\[ \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=? \]\[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=x\] \(\Rightarrow 1+x =x^2 \Rightarrow x=\frac{1+\sqrt{5}}{2}\) (負不合)

精確計算

options(digits=22)
(1+sqrt(5))/2     # 黃金分割比(長寬比)
## [1] 1.618033988749894902526

驗證:

x <- sqrt(1)
for (i in 1:100000) {x <- sqrt(x+1)}

options(digits=22)
x     
## [1] 1.618033988749894902526

\[ \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}}=? \]

\(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}}=x \Rightarrow 2+x =x^2 \Rightarrow x=2\)\(-1\) (不合)

驗證:

x <- sqrt(2)
for (i in 1:100000) {x <- sqrt(x+2)}

options(digits=22)
x     
## [1] 2

\[ \sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\cdots}}}}}=? \]\[\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\sqrt{\frac{1}{2}+\cdots}}}}}=x\] \(\Rightarrow \frac{1}{2}+x =x^2 \Rightarrow x=\frac{1+\sqrt{3}}{2}\) (負不合)

精確計算

options(digits=22)
(1+sqrt(3))/2     
## [1] 1.366025403784438596588

驗證:

x <- sqrt(1/2)
for (i in 1:100000) {x <- sqrt(x+1/2)}

options(digits=22)
x     
## [1] 1.366025403784438596588

連分數的形式:

\[\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}}} = ? \]

\[\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}}}} = x\] \(\frac{1}{1+x} =x \Rightarrow 1=x+x^2 \Rightarrow x= \frac{\sqrt{5}-1}{2}\)

精確計算

options(digits=22)
(sqrt(5)-1)/2     # 黃金分割比(寬長比)
## [1] 0.6180339887498949025257

驗證:

x <- 1
for (i in 1:100000) {x <- 1/(1+x)}

options(digits=22)
x     
## [1] 0.6180339887498947915034

增加遞迴次數,改善精確度:

x <- 1
for (i in 1:1000000) {x <- 1/(1+x)}

options(digits=22)
x     
## [1] 0.6180339887498947915034

A good name is easier lost than won.

名譽得之難而失之易。