The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignment to your R Pubs account and submit the link to Moodle. Points will be deducted for uploading the improper format.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.#Place your code here and delete this!
library(datasets)
data=anscombe
fBasics() package!)#Place your code here and delete this!
# install and load package
#install.packages("fBasics")
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
#calculate means
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
#calculate variance
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
#calculate correlation
cor(data$x1,data$y1)
## [1] 0.8164205
cor(data$x2,data$y2)
## [1] 0.8162365
cor(data$x3,data$y3)
## [1] 0.8162867
cor(data$x4,data$y4)
## [1] 0.8165214
#Place your code here and delete this!
library(fBasics)
plot(data$x1,data$y1)
plot(data$x2,data$y2)
plot(data$x3,data$y3)
plot(data$x4,data$y4)
#Place your code here and delete this!
library(fBasics)
#setup panel
old.par1=par(mfrow=c(2,2))
#plot
plot(data$x1,data$y1,pch=20,bg="black")
plot(data$x2,data$y2,pch=20,bg="black")
plot(data$x3,data$y3,pch=20,bg="black")
plot(data$x4,data$y4,pch=20,bg="black")
par(old.par1)
lm() function.#Place your code here and delete this!
z1=lm(data$y1~data$x1)
z2=lm(data$y2~data$x2)
z3=lm(data$y3~data$x3)
z4=lm(data$y4~data$x4)
#Place your code here and delete this!
#setup panel
old.par2=par(mfrow=c(2,2))
#abline function to add regression line
plot(data$x1,data$y1,pch=20,bg="black")
abline(z1,col="red")
plot(data$x2,data$y2,pch=20,bg="black")
abline(z2,col="red")
plot(data$x3,data$y3,pch=20,bg="black")
abline(z3,col="red")
plot(data$x4,data$y4,pch=20,bg="black")
abline(z4,col="red")
#Place your code here and delete this!
#summary function to calculate p-value and R square
summary(z1)
Call: lm(formula = data\(y1 ~ data\)x1)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(z2)
Call: lm(formula = data\(y2 ~ data\)x2)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(z3)
Call: lm(formula = data\(y3 ~ data\)x3)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(z4)
Call: lm(formula = data\(y4 ~ data\)x4)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
#conclusion
#model fit is alsmot the same by looking at R square and p-value
Conclusion: We can’t only trust numbers without showing graph. The graph is as important as calculation numbers.
Analysis: The above 4 datasets share the same means, variance, p value and R square. But by presenting the graph, we see the model fitting pattern are so differenct across each other. Therefore, when explorering the datasets, just creating the regression model is not enough. Presenting graphs helps us to understand the datasets better.