Lifetime IPV and Hypertension Regression Models and Plots

Systolic Blood Pressure

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ (Age + LifeIPV + Sex + PovStat + BMI)^5 + (Age | HNDid) +      (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 5476 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 135.647  11.647       
##           Age           0.141   0.375   1.00
##  subclass (Intercept)   0.067   0.259       
##  Residual             131.726  11.477       
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                                       Estimate Std. Error        df
## (Intercept)                           84.30062    7.23458 330.00000
## Age                                    0.76647    0.78226 478.00000
## LifeIPV1                              20.43028   11.82415 360.00000
## SexMen                                13.58134   11.35261 339.00000
## PovStatBelow                           9.18406   11.55388 311.00000
## BMI                                    1.24292    0.23228 335.00000
## Age:LifeIPV1                           0.98646    1.23511 537.00000
## Age:SexMen                            -1.15352    1.22338 517.00000
## Age:PovStatBelow                      -0.64255    1.17148 486.00000
## Age:BMI                                0.00755    0.02434 502.00000
## LifeIPV1:SexMen                        5.76155   40.10221 510.00000
## LifeIPV1:PovStatBelow                -25.78643   17.22118 350.00000
## LifeIPV1:BMI                          -0.70293    0.36650 377.00000
## SexMen:PovStatBelow                   -4.69607   20.18798 379.00000
## SexMen:BMI                            -0.52364    0.38052 346.00000
## PovStatBelow:BMI                      -0.29223    0.35108 324.00000
## Age:LifeIPV1:SexMen                   -0.07269    4.07873 457.00000
## Age:LifeIPV1:PovStatBelow              1.78810    1.83532 517.00000
## Age:LifeIPV1:BMI                      -0.03611    0.03861 547.00000
## Age:SexMen:PovStatBelow                1.95447    2.14982 560.00000
## Age:SexMen:BMI                         0.01404    0.04090 527.00000
## Age:PovStatBelow:BMI                   0.01236    0.03632 502.00000
## LifeIPV1:SexMen:PovStatBelow          18.40333   47.39050 498.00000
## LifeIPV1:SexMen:BMI                    0.04776    1.56465 498.00000
## LifeIPV1:PovStatBelow:BMI              0.87929    0.52734 366.00000
## SexMen:PovStatBelow:BMI                0.43388    0.68103 395.00000
## Age:LifeIPV1:SexMen:PovStatBelow       4.95068    5.43666 573.00000
## Age:LifeIPV1:SexMen:BMI                0.02806    0.14701 387.00000
## Age:LifeIPV1:PovStatBelow:BMI         -0.06901    0.05670 517.00000
## Age:SexMen:PovStatBelow:BMI           -0.02910    0.07190 559.00000
## LifeIPV1:SexMen:PovStatBelow:BMI      -0.54690    1.76225 511.00000
## Age:LifeIPV1:SexMen:PovStatBelow:BMI  -0.14612    0.18539 524.00000
##                                      t value Pr(>|t|)
## (Intercept)                            11.65  < 2e-16
## Age                                     0.98    0.328
## LifeIPV1                                1.73    0.085
## SexMen                                  1.20    0.232
## PovStatBelow                            0.79    0.427
## BMI                                     5.35  1.6e-07
## Age:LifeIPV1                            0.80    0.425
## Age:SexMen                             -0.94    0.346
## Age:PovStatBelow                       -0.55    0.584
## Age:BMI                                 0.31    0.757
## LifeIPV1:SexMen                         0.14    0.886
## LifeIPV1:PovStatBelow                  -1.50    0.135
## LifeIPV1:BMI                           -1.92    0.056
## SexMen:PovStatBelow                    -0.23    0.816
## SexMen:BMI                             -1.38    0.170
## PovStatBelow:BMI                       -0.83    0.406
## Age:LifeIPV1:SexMen                    -0.02    0.986
## Age:LifeIPV1:PovStatBelow               0.97    0.330
## Age:LifeIPV1:BMI                       -0.94    0.350
## Age:SexMen:PovStatBelow                 0.91    0.364
## Age:SexMen:BMI                          0.34    0.731
## Age:PovStatBelow:BMI                    0.34    0.734
## LifeIPV1:SexMen:PovStatBelow            0.39    0.698
## LifeIPV1:SexMen:BMI                     0.03    0.976
## LifeIPV1:PovStatBelow:BMI               1.67    0.096
## SexMen:PovStatBelow:BMI                 0.64    0.524
## Age:LifeIPV1:SexMen:PovStatBelow        0.91    0.363
## Age:LifeIPV1:SexMen:BMI                 0.19    0.849
## Age:LifeIPV1:PovStatBelow:BMI          -1.22    0.224
## Age:SexMen:PovStatBelow:BMI            -0.40    0.686
## LifeIPV1:SexMen:PovStatBelow:BMI       -0.31    0.756
## Age:LifeIPV1:SexMen:PovStatBelow:BMI   -0.79    0.431
## 
## Correlation matrix not shown by default, as p = 32 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize plot of chunk initialize SBP Final Model

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ Age + LifeIPV + Sex + PovStat + BMI + Age:LifeIPV +      Age:Sex + Age:PovStat + Age:BMI + LifeIPV:BMI + Sex:PovStat +      Age:LifeIPV:BMI + Age:Sex:PovStat + (Age | HNDid) + (1 |      subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 5493 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 137.731  11.736       
##           Age           0.116   0.340   1.00
##  subclass (Intercept)   0.696   0.834       
##  Residual             130.904  11.441       
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                         Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)              89.5638     4.5619 331.0000   19.63  < 2e-16
## Age                       0.5044     0.4893 513.0000    1.03   0.3031
## LifeIPV1                 10.6734     7.2557 367.0000    1.47   0.1421
## SexMen                   -0.7366     2.1985 260.0000   -0.34   0.7379
## PovStatBelow              0.1859     2.1646 256.0000    0.09   0.9316
## BMI                       1.0475     0.1407 335.0000    7.45  8.2e-13
## Age:LifeIPV1              2.2890     0.8140 560.0000    2.81   0.0051
## Age:SexMen               -0.5869     0.2349 477.0000   -2.50   0.0128
## Age:PovStatBelow         -0.3793     0.2169 471.0000   -1.75   0.0810
## Age:BMI                   0.0140     0.0149 523.0000    0.94   0.3467
## LifeIPV1:BMI             -0.3074     0.2268 380.0000   -1.36   0.1761
## SexMen:PovStatBelow       9.6714     3.5600 261.0000    2.72   0.0070
## Age:LifeIPV1:BMI         -0.0776     0.0254 552.0000   -3.05   0.0024
## Age:SexMen:PovStatBelow   1.2424     0.3756 510.0000    3.31   0.0010
## 
## Correlation of Fixed Effects:
##             (Intr) Age    LfIPV1 SexMen PvSttB BMI    Ag:LIPV1 Ag:SxM
## Age          0.459                                                   
## LifeIPV1    -0.590 -0.278                                            
## SexMen      -0.334 -0.114  0.088                                     
## PovStatBelw -0.087  0.062 -0.116  0.331                              
## BMI         -0.942 -0.475  0.595  0.117 -0.079                       
## Age:LifIPV1 -0.259 -0.579  0.395  0.013 -0.143  0.291                
## Age:SexMen  -0.126 -0.378  0.021  0.420  0.090  0.049  0.155         
## Ag:PvSttBlw  0.054 -0.192 -0.137  0.104  0.450 -0.111  0.029    0.390
## Age:BMI     -0.479 -0.942  0.312  0.036 -0.119  0.541  0.566    0.168
## LifIPV1:BMI  0.569  0.278 -0.966 -0.016  0.087 -0.619 -0.373    0.013
## SxMn:PvSttB  0.051 -0.021  0.080 -0.554 -0.598  0.063  0.073   -0.221
## A:LIPV1:BMI  0.260  0.561 -0.373  0.017  0.124 -0.310 -0.972   -0.094
## Ag:SxMn:PSB  0.004  0.146  0.055 -0.227 -0.252  0.032 -0.030   -0.579
##             Ag:PSB Ag:BMI LIPV1: SM:PSB A:LIPV1:
## Age                                             
## LifeIPV1                                        
## SexMen                                          
## PovStatBelw                                     
## BMI                                             
## Age:LifIPV1                                     
## Age:SexMen                                      
## Ag:PvSttBlw                                     
## Age:BMI      0.001                              
## LifIPV1:BMI  0.117 -0.333                       
## SxMn:PvSttB -0.272  0.062 -0.083                
## A:LIPV1:BMI -0.030 -0.590  0.380 -0.069         
## Ag:SxMn:PSB -0.572 -0.030 -0.051  0.400  0.020

Diastolic Blood Pressure

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable

plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ (Age + LifeIPV + Sex + PovStat + BMI)^5 + (Age | HNDid) +      (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 4885 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 2.93e+01 5.41e+00     
##           Age         7.13e-03 8.44e-02 1.00
##  subclass (Intercept) 1.23e-10 1.11e-05     
##  Residual             6.36e+01 7.98e+00     
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                                       Estimate Std. Error        df
## (Intercept)                           52.76637    4.01270 314.00000
## Age                                   -0.10613    0.45152 401.00000
## LifeIPV1                              15.04874    6.62041 334.00000
## SexMen                                 9.41670    6.30676 313.00000
## PovStatBelow                           3.10896    6.36041 299.00000
## BMI                                    0.57851    0.12878 305.00000
## Age:LifeIPV1                           1.23185    0.72761 456.00000
## Age:SexMen                            -0.31963    0.71398 429.00000
## Age:PovStatBelow                      -0.39832    0.67771 406.00000
## Age:BMI                                0.00367    0.01415 422.00000
## LifeIPV1:SexMen                      -18.91715   24.22005 458.00000
## LifeIPV1:PovStatBelow                -17.00978    9.60749 329.00000
## LifeIPV1:BMI                          -0.45934    0.20628 347.00000
## SexMen:PovStatBelow                    0.65166   11.37558 348.00000
## SexMen:BMI                            -0.21771    0.21153 308.00000
## PovStatBelow:BMI                      -0.05340    0.19431 311.00000
## Age:LifeIPV1:SexMen                   -2.15198    2.63998 372.00000
## Age:LifeIPV1:PovStatBelow             -0.73095    1.07029 427.00000
## Age:LifeIPV1:BMI                      -0.03553    0.02285 466.00000
## Age:SexMen:PovStatBelow                1.64135    1.27177 472.00000
## Age:SexMen:BMI                         0.01312    0.02396 437.00000
## Age:PovStatBelow:BMI                   0.01443    0.02119 424.00000
## LifeIPV1:SexMen:PovStatBelow          28.27771   28.09857 456.00000
## LifeIPV1:SexMen:BMI                    0.62957    0.95339 449.00000
## LifeIPV1:PovStatBelow:BMI              0.57882    0.29597 344.00000
## SexMen:PovStatBelow:BMI                0.03576    0.38582 361.00000
## Age:LifeIPV1:SexMen:PovStatBelow       7.94957    3.44538 499.00000
## Age:LifeIPV1:SexMen:BMI                0.08045    0.09588 319.00000
## Age:LifeIPV1:PovStatBelow:BMI          0.00893    0.03311 431.00000
## Age:SexMen:PovStatBelow:BMI           -0.04596    0.04258 474.00000
## LifeIPV1:SexMen:PovStatBelow:BMI      -0.76965    1.05831 459.00000
## Age:LifeIPV1:SexMen:PovStatBelow:BMI  -0.23519    0.11811 445.00000
##                                      t value Pr(>|t|)
## (Intercept)                            13.15   <2e-16
## Age                                    -0.24    0.814
## LifeIPV1                                2.27    0.024
## SexMen                                  1.49    0.136
## PovStatBelow                            0.49    0.625
## BMI                                     4.49    1e-05
## Age:LifeIPV1                            1.69    0.091
## Age:SexMen                             -0.45    0.655
## Age:PovStatBelow                       -0.59    0.557
## Age:BMI                                 0.26    0.795
## LifeIPV1:SexMen                        -0.78    0.435
## LifeIPV1:PovStatBelow                  -1.77    0.078
## LifeIPV1:BMI                           -2.23    0.027
## SexMen:PovStatBelow                     0.06    0.954
## SexMen:BMI                             -1.03    0.304
## PovStatBelow:BMI                       -0.27    0.784
## Age:LifeIPV1:SexMen                    -0.82    0.416
## Age:LifeIPV1:PovStatBelow              -0.68    0.495
## Age:LifeIPV1:BMI                       -1.55    0.121
## Age:SexMen:PovStatBelow                 1.29    0.197
## Age:SexMen:BMI                          0.55    0.584
## Age:PovStatBelow:BMI                    0.68    0.496
## LifeIPV1:SexMen:PovStatBelow            1.01    0.315
## LifeIPV1:SexMen:BMI                     0.66    0.509
## LifeIPV1:PovStatBelow:BMI               1.96    0.051
## SexMen:PovStatBelow:BMI                 0.09    0.926
## Age:LifeIPV1:SexMen:PovStatBelow        2.31    0.021
## Age:LifeIPV1:SexMen:BMI                 0.84    0.402
## Age:LifeIPV1:PovStatBelow:BMI           0.27    0.788
## Age:SexMen:PovStatBelow:BMI            -1.08    0.281
## LifeIPV1:SexMen:PovStatBelow:BMI       -0.73    0.467
## Age:LifeIPV1:SexMen:PovStatBelow:BMI   -1.99    0.047
## 
## Correlation matrix not shown by default, as p = 32 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

Diastolic Blood Pressure Final Model

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ Age + LifeIPV + Sex + PovStat + BMI + Age:LifeIPV +      Age:Sex + Age:PovStat + Age:BMI + LifeIPV:Sex + LifeIPV:PovStat +      LifeIPV:BMI + Sex:PovStat + Sex:BMI + PovStat:BMI + Age:LifeIPV:Sex +      Age:LifeIPV:PovStat + Age:LifeIPV:BMI + Age:Sex:PovStat +      Age:Sex:BMI + Age:PovStat:BMI + LifeIPV:Sex:PovStat + LifeIPV:Sex:BMI +      LifeIPV:PovStat:BMI + Sex:PovStat:BMI + Age:LifeIPV:Sex:PovStat +      Age:LifeIPV:Sex:BMI + Age:LifeIPV:PovStat:BMI + Age:Sex:PovStat:BMI +      LifeIPV:Sex:PovStat:BMI + Age:LifeIPV:Sex:PovStat:BMI + (Age |      HNDid) + (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 4885 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 2.93e+01 5.41e+00     
##           Age         7.13e-03 8.44e-02 1.00
##  subclass (Intercept) 1.23e-10 1.11e-05     
##  Residual             6.36e+01 7.98e+00     
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                                       Estimate Std. Error        df
## (Intercept)                           52.76637    4.01270 314.00000
## Age                                   -0.10613    0.45152 401.00000
## LifeIPV1                              15.04874    6.62041 334.00000
## SexMen                                 9.41670    6.30676 313.00000
## PovStatBelow                           3.10896    6.36041 299.00000
## BMI                                    0.57851    0.12878 305.00000
## Age:LifeIPV1                           1.23185    0.72761 456.00000
## Age:SexMen                            -0.31963    0.71398 429.00000
## Age:PovStatBelow                      -0.39832    0.67771 406.00000
## Age:BMI                                0.00367    0.01415 422.00000
## LifeIPV1:SexMen                      -18.91715   24.22005 458.00000
## LifeIPV1:PovStatBelow                -17.00978    9.60749 329.00000
## LifeIPV1:BMI                          -0.45934    0.20628 347.00000
## SexMen:PovStatBelow                    0.65166   11.37558 348.00000
## SexMen:BMI                            -0.21771    0.21153 308.00000
## PovStatBelow:BMI                      -0.05340    0.19431 311.00000
## Age:LifeIPV1:SexMen                   -2.15198    2.63998 372.00000
## Age:LifeIPV1:PovStatBelow             -0.73095    1.07029 427.00000
## Age:LifeIPV1:BMI                      -0.03553    0.02285 466.00000
## Age:SexMen:PovStatBelow                1.64135    1.27177 472.00000
## Age:SexMen:BMI                         0.01312    0.02396 437.00000
## Age:PovStatBelow:BMI                   0.01443    0.02119 424.00000
## LifeIPV1:SexMen:PovStatBelow          28.27771   28.09857 456.00000
## LifeIPV1:SexMen:BMI                    0.62957    0.95339 449.00000
## LifeIPV1:PovStatBelow:BMI              0.57882    0.29597 344.00000
## SexMen:PovStatBelow:BMI                0.03576    0.38582 361.00000
## Age:LifeIPV1:SexMen:PovStatBelow       7.94957    3.44538 499.00000
## Age:LifeIPV1:SexMen:BMI                0.08045    0.09588 319.00000
## Age:LifeIPV1:PovStatBelow:BMI          0.00893    0.03311 431.00000
## Age:SexMen:PovStatBelow:BMI           -0.04596    0.04258 474.00000
## LifeIPV1:SexMen:PovStatBelow:BMI      -0.76965    1.05831 459.00000
## Age:LifeIPV1:SexMen:PovStatBelow:BMI  -0.23519    0.11811 445.00000
##                                      t value Pr(>|t|)
## (Intercept)                            13.15   <2e-16
## Age                                    -0.24    0.814
## LifeIPV1                                2.27    0.024
## SexMen                                  1.49    0.136
## PovStatBelow                            0.49    0.625
## BMI                                     4.49    1e-05
## Age:LifeIPV1                            1.69    0.091
## Age:SexMen                             -0.45    0.655
## Age:PovStatBelow                       -0.59    0.557
## Age:BMI                                 0.26    0.795
## LifeIPV1:SexMen                        -0.78    0.435
## LifeIPV1:PovStatBelow                  -1.77    0.078
## LifeIPV1:BMI                           -2.23    0.027
## SexMen:PovStatBelow                     0.06    0.954
## SexMen:BMI                             -1.03    0.304
## PovStatBelow:BMI                       -0.27    0.784
## Age:LifeIPV1:SexMen                    -0.82    0.416
## Age:LifeIPV1:PovStatBelow              -0.68    0.495
## Age:LifeIPV1:BMI                       -1.55    0.121
## Age:SexMen:PovStatBelow                 1.29    0.197
## Age:SexMen:BMI                          0.55    0.584
## Age:PovStatBelow:BMI                    0.68    0.496
## LifeIPV1:SexMen:PovStatBelow            1.01    0.315
## LifeIPV1:SexMen:BMI                     0.66    0.509
## LifeIPV1:PovStatBelow:BMI               1.96    0.051
## SexMen:PovStatBelow:BMI                 0.09    0.926
## Age:LifeIPV1:SexMen:PovStatBelow        2.31    0.021
## Age:LifeIPV1:SexMen:BMI                 0.84    0.402
## Age:LifeIPV1:PovStatBelow:BMI           0.27    0.788
## Age:SexMen:PovStatBelow:BMI            -1.08    0.281
## LifeIPV1:SexMen:PovStatBelow:BMI       -0.73    0.467
## Age:LifeIPV1:SexMen:PovStatBelow:BMI   -1.99    0.047
## 
## Correlation matrix not shown by default, as p = 32 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

Systolic Blood Pressure (categorical BMI)

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0

plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ (Age + LifeIPV + PovStat + Sex + BMIcat2)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 5428 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 153.8561 12.40        
##           Age           0.0485  0.22    1.00
##  subclass (Intercept)   0.0000  0.00        
##  Residual             131.9516 11.49        
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                                               Estimate Std. Error      df
## (Intercept)                                    115.543      2.354 383.000
## Age                                              0.947      0.260 549.000
## LifeIPV1                                         4.565      3.818 396.000
## PovStatBelow                                    -0.802      4.499 320.000
## SexMen                                           1.399      3.160 344.000
## BMIcat2Obese                                    14.626      3.103 553.000
## Age:LifeIPV1                                     0.227      0.399 579.000
## Age:PovStatBelow                                -0.476      0.425 522.000
## Age:SexMen                                      -0.804      0.346 528.000
## Age:BMIcat2Obese                                -0.291      0.344 631.000
## LifeIPV1:PovStatBelow                           -1.049      6.099 343.000
## LifeIPV1:SexMen                                  3.744      7.831 310.000
## LifeIPV1:BMIcat2Obese                          -11.143      4.745 577.000
## PovStatBelow:SexMen                              7.053      5.809 320.000
## PovStatBelow:BMIcat2Obese                        2.681      5.787 409.000
## SexMen:BMIcat2Obese                            -10.028      4.637 419.000
## Age:LifeIPV1:PovStatBelow                       -0.108      0.614 566.000
## Age:LifeIPV1:SexMen                              0.564      0.936 579.000
## Age:LifeIPV1:BMIcat2Obese                       -0.217      0.509 632.000
## Age:PovStatBelow:SexMen                          1.123      0.591 539.000
## Age:PovStatBelow:BMIcat2Obese                    0.866      0.566 583.000
## Age:SexMen:BMIcat2Obese                          0.473      0.518 578.000
## LifeIPV1:PovStatBelow:SexMen                     9.873     12.252 307.000
## LifeIPV1:PovStatBelow:BMIcat2Obese               5.488      8.052 467.000
## LifeIPV1:SexMen:BMIcat2Obese                    17.655     26.523 307.000
## PovStatBelow:SexMen:BMIcat2Obese                 3.910      8.290 490.000
## Age:LifeIPV1:PovStatBelow:SexMen                 3.000      1.686 634.000
## Age:LifeIPV1:PovStatBelow:BMIcat2Obese          -0.988      0.811 625.000
## Age:LifeIPV1:SexMen:BMIcat2Obese                 0.741      2.039 274.000
## Age:PovStatBelow:SexMen:BMIcat2Obese            -0.456      0.900 607.000
## LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese      -27.295     29.567 369.000
## Age:LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese   -3.848      2.646 414.000
##                                               t value Pr(>|t|)
## (Intercept)                                     49.09  < 2e-16
## Age                                              3.65  0.00029
## LifeIPV1                                         1.20  0.23257
## PovStatBelow                                    -0.18  0.85860
## SexMen                                           0.44  0.65813
## BMIcat2Obese                                     4.71  3.1e-06
## Age:LifeIPV1                                     0.57  0.56945
## Age:PovStatBelow                                -1.12  0.26335
## Age:SexMen                                      -2.32  0.02066
## Age:BMIcat2Obese                                -0.85  0.39814
## LifeIPV1:PovStatBelow                           -0.17  0.86351
## LifeIPV1:SexMen                                  0.48  0.63295
## LifeIPV1:BMIcat2Obese                           -2.35  0.01918
## PovStatBelow:SexMen                              1.21  0.22558
## PovStatBelow:BMIcat2Obese                        0.46  0.64338
## SexMen:BMIcat2Obese                             -2.16  0.03115
## Age:LifeIPV1:PovStatBelow                       -0.18  0.86075
## Age:LifeIPV1:SexMen                              0.60  0.54668
## Age:LifeIPV1:BMIcat2Obese                       -0.43  0.66970
## Age:PovStatBelow:SexMen                          1.90  0.05787
## Age:PovStatBelow:BMIcat2Obese                    1.53  0.12627
## Age:SexMen:BMIcat2Obese                          0.91  0.36173
## LifeIPV1:PovStatBelow:SexMen                     0.81  0.42100
## LifeIPV1:PovStatBelow:BMIcat2Obese               0.68  0.49588
## LifeIPV1:SexMen:BMIcat2Obese                     0.67  0.50613
## PovStatBelow:SexMen:BMIcat2Obese                 0.47  0.63741
## Age:LifeIPV1:PovStatBelow:SexMen                 1.78  0.07567
## Age:LifeIPV1:PovStatBelow:BMIcat2Obese          -1.22  0.22352
## Age:LifeIPV1:SexMen:BMIcat2Obese                 0.36  0.71678
## Age:PovStatBelow:SexMen:BMIcat2Obese            -0.51  0.61236
## LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese       -0.92  0.35653
## Age:LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese   -1.45  0.14662
## 
## Correlation matrix not shown by default, as p = 32 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

Systolic Blood Pressure Final Model (categorical BMI)

## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ Age + LifeIPV + PovStat + Sex + BMIcat2 + Age:LifeIPV +      Age:PovStat + Age:Sex + Age:BMIcat2 + LifeIPV:BMIcat2 + PovStat:Sex +      Sex:BMIcat2 + Age:LifeIPV:BMIcat2 + Age:PovStat:Sex + (1 |      HNDid) + (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 5509 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 147      12.1    
##  subclass (Intercept)   0       0.0    
##  Residual             134      11.6    
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                           Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)                114.329      1.946 382.000   58.74  < 2e-16
## Age                          0.748      0.194 531.000    3.86  0.00013
## LifeIPV1                     5.495      2.457 407.000    2.24  0.02586
## PovStatBelow                 0.765      2.150 334.000    0.36  0.72204
## SexMen                       2.025      2.585 372.000    0.78  0.43385
## BMIcat2Obese                15.896      2.423 505.000    6.56  1.3e-10
## Age:LifeIPV1                 0.390      0.263 599.000    1.48  0.13832
## Age:PovStatBelow            -0.284      0.222 480.000   -1.28  0.20199
## Age:SexMen                  -0.536      0.240 492.000   -2.23  0.02638
## Age:BMIcat2Obese             0.207      0.205 606.000    1.01  0.31337
## LifeIPV1:BMIcat2Obese       -9.354      3.360 534.000   -2.78  0.00557
## PovStatBelow:SexMen          9.377      3.564 328.000    2.63  0.00892
## SexMen:BMIcat2Obese         -9.139      3.307 501.000   -2.76  0.00593
## Age:LifeIPV1:BMIcat2Obese   -0.846      0.340 645.000   -2.49  0.01316
## Age:PovStatBelow:SexMen      1.085      0.393 503.000    2.76  0.00596
## 
## Correlation of Fixed Effects:
##             (Intr) Age    LfIPV1 PvSttB SexMen BMIc2O Ag:LIPV1 Ag:PSB
## Age          0.025                                                   
## LifeIPV1    -0.537 -0.015                                            
## PovStatBelw -0.382  0.038 -0.145                                     
## SexMen      -0.701 -0.026  0.311  0.299                              
## BMIcat2Obes -0.614  0.007  0.438 -0.019  0.406                       
## Age:LifIPV1 -0.013 -0.509  0.193 -0.156  0.009  0.031                
## Ag:PvSttBlw  0.052 -0.478 -0.160  0.185 -0.022 -0.095 -0.053         
## Age:SexMen  -0.024 -0.625  0.005  0.000  0.074 -0.037  0.242    0.390
## Ag:BMIct2Ob -0.012 -0.493  0.047 -0.084  0.005  0.100  0.365   -0.016
## LIPV1:BMI2O  0.365 -0.045 -0.656  0.098 -0.192 -0.657 -0.118    0.152
## PvSttBlw:SM  0.245  0.006  0.056 -0.595 -0.477  0.034  0.069   -0.111
## SxMn:BMIc2O  0.409 -0.056 -0.251 -0.002 -0.536 -0.647  0.020    0.054
## A:LIPV1:BMI -0.022  0.292 -0.128  0.141  0.022 -0.078 -0.659    0.061
## Ag:PvStB:SM -0.021  0.285  0.080 -0.105 -0.013  0.050  0.017   -0.566
##             Ag:SxM A:BMI2 LIPV1: PSB:SM SM:BMI A:LIPV1:
## Age                                                    
## LifeIPV1                                               
## PovStatBelw                                            
## SexMen                                                 
## BMIcat2Obes                                            
## Age:LifIPV1                                            
## Ag:PvSttBlw                                            
## Age:SexMen                                             
## Ag:BMIct2Ob  0.096                                     
## LIPV1:BMI2O  0.066 -0.078                              
## PvSttBlw:SM -0.070  0.011 -0.098                       
## SxMn:BMIc2O  0.103  0.030  0.361  0.005                
## A:LIPV1:BMI -0.045 -0.612  0.166 -0.063  0.009         
## Ag:PvStB:SM -0.570  0.025 -0.082  0.126 -0.096 -0.073

SBP and IPV: Age x LifeIPV x BMI

## Loading required package: mvtnorm
## Loading required package: TH.data
##   Age  BMIcat2 LifeIPV adjSBP PovStat    Sex   hat
## 1 -20 nonObese       0      0  0.3724 0.3769 104.8
## 2 -19 nonObese       0      0  0.3724 0.3769 105.4
## 3 -18 nonObese       0      0  0.3724 0.3769 106.0
## 4 -17 nonObese       0      0  0.3724 0.3769 106.6
## 5 -16 nonObese       0      0  0.3724 0.3769 107.2
## 6 -15 nonObese       0      0  0.3724 0.3769 107.8

plot of chunk unnamed-chunk-6 Diastolic Blood Pressure (categorical BMI)

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0

plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ (Age + LifeIPV + PovStat + Sex + BMIcat2)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 4831 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 3.40e+01 5.83e+00     
##           Age         1.02e-03 3.20e-02 1.00
##  subclass (Intercept) 4.38e-11 6.62e-06     
##  Residual             6.42e+01 8.01e+00     
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                                               Estimate Std. Error       df
## (Intercept)                                    67.6587     1.3323 376.0000
## Age                                            -0.0485     0.1534 486.0000
## LifeIPV1                                        3.4931     2.1658 382.0000
## PovStatBelow                                    0.7860     2.4838 298.0000
## SexMen                                          3.9286     1.7670 350.0000
## BMIcat2Obese                                    6.2084     1.8274 478.0000
## Age:LifeIPV1                                    0.3572     0.2376 513.0000
## Age:PovStatBelow                               -0.0694     0.2475 436.0000
## Age:SexMen                                      0.0567     0.2028 460.0000
## Age:BMIcat2Obese                               -0.0995     0.2112 588.0000
## LifeIPV1:PovStatBelow                          -1.3453     3.3965 326.0000
## LifeIPV1:SexMen                                -4.2436     4.3189 313.0000
## LifeIPV1:BMIcat2Obese                          -5.5453     2.8253 507.0000
## PovStatBelow:SexMen                             1.5228     3.2116 313.0000
## PovStatBelow:BMIcat2Obese                       1.6537     3.2742 356.0000
## SexMen:BMIcat2Obese                            -3.6476     2.6432 389.0000
## Age:LifeIPV1:PovStatBelow                      -0.4627     0.3628 482.0000
## Age:LifeIPV1:SexMen                            -0.1697     0.5578 509.0000
## Age:LifeIPV1:BMIcat2Obese                      -0.2244     0.3143 603.0000
## Age:PovStatBelow:SexMen                         0.4157     0.3464 453.0000
## Age:PovStatBelow:BMIcat2Obese                   0.4445     0.3374 497.0000
## Age:SexMen:BMIcat2Obese                         0.1804     0.3075 503.0000
## LifeIPV1:PovStatBelow:SexMen                   14.4373     6.7481 310.0000
## LifeIPV1:PovStatBelow:BMIcat2Obese              6.0489     4.6337 403.0000
## LifeIPV1:SexMen:BMIcat2Obese                   14.7168    16.3252 249.0000
## PovStatBelow:SexMen:BMIcat2Obese                1.8459     4.8336 454.0000
## Age:LifeIPV1:PovStatBelow:SexMen                2.9079     1.0464 607.0000
## Age:LifeIPV1:PovStatBelow:BMIcat2Obese         -0.0973     0.4907 551.0000
## Age:LifeIPV1:SexMen:BMIcat2Obese                1.0689     1.2896 218.0000
## Age:PovStatBelow:SexMen:BMIcat2Obese           -0.6416     0.5415 537.0000
## LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese     -26.0766    17.8956 299.0000
## Age:LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese  -3.4198     1.6632 343.0000
##                                               t value Pr(>|t|)
## (Intercept)                                     50.78  < 2e-16
## Age                                             -0.32  0.75202
## LifeIPV1                                         1.61  0.10760
## PovStatBelow                                     0.32  0.75187
## SexMen                                           2.22  0.02683
## BMIcat2Obese                                     3.40  0.00074
## Age:LifeIPV1                                     1.50  0.13337
## Age:PovStatBelow                                -0.28  0.77913
## Age:SexMen                                       0.28  0.77987
## Age:BMIcat2Obese                                -0.47  0.63786
## LifeIPV1:PovStatBelow                           -0.40  0.69231
## LifeIPV1:SexMen                                 -0.98  0.32659
## LifeIPV1:BMIcat2Obese                           -1.96  0.05023
## PovStatBelow:SexMen                              0.47  0.63573
## PovStatBelow:BMIcat2Obese                        0.51  0.61382
## SexMen:BMIcat2Obese                             -1.38  0.16838
## Age:LifeIPV1:PovStatBelow                       -1.28  0.20278
## Age:LifeIPV1:SexMen                             -0.30  0.76115
## Age:LifeIPV1:BMIcat2Obese                       -0.71  0.47558
## Age:PovStatBelow:SexMen                          1.20  0.23065
## Age:PovStatBelow:BMIcat2Obese                    1.32  0.18824
## Age:SexMen:BMIcat2Obese                          0.59  0.55770
## LifeIPV1:PovStatBelow:SexMen                     2.14  0.03318
## LifeIPV1:PovStatBelow:BMIcat2Obese               1.31  0.19250
## LifeIPV1:SexMen:BMIcat2Obese                     0.90  0.36820
## PovStatBelow:SexMen:BMIcat2Obese                 0.38  0.70272
## Age:LifeIPV1:PovStatBelow:SexMen                 2.78  0.00562
## Age:LifeIPV1:PovStatBelow:BMIcat2Obese          -0.20  0.84296
## Age:LifeIPV1:SexMen:BMIcat2Obese                 0.83  0.40808
## Age:PovStatBelow:SexMen:BMIcat2Obese            -1.18  0.23659
## LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese       -1.46  0.14612
## Age:LifeIPV1:PovStatBelow:SexMen:BMIcat2Obese   -2.06  0.04053
## 
## Correlation matrix not shown by default, as p = 32 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

Diastolic Blood Pressure Final Model (categorical BMI)

## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ Age + LifeIPV + PovStat + Sex + BMIcat2 + Age:LifeIPV +      Age:Sex + LifeIPV:Sex + Age:LifeIPV:Sex + (Age | HNDid) +      (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 4900 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 3.69e+01 6.0761       
##           Age         4.22e-04 0.0205   1.00
##  subclass (Intercept) 0.00e+00 0.0000       
##  Residual             6.36e+01 7.9762       
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                     Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)          67.8376     0.9754 337.0000   69.55  < 2e-16
## Age                  -0.0149     0.0851 421.0000   -0.18   0.8610
## LifeIPV1              0.7749     1.1738 296.0000    0.66   0.5097
## PovStatBelow          3.1238     0.9583 321.0000    3.26   0.0012
## SexMen                2.9653     1.1377 299.0000    2.61   0.0096
## BMIcat2Obese          4.9367     0.8687 490.0000    5.68  2.3e-08
## Age:LifeIPV1         -0.0488     0.1277 420.0000   -0.38   0.7023
## Age:SexMen            0.1415     0.1259 428.0000    1.12   0.2618
## LifeIPV1:SexMen       3.2652     2.6074 300.0000    1.25   0.2114
## Age:LifeIPV1:SexMen   0.6209     0.3000 434.0000    2.07   0.0391
## 
## Correlation of Fixed Effects:
##             (Intr) Age    LfIPV1 PvSttB SexMen BMIc2O Ag:LIPV1 Ag:SxM
## Age          0.115                                                   
## LifeIPV1    -0.524 -0.140                                            
## PovStatBelw -0.375  0.106 -0.083                                     
## SexMen      -0.645 -0.127  0.465  0.071                              
## BMIcat2Obes -0.471  0.015  0.017  0.058  0.127                       
## Age:LifIPV1 -0.063 -0.667  0.170 -0.076  0.081 -0.036                
## Age:SexMen  -0.083 -0.678  0.097 -0.092  0.164  0.018  0.452         
## LfIPV1:SxMn  0.281  0.051 -0.441 -0.072 -0.435 -0.022 -0.068   -0.067
## Ag:LIPV1:SM  0.028  0.281 -0.069 -0.003 -0.066  0.039 -0.424   -0.415
##             LIPV1:
## Age               
## LifeIPV1          
## PovStatBelw       
## SexMen            
## BMIcat2Obes       
## Age:LifIPV1       
## Age:SexMen        
## LfIPV1:SxMn       
## Ag:LIPV1:SM  0.328

DBP and IPV: Age x LifeIPV x Sex

pAge = seq(-20,20)

hatIPVhyp1 = zMixHat(LifeIPVbp, mm4, vary = "Age=pAge, Sex=zQ(Women,Men),LifeIPV=zQ(0,1)",fixedCov=c("PovStat","BMIcat2"))

head(hatIPVhyp1)
##   Age   Sex LifeIPV adjDBP PovStat BMIcat2   hat
## 1 -20 Women       0      0  0.3724  0.4414 71.48
## 2 -19 Women       0      0  0.3724  0.4414 71.46
## 3 -18 Women       0      0  0.3724  0.4414 71.45
## 4 -17 Women       0      0  0.3724  0.4414 71.43
## 5 -16 Women       0      0  0.3724  0.4414 71.42
## 6 -15 Women       0      0  0.3724  0.4414 71.40
par(mar=c(4,4,.5,2),las = 1, lwd = 2)

HNDcolors = HNDpltColors()

with(hatIPVhyp1[hatIPVhyp1$Sex == "Women" & hatIPVhyp1$LifeIPV == "0", ],plot(pAge,hat, lty = 1, col = "black", type = "l",ylim = c(50,110), ylab = "Diastolic Blood Pressure", xlab = "Age",xaxt = "n"))
with(hatIPVhyp1[hatIPVhyp1$Sex == "Women" & hatIPVhyp1$LifeIPV == "1", ], lines(pAge,hat, lty = 1, col = "red"))
with(hatIPVhyp1[hatIPVhyp1$Sex == "Men" & hatIPVhyp1$LifeIPV == "0", ], lines(pAge,hat, lty = 2, col = "black"))
with(hatIPVhyp1[hatIPVhyp1$Sex == "Men" & hatIPVhyp1$LifeIPV == "1", ], lines(pAge,hat, lty = 2, col = "red"))


axis(1,at=c(-20,-10,0,10,20),labels = c("30","40","50","60","70"))
legend(-20,110, zQ(Women,Men), lty = 1:2, col = "black",cex=.75,bty="n")
text(-20,55,"IPV in red", adj = c(0,0), col = "red",cex=.75)
text(-20,50,"No IPV in black", adj = c(0,0), col = "black",cex=.75)

plot of chunk unnamed-chunk-9