packages
library("tidyverse")
library("MASS")
library("stargazer")
library("broom")
library("nnet")
las variables
#masculino--0, femenino--1
#no padres--0, con padres--1
#particular..0, estatal--1
#Historial..no--0, si--1
#trabajo, no--0, si--1
#660 punto corte psu
#60 NEM
abro df para cuarto y quinto
modelo de regresion para cuarto y quinto
modelo1 <- glm(df1$APROBACION ~ df1$curso1 + df1$Sexo1 + df1$Residencia1 + df1$Establecimiento1 + +df1$Historial1 + df1$Trabajo1 + df1$PSU_lenguaje_1 + df1$PSU_matematicas_1 + df1$PSU_ciencias_1 + df1$NEM_1,
data=df1,
family = binomial(logit))
modelo5
modelo1
Call: glm(formula = df1$APROBACION ~ df1$curso1 + df1$Sexo1 + df1$Residencia1 +
df1$Establecimiento1 + +df1$Historial1 + df1$Trabajo1 + df1$PSU_lenguaje_1 +
df1$PSU_matematicas_1 + df1$PSU_ciencias_1 + df1$NEM_1, family = binomial(logit),
data = df1)
Coefficients:
(Intercept) df1$curso1 df1$Sexo1 df1$Residencia1
0.91634 0.03926 0.95975 0.10193
df1$Establecimiento1 df1$Historial1 df1$Trabajo1 df1$PSU_lenguaje_1
0.69021 -0.58776 -0.53823 -0.62442
df1$PSU_matematicas_1 df1$PSU_ciencias_1 df1$NEM_1
0.12887 -0.25453 -1.21279
Degrees of Freedom: 118 Total (i.e. Null); 108 Residual
Null Deviance: 161.2
Residual Deviance: 149.5 AIC: 171.5
summary modelo5
summary(modelo1)
Call:
glm(formula = df1$APROBACION ~ df1$curso1 + df1$Sexo1 + df1$Residencia1 +
df1$Establecimiento1 + +df1$Historial1 + df1$Trabajo1 + df1$PSU_lenguaje_1 +
df1$PSU_matematicas_1 + df1$PSU_ciencias_1 + df1$NEM_1, family = binomial(logit),
data = df1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.5327 -1.0045 -0.7454 1.1487 1.8867
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.91634 1.07766 0.850 0.3952
df1$curso1 0.03926 0.41219 0.095 0.9241
df1$Sexo1 0.95975 0.41749 2.299 0.0215 *
df1$Residencia1 0.10193 0.42386 0.240 0.8100
df1$Establecimiento1 0.69021 0.48337 1.428 0.1533
df1$Historial1 -0.58776 0.48407 -1.214 0.2247
df1$Trabajo1 -0.53823 0.49809 -1.081 0.2799
df1$PSU_lenguaje_1 -0.62442 0.40769 -1.532 0.1256
df1$PSU_matematicas_1 0.12887 0.44454 0.290 0.7719
df1$PSU_ciencias_1 -0.25453 0.42230 -0.603 0.5467
df1$NEM_1 -1.21279 0.93964 -1.291 0.1968
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 161.24 on 118 degrees of freedom
Residual deviance: 149.50 on 108 degrees of freedom
AIC: 171.5
Number of Fisher Scoring iterations: 4
tabla intervalos para cuarto y quinto
stargazer::stargazer(modelo1, type = "text",
no.space=FALSE,
apply.coef = exp,
# apply.se = exp,
ci=TRUE, ci.level=0.95, single.row=TRUE,
omit.table.layout = "n", star.cutoffs = NA) # omit p values FTW!
=======================================
Dependent variable:
---------------------
APROBACION
---------------------------------------
curso1 1.040 (0.232, 1.848)
Sexo1 2.611 (1.793, 3.429)
Residencia1 1.107 (0.277, 1.938)
Establecimiento1 1.994 (1.047, 2.942)
Historial1 0.556 (-0.393, 1.504)
Trabajo1 0.584 (-0.392, 1.560)
PSU_lenguaje_1 0.536 (-0.263, 1.335)
PSU_matematicas_1 1.138 (0.266, 2.009)
PSU_ciencias_1 0.775 (-0.052, 1.603)
NEM_1 0.297 (-1.544, 2.139)
Constant 2.500 (0.388, 4.612)
---------------------------------------
Observations 119
Log Likelihood -74.752
Akaike Inf. Crit. 171.503
=======================================
lineal para cuarto y quinto
summary
summary(modelo7)
Call:
lm(formula = df1$APROBACION ~ df1$curso1 + df1$Sexo1 + df1$Residencia1 +
df1$Establecimiento1 + +df1$Historial1 + df1$Trabajo1 + df1$PSU_lenguaje_1 +
df1$PSU_matematicas_1 + df1$PSU_ciencias_1 + df1$NEM_1, data = df1)
Residuals:
Min 1Q Median 3Q Max
-0.6749 -0.4087 -0.2504 0.4855 0.8521
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.699235 0.246098 2.841 0.00537 **
df1$curso1 0.008301 0.094396 0.088 0.93009
df1$Sexo1 0.211639 0.093099 2.273 0.02499 *
df1$Residencia1 0.015494 0.096550 0.160 0.87281
df1$Establecimiento1 0.151505 0.110898 1.366 0.17472
df1$Historial1 -0.129899 0.109673 -1.184 0.23885
df1$Trabajo1 -0.109151 0.109689 -0.995 0.32191
df1$PSU_lenguaje_1 -0.138807 0.093255 -1.488 0.13954
df1$PSU_matematicas_1 0.030032 0.101182 0.297 0.76718
df1$PSU_ciencias_1 -0.054996 0.096901 -0.568 0.57152
df1$NEM_1 -0.265990 0.211955 -1.255 0.21221
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4917 on 108 degrees of freedom
Multiple R-squared: 0.09405, Adjusted R-squared: 0.01017
F-statistic: 1.121 on 10 and 108 DF, p-value: 0.3532
abro df para cuarto
df2 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTqhm3ewZFirDV6BHKxF1mqpgADOgt629ND3swbKXGrE559HtV79QEtYJkNTUjIGge1ZtCaJ-cHPSN4/pub?gid=1815207712&single=true&output=csv")
modelo de regresion para cuarto
modelo_cuarto <- glm(df2$APROBACION ~ df2$Sexo1 + df2$Residencia1 + df2$Establecimiento1 + +df2$Historial1 + df2$Trabajo1 + df2$PSU_lenguaje_1 + df2$PSU_matematicas_1 + df2$PSU_ciencias_1 + df2$NEM_1,
data=df2,
family = binomial(logit))
modelo_cuarto
modelo_cuarto
Call: glm(formula = df2$APROBACION ~ df2$Sexo1 + df2$Residencia1 +
df2$Establecimiento1 + +df2$Historial1 + df2$Trabajo1 + df2$PSU_lenguaje_1 +
df2$PSU_matematicas_1 + df2$PSU_ciencias_1 + df2$NEM_1, family = binomial(logit),
data = df2)
Coefficients:
(Intercept) df2$Sexo1 df2$Residencia1 df2$Establecimiento1
-0.08952 1.62037 0.07039 0.94019
df2$Historial1 df2$Trabajo1 df2$PSU_lenguaje_1 df2$PSU_matematicas_1
0.41168 -0.88203 -1.25392 0.26094
df2$PSU_ciencias_1 df2$NEM_1
0.22690 -1.19419
Degrees of Freedom: 69 Total (i.e. Null); 60 Residual
Null Deviance: 94.97
Residual Deviance: 81.44 AIC: 101.4
summary modelo_cuarto
summary(modelo_cuarto)
Call:
glm(formula = df2$APROBACION ~ df2$Sexo1 + df2$Residencia1 +
df2$Establecimiento1 + +df2$Historial1 + df2$Trabajo1 + df2$PSU_lenguaje_1 +
df2$PSU_matematicas_1 + df2$PSU_ciencias_1 + df2$NEM_1, family = binomial(logit),
data = df2)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6412 -0.9468 -0.5136 1.1210 1.7043
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.08952 1.52324 -0.059 0.95313
df2$Sexo1 1.62037 0.61558 2.632 0.00848 **
df2$Residencia1 0.07039 0.56072 0.126 0.90010
df2$Establecimiento1 0.94019 0.70171 1.340 0.18029
df2$Historial1 0.41168 0.69413 0.593 0.55312
df2$Trabajo1 -0.88203 0.69862 -1.263 0.20676
df2$PSU_lenguaje_1 -1.25392 0.62155 -2.017 0.04365 *
df2$PSU_matematicas_1 0.26094 0.65398 0.399 0.68989
df2$PSU_ciencias_1 0.22690 0.58792 0.386 0.69955
df2$NEM_1 -1.19419 1.35562 -0.881 0.37836
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 94.973 on 69 degrees of freedom
Residual deviance: 81.436 on 60 degrees of freedom
AIC: 101.44
Number of Fisher Scoring iterations: 4
tabla intervalos para cuarto ao
stargazer::stargazer(modelo_cuarto, type = "text",
no.space=FALSE,
apply.coef = exp,
# apply.se = exp,
ci=TRUE, ci.level=0.95, single.row=TRUE,
omit.table.layout = "n", star.cutoffs = NA) # omit p values FTW!
=======================================
Dependent variable:
---------------------
APROBACION
---------------------------------------
Sexo1 5.055 (3.848, 6.261)
Residencia1 1.073 (-0.026, 2.172)
Establecimiento1 2.560 (1.185, 3.936)
Historial1 1.509 (0.149, 2.870)
Trabajo1 0.414 (-0.955, 1.783)
PSU_lenguaje_1 0.285 (-0.933, 1.504)
PSU_matematicas_1 1.298 (0.016, 2.580)
PSU_ciencias_1 1.255 (0.102, 2.407)
NEM_1 0.303 (-2.354, 2.960)
Constant 0.914 (-2.071, 3.900)
---------------------------------------
Observations 70
Log Likelihood -40.718
Akaike Inf. Crit. 101.436
=======================================
lineal para cuarto
summary
summary(modelo_6)
Call:
lm(formula = df2$APROBACION ~ df2$Sexo1 + df2$Residencia1 + df2$Establecimiento1 +
+df2$Historial1 + df2$Trabajo1 + df2$PSU_lenguaje_1 + df2$PSU_matematicas_1 +
df2$PSU_ciencias_1 + df2$NEM_1, data = df2)
Residuals:
Min 1Q Median 3Q Max
-0.7045 -0.3888 -0.1079 0.4720 0.7437
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.45031 0.31681 1.421 0.16039
df2$Sexo1 0.32456 0.12162 2.669 0.00978 **
df2$Residencia1 0.01424 0.12123 0.117 0.90692
df2$Establecimiento1 0.17911 0.14868 1.205 0.23306
df2$Historial1 0.08630 0.14483 0.596 0.55348
df2$Trabajo1 -0.16836 0.14169 -1.188 0.23945
df2$PSU_lenguaje_1 -0.24943 0.12578 -1.983 0.05194 .
df2$PSU_matematicas_1 0.06072 0.13716 0.443 0.65959
df2$PSU_ciencias_1 0.03902 0.12742 0.306 0.76046
df2$NEM_1 -0.20999 0.27051 -0.776 0.44065
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4832 on 60 degrees of freedom
Multiple R-squared: 0.1754, Adjusted R-squared: 0.05166
F-statistic: 1.418 on 9 and 60 DF, p-value: 0.201
abro df para quinto ao
df3 <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTqhm3ewZFirDV6BHKxF1mqpgADOgt629ND3swbKXGrE559HtV79QEtYJkNTUjIGge1ZtCaJ-cHPSN4/pub?gid=1429924662&single=true&output=csv")
modelo de regresion para quinto
modelo_quinto <- glm(df3$APROBACION ~ df3$Sexo1 + df3$Residencia1 + df3$Establecimiento1 + +df3$Historial1 + df3$Trabajo1 + df3$PSU_lenguaje_1 + df3$PSU_matematicas_1 + df3$PSU_ciencias_1 + df3$NEM_1,
data=df3,
family = binomial(logit))
modelo_quinto
modelo_quinto
Call: glm(formula = df3$APROBACION ~ df3$Sexo1 + df3$Residencia1 +
df3$Establecimiento1 + +df3$Historial1 + df3$Trabajo1 + df3$PSU_lenguaje_1 +
df3$PSU_matematicas_1 + df3$PSU_ciencias_1 + df3$NEM_1, family = binomial(logit),
data = df3)
Coefficients:
(Intercept) df3$Sexo1 df3$Residencia1 df3$Establecimiento1
2.4293 0.4743 -0.2802 0.5924
df3$Historial1 df3$Trabajo1 df3$PSU_lenguaje_1 df3$PSU_matematicas_1
-1.9875 0.1227 -0.5973 0.1703
df3$PSU_ciencias_1 df3$NEM_1
-0.4832 -1.3305
Degrees of Freedom: 48 Total (i.e. Null); 39 Residual
Null Deviance: 66.27
Residual Deviance: 56.85 AIC: 76.85
summary modelo quinto
summary(modelo_quinto)
Call:
glm(formula = df3$APROBACION ~ df3$Sexo1 + df3$Residencia1 +
df3$Establecimiento1 + +df3$Historial1 + df3$Trabajo1 + df3$PSU_lenguaje_1 +
df3$PSU_matematicas_1 + df3$PSU_ciencias_1 + df3$NEM_1, family = binomial(logit),
data = df3)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4687 -0.8879 -0.6399 0.9731 1.9759
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.4293 1.8134 1.340 0.1804
df3$Sexo1 0.4743 0.7173 0.661 0.5085
df3$Residencia1 -0.2802 0.7570 -0.370 0.7113
df3$Establecimiento1 0.5924 0.7575 0.782 0.4342
df3$Historial1 -1.9875 0.8606 -2.309 0.0209 *
df3$Trabajo1 0.1227 0.8386 0.146 0.8837
df3$PSU_lenguaje_1 -0.5973 0.6973 -0.857 0.3917
df3$PSU_matematicas_1 0.1703 0.6857 0.248 0.8039
df3$PSU_ciencias_1 -0.4832 0.6824 -0.708 0.4789
df3$NEM_1 -1.3305 1.6365 -0.813 0.4162
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 66.266 on 48 degrees of freedom
Residual deviance: 56.847 on 39 degrees of freedom
AIC: 76.847
Number of Fisher Scoring iterations: 4
tabla intervalos para quinto
stargazer::stargazer(modelo_quinto, type = "text",
no.space=FALSE,
apply.coef = exp,
# apply.se = exp,
ci=TRUE, ci.level=0.95, single.row=TRUE,
omit.table.layout = "n", star.cutoffs = NA) # omit p values FTW!
========================================
Dependent variable:
----------------------
APROBACION
----------------------------------------
Sexo1 1.607 (0.201, 3.013)
Residencia1 0.756 (-0.728, 2.239)
Establecimiento1 1.808 (0.324, 3.293)
Historial1 0.137 (-1.550, 1.824)
Trabajo1 1.131 (-0.513, 2.774)
PSU_lenguaje_1 0.550 (-0.816, 1.917)
PSU_matematicas_1 1.186 (-0.158, 2.529)
PSU_ciencias_1 0.617 (-0.721, 1.954)
NEM_1 0.264 (-2.943, 3.472)
Constant 11.351 (7.797, 14.905)
----------------------------------------
Observations 49
Log Likelihood -28.423
Akaike Inf. Crit. 76.847
========================================
modelo lineal quinto
modelo_lineal <- lm(df3$APROBACION ~ df3$Sexo1 + df3$Residencia1 + df3$Establecimiento1 + +df3$Historial1 + df3$Trabajo1 + df3$PSU_lenguaje_1 + df3$PSU_matematicas_1 + df3$PSU_ciencias_1 + df3$NEM_1,
data=df3)
summary(modelo_lineal)
Call:
lm(formula = df3$APROBACION ~ df3$Sexo1 + df3$Residencia1 + df3$Establecimiento1 +
+df3$Historial1 + df3$Trabajo1 + df3$PSU_lenguaje_1 + df3$PSU_matematicas_1 +
df3$PSU_ciencias_1 + df3$NEM_1, data = df3)
Residuals:
Min 1Q Median 3Q Max
-0.6401 -0.3273 -0.1875 0.3791 0.8722
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.98574 0.38543 2.557 0.0145 *
df3$Sexo1 0.08369 0.14982 0.559 0.5796
df3$Residencia1 -0.05612 0.16262 -0.345 0.7319
df3$Establecimiento1 0.12286 0.16810 0.731 0.4692
df3$Historial1 -0.42169 0.17996 -2.343 0.0243 *
df3$Trabajo1 0.01922 0.18260 0.105 0.9167
df3$PSU_lenguaje_1 -0.11583 0.15155 -0.764 0.4493
df3$PSU_matematicas_1 0.03302 0.15280 0.216 0.8300
df3$PSU_ciencias_1 -0.10451 0.15210 -0.687 0.4961
df3$NEM_1 -0.24899 0.34990 -0.712 0.4809
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4985 on 39 degrees of freedom
Multiple R-squared: 0.1811, Adjusted R-squared: -0.007917
F-statistic: 0.9581 on 9 and 39 DF, p-value: 0.4883
LS0tCnRpdGxlOiAiMjAxOV9GYWN0b3JlcyBwcmVkaWN0b3JlcyBleGl0byBhY2FkZW1pY28iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI3BhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJNQVNTIikKbGlicmFyeSgic3RhcmdhemVyIikKbGlicmFyeSgiYnJvb20iKQpsaWJyYXJ5KCJubmV0IikKYGBgCiNsYXMgdmFyaWFibGVzICAKYGBge3J9CiNtYXNjdWxpbm8tLTAsIGZlbWVuaW5vLS0xCiNubyBwYWRyZXMtLTAsIGNvbiBwYWRyZXMtLTEKI3BhcnRpY3VsYXIuLjAsIGVzdGF0YWwtLTEKI0hpc3RvcmlhbC4ubm8tLTAsIHNpLS0xCiN0cmFiYWpvLCBuby0tMCwgc2ktLTEgCiM2NjAgcHVudG8gY29ydGUgcHN1CiM2MCBORU0gIApgYGAKI2Ficm8gZGYgcGFyYSBjdWFydG8geSBxdWludG8KYGBge3J9CmRmMSA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlRxaG0zZXdaRmlyRFY2QkhLeEYxbXFwZ0FET2d0NjI5TkQzc3diS1hHckU1NTlIdFY3OVFFdFlKa05UVWpJR2dlMVp0Q2FKLWNIUFNONC9wdWI/Z2lkPTEyNTgwNTM5OTMmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojbW9kZWxvIGRlIHJlZ3Jlc2lvbiBwYXJhIGN1YXJ0byB5IHF1aW50byAKYGBge3J9Cm1vZGVsbzEgPC0gZ2xtKGRmMSRBUFJPQkFDSU9OIH4gZGYxJGN1cnNvMSArIGRmMSRTZXhvMSArIGRmMSRSZXNpZGVuY2lhMSArIGRmMSRFc3RhYmxlY2ltaWVudG8xICsgK2RmMSRIaXN0b3JpYWwxICsgZGYxJFRyYWJham8xICsgZGYxJFBTVV9sZW5ndWFqZV8xICsgZGYxJFBTVV9tYXRlbWF0aWNhc18xICsgZGYxJFBTVV9jaWVuY2lhc18xICsgZGYxJE5FTV8xLAogICAgICAgICAgICAgICBkYXRhPWRmMSwKICAgICAgICAgICAgICAgIGZhbWlseSA9IGJpbm9taWFsKGxvZ2l0KSkKYGBgCiNtb2RlbG81CmBgYHtyfQptb2RlbG8xCmBgYAojc3VtbWFyeSBtb2RlbG81CmBgYHtyfQpzdW1tYXJ5KG1vZGVsbzEpCmBgYAojdGFibGEgaW50ZXJ2YWxvcyBwYXJhIGN1YXJ0byB5IHF1aW50byAKYGBge3J9CnN0YXJnYXplcjo6c3RhcmdhemVyKG1vZGVsbzEsICB0eXBlID0gInRleHQiLAogICAgICAgICAgICAgICAgICAgICBuby5zcGFjZT1GQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgIGFwcGx5LmNvZWYgPSBleHAsIAogICAgICAgICAgICAgICAgICAgICAjIGFwcGx5LnNlID0gZXhwLCAKICAgICAgICAgICAgICAgICAgICAgY2k9VFJVRSwgY2kubGV2ZWw9MC45NSwgc2luZ2xlLnJvdz1UUlVFLCAKICAgICAgICAgICAgICAgICAgICAgb21pdC50YWJsZS5sYXlvdXQgPSAibiIsIHN0YXIuY3V0b2ZmcyA9IE5BKSAjIG9taXQgcCB2YWx1ZXMgRlRXIQpgYGAKI2xpbmVhbCBwYXJhIGN1YXJ0byB5IHF1aW50bwpgYGB7cn0KbW9kZWxvNyA8LSBsbShkZjEkQVBST0JBQ0lPTiB+IGRmMSRjdXJzbzEgKyBkZjEkU2V4bzEgKyBkZjEkUmVzaWRlbmNpYTEgKyBkZjEkRXN0YWJsZWNpbWllbnRvMSArICtkZjEkSGlzdG9yaWFsMSArIGRmMSRUcmFiYWpvMSArIGRmMSRQU1VfbGVuZ3VhamVfMSArIGRmMSRQU1VfbWF0ZW1hdGljYXNfMSArIGRmMSRQU1VfY2llbmNpYXNfMSArIGRmMSRORU1fMSwKICAgICAgICAgICAgICAgZGF0YT1kZjEpCmBgYAojc3VtbWFyeQpgYGB7cn0Kc3VtbWFyeShtb2RlbG83KQpgYGAKI2Ficm8gZGYgcGFyYSBjdWFydG8KYGBge3J9CmRmMiA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlRxaG0zZXdaRmlyRFY2QkhLeEYxbXFwZ0FET2d0NjI5TkQzc3diS1hHckU1NTlIdFY3OVFFdFlKa05UVWpJR2dlMVp0Q2FKLWNIUFNONC9wdWI/Z2lkPTE4MTUyMDc3MTImc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojbW9kZWxvIGRlIHJlZ3Jlc2lvbiBwYXJhIGN1YXJ0bwpgYGB7cn0KbW9kZWxvX2N1YXJ0byA8LSBnbG0oZGYyJEFQUk9CQUNJT04gfiBkZjIkU2V4bzEgKyBkZjIkUmVzaWRlbmNpYTEgKyBkZjIkRXN0YWJsZWNpbWllbnRvMSArICtkZjIkSGlzdG9yaWFsMSArIGRmMiRUcmFiYWpvMSArIGRmMiRQU1VfbGVuZ3VhamVfMSArIGRmMiRQU1VfbWF0ZW1hdGljYXNfMSArIGRmMiRQU1VfY2llbmNpYXNfMSArIGRmMiRORU1fMSwKICAgICAgICAgICAgICAgZGF0YT1kZjIsCiAgICAgICAgICAgICAgICBmYW1pbHkgPSBiaW5vbWlhbChsb2dpdCkpCmBgYAojbW9kZWxvX2N1YXJ0bwpgYGB7cn0KbW9kZWxvX2N1YXJ0bwpgYGAKI3N1bW1hcnkgbW9kZWxvX2N1YXJ0bwpgYGB7cn0Kc3VtbWFyeShtb2RlbG9fY3VhcnRvKQpgYGAKI3RhYmxhIGludGVydmFsb3MgcGFyYSBjdWFydG8gYcOxbwpgYGB7cn0Kc3RhcmdhemVyOjpzdGFyZ2F6ZXIobW9kZWxvX2N1YXJ0bywgIHR5cGUgPSAidGV4dCIsCiAgICAgICAgICAgICAgICAgICAgIG5vLnNwYWNlPUZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgYXBwbHkuY29lZiA9IGV4cCwgCiAgICAgICAgICAgICAgICAgICAgICMgYXBwbHkuc2UgPSBleHAsIAogICAgICAgICAgICAgICAgICAgICBjaT1UUlVFLCBjaS5sZXZlbD0wLjk1LCBzaW5nbGUucm93PVRSVUUsIAogICAgICAgICAgICAgICAgICAgICBvbWl0LnRhYmxlLmxheW91dCA9ICJuIiwgc3Rhci5jdXRvZmZzID0gTkEpICMgb21pdCBwIHZhbHVlcyBGVFchCmBgYAojbGluZWFsIHBhcmEgY3VhcnRvCmBgYHtyfQptb2RlbG9fNiA8LSBsbShkZjIkQVBST0JBQ0lPTiB+IGRmMiRTZXhvMSArIGRmMiRSZXNpZGVuY2lhMSArIGRmMiRFc3RhYmxlY2ltaWVudG8xICsgK2RmMiRIaXN0b3JpYWwxICsgZGYyJFRyYWJham8xICsgZGYyJFBTVV9sZW5ndWFqZV8xICsgZGYyJFBTVV9tYXRlbWF0aWNhc18xICsgZGYyJFBTVV9jaWVuY2lhc18xICsgZGYyJE5FTV8xLAogICAgICAgICAgICAgICBkYXRhPWRmMikKYGBgCiNzdW1tYXJ5CmBgYHtyfQpzdW1tYXJ5KG1vZGVsb182KQpgYGAKI2Ficm8gZGYgcGFyYSBxdWludG8gYcOxbyAKYGBge3J9CmRmMyA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlRxaG0zZXdaRmlyRFY2QkhLeEYxbXFwZ0FET2d0NjI5TkQzc3diS1hHckU1NTlIdFY3OVFFdFlKa05UVWpJR2dlMVp0Q2FKLWNIUFNONC9wdWI/Z2lkPTE0Mjk5MjQ2NjImc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojbW9kZWxvIGRlIHJlZ3Jlc2lvbiBwYXJhIHF1aW50bwpgYGB7cn0KbW9kZWxvX3F1aW50byA8LSBnbG0oZGYzJEFQUk9CQUNJT04gfiBkZjMkU2V4bzEgKyBkZjMkUmVzaWRlbmNpYTEgKyBkZjMkRXN0YWJsZWNpbWllbnRvMSArICtkZjMkSGlzdG9yaWFsMSArIGRmMyRUcmFiYWpvMSArIGRmMyRQU1VfbGVuZ3VhamVfMSArIGRmMyRQU1VfbWF0ZW1hdGljYXNfMSArIGRmMyRQU1VfY2llbmNpYXNfMSArIGRmMyRORU1fMSwKICAgICAgICAgICAgICAgZGF0YT1kZjMsCiAgICAgICAgICAgICAgICBmYW1pbHkgPSBiaW5vbWlhbChsb2dpdCkpCmBgYAojbW9kZWxvX3F1aW50bwpgYGB7cn0KbW9kZWxvX3F1aW50bwpgYGAKI3N1bW1hcnkgbW9kZWxvIHF1aW50bwpgYGB7cn0Kc3VtbWFyeShtb2RlbG9fcXVpbnRvKQpgYGAKI3RhYmxhIGludGVydmFsb3MgcGFyYSBxdWludG8KYGBge3J9CnN0YXJnYXplcjo6c3RhcmdhemVyKG1vZGVsb19xdWludG8sICB0eXBlID0gInRleHQiLAogICAgICAgICAgICAgICAgICAgICBuby5zcGFjZT1GQUxTRSwgCiAgICAgICAgICAgICAgICAgICAgIGFwcGx5LmNvZWYgPSBleHAsIAogICAgICAgICAgICAgICAgICAgICAjIGFwcGx5LnNlID0gZXhwLCAKICAgICAgICAgICAgICAgICAgICAgY2k9VFJVRSwgY2kubGV2ZWw9MC45NSwgc2luZ2xlLnJvdz1UUlVFLCAKICAgICAgICAgICAgICAgICAgICAgb21pdC50YWJsZS5sYXlvdXQgPSAibiIsIHN0YXIuY3V0b2ZmcyA9IE5BKSAjIG9taXQgcCB2YWx1ZXMgRlRXIQpgYGAKI21vZGVsbyBsaW5lYWwgcXVpbnRvCmBgYHtyfQptb2RlbG9fbGluZWFsIDwtIGxtKGRmMyRBUFJPQkFDSU9OIH4gZGYzJFNleG8xICsgZGYzJFJlc2lkZW5jaWExICsgZGYzJEVzdGFibGVjaW1pZW50bzEgKyArZGYzJEhpc3RvcmlhbDEgKyBkZjMkVHJhYmFqbzEgKyBkZjMkUFNVX2xlbmd1YWplXzEgKyBkZjMkUFNVX21hdGVtYXRpY2FzXzEgKyBkZjMkUFNVX2NpZW5jaWFzXzEgKyBkZjMkTkVNXzEsCiAgICAgICAgICAgICAgIGRhdGE9ZGYzKQpgYGAKYGBge3J9CnN1bW1hcnkobW9kZWxvX2xpbmVhbCkKYGBgCgo=