dt <- read.csv(“D:\t\drive-download-20190806T055124Z-001\Computer_Data.csv”)
#view the loaded dataset
View(dt)
dim(dt) attach(dt)
summary(dt)
new_dt <- as.data.frame(dt[,c(2,4)])
View(new_dt)
qqnorm(hd) plot(price,hd)
cor(price,hd)
model1 <- lm(price ~ hd,data=new_dt) summary(model1)
pv1 <- predict(model1,new_dt) pv1 <- as.data.frame(pv1)
final1 <- cbind(new_dt,pv1) View(final1)
model2 <- lm(price ~log(hd),data=new_dt) summary(model2)
pv2 <- predict(model2,new_dt) pv2 <- as.data.frame(pv2)
final2 <- cbind(new_dt,pv2) View(final2)
model3 <- lm(log(price) ~ hd,data=new_dt) summary(model3)
model4 <- lm(price ~ sqrt(hd),data=new_dt) summary(model4)