Part 1: Read the data..
# reading external data and storing into a dataframe called "airline.df"
airline.df <- read.csv("BOMDELBOM.csv")
# loading necessary libraries
library(psych)
## Warning: package 'psych' was built under R version 3.5.3
Part 2: Column names
# Display the column names
colnames(airline.df)
## [1] "FlightNumber" "Airline" "DepartureCityCode"
## [4] "ArrivalCityCode" "DepartureTime" "ArrivalTime"
## [7] "Departure" "FlyingMinutes" "Aircraft"
## [10] "PlaneModel" "Capacity" "SeatPitch"
## [13] "SeatWidth" "DataCollectionDate" "DateDeparture"
## [16] "IsWeekend" "Price" "AdvancedBookingDays"
## [19] "IsDiwali" "DayBeforeDiwali" "DayAfterDiwali"
## [22] "MarketShare" "LoadFactor"
Part 3: Data Dimensions
# Display the Data Dimensions
dim(airline.df)
## [1] 305 23
Part 4: Determining the mean and SD
# getting the mean and standard deviation of Capacity and Flyng Minutes
mean(airline.df$Capacity)
## [1] 176.3574
mean(airline.df$FlyingMinutes)
## [1] 136.0328
sd(airline.df$Capacity)
## [1] 32.38868
sd(airline.df$FlyingMinutes)
## [1] 4.705006
# describing the data
describe(airline.df$Capacity)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 305 176.36 32.39 180 172.19 14.83 138 303 165 2.11 5.91
## se
## X1 1.85
describe(airline.df$FlyingMinutes)
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 305 136.03 4.71 135 135.8 7.41 125 145 20 0.28 -0.33
## se
## X1 0.27