A <- matrix(c(1, 2, 3, -1, 0, 4), 2, 3, byrow = T)
X <- A %*% t(A); X
## [,1] [,2]
## [1,] 14 11
## [2,] 11 17
Y <- t(A) %*% A; Y
## [,1] [,2] [,3]
## [1,] 2 2 -1
## [2,] 2 4 6
## [3,] -1 6 25
eigen_X <-eigen(X)
eigen_X
## eigen() decomposition
## $values
## [1] 26.601802 4.398198
##
## $vectors
## [,1] [,2]
## [1,] 0.6576043 -0.7533635
## [2,] 0.7533635 0.6576043
eigen_Y <- eigen(Y)
eigen_Y
## eigen() decomposition
## $values
## [1] 2.660180e+01 4.398198e+00 1.058982e-16
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.01856629 -0.6727903 0.7396003
## [2,] 0.25499937 -0.7184510 -0.6471502
## [3,] 0.96676296 0.1765824 0.1849001
Left-singular Vectors
U <- svd(A)$u
U
## [,1] [,2]
## [1,] -0.6576043 -0.7533635
## [2,] -0.7533635 0.6576043
Singular Values
sigma <- svd(A)$d
sigma
## [1] 5.157693 2.097188
Right-singular Vectors
V <- svd(A)$v
V
## [,1] [,2]
## [1,] 0.01856629 -0.6727903
## [2,] -0.25499937 -0.7184510
## [3,] -0.96676296 0.1765824
N.B We see that the output for all vectors are the same but with some sign changes. The eigenvectors are scaled by −1.
left <- list(x = eigen_X$vectors, u=U)
left
## $x
## [,1] [,2]
## [1,] 0.6576043 -0.7533635
## [2,] 0.7533635 0.6576043
##
## $u
## [,1] [,2]
## [1,] -0.6576043 -0.7533635
## [2,] -0.7533635 0.6576043
right <- list(y = eigen_Y$vectors[,1:2], vt=V)
right
## $y
## [,1] [,2]
## [1,] -0.01856629 -0.6727903
## [2,] 0.25499937 -0.7184510
## [3,] 0.96676296 0.1765824
##
## $vt
## [,1] [,2]
## [1,] 0.01856629 -0.6727903
## [2,] -0.25499937 -0.7184510
## [3,] -0.96676296 0.1765824
Show that the two non-zero eigenvalues (the 3rd value will be very close to zero, if not zero) of both \(X\) and \(Y\) are the same and are squares of the non-zero singular values of A.
eigen_X$values[1:2]
## [1] 26.601802 4.398198
round(eigen_Y$values[1:2],6)
## [1] 26.601802 4.398198
list(eigenx_values = eigen_X$values, eigeny_values = eigen_Y$values[1:2], svd_sing_values = sigma^2)
## $eigenx_values
## [1] 26.601802 4.398198
##
## $eigeny_values
## [1] 26.601802 4.398198
##
## $svd_sing_values
## [1] 26.601802 4.398198
Write a function to compute the inverse of a well-conditioned full-rank square matrix using co-factors. In order to compute the co-factors, you may use built-in commands to compute the determinant. Your function should have the following signature:
B = myinverse(A)
where \(A\) is a matrix and \(B\) is its inverse and \(A \times B = I\). The off-diagonal elements of \(I\) should be close to zero, if not zero. Likewise, the diagonal elements should be close to 1, if not 1. Small numerical precision errors are acceptable but the function myinverse should be correct and must use co-factors and determinant of A to compute the inverse.
my_inverse <- function(my_matrix){
if (nrow(my_matrix)!= ncol(my_matrix)){
print(" Must be a square matrix!")
}else if(det(my_matrix) == 0){
print("This is a singular matrix!")
}else{ #create an empty matrix to hold cofactors later
cat("\n\nThe determinant is ", det(my_matrix), "\n\n")
#Calculate the cofactors
cf <- matrix(nrow = nrow(my_matrix), ncol = ncol(my_matrix))
for(i in 1:nrow(my_matrix)){
for(j in 1:ncol(my_matrix)){
cf[i, j] <- det(my_matrix[-i,-j])*(-1)^(i+j) #fill in cofactor matrix
}
}
}
#Adjugate -- Transpose all elements in the cofactor matrix
adjugate <- t(cf)
#Multiply by 1/Determinant
the_inverse <- (1 / det(my_matrix)) * adjugate
return(the_inverse)
}
A <- matrix(c(2, 0, 3, -2, 3, -4, -3, 1, -4), 3, 3, byrow = T)
A
## [,1] [,2] [,3]
## [1,] 2 0 3
## [2,] -2 3 -4
## [3,] -3 1 -4
B = my_inverse(A)
##
##
## The determinant is 5
B
## [,1] [,2] [,3]
## [1,] -1.6 0.6 -1.8
## [2,] 0.8 0.2 0.4
## [3,] 1.4 -0.4 1.2
round(A %*% B)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
A1 <- matrix(c(0, 7, 1, -5, 3, 2, -1, 1, 1, 0, 0, 2, 2, -4, -2, 0), 4, 4, byrow = T)
A1
## [,1] [,2] [,3] [,4]
## [1,] 0 7 1 -5
## [2,] 3 2 -1 1
## [3,] 1 0 0 2
## [4,] 2 -4 -2 0
B1 = my_inverse(A1)
##
##
## The determinant is 26
B1
## [,1] [,2] [,3] [,4]
## [1,] 0.6153846 -0.7692308 1.9230769 0.6923077
## [2,] -0.2307692 0.5384615 -0.8461538 -0.3846154
## [3,] 1.0769231 -1.8461538 3.6153846 0.9615385
## [4,] -0.3076923 0.3846154 -0.4615385 -0.3461538
round(A1 %*% B1)
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
Helpful Links: