Exercise 2: Recreate Table 2.28 using any combination of the matrix, cbind, rbind, dimnames, or names functions

TABLE 2.28: Risk of Death in a 20-year Period Among Women in Whick- ham, England, According to Smoking Status at the Beginning of the Period

(Rothman, 2012)

England <- matrix(c(139, 443,230, 502), 2, 2,dimnames = list(VitalStatus = c('Dead', 'Alive'), 
Smoking=c('Yes', 'No')))
England
##            Smoking
## VitalStatus Yes  No
##       Dead  139 230
##       Alive 443 502

Exercise 3: Starting with the 2x2 matrix object we created in Table 2.28, using any combination of apply, cbind, rbind, names, and dimnames functions, recreate the Table 2.29

England2 <- cbind(England, Total = rowSums(England)) 
rbind(England2, Total = colSums(England2))
##       Yes  No Total
## Dead  139 230   369
## Alive 443 502   945
## Total 582 732  1314

Exercise 4: Using the 2 × 2 data from Table 2.28, use the sweep and apply functions to calculate row marginal, column marginal, and joint distributions (i.e., three tables)

 rtot <- apply(England, 1, sum) # row totals 
England.rowdist <- sweep(England, 1, rtot, '/');
England.rowdist
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.3766938 0.6233062
##       Alive 0.4687831 0.5312169
ctot <- apply(England, 2, sum) # column totals 
ctot
## Yes  No 
## 582 732
England.coldist <- sweep(England, 2, ctot, '/')
England.coldist
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.2388316 0.3142077
##       Alive 0.7611684 0.6857923

Row Marginal Distribution

rowdist<-sweep(England, 1, apply(England, 1, sum), '/')
rowdist #row distribution
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.3766938 0.6233062
##       Alive 0.4687831 0.5312169

column marginal Distribution

coldist<- sweep(England, 2, apply(England, 2, sum), '/')
coldist #column distribution
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.2388316 0.3142077
##       Alive 0.7611684 0.6857923

joint distributions

joindist <- England/sum(England)
joindist                 # joint distrib
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.1057839 0.1750381
##       Alive 0.3371385 0.3820396
pEnglands<-list(row.distribution=rowdist, column.distribution=coldist, joint.distribution=joindist)
pEnglands
## $row.distribution
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.3766938 0.6233062
##       Alive 0.4687831 0.5312169
## 
## $column.distribution
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.2388316 0.3142077
##       Alive 0.7611684 0.6857923
## 
## $joint.distribution
##            Smoking
## VitalStatus       Yes        No
##       Dead  0.1057839 0.1750381
##       Alive 0.3371385 0.3820396

Exercise 5:Using the data from the previous problems, recreate Table 2.30 and interpret the results

risks <- England['Dead', ]/ctot
risk.ratio <- risks/risks[2] 
odds <- risks/(1 - risks) 
odds.ratio <- odds/odds[2] 
England
##            Smoking
## VitalStatus Yes  No
##       Dead  139 230
##       Alive 443 502
#risk ratio
#odds ratio
# display results
rbind(risks, risk.ratio, odds, odds.ratio)
##                  Yes        No
## risks      0.2388316 0.3142077
## risk.ratio 0.7601076 1.0000000
## odds       0.3137698 0.4581673
## odds.ratio 0.6848366 1.0000000

Interpretation: According to the output, the risk and odd of death among non-smokers is higher than the risk and odd of death among smokers, suggesting smoking may be protective.

Exercise 6: Install the mosaicData R package. Load the Whickham data set. Using the xtabs function create two-way and three-way contingency tables. Calculate “measures of associations.” What is your interpre- tation?

library(mosaicData)
data("Whickham")
y<-xtabs(~outcome + smoker, data =Whickham)
y
##        smoker
## outcome  No Yes
##   Alive 502 443
##   Dead  230 139
w <- xtabs(~outcome + age + smoker, data = Whickham) 
wtot <- apply(w, c(2, 3), sum)
wrisk<-sweep(w,c(2,3), wtot, "/")
wrisk2<-round(wrisk, 2)
wrisk2
## , , smoker = No
## 
##        age
## outcome   18   19   20   21   22   23   24   25   26   27   28   29   30
##   Alive 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.89 1.00
##   Dead  0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.11 0.00
##        age
## outcome   31   32   33   34   35   36   37   38   39   40   41   42   43
##   Alive 1.00 0.94 0.94 1.00 0.87 0.86 1.00 0.92 1.00 1.00 1.00 0.88 0.80
##   Dead  0.00 0.06 0.06 0.00 0.13 0.14 0.00 0.08 0.00 0.00 0.00 0.12 0.20
##        age
## outcome   44   45   46   47   48   49   50   51   52   53   54   55   56
##   Alive 1.00 0.80 0.67 0.86 1.00 0.60 0.80 0.85 0.89 1.00 0.80 0.71 0.56
##   Dead  0.00 0.20 0.33 0.14 0.00 0.40 0.20 0.15 0.11 0.00 0.20 0.29 0.44
##        age
## outcome   57   58   59   60   61   62   63   64   65   66   67   68   69
##   Alive 0.71 0.83 0.56 0.50 0.69 0.60 0.78 0.71 0.23 0.46 0.40 0.11 0.00
##   Dead  0.29 0.17 0.44 0.50 0.31 0.40 0.22 0.29 0.77 0.54 0.60 0.89 1.00
##        age
## outcome   70   71   72   73   74   75   76   77   78   79   80   81   82
##   Alive 0.14 0.13 0.12 0.09 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
##   Dead  0.86 0.87 0.88 0.91 0.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
##        age
## outcome   83   84
##   Alive 0.00 0.00
##   Dead  1.00 1.00
## 
## , , smoker = Yes
## 
##        age
## outcome   18   19   20   21   22   23   24   25   26   27   28   29   30
##   Alive 1.00 1.00 0.88 0.88 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00
##   Dead  0.00 0.00 0.12 0.12 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00
##        age
## outcome   31   32   33   34   35   36   37   38   39   40   41   42   43
##   Alive 0.93 1.00 0.94 1.00 1.00 0.94 1.00 0.90 0.90 0.60 1.00 0.82 0.82
##   Dead  0.07 0.00 0.06 0.00 0.00 0.06 0.00 0.10 0.10 0.40 0.00 0.18 0.18
##        age
## outcome   44   45   46   47   48   49   50   51   52   53   54   55   56
##   Alive 0.91 0.64 0.80 0.86 0.82 0.80 0.87 0.73 0.77 0.67 1.00 0.67 0.50
##   Dead  0.09 0.36 0.20 0.14 0.18 0.20 0.13 0.27 0.23 0.33 0.00 0.33 0.50
##        age
## outcome   57   58   59   60   61   62   63   64   65   66   67   68   69
##   Alive 0.58 0.73 0.44 0.27 0.46 0.75 0.56 0.70 0.00 0.17 0.67 0.00 0.00
##   Dead  0.42 0.27 0.56 0.73 0.54 0.25 0.44 0.30 1.00 0.83 0.33 1.00 1.00
##        age
## outcome   70   71   72   73   74   75   76   77   78 79   80   81   82
##   Alive 0.00 0.12 0.00 0.00 0.67 0.00 0.00 0.00 0.00    0.00 0.00 0.00
##   Dead  1.00 0.88 1.00 1.00 0.33 1.00 1.00 1.00 1.00    1.00 1.00 1.00
##        age
## outcome   83   84
##   Alive 0.00 0.00
##   Dead  1.00 1.00

Risk of death increases with age among both smokers and Non-smokers