library("dplyr")
library("ggplot2")
plot_defaults <- theme_bw()
df <- read.csv("procs_per_core.csv")
df$cores <- sapply(as.character(df$ami_type), function(type) {
switch(type,
m1.small = 2, m1.medium = 1, m1.large = 2, m1.xlarge = 4, m2.xlarge = 2,
m2.2xlarge = 4, m3.medium = 1, m3.large = 2, m3.xlarge = 4, c1.medium = 2,
c1.xlarge = 8, c3.large = 2, c3.xlarge = 4, c3.2xlarge = 8, c3.4xlarge = 16
)
})
df %>%
ggplot(aes(procs/cores)) +
geom_histogram(binwidth = 1) +
scale_x_continuous(breaks=seq(0, max(df$procs/df$cores), by=2)) +
xlab("Procs per core") +
plot_defaults

df %>%
ggplot(aes(procs/cores)) +
geom_histogram(binwidth = 1) +
scale_x_continuous(breaks=seq(0, max(df$procs/df$cores), by=2)) +
facet_wrap(~ami_type, ncol = 1) +
xlab("Procs per core") +
plot_defaults
