2.1 A worked example
data(CPS85 , package = "mosaicData")
2.1.1 ggplot
library(ggplot2)
ggplot(data = CPS85,
mapping = aes(x = exper, y = wage))

2.1.2 geoms
ggplot(data = CPS85,
mapping = aes(x = exper, y = wage)) +
geom_point()

library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
plotdata <- filter(CPS85, wage < 40)
ggplot(data = plotdata,
mapping = aes(x = exper, y = wage)) +
geom_point()

ggplot(data = plotdata,
mapping = aes(x = exper, y = wage)) +
geom_point(color = "cornflowerblue",
alpha = .7,
size = 3)

ggplot(data = plotdata,
mapping = aes(x = exper, y = wage)) +
geom_point(color = "cornflowerblue",
alpha = .7,
size = 3) +
geom_smooth(method = "lm")

2.1.3 grouping
ggplot(data = plotdata,
mapping = aes(x = exper,
y = wage,
color = sex)) +
geom_point(alpha = .7,
size = 3) +
geom_smooth(method = "lm",
se = FALSE,
size = 1.5)

2.1.4 scales
ggplot(data = plotdata,
mapping = aes(x = exper,
y = wage,
color = sex)) +
geom_point(alpha = .7,
size = 3) +
geom_smooth(method = "lm",
se = FALSE,
size = 1.5) +
scale_x_continuous(breaks = seq(0, 60, 10)) +
scale_y_continuous(breaks = seq(0, 30, 5),
label = scales::dollar) +
scale_color_manual(values = c("indianred3",
"cornflowerblue"))

2.1.5 facets
ggplot(data = plotdata,
mapping = aes(x = exper,
y = wage,
color = sex)) +
geom_point(alpha = .7) +
geom_smooth(method = "lm",
se = FALSE) +
scale_x_continuous(breaks = seq(0, 60, 10)) +
scale_y_continuous(breaks = seq(0, 30, 5),
label = scales::dollar) +
scale_color_manual(values = c("indianred3",
"cornflowerblue")) +
facet_wrap(~sector)

2.1.6 labels
ggplot(data = plotdata,
mapping = aes(x = exper,
y = wage,
color = sex)) +
geom_point(alpha = .7) +
geom_smooth(method = "lm",
se = FALSE) +
scale_x_continuous(breaks = seq(0, 60, 10)) +
scale_y_continuous(breaks = seq(0, 30, 5),
label = scales::dollar) +
scale_color_manual(values = c("indianred3",
"cornflowerblue")) +
facet_wrap(~sector) +
labs(title = "Relationship between wages and experience",
subtitle = "Current Population Survey",
caption = "source: http://mosaic-web.org/",
x = " Years of Experience",
y = "Hourly Wage",
color = "Gender")

2.1.7 themes
ggplot(data = plotdata,
mapping = aes(x = exper,
y = wage,
color = sex)) +
geom_point(alpha = .6) +
geom_smooth(method = "lm",
se = FALSE) +
scale_x_continuous(breaks = seq(0, 60, 10)) +
scale_y_continuous(breaks = seq(0, 30, 5),
label = scales::dollar) +
scale_color_manual(values = c("indianred3",
"cornflowerblue")) +
facet_wrap(~sector) +
labs(title = "Relationship between wages and experience",
subtitle = "Current Population Survey",
caption = "source: http://mosaic-web.org/",
x = " Years of Experience",
y = "Hourly Wage",
color = "Gender") +
theme_minimal()
