setwd("D:/R/Udacity/EDA_Course_Materials/lesson5")
pf <- read.csv('pseudo_facebook.tsv', sep = '\t')
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following object is masked from 'package:stats':
##
## filter
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
ggplot(aes(x = gender, y = age),
data = subset(pf, !is.na(gender))) + geom_boxplot() +
stat_summary(fun.y = mean, geom = 'point', shape = 4)
ggplot(aes(x = age, y = friend_count),
data = subset(pf, !is.na(gender))) +
geom_line(aes(color = gender), stat = 'summary', fun.y = median)
Notes:
Notes:
Notes:
pf.fc_by_age_gender <- subset(pf, !is.na(gender)) %>%
group_by(age, gender) %>%
summarise(mean_friend_count = mean(friend_count), median_friend_count = median(friend_count), n = n()) %>%
ungroup() %>%
arrange(age)
Notes:
ggplot(aes(x = age, y = median_friend_count),
data = pf.fc_by_age_gender) +
geom_line(aes(color = gender))
Notes:
Notes:
Notes:
library(reshape2)
pf.fc_by_age_gender.wide <- dcast(pf.fc_by_age_gender, age ~ gender, value.var = 'median_friend_count')
head(pf.fc_by_age_gender.wide)
## age female male
## 1 13 148 55
## 2 14 224 92
## 3 15 276 106
## 4 16 258 136
## 5 17 245 125
## 6 18 243 122
Notes:
ggplot(aes(x = age, y = female / male),
data = pf.fc_by_age_gender.wide) +
geom_line() +
geom_hline(yintercept = 1, alpha = 0.3, linetype = 2)
Notes:
pf$year_joined <- floor(2014 - pf$tenure/365)
Notes:
# (2004, 2009]
# (2009, 2011]
# (2011, 2012]
# (2012, 2014]
summary(pf$year_joined)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2005 2012 2012 2012 2013 2014 2
table(pf$year_joined)
##
## 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
## 9 15 581 1507 4557 5448 9860 33366 43588 70
pf$year_joined.bucket <- cut(pf$year_joined, c(2004, 2009, 2011, 2012, 2014))
Notes:
table(pf$year_joined.bucket, useNA = 'ifany')
##
## (2004,2009] (2009,2011] (2011,2012] (2012,2014] <NA>
## 6669 15308 33366 43658 2
ggplot(aes(x = age, y = friend_count),
data = subset(pf, !is.na(year_joined.bucket))) +
geom_line(aes(color = year_joined.bucket), stat = 'summary', fun.y = median)
Notes:
ggplot(aes(x = age, y = friend_count),
data = subset(pf, !is.na(year_joined.bucket))) +
geom_line(aes(color = year_joined.bucket), stat = 'summary', fun.y = mean) +
geom_line(stat = 'summary', fun.y = mean, linetype = 2)
Notes:
with(subset(pf, tenure >= 1), summary(friend_count / tenure))
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.0775 0.2205 0.6096 0.5658 417.0000
Notes:
What is the median friend rate? 0.2205
What is the maximum friend rate? 417.0000
ggplot(aes(x = tenure, y = friendships_initiated / tenure), data = subset(pf, tenure >=1)) +
geom_line(aes(color = year_joined.bucket),)
Notes:
ggplot(aes(x = tenure, y = friendships_initiated / tenure),
data = subset(pf, tenure >= 1)) +
geom_line(aes(color = year_joined.bucket),
stat = 'summary',
fun.y = mean)
ggplot(aes(x = 7 * round(tenure / 7), y = friendships_initiated / tenure),
data = subset(pf, tenure > 0)) +
geom_line(aes(color = year_joined.bucket),
stat = "summary",
fun.y = mean)
ggplot(aes(x = 30 * round(tenure / 30), y = friendships_initiated / tenure),
data = subset(pf, tenure > 0)) +
geom_line(aes(color = year_joined.bucket),
stat = "summary",
fun.y = mean)
ggplot(aes(x = 90 * round(tenure / 90), y = friendships_initiated / tenure),
data = subset(pf, tenure > 0)) +
geom_line(aes(color = year_joined.bucket),
stat = "summary",
fun.y = mean)
ggplot(aes(x = tenure, y = friendships_initiated / tenure),
data = subset(pf, tenure >= 1)) +
geom_smooth(aes(color = year_joined.bucket))
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Notes: Yogurt data has many rows per household, one for each purchase occasion. ***
Notes:
There are some observation which almost don’t have purchases.
yo <- read.csv('yogurt.csv')
str(yo)
## 'data.frame': 2380 obs. of 9 variables:
## $ obs : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id : int 2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 2100081 ...
## $ time : int 9678 9697 9825 9999 10015 10029 10036 10042 10083 10091 ...
## $ strawberry : int 0 0 0 0 1 1 0 0 0 0 ...
## $ blueberry : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pina.colada: int 0 0 0 0 1 2 0 0 0 0 ...
## $ plain : int 0 0 0 0 0 0 0 0 0 0 ...
## $ mixed.berry: int 1 1 1 1 1 1 1 1 1 1 ...
## $ price : num 59 59 65 65 49 ...
# Change the id from an int to a factor
yo$id <- factor(yo$id)
str(yo)
## 'data.frame': 2380 obs. of 9 variables:
## $ obs : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id : Factor w/ 332 levels "2100081","2100370",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ time : int 9678 9697 9825 9999 10015 10029 10036 10042 10083 10091 ...
## $ strawberry : int 0 0 0 0 1 1 0 0 0 0 ...
## $ blueberry : int 0 0 0 0 0 0 0 0 0 0 ...
## $ pina.colada: int 0 0 0 0 1 2 0 0 0 0 ...
## $ plain : int 0 0 0 0 0 0 0 0 0 0 ...
## $ mixed.berry: int 1 1 1 1 1 1 1 1 1 1 ...
## $ price : num 59 59 65 65 49 ...
qplot(data = yo, x = price, fill = I('#F79420'))
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
Notes:
summary(yo)
## obs id time strawberry
## Min. : 1.0 2132290: 74 Min. : 9662 Min. : 0.0000
## 1st Qu.: 696.5 2130583: 59 1st Qu.: 9843 1st Qu.: 0.0000
## Median :1369.5 2124073: 50 Median :10045 Median : 0.0000
## Mean :1367.8 2149500: 50 Mean :10050 Mean : 0.6492
## 3rd Qu.:2044.2 2101790: 47 3rd Qu.:10255 3rd Qu.: 1.0000
## Max. :2743.0 2129528: 39 Max. :10459 Max. :11.0000
## (Other):2061
## blueberry pina.colada plain mixed.berry
## Min. : 0.0000 Min. : 0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median : 0.0000 Median : 0.0000 Median :0.0000 Median :0.0000
## Mean : 0.3571 Mean : 0.3584 Mean :0.2176 Mean :0.3887
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :12.0000 Max. :10.0000 Max. :6.0000 Max. :8.0000
##
## price
## Min. :20.00
## 1st Qu.:50.00
## Median :65.04
## Mean :59.25
## 3rd Qu.:68.96
## Max. :68.96
##
length(unique(yo$price))
## [1] 20
table(yo$price)
##
## 20 24.96 33.04 33.2 33.28 33.36 33.52 39.04 44 45.04 48.96 49.52
## 2 11 54 1 1 22 1 234 21 11 81 1
## 49.6 50 55.04 58.96 62 63.04 65.04 68.96
## 1 205 6 303 15 2 799 609
yo <- transform(yo, all.purchases = strawberry + blueberry + pina.colada + plain + mixed.berry)
summary(yo$all.purchases)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 1.000 2.000 1.971 2.000 21.000
Notes:
Model of most common price encreases over time.
qplot(x = all.purchases, data = yo, binwidth = 1, fill = I('#099DD9'))
ggplot(aes(x = time, y = price), data = yo) +
geom_jitter(alpha = 1/4, shape = 21, fill = I('#F79420'))
Notes:
set.seed(666)
sample.ids <- sample(levels(yo$id), 16)
ggplot(aes(x = time, y = price),
data = subset(yo, id %in% sample.ids)) +
facet_wrap(~ id) +
geom_line() +
geom_point(aes(size = all.purchases), pch = 18, color = I('#7D26CD'))
ggsave('HH_sample.jpeg', width = 10, height = 10)
library(GGally)
##
## Attaching package: 'GGally'
##
## The following object is masked from 'package:dplyr':
##
## nasa
theme_set(theme_minimal(20))
set.seed(1836)
pf_subset <- pf[, c(2:15)]
names(pf_subset)
## [1] "age" "dob_day"
## [3] "dob_year" "dob_month"
## [5] "gender" "tenure"
## [7] "friend_count" "friendships_initiated"
## [9] "likes" "likes_received"
## [11] "mobile_likes" "mobile_likes_received"
## [13] "www_likes" "www_likes_received"
ggpairs(pf_subset[sample.int(nrow(pf_subset), 1000), ])
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## Warning: position_stack requires constant width: output may be incorrect
## Warning: position_stack requires constant width: output may be incorrect
## Warning: position_stack requires constant width: output may be incorrect
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
Notes: Scatterplots are below the diagonal, and categorical variables, like gender, create faceted histograms. ***
Notes:
Notes:
nci <- read.table("nci.tsv")
colnames(nci) <- c(1:64)
nci.long.samp <- melt(as.matrix(nci[1:200,]))
names(nci.long.samp) <- c("gene", "case", "value")
head(nci.long.samp)
## gene case value
## 1 1 1 0.300
## 2 2 1 1.180
## 3 3 1 0.550
## 4 4 1 1.140
## 5 5 1 -0.265
## 6 6 1 -0.070
ggplot(aes(y = gene, x = case, fill = value),
data = nci.long.samp) +
geom_tile() +
scale_fill_gradientn(colours = colorRampPalette(c("blue", "red"))(100))
Reflection:
Click KnitHTML to see all of your hard work and to have an html page of this lesson, your answers, and your notes!