rm(list=ls())
#install package "quantmod"
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
##
## time<-
##
## Attaching package: 'fBasics'
## The following object is masked from 'package:TTR':
##
## volatility
da=read.table("d-axp3dx-0111.txt",header=T)
head(da)
## date axp vw ew sp
## 1 20010904 0.000824 -0.001658 -0.005708 -0.000565
## 2 20010905 0.007682 -0.003242 -0.008926 -0.001059
## 3 20010906 -0.039477 -0.020733 -0.014187 -0.022390
## 4 20010907 -0.019274 -0.017769 -0.011476 -0.018637
## 5 20010910 0.011850 0.003513 -0.007368 0.006226
## 6 20010917 -0.135961 -0.050714 -0.042398 -0.049216
axp3dx=da[,2]
basicStats(axp3dx)
## axp3dx
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.175949
## Maximum 0.206485
## 1. Quartile -0.009672
## 3. Quartile 0.010540
## Mean 0.000534
## Median 0.000000
## Sum 1.353560
## SE Mean 0.000524
## LCL Mean -0.000493
## UCL Mean 0.001561
## Variance 0.000695
## Stdev 0.026368
## Skewness 0.459773
## Kurtosis 9.592053
mean(axp3dx)
## [1] 0.0005339487
stdev(axp3dx)
## [1] 0.02636841
skewness(axp3dx)
## [1] 0.4597734
## attr(,"method")
## [1] "moment"
kurtosis(axp3dx)
## [1] 9.592053
## attr(,"method")
## [1] "excess"
#===================================
#transform simplereturn into log return
#===================================
da=read.table("d-axp3dx-0111.txt",header=T)
head(da)
## date axp vw ew sp
## 1 20010904 0.000824 -0.001658 -0.005708 -0.000565
## 2 20010905 0.007682 -0.003242 -0.008926 -0.001059
## 3 20010906 -0.039477 -0.020733 -0.014187 -0.022390
## 4 20010907 -0.019274 -0.017769 -0.011476 -0.018637
## 5 20010910 0.011850 0.003513 -0.007368 0.006226
## 6 20010917 -0.135961 -0.050714 -0.042398 -0.049216
axp=log(da$axp+1)
basicStats(axp)
## axp
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.193523
## Maximum 0.187711
## 1. Quartile -0.009719
## 3. Quartile 0.010484
## Mean 0.000188
## Median 0.000000
## Sum 0.476584
## SE Mean 0.000522
## LCL Mean -0.000836
## UCL Mean 0.001212
## Variance 0.000691
## Stdev 0.026294
## Skewness 0.020992
## Kurtosis 9.020499
vw=log(da$axp+1)
basicStats(vw)
## vw
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.193523
## Maximum 0.187711
## 1. Quartile -0.009719
## 3. Quartile 0.010484
## Mean 0.000188
## Median 0.000000
## Sum 0.476584
## SE Mean 0.000522
## LCL Mean -0.000836
## UCL Mean 0.001212
## Variance 0.000691
## Stdev 0.026294
## Skewness 0.020992
## Kurtosis 9.020499
ew=log(da$axp+1)
basicStats(ew)
## ew
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.193523
## Maximum 0.187711
## 1. Quartile -0.009719
## 3. Quartile 0.010484
## Mean 0.000188
## Median 0.000000
## Sum 0.476584
## SE Mean 0.000522
## LCL Mean -0.000836
## UCL Mean 0.001212
## Variance 0.000691
## Stdev 0.026294
## Skewness 0.020992
## Kurtosis 9.020499
sp=log(da$axp+1)
basicStats(sp)
## sp
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.193523
## Maximum 0.187711
## 1. Quartile -0.009719
## 3. Quartile 0.010484
## Mean 0.000188
## Median 0.000000
## Sum 0.476584
## SE Mean 0.000522
## LCL Mean -0.000836
## UCL Mean 0.001212
## Variance 0.000691
## Stdev 0.026294
## Skewness 0.020992
## Kurtosis 9.020499
#=======================
#null hypothesis
#===========================
library(fBasics)
da=read.table("d-axp3dx-0111.txt",header=T)
axp=da[,2]
hist(axp,nclass=30)

d1=density(axp)
range(axp)
## [1] -0.175949 0.206485
x=seq(-.1,.1,.001)
y1=dnorm(x,mean(axp),stdev(axp))
plot(d1$x,d1$y,xlab="rtn",ylab="density",type="l")
lines(x,y1,lty=2)
