Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage. The goal of this report is to identify what weather event(s) has the biggest the impact on
1.Health 2.Economy

Data Processing

        NoaaStormData <- read.csv("repdata_data_StormData.csv.bz2",header = TRUE, sep = ",")

# Analysis of Data to understand the which attributes are needed for analysis of impact on health and economy
summary(NoaaStormData)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295
head(NoaaStormData)
dim(NoaaStormData)
## [1] 902297     37
str(NoaaStormData)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
# After analysing the data, selecting few attributes required to answer fatalities, injuries,crop damage and property damage. Also selecting data from Jan 1st 1996, as prior to January 1996, not all data type events were recorded.

NoaaStormData$BGN_DATE <- as.Date(NoaaStormData$BGN_DATE, "%m/%d/%Y")
NoaaStormData_sub <- filter(NoaaStormData, BGN_DATE >= "1996-01-01")

Subset_NoaaStormData <- subset(NoaaStormData_sub, select = c(BGN_DATE,COUNTYNAME,STATE, EVTYPE,END_DATE,FATALITIES,INJURIES,PROPDMG,PROPDMGEXP,CROPDMG,CROPDMGEXP))
head(Subset_NoaaStormData)

Data Processing for -which types of events are most harmful with respect to population health

HarmfulEvent <- subset(Subset_NoaaStormData, !Subset_NoaaStormData$FATALITIES == 0 & !Subset_NoaaStormData$INJURIES == 
    0, select = c(EVTYPE, FATALITIES, INJURIES))


# Grouping fatalities and injuries  for top 10 events
no_of_fatalities <- aggregate(HarmfulEvent$FATALITIES, list(HarmfulEvent$EVTYPE),sum)
names(no_of_fatalities) <- c("Event_Type","Fatalities_count")
no_of_fatalities <- no_of_fatalities[order(-no_of_fatalities$Fatalities_count),][1:10,]

no_of_injuries <- aggregate(HarmfulEvent$INJURIES, list(HarmfulEvent$EVTYPE),sum)
names(no_of_injuries) <- c("Event_Type","Injuries_count")
no_of_injuries <- no_of_injuries[order(-no_of_injuries$Injuries_count),][1:10,]

Results - Health Impact

(Comment - Data processing and Results for Economic Impact is after this section)

plot top 10 events which has impacted health

#Fatalities_plot

ggplot() + geom_bar(data = no_of_fatalities, aes(x = Event_Type , 
    y = Fatalities_count, fill = interaction(Fatalities_count, Event_Type)), stat = "identity", 
    show.legend = F) + theme(axis.text.x = element_text(angle = 30, hjust = 1)) + 
    xlab("Harmful Fatal Events") + ylab("Fatalities count") + ggtitle("Top 10 Fatal events") + 
    theme(axis.text.x = element_text(angle = 30, hjust = 1))

#Injuries_plot 

ggplot() + geom_bar(data = no_of_injuries, aes(x = Event_Type, y = Injuries_count, 
    fill = interaction(Injuries_count, Event_Type)), stat = "identity", show.legend = F) + 
    theme(axis.text.x = element_text(angle = 30, hjust = 1)) + xlab("Harmful Events - Injuries") + 
    ylab("Injuries Count") + ggtitle("Top 10 Injury causing events") + 
    theme(axis.text.x = element_text(angle = 30, hjust = 1))

# Analysis - Tornado is the major cause for causing fatalities and injuries.

Data Processing for -which types of events have the greatest economic consequences

# Select data for Property Damage and Crop Damage
EconomicImpact <- subset(Subset_NoaaStormData, !Subset_NoaaStormData$PROPDMG == 0 & !Subset_NoaaStormData$CROPDMG == 
    0, select = c(EVTYPE, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP))


EconomicImpact <- subset(EconomicImpact, EconomicImpact$PROPDMGEXP == "K" | EconomicImpact$PROPDMGEXP == 
    "k" | EconomicImpact$PROPDMGEXP == "M" | EconomicImpact$PROPDMGEXP == "m" | 
    EconomicImpact$PROPDMGEXP == "B" | EconomicImpact$PROPDMGEXP == "b")

EconomicImpact <- subset(EconomicImpact, EconomicImpact$CROPDMGEXP == "K" | EconomicImpact$CROPDMGEXP == 
    "k" | EconomicImpact$CROPDMGEXP == "M" | EconomicImpact$CROPDMGEXP == "m" | 
    EconomicImpact$CROPDMGEXP == "B" | EconomicImpact$CROPDMGEXP == "b")

# Convert ecnomic values to number
EconomicImpact$PROPDMGEXP <- gsub("m", 1e+06, EconomicImpact$PROPDMGEXP, ignore.case = TRUE)
EconomicImpact$PROPDMGEXP <- gsub("k", 1000, EconomicImpact$PROPDMGEXP, ignore.case = TRUE)
EconomicImpact$PROPDMGEXP <- gsub("b", 1e+09, EconomicImpact$PROPDMGEXP, ignore.case = TRUE)
EconomicImpact$PROPDMGEXP <- as.numeric(EconomicImpact$PROPDMGEXP)
EconomicImpact$CROPDMGEXP <- gsub("m", 1e+06, EconomicImpact$CROPDMGEXP, ignore.case = TRUE)
EconomicImpact$CROPDMGEXP <- gsub("k", 1000, EconomicImpact$CROPDMGEXP, ignore.case = TRUE)
EconomicImpact$CROPDMGEXP <- gsub("b", 1e+09, EconomicImpact$CROPDMGEXP, ignore.case = TRUE)
EconomicImpact$CROPDMGEXP <- as.numeric(EconomicImpact$CROPDMGEXP)
EconomicImpact$PROPDMGEXP <- as.numeric(EconomicImpact$PROPDMGEXP)

# then sum the damages by each event type
EconomicImpact$Total_damage <- (EconomicImpact$CROPDMG * EconomicImpact$CROPDMGEXP) + 
    (EconomicImpact$PROPDMG * EconomicImpact$PROPDMGEXP)



EconomicImpact <- aggregate(EconomicImpact$Total_damage, list(EconomicImpact$EVTYPE),sum)
names(EconomicImpact) <- c("Event_Type","Total_damage")
EconomicImpact <- EconomicImpact[order(-EconomicImpact$Total_damage),][1:10,]

Results - For Economic Impact

plot top 10 events which has impacted Economy

# Now plot the graph
ggplot() + geom_bar(data = EconomicImpact, aes(x = Event_Type, y = Total_damage, fill = interaction(Total_damage, 
    Event_Type)), stat = "identity", show.legend = F) + theme(axis.text.x = element_text(angle = 30, 
    hjust = 1)) + xlab("Event Type") + ylab("Total Damage")+ ggtitle("Top 10 event impacting economy")

# Analysis - Flood is the major cause with respect to cost of damage.

Summary

Tornado are most harmful with respect to population health. Flood have the greatest negative impact on economy.