Load the data.

library(arules)
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
library(arulesViz)
## Loading required package: grid
attrition_data<-read.csv("employee_attrition.csv",sep = ",",header = T)
DataCopy<- attrition_data

Understand the data

#View(DataCopy)

str(DataCopy)
## 'data.frame':    1176 obs. of  35 variables:
##  $ Age                     : int  30 52 42 55 35 51 42 23 38 27 ...
##  $ Attrition               : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 2 ...
##  $ BusinessTravel          : Factor w/ 3 levels "Non-Travel","Travel_Frequently",..: 3 3 3 1 3 3 3 3 3 3 ...
##  $ DailyRate               : int  1358 1325 462 177 1029 1318 932 507 1153 1420 ...
##  $ Department              : Factor w/ 3 levels "Human Resources",..: 3 2 3 2 2 3 2 2 2 3 ...
##  $ DistanceFromHome        : int  16 11 14 8 16 26 1 20 6 2 ...
##  $ Education               : int  1 4 2 1 3 4 2 1 2 1 ...
##  $ EducationField          : Factor w/ 6 levels "Human Resources",..: 2 2 4 4 2 3 2 2 5 3 ...
##  $ EmployeeCount           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ EmployeeNumber          : int  1479 813 936 1278 1529 851 827 1533 1782 667 ...
##  $ EnvironmentSatisfaction : int  4 4 3 4 4 1 4 1 4 3 ...
##  $ Gender                  : Factor w/ 3 levels "","Female","Male": 3 2 2 3 2 2 2 3 2 3 ...
##  $ HourlyRate              : int  96 82 68 37 91 66 43 97 40 85 ...
##  $ JobInvolvement          : int  3 3 2 2 2 3 2 3 2 3 ...
##  $ JobLevel                : int  2 2 2 4 3 4 2 2 1 1 ...
##  $ JobRole                 : Factor w/ 9 levels "Healthcare Representative",..: 8 3 8 1 1 4 5 3 3 9 ...
##  $ JobSatisfaction         : int  3 3 3 2 2 3 4 3 3 1 ...
##  $ MaritalStatus           : Factor w/ 3 levels "Divorced","Married",..: 2 2 3 1 3 2 2 3 2 1 ...
##  $ MonthlyIncome           : int  5301 3149 6244 13577 8606 16307 6062 2272 3702 3041 ...
##  $ MonthlyRate             : int  2939 21821 7824 25592 21195 5594 4051 24812 16376 16346 ...
##  $ NumCompaniesWorked      : int  8 8 7 1 1 2 9 0 1 0 ...
##  $ Over18                  : Factor w/ 1 level "Y": 1 1 1 1 1 1 1 1 1 1 ...
##  $ OverTime                : Factor w/ 3 levels "","No","Yes": 2 2 2 3 2 2 3 2 2 2 ...
##  $ PercentSalaryHike       : int  15 20 17 15 19 14 13 14 11 11 ...
##  $ PerformanceRating       : int  3 4 3 3 3 3 3 3 3 NA ...
##  $ RelationshipSatisfaction: int  3 2 1 4 4 3 4 2 2 2 ...
##  $ StandardHours           : int  80 80 80 80 80 80 80 80 80 80 ...
##  $ StockOptionLevel        : int  2 1 0 1 0 1 1 0 1 1 ...
##  $ TotalWorkingYears       : int  4 9 10 34 11 29 8 5 5 5 ...
##  $ TrainingTimesLastYear   : int  2 3 6 3 3 2 4 2 3 3 ...
##  $ WorkLifeBalance         : int  2 3 3 3 1 2 3 3 3 3 ...
##  $ YearsAtCompany          : int  2 5 5 33 11 20 4 4 5 4 ...
##  $ YearsInCurrentRole      : int  1 2 4 9 8 6 3 3 4 3 ...
##  $ YearsSinceLastPromotion : int  2 1 0 15 3 4 0 1 0 0 ...
##  $ YearsWithCurrManager    : int  2 4 3 0 3 17 2 2 4 2 ...
summary(DataCopy)
##       Age        Attrition           BusinessTravel   DailyRate     
##  Min.   :18.00   No :991   Non-Travel       :110    Min.   : 102.0  
##  1st Qu.:30.00   Yes:185   Travel_Frequently:227    1st Qu.: 461.8  
##  Median :36.00             Travel_Rarely    :839    Median : 796.0  
##  Mean   :36.96                                      Mean   : 800.4  
##  3rd Qu.:43.00                                      3rd Qu.:1162.0  
##  Max.   :60.00                                      Max.   :1499.0  
##                                                                     
##                   Department  DistanceFromHome    Education    
##  Human Resources       : 54   Min.   :  1.000   Min.   :1.000  
##  Research & Development:764   1st Qu.:  2.000   1st Qu.:2.000  
##  Sales                 :358   Median :  7.000   Median :3.000  
##                               Mean   :  9.496   Mean   :2.895  
##                               3rd Qu.: 14.000   3rd Qu.:4.000  
##                               Max.   :224.000   Max.   :5.000  
##                               NA's   :2                        
##           EducationField EmployeeCount EmployeeNumber  
##  Human Resources : 25    Min.   :1     Min.   :   1.0  
##  Life Sciences   :477    1st Qu.:1     1st Qu.: 499.8  
##  Marketing       :127    Median :1     Median :1032.5  
##  Medical         :381    Mean   :1     Mean   :1036.4  
##  Other           : 69    3rd Qu.:1     3rd Qu.:1574.5  
##  Technical Degree: 97    Max.   :1     Max.   :2068.0  
##                                                        
##  EnvironmentSatisfaction    Gender      HourlyRate     JobInvolvement 
##  Min.   :1.000                 :  1   Min.   : 30.00   Min.   :1.000  
##  1st Qu.:2.000           Female:482   1st Qu.: 48.00   1st Qu.:2.000  
##  Median :3.000           Male  :693   Median : 66.00   Median :3.000  
##  Mean   :2.705                        Mean   : 65.82   Mean   :2.741  
##  3rd Qu.:4.000                        3rd Qu.: 83.00   3rd Qu.:3.000  
##  Max.   :4.000                        Max.   :100.00   Max.   :4.000  
##                                                                       
##     JobLevel                          JobRole    JobSatisfaction
##  Min.   :1.000   Sales Executive          :263   Min.   :1.00   
##  1st Qu.:1.000   Research Scientist       :220   1st Qu.:2.00   
##  Median :2.000   Laboratory Technician    :209   Median :3.00   
##  Mean   :2.069   Manufacturing Director   :122   Mean   :2.71   
##  3rd Qu.:3.000   Healthcare Representative:108   3rd Qu.:4.00   
##  Max.   :5.000   Manager                  : 79   Max.   :4.00   
##  NA's   :1       (Other)                  :175                  
##   MaritalStatus MonthlyIncome    MonthlyRate    NumCompaniesWorked
##  Divorced:266   Min.   : 1009   Min.   : 2094   Min.   :0.000     
##  Married :545   1st Qu.: 2954   1st Qu.: 8275   1st Qu.:1.000     
##  Single  :365   Median : 4950   Median :14488   Median :2.000     
##                 Mean   : 6526   Mean   :14468   Mean   :2.709     
##                 3rd Qu.: 8354   3rd Qu.:20627   3rd Qu.:4.000     
##                 Max.   :19973   Max.   :26999   Max.   :9.000     
##                                                                   
##  Over18   OverTime  PercentSalaryHike PerformanceRating
##  Y:1176      :  1   Min.   :11.0      Min.   :3.000    
##           No :838   1st Qu.:12.0      1st Qu.:3.000    
##           Yes:337   Median :14.0      Median :3.000    
##                     Mean   :15.3      Mean   :3.163    
##                     3rd Qu.:18.0      3rd Qu.:3.000    
##                     Max.   :25.0      Max.   :4.000    
##                     NA's   :1         NA's   :1        
##  RelationshipSatisfaction StandardHours StockOptionLevel TotalWorkingYears
##  Min.   :1.000            Min.   :80    Min.   :0.0000   Min.   :  0.0    
##  1st Qu.:2.000            1st Qu.:80    1st Qu.:0.0000   1st Qu.:  6.0    
##  Median :3.000            Median :80    Median :1.0000   Median : 10.0    
##  Mean   :2.718            Mean   :80    Mean   :0.7959   Mean   : 11.4    
##  3rd Qu.:4.000            3rd Qu.:80    3rd Qu.:1.0000   3rd Qu.: 15.0    
##  Max.   :4.000            Max.   :80    Max.   :3.0000   Max.   :114.0    
##  NA's   :1                                               NA's   :2        
##  TrainingTimesLastYear WorkLifeBalance YearsAtCompany   YearsInCurrentRole
##  Min.   :0.00          Min.   :1.000   Min.   : 0.000   Min.   : 0.000    
##  1st Qu.:2.00          1st Qu.:2.000   1st Qu.: 3.000   1st Qu.: 2.000    
##  Median :3.00          Median :3.000   Median : 5.000   Median : 3.000    
##  Mean   :2.81          Mean   :2.747   Mean   : 6.918   Mean   : 4.151    
##  3rd Qu.:3.00          3rd Qu.:3.000   3rd Qu.: 9.000   3rd Qu.: 7.000    
##  Max.   :6.00          Max.   :4.000   Max.   :40.000   Max.   :18.000    
##                                                                           
##  YearsSinceLastPromotion YearsWithCurrManager
##  Min.   : 0.000          Min.   :  0.000     
##  1st Qu.: 0.000          1st Qu.:  2.000     
##  Median : 1.000          Median :  3.000     
##  Mean   : 2.125          Mean   :  4.242     
##  3rd Qu.: 2.000          3rd Qu.:  7.000     
##  Max.   :15.000          Max.   :219.000     
##  NA's   :1

Data Preprocessing & cleaning

DataCopy$EmployeeCount<-NULL
DataCopy$Over18<-NULL
DataCopy$StandardHours<-NULL
DataCopy$EmployeeNumber<-NULL
DataCopy$NumCompaniesWorked<-NULL
DataCopy$TrainingTimesLastYear<-NULL

DataCopy$JobSatisfaction <- as.factor(DataCopy$JobSatisfaction)
DataCopy$RelationshipSatisfaction <- as.factor(DataCopy$RelationshipSatisfaction)
DataCopy$PerformanceRating <- as.factor(DataCopy$PerformanceRating)
DataCopy$JobLevel <- as.factor(DataCopy$JobLevel)
DataCopy$Education <- as.factor(DataCopy$Education)
DataCopy$EnvironmentSatisfaction <- as.factor(DataCopy$EnvironmentSatisfaction)
DataCopy$HourlyRate <- as.factor(DataCopy$HourlyRate)
DataCopy$JobInvolvement <- as.factor(DataCopy$JobInvolvement)
DataCopy$StockOptionLevel <- as.factor(DataCopy$StockOptionLevel)
DataCopy$WorkLifeBalance <- as.factor(DataCopy$WorkLifeBalance)
DataCopy$DistanceFromHome <- as.factor(DataCopy$DistanceFromHome)
DataCopy$Gender <- as.factor(DataCopy$Gender)
DataCopy$PercentSalaryHike <- as.factor(DataCopy$PercentSalaryHike)
DataCopy$YearsSinceLastPromotion <- as.factor(DataCopy$YearsSinceLastPromotion)
DataCopy$DailyRate<-as.factor(DataCopy$DailyRate)
DataCopy$MonthlyIncome <- as.factor(DataCopy$MonthlyIncome)
DataCopy$MonthlyRate <- as.factor(DataCopy$MonthlyRate)
DataCopy$YearsInCurrentRole<-as.factor(DataCopy$YearsInCurrentRole)
DataCopy$YearsAtCompany<-as.factor(DataCopy$YearsAtCompany)
DataCopy$YearsWithCurrManager<-as.factor(DataCopy$YearsWithCurrManager)

summary(DataCopy)
##       Age        Attrition           BusinessTravel   DailyRate   
##  Min.   :18.00   No :991   Non-Travel       :110    329    :   5  
##  1st Qu.:30.00   Yes:185   Travel_Frequently:227    408    :   5  
##  Median :36.00             Travel_Rarely    :839    530    :   5  
##  Mean   :36.96                                      691    :   5  
##  3rd Qu.:43.00                                      147    :   4  
##  Max.   :60.00                                      267    :   4  
##                                                     (Other):1148  
##                   Department  DistanceFromHome Education
##  Human Resources       : 54   2      :168      1:138    
##  Research & Development:764   1      :154      2:235    
##  Sales                 :358   7      : 73      3:452    
##                               9      : 72      4:314    
##                               3      : 68      5: 37    
##                               (Other):639               
##                               NA's   :  2               
##           EducationField EnvironmentSatisfaction    Gender   
##  Human Resources : 25    1:233                         :  1  
##  Life Sciences   :477    2:229                   Female:482  
##  Marketing       :127    3:366                   Male  :693  
##  Medical         :381    4:348                               
##  Other           : 69                                        
##  Technical Degree: 97                                        
##                                                              
##    HourlyRate   JobInvolvement JobLevel                        JobRole   
##  98     :  26   1: 67          1   :430   Sales Executive          :263  
##  54     :  25   2:295          2   :432   Research Scientist       :220  
##  42     :  23   3:690          3   :172   Laboratory Technician    :209  
##  43     :  23   4:124          4   : 84   Manufacturing Director   :122  
##  48     :  23                  5   : 57   Healthcare Representative:108  
##  66     :  23                  NA's:  1   Manager                  : 79  
##  (Other):1033                             (Other)                  :175  
##  JobSatisfaction  MaritalStatus MonthlyIncome   MonthlyRate   OverTime 
##  1:244           Divorced:266   2342   :   4   4223   :   3      :  1  
##  2:216           Married :545   2559   :   3   2125   :   2   No :838  
##  3:353           Single  :365   2741   :   3   3339   :   2   Yes:337  
##  4:363                          3452   :   3   4658   :   2            
##                                 5562   :   3   5355   :   2            
##                                 6142   :   3   6319   :   2            
##                                 (Other):1157   (Other):1163            
##  PercentSalaryHike PerformanceRating RelationshipSatisfaction
##  11     :169       3   :984          1   :220                
##  13     :167       4   :191          2   :242                
##  12     :152       NA's:  1          3   :362                
##  14     :150                         4   :351                
##  15     : 80                         NA's:  1                
##  (Other):457                                                 
##  NA's   :  1                                                 
##  StockOptionLevel TotalWorkingYears WorkLifeBalance YearsAtCompany
##  0:500            Min.   :  0.0     1: 65           5      :163   
##  1:482            1st Qu.:  6.0     2:272           1      :130   
##  2:128            Median : 10.0     3:734           2      :107   
##  3: 66            Mean   : 11.4     4:105           3      :103   
##                   3rd Qu.: 15.0                     4      : 94   
##                   Max.   :114.0                     10     : 94   
##                   NA's   :2                         (Other):485   
##  YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
##  2      :305        0      :472             2      :292         
##  0      :188        1      :289             0      :206         
##  7      :186        2      :123             7      :170         
##  3      :114        7      : 58             3      :113         
##  4      : 86        4      : 49             4      : 78         
##  8      : 69        (Other):184             8      : 75         
##  (Other):228        NA's   :  1             (Other):242
distance<-as.character(DataCopy$DistanceFromHome)
distance[is.na(distance)]<-'Not Known'
DataCopy$DistanceFromHome<-as.factor(distance)

job_level<-as.character(DataCopy$JobLevel)
job_level[is.na(job_level)]<-'Not Known'
DataCopy$JobLevel<-as.factor(job_level)

percent_hike<-as.character(DataCopy$PercentSalaryHike)
percent_hike[is.na(percent_hike)]<-'Not Known'
DataCopy$PercentSalaryHike<-as.factor(percent_hike)

performance<-as.character(DataCopy$PerformanceRating)
performance[is.na(performance)]<-'Not Known'
DataCopy$PerformanceRating<-as.factor(performance)

relation<-as.character(DataCopy$RelationshipSatisfaction)
relation[is.na(relation)]<-'Not Known'
DataCopy$RelationshipSatisfaction<-as.factor(relation)

tot<-as.character(DataCopy$TotalWorkingYears)
tot[is.na(tot)]<-'Not Known'
DataCopy$TotalWorkingYears<-as.factor(tot)

years<-as.character(DataCopy$YearsSinceLastPromotion)
years[is.na(years)]<-'Not Known'
DataCopy$YearsSinceLastPromotion<-as.factor(years)

summary(DataCopy)
##       Age        Attrition           BusinessTravel   DailyRate   
##  Min.   :18.00   No :991   Non-Travel       :110    329    :   5  
##  1st Qu.:30.00   Yes:185   Travel_Frequently:227    408    :   5  
##  Median :36.00             Travel_Rarely    :839    530    :   5  
##  Mean   :36.96                                      691    :   5  
##  3rd Qu.:43.00                                      147    :   4  
##  Max.   :60.00                                      267    :   4  
##                                                     (Other):1148  
##                   Department  DistanceFromHome Education
##  Human Resources       : 54   2      :168      1:138    
##  Research & Development:764   1      :154      2:235    
##  Sales                 :358   7      : 73      3:452    
##                               9      : 72      4:314    
##                               10     : 68      5: 37    
##                               3      : 68               
##                               (Other):573               
##           EducationField EnvironmentSatisfaction    Gender   
##  Human Resources : 25    1:233                         :  1  
##  Life Sciences   :477    2:229                   Female:482  
##  Marketing       :127    3:366                   Male  :693  
##  Medical         :381    4:348                               
##  Other           : 69                                        
##  Technical Degree: 97                                        
##                                                              
##    HourlyRate   JobInvolvement      JobLevel  
##  98     :  26   1: 67          1        :430  
##  54     :  25   2:295          2        :432  
##  42     :  23   3:690          3        :172  
##  43     :  23   4:124          4        : 84  
##  48     :  23                  5        : 57  
##  66     :  23                  Not Known:  1  
##  (Other):1033                                 
##                       JobRole    JobSatisfaction  MaritalStatus
##  Sales Executive          :263   1:244           Divorced:266  
##  Research Scientist       :220   2:216           Married :545  
##  Laboratory Technician    :209   3:353           Single  :365  
##  Manufacturing Director   :122   4:363                         
##  Healthcare Representative:108                                 
##  Manager                  : 79                                 
##  (Other)                  :175                                 
##  MonthlyIncome   MonthlyRate   OverTime  PercentSalaryHike
##  2342   :   4   4223   :   3      :  1   11     :169      
##  2559   :   3   2125   :   2   No :838   13     :167      
##  2741   :   3   3339   :   2   Yes:337   12     :152      
##  3452   :   3   4658   :   2             14     :150      
##  5562   :   3   5355   :   2             15     : 80      
##  6142   :   3   6319   :   2             18     : 73      
##  (Other):1157   (Other):1163             (Other):385      
##  PerformanceRating RelationshipSatisfaction StockOptionLevel
##  3        :984     1        :220            0:500           
##  4        :191     2        :242            1:482           
##  Not Known:  1     3        :362            2:128           
##                    4        :351            3: 66           
##                    Not Known:  1                            
##                                                             
##                                                             
##  TotalWorkingYears WorkLifeBalance YearsAtCompany YearsInCurrentRole
##  10     :166       1: 65           5      :163    2      :305       
##  6      : 95       2:272           1      :130    0      :188       
##  8      : 87       3:734           2      :107    7      :186       
##  9      : 74       4:105           3      :103    3      :114       
##  5      : 73                       4      : 94    4      : 86       
##  7      : 67                       10     : 94    8      : 69       
##  (Other):614                       (Other):485    (Other):228       
##  YearsSinceLastPromotion YearsWithCurrManager
##  0      :472             2      :292         
##  1      :289             0      :206         
##  2      :123             7      :170         
##  7      : 58             3      :113         
##  4      : 49             4      : 78         
##  3      : 42             8      : 75         
##  (Other):143             (Other):242

Ploting

# Column 'Age'
hist(DataCopy$Age,xlab = 'Age',main = 'Histogram of Age',col = blues9)

DataCopy$Age_Group<-DataCopy$Age
DataCopy$Age_Group<-ifelse((DataCopy$Age>=18 & DataCopy$Age<=32),'Young',DataCopy$Age_Group)
DataCopy$Age_Group<-ifelse((DataCopy$Age>32 & DataCopy$Age<=47),'Medium',DataCopy$Age_Group)
DataCopy$Age_Group<-ifelse((DataCopy$Age>47 & DataCopy$Age<=60),'Old',DataCopy$Age_Group)
DataCopy$Age_Group<-as.factor(DataCopy$Age_Group)

DataCopy$Age<-NULL

# Column 'Gender'
DataCopy$Gender_Dummy<-DataCopy$Gender
DataCopy$Gender_Dummy<-ifelse((DataCopy$Gender=='Male'),'1',DataCopy$Gender_Dummy)
DataCopy$Gender_Dummy<-ifelse((DataCopy$Gender=='Female'),'0',DataCopy$Gender_Dummy)
DataCopy$Gender_Dummy<-as.factor(DataCopy$Gender_Dummy)

DataCopy$Gender<-NULL
table(DataCopy$Gender_Dummy,DataCopy$Attrition)
##    
##      No Yes
##   0 412  70
##   1 579 115
# Column 'Education'
table(DataCopy$Education,DataCopy$Attrition)
##    
##      No Yes
##   1 117  21
##   2 200  35
##   3 375  77
##   4 267  47
##   5  32   5
# The attrition = Yes count for highly educated people is less when compared to others.

# Column 'Business Travel'
table(DataCopy$BusinessTravel)
## 
##        Non-Travel Travel_Frequently     Travel_Rarely 
##               110               227               839
# Column 'Overtime'
DataCopy$OverTime_Dummy<-DataCopy$OverTime
DataCopy$OverTime_Dummy<-ifelse((DataCopy$OverTime=='Yes'),'1',DataCopy$OverTime_Dummy)
DataCopy$OverTime_Dummy<-ifelse((DataCopy$OverTime=='No'),'0',DataCopy$OverTime_Dummy)
DataCopy$OverTime_Dummy<-as.factor(DataCopy$OverTime_Dummy)

DataCopy$OverTime<-NULL

# Column 'Business Travel'
table(DataCopy$Attrition,DataCopy$BusinessTravel)
##      
##       Non-Travel Travel_Frequently Travel_Rarely
##   No          99               172           720
##   Yes         11                55           119
# People who do not travel have the lowest attrition percentage.
# Attrition Rate for people who do not travel= 10%
# Attrition Rate for people who frequently travel= 24.22%
# Attrition Rate for people who rarely travel= 14.18%

# Column 'Job Involvement'
table(DataCopy$JobInvolvement,DataCopy$Attrition)
##    
##      No Yes
##   1  44  23
##   2 244  51
##   3 592  98
##   4 111  13
# People with more job involvement have a less attrition rate.

Association Rule & supervised Mining

rules_1<-apriori(DataCopy)
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.8    0.1    1 none FALSE            TRUE       5     0.1      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 117 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[3338 item(s), 1176 transaction(s)] done [0.01s].
## sorting and recoding items ... [70 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [3216 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
rules_1 <- sort (rules_1, by="confidence",decreasing=TRUE)
inspect(head(rules_1,5) )
##     lhs                                 rhs                                   support confidence     lift count
## [1] {JobRole=Manufacturing Director} => {Department=Research & Development} 0.1037415          1 1.539267   122
## [2] {EducationField=Marketing}       => {Department=Sales}                  0.1079932          1 3.284916   127
## [3] {PercentSalaryHike=14}           => {PerformanceRating=3}               0.1275510          1 1.195122   150
## [4] {PercentSalaryHike=12}           => {PerformanceRating=3}               0.1292517          1 1.195122   152
## [5] {PercentSalaryHike=13}           => {PerformanceRating=3}               0.1420068          1 1.195122   167
plot(rules_1,jitter=0)

rules_2 <- apriori(DataCopy, parameter = list(supp = 0.5, conf = 0.5))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##         0.5    0.1    1 none FALSE            TRUE       5     0.5      1
##  maxlen target   ext
##      10  rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 588 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[3338 item(s), 1176 transaction(s)] done [0.01s].
## sorting and recoding items ... [9 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [37 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
rules_2 <- sort (rules_2, by="confidence",decreasing=TRUE)
inspect(head(rules_2,5) )
##     lhs                                    rhs              support confidence     lift count
## [1] {PerformanceRating=3,                                                                    
##      OverTime_Dummy=0}                  => {Attrition=No} 0.5306122  0.8914286 1.057841   624
## [2] {OverTime_Dummy=0}                  => {Attrition=No} 0.6352041  0.8914081 1.057816   747
## [3] {Department=Research & Development} => {Attrition=No} 0.5671769  0.8730366 1.036015   667
## [4] {BusinessTravel=Travel_Rarely,                                                           
##      PerformanceRating=3}               => {Attrition=No} 0.5187075  0.8615819 1.022422   610
## [5] {WorkLifeBalance=3}                 => {Attrition=No} 0.5374150  0.8610354 1.021774   632
plot(rules_2,jitter=0)

rules_3 <- apriori(DataCopy, parameter=list (supp=0.1,conf = 0.5, maxtime = 10), appearance = list (default="lhs",rhs=c("Attrition=Yes","Attrition=No")),control = list(verbose = F))
rules_3 <- sort (rules_3, by="confidence",decreasing=TRUE)
inspect(head(rules_3,5))
##     lhs                                    rhs              support confidence     lift count
## [1] {PerformanceRating=3,                                                                    
##      StockOptionLevel=1,                                                                     
##      WorkLifeBalance=3,                                                                      
##      Age_Group=Medium}                  => {Attrition=No} 0.1105442  0.9774436 1.159913   130
## [2] {StockOptionLevel=1,                                                                     
##      WorkLifeBalance=3,                                                                      
##      Age_Group=Medium}                  => {Attrition=No} 0.1369048  0.9757576 1.157912   161
## [3] {MaritalStatus=Married,                                                                  
##      StockOptionLevel=1,                                                                     
##      Age_Group=Medium,                                                                       
##      OverTime_Dummy=0}                  => {Attrition=No} 0.1020408  0.9756098 1.157737   120
## [4] {Department=Research & Development,                                                      
##      StockOptionLevel=1,                                                                     
##      WorkLifeBalance=3,                                                                      
##      OverTime_Dummy=0}                  => {Attrition=No} 0.1105442  0.9701493 1.151257   130
## [5] {JobInvolvement=3,                                                                       
##      StockOptionLevel=1,                                                                     
##      WorkLifeBalance=3,                                                                      
##      OverTime_Dummy=0}                  => {Attrition=No} 0.1011905  0.9674797 1.148089   119
plot(rules_3,jitter=0)

DataCopy[,27]
##    [1] Young  Old    Medium Old    Medium Old    Medium Young  Medium
##   [10] Young  Young  Medium Young  Medium Medium Young  Young  Young 
##   [19] Medium Medium Medium Young  Medium Medium Young  Medium Medium
##   [28] Medium Medium Young  Young  Medium Medium Medium Medium Medium
##   [37] Old    Medium Young  Young  Medium Old    Young  Medium Medium
##   [46] Old    Medium Medium Medium Medium Medium Young  Medium Old   
##   [55] Medium Medium Medium Young  Medium Medium Medium Young  Old   
##   [64] Medium Medium Medium Medium Young  Old    Old    Medium Young 
##   [73] Young  Medium Medium Young  Old    Young  Young  Medium Medium
##   [82] Medium Medium Medium Medium Medium Young  Old    Young  Young 
##   [91] Medium Old    Medium Old    Young  Old    Medium Medium Old   
##  [100] Medium Medium Young  Medium Young  Medium Medium Medium Medium
##  [109] Medium Medium Medium Medium Old    Old    Young  Medium Medium
##  [118] Young  Young  Young  Young  Medium Young  Young  Medium Medium
##  [127] Young  Young  Medium Young  Young  Young  Old    Young  Young 
##  [136] Medium Old    Young  Young  Young  Medium Old    Medium Medium
##  [145] Old    Medium Medium Old    Medium Young  Medium Medium Young 
##  [154] Medium Young  Medium Young  Young  Old    Young  Young  Medium
##  [163] Young  Medium Medium Old    Young  Medium Medium Young  Medium
##  [172] Medium Medium Medium Medium Young  Medium Medium Young  Medium
##  [181] Young  Medium Medium Old    Medium Young  Medium Old    Medium
##  [190] Young  Medium Young  Medium Old    Young  Medium Old    Medium
##  [199] Medium Old    Young  Young  Young  Medium Old    Medium Young 
##  [208] Medium Medium Medium Young  Medium Medium Young  Medium Young 
##  [217] Medium Medium Medium Medium Young  Medium Young  Medium Medium
##  [226] Young  Medium Medium Young  Medium Medium Young  Medium Young 
##  [235] Young  Young  Young  Young  Young  Young  Medium Medium Young 
##  [244] Medium Medium Young  Young  Medium Young  Medium Young  Young 
##  [253] Young  Young  Old    Medium Medium Medium Young  Young  Old   
##  [262] Medium Young  Old    Young  Young  Young  Medium Medium Medium
##  [271] Medium Young  Young  Medium Old    Medium Medium Medium Old   
##  [280] Medium Medium Medium Young  Old    Young  Young  Young  Medium
##  [289] Medium Medium Medium Young  Medium Young  Medium Young  Medium
##  [298] Medium Medium Old    Young  Young  Medium Medium Medium Young 
##  [307] Young  Medium Young  Medium Medium Old    Medium Young  Medium
##  [316] Medium Medium Medium Old    Old    Medium Medium Young  Old   
##  [325] Old    Old    Medium Young  Medium Old    Medium Medium Medium
##  [334] Medium Old    Medium Medium Medium Medium Young  Young  Young 
##  [343] Medium Medium Young  Young  Young  Young  Medium Young  Old   
##  [352] Medium Medium Medium Medium Old    Young  Old    Medium Medium
##  [361] Old    Medium Medium Old    Young  Medium Young  Young  Young 
##  [370] Young  Young  Old    Medium Old    Young  Medium Medium Medium
##  [379] Young  Old    Young  Young  Young  Medium Young  Medium Medium
##  [388] Medium Medium Young  Young  Young  Medium Young  Young  Young 
##  [397] Young  Young  Medium Medium Medium Young  Young  Young  Young 
##  [406] Old    Medium Old    Young  Young  Medium Young  Medium Medium
##  [415] Medium Medium Medium Old    Old    Medium Medium Young  Medium
##  [424] Old    Medium Medium Medium Medium Medium Medium Young  Medium
##  [433] Old    Young  Old    Medium Young  Medium Medium Medium Medium
##  [442] Young  Medium Medium Young  Medium Young  Medium Medium Young 
##  [451] Young  Medium Young  Old    Medium Medium Medium Old    Medium
##  [460] Young  Old    Young  Medium Young  Medium Young  Medium Medium
##  [469] Old    Medium Old    Young  Medium Young  Young  Medium Medium
##  [478] Young  Young  Old    Young  Medium Medium Medium Medium Young 
##  [487] Young  Medium Medium Old    Medium Medium Young  Medium Medium
##  [496] Medium Young  Young  Medium Medium Medium Medium Young  Medium
##  [505] Young  Medium Old    Medium Young  Old    Medium Medium Medium
##  [514] Young  Medium Medium Old    Young  Old    Medium Young  Medium
##  [523] Medium Medium Medium Young  Young  Medium Young  Medium Young 
##  [532] Medium Young  Old    Young  Young  Medium Young  Young  Old   
##  [541] Medium Young  Young  Young  Medium Medium Medium Medium Medium
##  [550] Medium Medium Medium Medium Medium Medium Medium Medium Young 
##  [559] Young  Young  Old    Old    Young  Young  Medium Young  Old   
##  [568] Medium Medium Young  Medium Medium Young  Young  Young  Medium
##  [577] Medium Medium Medium Young  Medium Medium Young  Medium Young 
##  [586] Young  Young  Young  Young  Young  Medium Medium Medium Medium
##  [595] Medium Medium Medium Medium Medium Medium Medium Young  Medium
##  [604] Young  Medium Young  Medium Medium Medium Young  Medium Young 
##  [613] Young  Medium Old    Young  Young  Young  Old    Medium Medium
##  [622] Old    Medium Medium Young  Old    Medium Old    Old    Medium
##  [631] Young  Medium Old    Medium Medium Young  Medium Old    Medium
##  [640] Old    Young  Old    Medium Medium Young  Young  Young  Medium
##  [649] Medium Medium Medium Medium Young  Young  Medium Young  Medium
##  [658] Medium Medium Medium Young  Medium Young  Medium Young  Medium
##  [667] Young  Medium Medium Medium Medium Medium Medium Medium Old   
##  [676] Old    Old    Medium Medium Medium Medium Medium Medium Medium
##  [685] Young  Medium Medium Young  Medium Medium Old    Old    Old   
##  [694] Young  Medium Old    Old    Young  Old    Young  Medium Young 
##  [703] Medium Medium Medium Medium Young  Medium Young  Old    Old   
##  [712] Medium Old    Old    Medium Young  Medium Young  Medium Medium
##  [721] Medium Medium Medium Medium Medium Old    Medium Medium Medium
##  [730] Medium Medium Medium Young  Young  Medium Old    Medium Young 
##  [739] Medium Medium Medium Medium Medium Medium Medium Young  Young 
##  [748] Young  Medium Medium Medium Medium Medium Young  Old    Young 
##  [757] Medium Young  Medium Young  Medium Medium Medium Medium Old   
##  [766] Medium Old    Medium Young  Medium Medium Young  Young  Medium
##  [775] Medium Young  Young  Medium Medium Medium Medium Medium Medium
##  [784] Medium Old    Medium Young  Medium Old    Young  Young  Medium
##  [793] Young  Young  Young  Old    Young  Young  Young  Medium Old   
##  [802] Old    Medium Medium Young  Medium Medium Medium Medium Medium
##  [811] Old    Young  Young  Young  Old    Young  Young  Medium Medium
##  [820] Medium Old    Old    Young  Young  Young  Medium Old    Young 
##  [829] Medium Medium Young  Medium Old    Young  Medium Young  Young 
##  [838] Young  Old    Medium Medium Medium Young  Medium Medium Young 
##  [847] Medium Medium Young  Medium Medium Medium Medium Medium Young 
##  [856] Young  Medium Medium Old    Medium Young  Young  Medium Old   
##  [865] Old    Medium Young  Young  Medium Medium Medium Young  Medium
##  [874] Young  Medium Young  Old    Medium Medium Medium Medium Medium
##  [883] Young  Young  Medium Young  Young  Medium Young  Young  Old   
##  [892] Young  Medium Medium Medium Medium Young  Young  Medium Medium
##  [901] Medium Medium Old    Old    Medium Medium Medium Young  Medium
##  [910] Medium Old    Young  Medium Young  Old    Old    Young  Medium
##  [919] Young  Young  Medium Young  Medium Young  Medium Young  Old   
##  [928] Old    Medium Medium Medium Medium Old    Medium Young  Medium
##  [937] Young  Old    Young  Young  Medium Old    Old    Medium Old   
##  [946] Old    Medium Medium Young  Young  Medium Old    Young  Medium
##  [955] Old    Medium Old    Young  Old    Medium Medium Medium Medium
##  [964] Medium Medium Medium Young  Old    Medium Medium Young  Young 
##  [973] Medium Medium Medium Medium Medium Young  Young  Medium Young 
##  [982] Young  Young  Medium Medium Young  Medium Medium Young  Medium
##  [991] Old    Young  Young  Medium Young  Old    Young  Medium Medium
## [1000] Young  Medium Old    Medium Young  Young  Medium Young  Medium
## [1009] Medium Medium Old    Medium Old    Medium Young  Medium Young 
## [1018] Old    Medium Medium Medium Young  Medium Young  Young  Medium
## [1027] Medium Medium Young  Old    Medium Young  Medium Young  Old   
## [1036] Medium Medium Medium Medium Medium Medium Young  Medium Young 
## [1045] Medium Medium Old    Young  Medium Old    Young  Young  Young 
## [1054] Young  Medium Medium Young  Medium Young  Medium Young  Old   
## [1063] Young  Young  Young  Old    Medium Old    Medium Young  Medium
## [1072] Young  Medium Young  Old    Young  Young  Medium Medium Medium
## [1081] Medium Young  Young  Young  Medium Medium Young  Medium Young 
## [1090] Medium Young  Young  Young  Young  Medium Young  Young  Medium
## [1099] Young  Young  Young  Medium Medium Medium Young  Medium Young 
## [1108] Medium Young  Young  Young  Medium Medium Young  Medium Medium
## [1117] Young  Medium Medium Young  Medium Medium Young  Medium Young 
## [1126] Medium Young  Medium Old    Old    Medium Old    Young  Young 
## [1135] Young  Medium Old    Medium Young  Medium Medium Medium Medium
## [1144] Medium Young  Medium Old    Medium Old    Young  Medium Medium
## [1153] Medium Medium Old    Medium Young  Old    Young  Young  Medium
## [1162] Old    Medium Medium Medium Old    Medium Old    Medium Medium
## [1171] Medium Young  Medium Old    Medium Old   
## Levels: Medium Old Young

shiny link

https://henglong.shinyapps.io/henglongNewhw1/

HTML Link file:///Users/henglong/Documents/IST%20707/homework/hw1/henglong-so.html