In this exercise you will learn to plot data using the ggplot2 package. To answer the questions below, use 4.1 Categorical vs. Categorical from Data Visualization with R.
# Load packages
library(tidyquant)
library(tidyverse)
library(lubridate) #for year()
# Pick stocks
stocks <- c("AAPL", "MSFT", "IBM")
# Import stock prices
stock_prices <- stocks %>%
tq_get(get = "stock.prices",
from = "1990-01-01",
to = "2019-05-31") %>%
group_by(symbol)
stock_prices
## # A tibble: 22,230 x 8
## # Groups: symbol [3]
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 1990-01-02 1.26 1.34 1.25 1.33 45799600 1.08
## 2 AAPL 1990-01-03 1.36 1.36 1.34 1.34 51998800 1.09
## 3 AAPL 1990-01-04 1.37 1.38 1.33 1.34 55378400 1.10
## 4 AAPL 1990-01-05 1.35 1.37 1.32 1.35 30828000 1.10
## 5 AAPL 1990-01-08 1.34 1.36 1.32 1.36 25393200 1.11
## 6 AAPL 1990-01-09 1.36 1.36 1.32 1.34 21534800 1.10
## 7 AAPL 1990-01-10 1.34 1.34 1.28 1.29 49929600 1.05
## 8 AAPL 1990-01-11 1.29 1.29 1.23 1.23 52763200 1.00
## 9 AAPL 1990-01-12 1.22 1.24 1.21 1.23 42974400 1.00
## 10 AAPL 1990-01-15 1.23 1.28 1.22 1.22 40434800 0.997
## # … with 22,220 more rows
# Process stock_prices and save it under stock_returns
stock_returns <-
stock_prices %>%
# Calculate yearly returns
tq_transmute(select = adjusted, mutate_fun = periodReturn, period = "yearly") %>%
# create a new variable, year
mutate(year = year(date)) %>%
# drop date
select(-date)
stock_returns
## # A tibble: 90 x 3
## # Groups: symbol [3]
## symbol yearly.returns year
## <chr> <dbl> <dbl>
## 1 AAPL 0.169 1990
## 2 AAPL 0.323 1991
## 3 AAPL 0.0691 1992
## 4 AAPL -0.504 1993
## 5 AAPL 0.352 1994
## 6 AAPL -0.173 1995
## 7 AAPL -0.345 1996
## 8 AAPL -0.371 1997
## 9 AAPL 2.12 1998
## 10 AAPL 1.51 1999
## # … with 80 more rows
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
library(dplyr)
plotdata <- stock_returns %>%
group_by(symbol) %>%
summarize(mean_returns = mean(yearly.returns))
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
ggplot(plotdata,
aes(x = symbol,
y = mean_returns)) +
geom_bar(stat = "identity")
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
library(scales)
ggplot(plotdata,
aes(x = factor(symbol,
labels = c("Apple",
"Microsoft", "IBM")),
y = mean_returns)) +
geom_bar(stat = "identity",fill = "cornflowerblue")+ geom_text(aes(label = percent(mean_returns)),
vjust = -0.25)
Hint: See the code in 4.3.2 Grouped kernel density plots.
ggplot(stock_returns,
aes(x = yearly.returns,
fill = symbol)) +
geom_density(alpha = 0.4) +
labs(title = "Stock Distribution")
Hint: Google how to interpret density plots. IBM has the greatest chance of losing big when things goes wrong. They have the highest denisty and while they have a large increase in a short period of time, they also can have a big decrease as well.
Hint: See the code in 4.3.3 Box plots.
ggplot(stock_returns,
aes(x = symbol,
y = yearly.returns )) +
geom_boxplot() +
labs(title = "Distribution of Yearly Returns")
I would choose IBM for while they can easily have the biggest drop out of all of them, they also could give you the greatest returns, so it’s high risk, high reward.
Hint: Use message, echo and results in the global chunk options. Refer to the RMarkdown Reference Guide.