pacman::p_load(tidyverse, NHANES)

Concepto básico

p = tamaño del efecto x tamaño de la muestra

Tamaño de la muestra

250


sampSize <- 250
NHANES_sample <- NHANES %>% 
  dplyr::sample_n(sampSize)
NHANES_sample %>% 
  filter(PhysActive != "NA") %>% 
  ggplot(aes(x = PhysActive, y = BMI)) + 
  geom_boxplot()

NHANES_sample %>% 
  filter(PhysActive != "NA") %>% 
  ggplot(aes(x = BMI)) + 
  geom_density(bins = 10) + 
  facet_grid(PhysActive~.)
Ignoring unknown parameters: bins

NHANES_sample %>% 
  filter(PhysActive != "NA") %>% 
  t.test(BMI ~ PhysActive, data = .)

    Welch Two Sample t-test

data:  BMI by PhysActive
t = 1.6625, df = 183.91, p-value = 0.09812
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.2616361  3.0637839
sample estimates:
 mean in group No mean in group Yes 
         28.69872          27.29765 

500

NHANES_sample_x_10 <- sapply(NHANES_sample, rep.int, times = 2)
NHANES_sample_x_10 <- as.data.frame(NHANES_sample_x_10)
NHANES_sample_x_10 %>% 
  filter(PhysActive != "NA") %>% 
  t.test(BMI ~ PhysActive, data = .)

    Welch Two Sample t-test

data:  BMI by PhysActive
t = 2.3572, df = 370, p-value = 0.01893
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.2322911 2.5698566
sample estimates:
mean in group 1 mean in group 2 
       28.69872        27.29765 
NHANES_sample_x_10 %>% 
  filter(PhysActive != "NA") %>% 
  ggplot(aes(x = BMI)) + 
  geom_density(bins = 10) + 
  facet_grid(PhysActive~.)
Ignoring unknown parameters: bins

NHANES_sample %>% 
  filter(!is.na(BMI), !is.na(PhysActive)) %>% 
  group_by(PhysActive) %>% 
  summarise(BMI_promedio = mean(BMI), sd = sd(BMI), n = n())
NHANES_sample_x_10 %>% 
  filter(!is.na(BMI), !is.na(PhysActive)) %>% 
  group_by(PhysActive) %>% 
  summarise(BMI_promedio = mean(BMI), sd = sd(BMI), n = n())

Tamaño del efecto

LS0tCnRpdGxlOiAiSW5mZXJlbmNpYSBlc3RhZMOtc3RpY2EiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9CnBhY21hbjo6cF9sb2FkKHRpZHl2ZXJzZSwgTkhBTkVTKQpgYGAKCgojIENvbmNlcHRvIGLDoXNpY28KCnAgPSB0YW1hw7FvIGRlbCBlZmVjdG8geCB0YW1hw7FvIGRlIGxhIG11ZXN0cmEKCgojIFRhbWHDsW8gZGUgbGEgbXVlc3RyYQoKIyMgMjUwIApgYGB7cn0KCnNhbXBTaXplIDwtIDI1MApOSEFORVNfc2FtcGxlIDwtIE5IQU5FUyAlPiUgCiAgZHBseXI6OnNhbXBsZV9uKHNhbXBTaXplKQpgYGAKCmBgYHtyfQpOSEFORVNfc2FtcGxlICU+JSAKICBmaWx0ZXIoUGh5c0FjdGl2ZSAhPSAiTkEiKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gUGh5c0FjdGl2ZSwgeSA9IEJNSSkpICsgCiAgZ2VvbV9ib3hwbG90KCkKYGBgCgpgYGB7cn0KTkhBTkVTX3NhbXBsZSAlPiUgCiAgZmlsdGVyKFBoeXNBY3RpdmUgIT0gIk5BIikgJT4lIAogIGdncGxvdChhZXMoeCA9IEJNSSkpICsgCiAgZ2VvbV9kZW5zaXR5KGJpbnMgPSAxMCkgKyAKICBmYWNldF9ncmlkKFBoeXNBY3RpdmV+LikKYGBgCmBgYHtyfQpOSEFORVNfc2FtcGxlICU+JSAKICBmaWx0ZXIoUGh5c0FjdGl2ZSAhPSAiTkEiKSAlPiUgCiAgdC50ZXN0KEJNSSB+IFBoeXNBY3RpdmUsIGRhdGEgPSAuKQpgYGAKCiMjIDUwMCAKYGBge3J9Ck5IQU5FU19zYW1wbGVfeF8xMCA8LSBzYXBwbHkoTkhBTkVTX3NhbXBsZSwgcmVwLmludCwgdGltZXMgPSAyKQpOSEFORVNfc2FtcGxlX3hfMTAgPC0gYXMuZGF0YS5mcmFtZShOSEFORVNfc2FtcGxlX3hfMTApCmBgYAoKYGBge3J9Ck5IQU5FU19zYW1wbGVfeF8xMCAlPiUgCiAgZmlsdGVyKFBoeXNBY3RpdmUgIT0gIk5BIikgJT4lIAogIHQudGVzdChCTUkgfiBQaHlzQWN0aXZlLCBkYXRhID0gLikKYGBgCmBgYHtyfQpOSEFORVNfc2FtcGxlX3hfMTAgJT4lIAogIGZpbHRlcihQaHlzQWN0aXZlICE9ICJOQSIpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBCTUkpKSArIAogIGdlb21fZGVuc2l0eShiaW5zID0gMTApICsgCiAgZmFjZXRfZ3JpZChQaHlzQWN0aXZlfi4pCmBgYAoKYGBge3J9Ck5IQU5FU19zYW1wbGUgJT4lIAogIGZpbHRlcighaXMubmEoQk1JKSwgIWlzLm5hKFBoeXNBY3RpdmUpKSAlPiUgCiAgZ3JvdXBfYnkoUGh5c0FjdGl2ZSkgJT4lIAogIHN1bW1hcmlzZShCTUlfcHJvbWVkaW8gPSBtZWFuKEJNSSksIHNkID0gc2QoQk1JKSwgbiA9IG4oKSkKYGBgCmBgYHtyfQpOSEFORVNfc2FtcGxlX3hfMTAgJT4lIAogIGZpbHRlcighaXMubmEoQk1JKSwgIWlzLm5hKFBoeXNBY3RpdmUpKSAlPiUgCiAgZ3JvdXBfYnkoUGh5c0FjdGl2ZSkgJT4lIAogIHN1bW1hcmlzZShCTUlfcHJvbWVkaW8gPSBtZWFuKEJNSSksIHNkID0gc2QoQk1JKSwgbiA9IG4oKSkKYGBgCgoKIyBUYW1hw7FvIGRlbCBlZmVjdG8K