nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv", sep=",")
nba <- nba[order(nba$PTS),]
row.names(nba) <- nba$Name
nba <- nba[,2:20]
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = cm.colors(256), scale="column", margins=c(5,10))
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = heat.colors(256), scale="column", margins=c(5,10))
Not being into basketball, I can’t easily make head nor tails of the column names. It seems obscure how the rows are ordered.
where each topic is sized by the count of views and and colored by the count of comments. I don’t understand how the rows and columns are arranged. What is the unlabled rectangle? RColorBrewer provides a diverging color palette RdYlBu comprising a red, yellow, and blue spectrum.
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
## id views comments category
## 1 5019 148896 28 Artistic Visualization
## 2 1416 81374 26 Visualization
## 3 1416 81374 26 Featured
## 4 3485 80819 37 Featured
## 5 3485 80819 37 Mapping
## 6 3485 80819 37 Data Sources
## id views comments category
## 1 5019 148896 28 Artistic Visualization
## 2 1416 81374 26 Visualization
## 3 1416 81374 26 Featured
## 4 3485 80819 37 Featured
## 5 3485 80819 37 Mapping
## 6 3485 80819 37 Data Sources
#install.packages("RColorBrewer")
#install.packages("treemap")
library(treemap)
library(RColorBrewer)
treemap(data, index="category", vSize="views",
vColor="comments", type="value", palette="RdYlBu")
columns of year, name, value to generate interactive html time series where each name/key is bound to a colored stream spreading out from the x-axis.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(streamgraph)
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
year=rep(seq(1990,2016), each=10)
name=rep(letters[1:10], 27)
value=sample( seq(0,1,0.0001),length(year))
data=data.frame(year,name,value)
streamgraph(data, key="name",value="value",date="year")