title: “R Notebook - Module1: Exploratory Data Analysis”
author: “humbertohp”
date: “September 15, 2019”
output:
html_document: default
html_notebook: default

Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

str(inc) # Data frame data types
## 'data.frame':    5001 obs. of  8 variables:
##  $ Rank       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Name       : Factor w/ 5001 levels "(Add)ventures",..: 1770 1633 4423 690 1198 2839 4733 1468 1869 4968 ...
##  $ Growth_Rate: num  421 248 245 233 213 ...
##  $ Revenue    : num  1.18e+08 4.96e+07 2.55e+07 1.90e+09 8.70e+07 ...
##  $ Industry   : Factor w/ 25 levels "Advertising & Marketing",..: 5 12 13 7 1 20 10 1 5 21 ...
##  $ Employees  : int  104 51 132 50 220 63 27 75 97 15 ...
##  $ City       : Factor w/ 1519 levels "Acton","Addison",..: 391 365 635 2 139 66 912 1179 131 1418 ...
##  $ State      : Factor w/ 52 levels "AK","AL","AR",..: 5 47 10 45 20 45 44 5 46 41 ...
head(inc[order(-inc$Revenue),], 15) # Top Companies by Revenue
##      Rank                       Name Growth_Rate  Revenue
## 4788 4788                        CDW        0.41 1.01e+10
## 3853 3853                 ABC Supply        0.73 4.70e+09
## 4936 4936                       Coty        0.36 4.60e+09
## 4997 4997                  Dot Foods        0.34 4.50e+09
## 4716 4716              Westcon Group        0.44 3.80e+09
## 4246 4246 American Tire Distributors        0.59 3.50e+09
## 4052 4052                   Kum & Go        0.65 2.80e+09
## 4802 4802              Boise Cascade        0.41 2.80e+09
## 1396 1397          EnvisionRxOptions        2.88 2.70e+09
## 2521 2522                  DLA Piper        1.41 2.40e+09
## 4629 4629         Prime Therapeutics        0.47 2.00e+09
## 4       4                    Bridger      233.08 1.90e+09
## 1842 1843        Sun Coast Resources        2.08 1.90e+09
## 3844 3844          Atlas Oil Company        0.74 1.90e+09
## 4961 4961           Kirkland & Ellis        0.36 1.90e+09
##                          Industry Employees            City State
## 4788            Computer Hardware      6800    Vernon Hills    IL
## 3853                 Construction      6549          Beloit    WI
## 4936 Consumer Products & Services     10000        New York    NY
## 4997              Food & Beverage      3919    Mt. Sterling    IL
## 4716                  IT Services      3000       Tarrytown    NY
## 4246 Consumer Products & Services      3341    Huntersville    NC
## 4052                       Retail      4589 West Des Moines    IA
## 4802                 Construction      4470           Boise    ID
## 1396                       Health       625       Twinsburg    OH
## 2521 Business Products & Services      4036         Chicago    IL
## 4629                       Health      2549           Eagan    MN
## 4                          Energy        50         Addison    TX
## 1842                       Energy      1640         Houston    TX
## 3844   Logistics & Transportation       374          Taylor    MI
## 4961 Business Products & Services      1517         Chicago    IL
table(inc$Industry) # Number Companies by Industry
## 
##      Advertising & Marketing Business Products & Services 
##                          471                          482 
##            Computer Hardware                 Construction 
##                           44                          187 
## Consumer Products & Services                    Education 
##                          203                           83 
##                       Energy                  Engineering 
##                          109                           74 
##       Environmental Services           Financial Services 
##                           51                          260 
##              Food & Beverage          Government Services 
##                          131                          202 
##                       Health              Human Resources 
##                          355                          196 
##                    Insurance                  IT Services 
##                           50                          733 
##   Logistics & Transportation                Manufacturing 
##                          155                          256 
##                        Media                  Real Estate 
##                           54                           96 
##                       Retail                     Security 
##                          203                           73 
##                     Software           Telecommunications 
##                          342                          129 
##         Travel & Hospitality 
##                           62

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

library(ggplot2)
ggplot(inc, aes(x=State)) + geom_bar(fill="orange") + coord_flip()

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

library(dplyr)

inc_state <- inc[complete.cases(inc),] %>% count(State) %>% arrange(desc(n))
head(inc_state,5)
## # A tibble: 5 x 2
##   State     n
##   <fct> <int>
## 1 CA      700
## 2 TX      386
## 3 NY      311
## 4 VA      283
## 5 FL      282
## State with the 3rd most companies is NY

inc_ny_empl <- data.frame(filter(inc, State=="NY") %>% group_by(Industry) %>% summarise(avg = mean(Employees)))

ggplot(inc_ny_empl, aes(x=reorder(Industry, avg), y=avg)) + geom_bar(stat="identity", fill="blue") + coord_flip() +labs(y="Average Employment", x="Industry")

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

inc_rev_empl <- inc[complete.cases(inc),] %>% mutate(Rev_Empl = Revenue/Employees)
inc_ind_rev_empl <- inc_rev_empl %>% group_by(Industry) %>% summarise(avg_rev_empl = mean(Rev_Empl))

ggplot(inc_ind_rev_empl, aes(x=reorder(Industry, avg_rev_empl), y=avg_rev_empl)) + geom_bar(stat="identity", fill="red") + coord_flip() +labs(y="Average Revenue per Employee", x="Industry")