easyalluvial allows you to build exploratory alluvial plots (sankey diagrams) with a single line of code while automatically binning numerical variables. This releas 0.2.1 ensures tidyr 1.0.0 compatibility and fixes a bug around categorical variables for model response plots
[ì°¸ê³ ] https://www.datisticsblog.com/2019/04/visualising-model-response-with-easyalluvial
## -- Attaching packages ------------------------------------------------------------------------ tidyverse 1.2.1 --
## √ ggplot2 3.2.0 √ purrr 0.3.2
## √ tibble 2.1.3 √ dplyr 0.8.3
## √ tidyr 1.0.0 √ stringr 1.4.0
## √ readr 1.3.1 √ forcats 0.4.0
## -- Conflicts --------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## Classes 'tbl_df', 'tbl' and 'data.frame': 891 obs. of 10 variables:
## $ Survived: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 2 2 ...
## $ Pclass : Ord.factor w/ 3 levels "1"<"2"<"3": 3 1 3 1 3 3 1 3 3 2 ...
## $ Sex : Factor w/ 2 levels "male","female": 1 2 2 2 1 1 1 1 2 2 ...
## $ Age : num 22 38 26 35 35 30 54 2 27 14 ...
## $ SibSp : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch : int 0 0 0 0 0 0 0 1 2 0 ...
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Cabin : chr "" "C85" "" "C123" ...
## $ Embarked: chr "S" "C" "S" "S" ...
## $ title : Factor w/ 8 levels "Mr","Mrs","Miss",..: 1 2 3 2 1 1 1 4 2 2 ...
## Classes 'tbl_df', 'tbl' and 'data.frame': 891 obs. of 4 variables:
## $ Survived: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 2 2 ...
## $ Pclass : Ord.factor w/ 3 levels "1"<"2"<"3": 3 1 3 1 3 3 1 3 3 2 ...
## $ Sex : Factor w/ 2 levels "male","female": 1 2 2 2 1 1 1 1 2 2 ...
## $ title : Factor w/ 8 levels "Mr","Mrs","Miss",..: 1 2 3 2 1 1 1 4 2 2 ...