wc_data <- read.csv(“D:\t\drive-download-20190806T055124Z-001\wc-at.csv”)
View(wc_data)
attach(wc_data)
mean(AT)
dim(wc_data)
summary(wc_data)
qqnorm(AT)
plot(Waist,AT)
cor(Waist,AT)
model1 <- lm(AT ~ Waist,data=wc_data) summary(model1)
pv <- predict(model1,wc_data)
pv <- as.data.frame(pv)
pv
final <- cbind(wc_data,pv) View(final)
write.csv(final,“D:\t\drive-download-20190806T055124Z-001\wc_at_model_1P.csv”)
Model 2
model2 <- lm(AT ~ log(Waist),data=wc_data) summary(model2)
pv2 <- predict(model2,wc_data) pv2 <- as.data.frame(pv2)
final <- cbind(wc_data,pv2) write.csv(final,“D:\t\drive-download-20190806T055124Z-001\wc_at_model_2P.csv”)
Model 3
model3 <- lm(log(AT) ~ Waist,data=wc_data) summary(model3)
pv3 <-predict(model3,wc_data) pv3 <- as.data.frame(pv3)
final <- cbind(wc_data,pv3) write.csv(final,“D:\t\drive-download-20190806T055124Z-001\WC_AT\wc_at_model_3P.csv”)
model4 <- lm(AT ~ sqrt(Waist),data = wc_data) summary(model4)
pv4 <- predict(model4,wc_at) pv4 <- as.data.frame(pv4)
final <-cbind(wc_data,pv4) write.csv(final,“D:\t\drive-download-20190806T055124Z-001\WC_AT\wc_at_model_4P.csv”)
newdata=read.csv(“D:\t\drive-download-20190806T055124Z-001\WC_AT\x.csv”) pvnew <- predict(model3,newdata) pvnew <- as.data.frame(pvnew) View(pvnew)
final1 <- cbind(newdata,pvnew) write.csv(final1,“D:\t\drive-download-20190806T055124Z-001\WC_AT\new_P.csv”)