nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv", sep=",")
nba <- nba[order(nba$PTS),]
row.names(nba) <- nba$Name
nba <- nba[,2:20]
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = cm.colors(256), scale="column", margins=c(5,10))
## different colors
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = heat.colors(256), scale="column", margins=c(5,10))
# Produce treemap of something
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
## id views comments category
## 1 5019 148896 28 Artistic Visualization
## 2 1416 81374 26 Visualization
## 3 1416 81374 26 Featured
## 4 3485 80819 37 Featured
## 5 3485 80819 37 Mapping
## 6 3485 80819 37 Data Sources
## id views comments category
## 1 5019 148896 28 Artistic Visualization
## 2 1416 81374 26 Visualization
## 3 1416 81374 26 Featured
## 4 3485 80819 37 Featured
## 5 3485 80819 37 Mapping
## 6 3485 80819 37 Data Sources
#install.packages("RColorBrewer")
#install.packages("treemap")
library(treemap)
library(RColorBrewer)
treemap(data, index="category", vSize="views",
vColor="comments", type="value", palette="RdYlBu")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(streamgraph)
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
year=rep(seq(1990,2016), each=10)
name=rep(letters[1:10], 27)
value=sample( seq(0,1,0.0001),length(year))
data=data.frame(year,name,value)
streamgraph(data, key="name",value="value",date="year")