120.79)
Attrib risk * 47.13 (22.53, 71.73)
Attrib risk in population * 43.78 (19.08, 68.48)
Attrib fraction in exposed (%) 48.52 (15.93, 68.48)
Attrib fraction in population (%) 46.68 (14.50, 66.75)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 56.574 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 2
odd<- epi.2by2(matrix(c(32,8,179,6), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 32 8 40 80.0 4.0
Exposed - 179 6 185 96.8 29.8
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 0.83 (0.71, 0.97)
Odds ratio 0.13 (0.04, 0.41)
Attrib risk * -16.76 (-29.41, -4.10)
Attrib risk in population * -2.98 (-7.04, 1.08)
Attrib fraction in exposed (%) -20.95 (-41.53, -3.35)
Attrib fraction in population (%) -3.18 (-5.84, -0.58)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 15.826 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 3-Tiempo espera
odd<- epi.2by2(matrix(c(24,10,187,4), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 24 10 34 70.6 2.4
Exposed - 187 4 191 97.9 46.8
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 0.72 (0.58, 0.90)
Odds ratio 0.05 (0.01, 0.18)
Attrib risk * -27.32 (-42.77, -11.87)
Attrib risk in population * -4.13 (-7.88, -0.37)
Attrib fraction in exposed (%) -38.70 (-72.48, -11.54)
Attrib fraction in population (%) -4.40 (-7.40, -1.49)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 36.912 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 4- Trato profesional
odd<- epi.2by2(matrix(c(211,13,0,1), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
NaNs producedNaNs produced
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 211 13 224 94.2 16.2
Exposed - 0 1 1 0.0 0.0
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio Inf (NaN, Inf)
Odds ratio Inf (NaN, Inf)
Attrib risk * 94.20 (91.13, 97.26)
Attrib risk in population * 93.78 (90.62, 96.93)
Attrib fraction in exposed (%) NaN (NaN, NaN)
Attrib fraction in population (%) 100.00 (NaN, 100.00)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 15.139 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 5
odd<- epi.2by2(matrix(c(203,6,8,8), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 203 6 209 97.1 33.8
Exposed - 8 8 16 50.0 1.0
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 1.94 (1.19, 3.17)
Odds ratio 33.83 (9.48, 120.79)
Attrib risk * 47.13 (22.53, 71.73)
Attrib risk in population * 43.78 (19.08, 68.48)
Attrib fraction in exposed (%) 48.52 (15.93, 68.48)
Attrib fraction in population (%) 46.68 (14.50, 66.75)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 56.574 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 6- Explica patologia y tto
odd<- epi.2by2(matrix(c(3,5,208,9), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 3 5 8 37.5 0.6
Exposed - 208 9 217 95.9 23.1
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 0.39 (0.16, 0.96)
Odds ratio 0.03 (0.01, 0.13)
Attrib risk * -58.35 (-92.00, -24.70)
Attrib risk in population * -2.07 (-6.20, 2.05)
Attrib fraction in exposed (%) -155.61 (-525.57, -4.44)
Attrib fraction in population (%) -2.21 (-4.25, -0.22)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 45.024 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 7- Farmaco , NO SE PUEDE CALCULAR
Pregunta 8- Equipamiento
odd<- epi.2by2(matrix(c(25,9,186,5), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 25 9 34 73.5 2.78
Exposed - 186 5 191 97.4 37.20
Total 211 14 225 93.8 15.07
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 0.76 (0.62, 0.93)
Odds ratio 0.07 (0.02, 0.24)
Attrib risk * -23.85 (-38.85, -8.85)
Attrib risk in population * -3.60 (-7.49, 0.28)
Attrib fraction in exposed (%) -32.44 (-62.25, -8.11)
Attrib fraction in population (%) -3.84 (-6.67, -1.09)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 28.142 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 9-Dotacion
odd<- epi.2by2(matrix(c(88,11,123,3), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 88 11 99 88.9 8.0
Exposed - 123 3 126 97.6 41.0
Total 211 14 225 93.8 15.1
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 0.91 (0.84, 0.98)
Odds ratio 0.20 (0.05, 0.72)
Attrib risk * -8.73 (-15.47, -1.99)
Attrib risk in population * -3.84 (-7.97, 0.29)
Attrib fraction in exposed (%) -9.82 (-18.35, -1.91)
Attrib fraction in population (%) -4.10 (-7.46, -0.84)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 7.241 Pr>chi2 = 0.007
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
Pregunta 10-Resolucion problema
odd<- epi.2by2(matrix(c(200,8,11,6), ncol = 2, byrow = TRUE),
method = "cohort.count",
conf.level = 0.95
)
odd
Outcome + Outcome - Total Inc risk * Odds
Exposed + 200 8 208 96.2 25.00
Exposed - 11 6 17 64.7 1.83
Total 211 14 225 93.8 15.07
Point estimates and 95% CIs:
-------------------------------------------------------------------
Inc risk ratio 1.49 (1.04, 2.11)
Odds ratio 13.64 (4.03, 46.20)
Attrib risk * 31.45 (8.58, 54.31)
Attrib risk in population * 29.07 (6.14, 52.01)
Attrib fraction in exposed (%) 32.71 (4.30, 52.68)
Attrib fraction in population (%) 31.00 (3.64, 50.59)
-------------------------------------------------------------------
Test that odds ratio = 1: chi2(1) = 26.636 Pr>chi2 = < 0.001
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
LS0tCnRpdGxlOiAiMjAxOV9TYXRpc2ZhY2Npb24gVXN1YXJpYSBVcmdlbmNpYSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojcGFja2FnZXMKYGBge3J9CmxpYnJhcnkoImVwaVIiKQpgYGAKI1ByZWd1bnRhIDEtUHJpbWVyYSB1cmdlbmNpYSBkZW50YWwKYGBge3J9Cm9kZDwtIGVwaS4yYnkyKG1hdHJpeChjKDIwMyw2LDgsOCksIG5jb2wgPSAyLCBieXJvdyA9IFRSVUUpLCAKICAgICAgICAgICAgICAgbWV0aG9kID0gImNvaG9ydC5jb3VudCIsIAogICAgICAgICAgICAgICBjb25mLmxldmVsID0gMC45NQogICAgICAgICAgICAgICAgKQoKb2RkCmBgYAojUHJlZ3VudGEgMiAKYGBge3J9Cm9kZDwtIGVwaS4yYnkyKG1hdHJpeChjKDMyLDgsMTc5LDYpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKI1ByZWd1bnRhIDMtVGllbXBvIGVzcGVyYQpgYGB7cn0Kb2RkPC0gZXBpLjJieTIobWF0cml4KGMoMjQsMTAsMTg3LDQpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKI1ByZWd1bnRhIDQtIFRyYXRvIHByb2Zlc2lvbmFsCmBgYHtyfQpvZGQ8LSBlcGkuMmJ5MihtYXRyaXgoYygyMTEsMTMsMCwxKSwgbmNvbCA9IDIsIGJ5cm93ID0gVFJVRSksIAogICAgICAgICAgICAgICBtZXRob2QgPSAiY29ob3J0LmNvdW50IiwgCiAgICAgICAgICAgICAgIGNvbmYubGV2ZWwgPSAwLjk1CiAgICAgICAgICAgICAgICApCgpvZGQKYGBgCiNQcmVndW50YSA1CmBgYHtyfQpvZGQ8LSBlcGkuMmJ5MihtYXRyaXgoYygyMDMsNiw4LDgpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKI1ByZWd1bnRhIDYtIEV4cGxpY2EgcGF0b2xvZ2lhIHkgdHRvCmBgYHtyfQpvZGQ8LSBlcGkuMmJ5MihtYXRyaXgoYygzLDUsMjA4LDkpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKI1ByZWd1bnRhIDctIEZhcm1hY28gLCBOTyBTRSBQVUVERSBDQUxDVUxBUiAKI1ByZWd1bnRhIDgtIEVxdWlwYW1pZW50bwpgYGB7cn0Kb2RkPC0gZXBpLjJieTIobWF0cml4KGMoMjUsOSwxODYsNSksIG5jb2wgPSAyLCBieXJvdyA9IFRSVUUpLCAKICAgICAgICAgICAgICAgbWV0aG9kID0gImNvaG9ydC5jb3VudCIsIAogICAgICAgICAgICAgICBjb25mLmxldmVsID0gMC45NQogICAgICAgICAgICAgICAgKQoKb2RkCmBgYAojUHJlZ3VudGEgOS1Eb3RhY2lvbgpgYGB7cn0Kb2RkPC0gZXBpLjJieTIobWF0cml4KGMoODgsMTEsMTIzLDMpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKI1ByZWd1bnRhIDEwLVJlc29sdWNpb24gcHJvYmxlbWEKYGBge3J9Cm9kZDwtIGVwaS4yYnkyKG1hdHJpeChjKDIwMCw4LDExLDYpLCBuY29sID0gMiwgYnlyb3cgPSBUUlVFKSwgCiAgICAgICAgICAgICAgIG1ldGhvZCA9ICJjb2hvcnQuY291bnQiLCAKICAgICAgICAgICAgICAgY29uZi5sZXZlbCA9IDAuOTUKICAgICAgICAgICAgICAgICkKCm9kZApgYGAKCgoKCgoKCgoKCgoKCg==