MAR Chapter 3 Ex 3

ads <- read.csv(file="AdRevenue.csv")
m<-lm(AdRevenue~Circulation,ads)
summary(m)
## 
## Call:
## lm(formula = AdRevenue ~ Circulation, data = ads)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -147.694  -22.939   -7.845   13.810  131.130 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  99.8095     5.8547   17.05   <2e-16 ***
## Circulation  22.8534     0.9518   24.01   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 42.22 on 68 degrees of freedom
## Multiple R-squared:  0.8945, Adjusted R-squared:  0.8929 
## F-statistic: 576.5 on 1 and 68 DF,  p-value: < 2.2e-16
confint(m,'Circulation',level=0.95)
##                2.5 %   97.5 %
## Circulation 20.95411 24.75267
plot(ads$Circulation,ads$AdRevenue)
abline(m)

hist(m$residuals)

qqnorm(m$residuals)
qqline(m$residuals)

plot(ads$Circulation,residuals(m))
abline(0,0)

m<-lm(log(AdRevenue)~log(Circulation),ads)
summary(m)
## 
## Call:
## lm(formula = log(AdRevenue) ~ log(Circulation), data = ads)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.47022 -0.11142 -0.00532  0.10835  0.42705 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.67473    0.02525  185.16   <2e-16 ***
## log(Circulation)  0.52876    0.02356   22.44   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1768 on 68 degrees of freedom
## Multiple R-squared:  0.881,  Adjusted R-squared:  0.8793 
## F-statistic: 503.6 on 1 and 68 DF,  p-value: < 2.2e-16
confint(m,'log(Circulation)',level=0.95)
##                      2.5 %    97.5 %
## log(Circulation) 0.4817413 0.5757747
plot(log(ads$Circulation),log(ads$AdRevenue))
abline(m)

hist(m$residuals)

qqnorm(m$residuals)
qqline(m$residuals)

plot(log(ads$Circulation),residuals(m))
abline(0,0)