Next step is plot Ozone, Temp and Solar.R into a 3D plot
plot_ly(x = Temp,
y = Ozone,
z = Solar.R,
type = "scatter3d",
mode = "markers",
color = Ozone)
26/9/2019
Let’s print the system date
Sys.Date()
## [1] "2019-09-26"
Let’s do the following steps: 1. Load plotly library 2. Load airquality dataset and save them into data variable 3. Omit NA’s 4. Atach dataset
library(plotly)
## Loading required package: ggplot2
## ## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2': ## ## last_plot
## The following object is masked from 'package:stats': ## ## filter
## The following object is masked from 'package:graphics': ## ## layout
data <- airquality[complete.cases(airquality),] attach(data)
Next step is plot Ozone, Temp and Solar.R into a 3D plot
plot_ly(x = Temp,
y = Ozone,
z = Solar.R,
type = "scatter3d",
mode = "markers",
color = Ozone)
Now we are goint to make a liner regressión with Y = Temp, X1 = Ozone and X2 = Solar.R
fit <- lm(Temp ~ Ozone + Solar.R) summary(fit)
## ## Call: ## lm(formula = Temp ~ Ozone + Solar.R) ## ## Residuals: ## Min 1Q Median 3Q Max ## -21.576 -5.137 1.625 4.741 12.511 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 68.497103 1.528467 44.814 < 2e-16 *** ## Ozone 0.194294 0.020977 9.262 2.22e-15 *** ## Solar.R 0.006039 0.007658 0.789 0.432 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 6.862 on 108 degrees of freedom ## Multiple R-squared: 0.4909, Adjusted R-squared: 0.4815 ## F-statistic: 52.07 on 2 and 108 DF, p-value: < 2.2e-16
As final step, let’s plot the regressión residuals (histogram) and predicted vs real values (scatterplot)
plot_ly(x = fit$residuals, type = "histogram", mode = "markers")
## Warning: 'histogram' objects don't have these attributes: 'mode' ## Valid attributes include: ## 'type', 'visible', 'showlegend', 'legendgroup', 'opacity', 'name', 'uid', 'ids', 'customdata', 'selectedpoints', 'hoverinfo', 'hoverlabel', 'stream', 'transforms', 'uirevision', 'x', 'y', 'text', 'hovertext', 'orientation', 'histfunc', 'histnorm', 'cumulative', 'nbinsx', 'xbins', 'nbinsy', 'ybins', 'autobinx', 'autobiny', 'hovertemplate', 'marker', 'offsetgroup', 'alignmentgroup', 'selected', 'unselected', '_deprecated', 'error_x', 'error_y', 'xcalendar', 'ycalendar', 'xaxis', 'yaxis', 'idssrc', 'customdatasrc', 'hoverinfosrc', 'xsrc', 'ysrc', 'textsrc', 'hovertextsrc', 'hovertemplatesrc', 'key', 'set', 'frame', 'transforms', '_isNestedKey', '_isSimpleKey', '_isGraticule', '_bbox'
plot_ly( x = data$Temp, y = predict(fit, data), mode = "markers", type = "scatter" )