#1
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
data=read.table("d-axp3dx-0111.txt",header=T)
head(data)
## date axp vw ew sp
## 1 20010904 0.000824 -0.001658 -0.005708 -0.000565
## 2 20010905 0.007682 -0.003242 -0.008926 -0.001059
## 3 20010906 -0.039477 -0.020733 -0.014187 -0.022390
## 4 20010907 -0.019274 -0.017769 -0.011476 -0.018637
## 5 20010910 0.011850 0.003513 -0.007368 0.006226
## 6 20010917 -0.135961 -0.050714 -0.042398 -0.049216
tail(data)
## date axp vw ew sp
## 2530 20110923 -0.003860 0.005754 0.007256 0.006082
## 2531 20110926 0.023897 0.021588 0.009890 0.023336
## 2532 20110927 -0.010093 0.012842 0.015739 0.010688
## 2533 20110928 -0.012957 -0.023688 -0.025358 -0.020691
## 2534 20110929 0.005380 0.008222 0.006639 0.008114
## 2535 20110930 -0.038955 -0.024625 -0.018836 -0.024974
axp0=data[,2]
basicStats(axp0)
## axp0
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.175949
## Maximum 0.206485
## 1. Quartile -0.009672
## 3. Quartile 0.010540
## Mean 0.000534
## Median 0.000000
## Sum 1.353560
## SE Mean 0.000524
## LCL Mean -0.000493
## UCL Mean 0.001561
## Variance 0.000695
## Stdev 0.026368
## Skewness 0.459773
## Kurtosis 9.592053
vw0=data[,3]
basicStats(vw0)
## vw0
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.089762
## Maximum 0.114889
## 1. Quartile -0.005473
## 3. Quartile 0.006212
## Mean 0.000224
## Median 0.000848
## Sum 0.567996
## SE Mean 0.000271
## LCL Mean -0.000308
## UCL Mean 0.000756
## Variance 0.000186
## Stdev 0.013652
## Skewness -0.098318
## Kurtosis 7.982134
ew0=data[,4]
basicStats(ew0)
## ew0
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.078240
## Maximum 0.107422
## 1. Quartile -0.004630
## 3. Quartile 0.006402
## Mean 0.000626
## Median 0.001429
## Sum 1.586462
## SE Mean 0.000240
## LCL Mean 0.000155
## UCL Mean 0.001096
## Variance 0.000146
## Stdev 0.012080
## Skewness -0.247410
## Kurtosis 8.108428
sp0=data[,5]
basicStats(sp0)
## sp0
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.090350
## Maximum 0.115800
## 1. Quartile -0.005798
## 3. Quartile 0.006117
## Mean 0.000094
## Median 0.000700
## Sum 0.238869
## SE Mean 0.000274
## LCL Mean -0.000442
## UCL Mean 0.000631
## Variance 0.000190
## Stdev 0.013779
## Skewness 0.008152
## Kurtosis 8.532667
#another way
#mean(axp0)
#stdev(axp0)
#skewness(axp0)
#kurtosis(axp0)
#min(axp0)
#max(axp0)
axp=log(data$axp+1)
basicStats(axp)
## axp
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.193523
## Maximum 0.187711
## 1. Quartile -0.009719
## 3. Quartile 0.010484
## Mean 0.000188
## Median 0.000000
## Sum 0.476584
## SE Mean 0.000522
## LCL Mean -0.000836
## UCL Mean 0.001212
## Variance 0.000691
## Stdev 0.026294
## Skewness 0.020992
## Kurtosis 9.020499
vw=log(data$vw+1)
basicStats(vw)
## vw
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.094049
## Maximum 0.108755
## 1. Quartile -0.005489
## 3. Quartile 0.006193
## Mean 0.000131
## Median 0.000848
## Sum 0.331452
## SE Mean 0.000272
## LCL Mean -0.000402
## UCL Mean 0.000663
## Variance 0.000187
## Stdev 0.013670
## Skewness -0.300352
## Kurtosis 7.880082
ew=log(data$ew+1)
basicStats(ew)
## ew
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.081470
## Maximum 0.102035
## 1. Quartile -0.004641
## 3. Quartile 0.006382
## Mean 0.000553
## Median 0.001428
## Sum 1.400780
## SE Mean 0.000240
## LCL Mean 0.000081
## UCL Mean 0.001024
## Variance 0.000146
## Stdev 0.012100
## Skewness -0.427315
## Kurtosis 8.017712
sp=log(data$sp+1)
basicStats(sp)
## sp
## nobs 2535.000000
## NAs 0.000000
## Minimum -0.094695
## Maximum 0.109572
## 1. Quartile -0.005815
## 3. Quartile 0.006098
## Mean -0.000001
## Median 0.000700
## Sum -0.001898
## SE Mean 0.000274
## LCL Mean -0.000538
## UCL Mean 0.000536
## Variance 0.000190
## Stdev 0.013790
## Skewness -0.206357
## Kurtosis 8.322826
t.test(axp)
##
## One Sample t-test
##
## data: axp
## t = 0.35999, df = 2534, p-value = 0.7189
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.0008360686 0.0012120714
## sample estimates:
## mean of x
## 0.0001880014
#5
library(fBasics)
ukus=read.table("d-fx-ukus-0711.txt",header=T)
head(ukus)
## year mon day rate
## 1 2007 1 2 1.9736
## 2 2007 1 3 1.9498
## 3 2007 1 4 1.9443
## 4 2007 1 5 1.9305
## 5 2007 1 8 1.9385
## 6 2007 1 9 1.9400
tail(ukus)
## year mon day rate
## 1233 2011 11 22 1.5646
## 1234 2011 11 23 1.5511
## 1235 2011 11 25 1.5467
## 1236 2011 11 28 1.5538
## 1237 2011 11 29 1.5625
## 1238 2011 11 30 1.5705
UKUS1=ukus[,4]
head(UKUS1)
## [1] 1.9736 1.9498 1.9443 1.9305 1.9385 1.9400
tail(UKUS1)
## [1] 1.5646 1.5511 1.5467 1.5538 1.5625 1.5705
LOGUKUS=log(UKUS1+1)
basicStats(LOGUKUS)
## LOGUKUS
## nobs 1238.000000
## NAs 0.000000
## Minimum 0.861116
## Maximum 1.134751
## 1. Quartile 0.941100
## 3. Quartile 1.087484
## Mean 0.997025
## Median 0.966965
## Sum 1234.317034
## SE Mean 0.002130
## LCL Mean 0.992846
## UCL Mean 1.001204
## Variance 0.005618
## Stdev 0.074955
## Skewness 0.364941
## Kurtosis -1.391234
jpus=read.table("d-fx-usjp-0711.txt",header=T)
head(jpus)
## year mon day rate
## 1 2007 1 2 118.83
## 2 2007 1 3 119.58
## 3 2007 1 4 119.28
## 4 2007 1 5 118.77
## 5 2007 1 8 118.49
## 6 2007 1 9 119.45
tail(jpus)
## year mon day rate
## 1233 2011 11 22 77.07
## 1234 2011 11 23 77.41
## 1235 2011 11 25 77.66
## 1236 2011 11 28 78.05
## 1237 2011 11 29 77.86
## 1238 2011 11 30 77.58
JPUS1=jpus[,4]
head(JPUS1)
## [1] 118.83 119.58 119.28 118.77 118.49 119.45
tail(JPUS1)
## [1] 77.07 77.41 77.66 78.05 77.86 77.58
LOGJPUS=log(JPUS1+1)
basicStats(LOGJPUS)
## LOGJPUS
## nobs 1238.000000
## NAs 0.000000
## Minimum 4.340162
## Maximum 4.829033
## 1. Quartile 4.454144
## 3. Quartile 4.687648
## Mean 4.573775
## Median 4.552191
## Sum 5662.333286
## SE Mean 0.003920
## LCL Mean 4.566084
## UCL Mean 4.581466
## Variance 0.019024
## Stdev 0.137929
## Skewness 0.195236
## Kurtosis -1.096912
head(LOGJPUS)
## [1] 4.786074 4.792313 4.789822 4.785573 4.783233 4.791235
plot(density(LOGJPUS))
t.test(LOGJPUS)
##
## One Sample t-test
##
## data: LOGJPUS
## t = 1166.8, df = 1237, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 4.566084 4.581466
## sample estimates:
## mean of x
## 4.573775