R Markdown

What is the distribution of wage across all of 2019 fifa employees?

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Is there a difference in wage based on a player’s position?

What is there the affect of value on wage by player position?

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Does overall player rating affect the players wage?

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

Does overall player rating affect the players value?

## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'

What is the typical wage for a player from each club? Top 10:

## # A tibble: 648 x 6
##    Club              AvgWage MinWage MaxWage  St.dev NumberOfPlayers
##    <fct>               <dbl>   <int>   <int>   <dbl>           <int>
##  1 Real Madrid       154069.    9000  420000 130716.              29
##  2 FC Barcelona      153379.   11000  565000 137560.              29
##  3 Juventus          143476.   32000  405000  77246.              21
##  4 Manchester City   141240     6000  355000  90932.              25
##  5 Chelsea           121083.    8000  340000  67029.              24
##  6 Liverpool         110917.   17000  255000  53923.              24
##  7 Manchester United 100033.    8000  230000  65690.              30
##  8 Tottenham Hotspur  90077.    6000  205000  52551.              26
##  9 Arsenal            87296.   10000  265000  63082.              27
## 10 FC Bayern München  83857.    5000  205000  52694.              21
## # ... with 638 more rows

What is the typical value for a player from each club? Top 10:

## # A tibble: 648 x 6
##    Club                AvgValue MinValue  MaxValue   St.dev NumberOfPlayers
##    <fct>                  <dbl>    <int>     <int>    <dbl>           <int>
##  1 Juventus           30485714.  4200000  89000000   2.07e7              21
##  2 Manchester City    29614000    550000 102000000   2.59e7              25
##  3 Real Madrid        26985345.   700000  76500000   2.50e7              29
##  4 FC Barcelona       26745690.   850000 110500000   2.73e7              29
##  5 FC Bayern München  26627381.   575000  77000000   2.01e7              21
##  6 Chelsea            22512500   1100000  93000000   2.01e7              24
##  7 Liverpool          22390625    975000  69500000   1.71e7              24
##  8 Paris Saint-Germa~ 22380556.   450000 118500000   2.82e7              27
##  9 Napoli             22113636.  2500000  62000000   1.60e7              22
## 10 Tottenham Hotspur  21993269.   800000  83500000   2.08e7              26
## # ... with 638 more rows

What is the expected cost to pay for players from a each country? Top 10:

## # A tibble: 153 x 6
##    Nationality          AvgWage MinWage MaxWage St.dev NumberOfPlayers
##    <fct>                  <dbl>   <int>   <int>  <dbl>           <int>
##  1 Dominican Republic    71000     2000  140000 97581.               2
##  2 Gabon                 39300     1000  265000 80690.              10
##  3 United Arab Emirates  39000    39000   39000   NaN                1
##  4 Egypt                 28611.    1000  255000 59246.              18
##  5 St Kitts Nevis        26000    26000   26000   NaN                1
##  6 Croatia               24284.    1000  420000 56745.              88
##  7 Belgium               22922.    1000  355000 49852.             166
##  8 Equatorial Guinea     21250     2000   65000 29398.               4
##  9 Armenia               20000     1000  145000 46904.               9
## 10 Uruguay               19875     1000  455000 49210.             112
## # ... with 143 more rows

What is the typical value for players from each country? Top 10:

## # A tibble: 153 x 6
##    Nationality         AvgValue MinValue  MaxValue   St.dev NumberOfPlayers
##    <fct>                  <dbl>    <int>     <int>    <dbl>           <int>
##  1 United Arab Emira~ 10500000  10500000  10500000 NaN                    1
##  2 Dominican Republic 10400000    800000  20000000   1.36e7               2
##  3 Central African R~ 10050000    950000  27500000   1.51e7               3
##  4 Gabon               9790000    625000  59000000   1.77e7              10
##  5 Egypt               7340278.   300000  69500000   1.59e7              18
##  6 Belgium             6052380.   120000 102000000   1.34e7             166
##  7 Uzbekistan          6000000   6000000   6000000 NaN                    1
##  8 Croatia             5993352.   220000  67000000   1.02e7              88
##  9 Slovakia            5839531.   150000  46500000   1.12e7              32
## 10 Uruguay             5682679.   130000  80000000   1.11e7             112
## # ... with 143 more rows

What is the expected cost to pay for players in a each position? Top 10:

## # A tibble: 26 x 6
##    Position AvgWage MinWage MaxWage  St.dev NumberOfPlayers
##    <fct>      <dbl>   <int>   <int>   <dbl>           <int>
##  1 RF        60923.    2000  565000 155520.              13
##  2 LF        44667.    1000  340000  96329.              15
##  3 RW        19491.    1000  215000  38962.             232
##  4 RAM       19095.    1000  150000  30898.              21
##  5 LW        16275.    1000  340000  39888.             262
##  6 RCM       16118.    1000  420000  38009.             313
##  7 LS        15802.    1000  200000  23186.             162
##  8 CF        15366.    1000   71000  18984.              41
##  9 LCM       15226.    1000  355000  31784.             314
## 10 RS        14957.    1000  455000  37976.             161
## # ... with 16 more rows

What is the expected value for players in a each position? Top 10:

## # A tibble: 26 x 6
##    Position  AvgValue MinValue  MaxValue    St.dev NumberOfPlayers
##    <fct>        <dbl>    <int>     <int>     <dbl>           <int>
##  1 LF       17153333.   300000  93000000 30825643.              15
##  2 RF       14857308.   220000 110500000 31114378.              13
##  3 LS        5353735.   230000  60000000  8222681.             162
##  4 RAM       5329762.   525000  32500000  8682161.              21
##  5 RW        5180991.   120000  59500000  9436938.             232
##  6 CF        5128659.   350000  28500000  6937760.              41
##  7 LCM       4884459.   140000  76500000  8817474.             314
##  8 RCM       4801821.   220000 102000000  9465717.             313
##  9 LW        4574981.   150000 118500000 11620897.             262
## 10 RS        4438075.   250000  80000000  7748532.             161
## # ... with 16 more rows