pacman::p_load(tidyverse, NHANES)
p = tamaño del efecto x tamaño de la muestra
sampSize <- 250
NHANES_sample <- NHANES %>%
dplyr::sample_n(sampSize)
NHANES_sample %>%
filter(PhysActive != "NA") %>%
ggplot(aes(x = PhysActive, y = BMI)) +
geom_boxplot()
NHANES_sample %>%
filter(PhysActive != "NA") %>%
ggplot(aes(x = BMI)) +
geom_density(bins = 10) +
facet_grid(PhysActive~.)
Ignoring unknown parameters: bins
NHANES_sample %>%
filter(PhysActive != "NA") %>%
t.test(BMI ~ PhysActive, data = .)
Welch Two Sample t-test
data: BMI by PhysActive
t = 1.6625, df = 183.91, p-value = 0.09812
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2616361 3.0637839
sample estimates:
mean in group No mean in group Yes
28.69872 27.29765
NHANES_sample_x_10 <- sapply(NHANES_sample, rep.int, times = 2)
NHANES_sample_x_10 <- as.data.frame(NHANES_sample_x_10)
NHANES_sample_x_10 %>%
filter(PhysActive != "NA") %>%
t.test(BMI ~ PhysActive, data = .)
Welch Two Sample t-test
data: BMI by PhysActive
t = 2.3572, df = 370, p-value = 0.01893
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2322911 2.5698566
sample estimates:
mean in group 1 mean in group 2
28.69872 27.29765
NHANES_sample_x_10 %>%
filter(PhysActive != "NA") %>%
ggplot(aes(x = BMI)) +
geom_density(bins = 10) +
facet_grid(PhysActive~.)
Ignoring unknown parameters: bins
NHANES_sample %>%
filter(!is.na(BMI), !is.na(PhysActive)) %>%
group_by(PhysActive) %>%
summarise(BMI_promedio = mean(BMI), sd = sd(BMI), n = n())
NHANES_sample_x_10 %>%
filter(!is.na(BMI), !is.na(PhysActive)) %>%
group_by(PhysActive) %>%
summarise(BMI_promedio = mean(BMI), sd = sd(BMI), n = n())