library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.0.0     ✔ purrr   0.2.5
## ✔ tibble  1.4.2     ✔ dplyr   0.7.8
## ✔ tidyr   0.8.1     ✔ stringr 1.3.1
## ✔ readr   1.1.1     ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(dplyr)

Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

Preview of data:

head(inc)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(inc)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean.

Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

Non-visual exploratory information using skim()

library(skimr)
## Warning: package 'skimr' was built under R version 3.5.2
## 
## Attaching package: 'skimr'
## The following object is masked from 'package:stats':
## 
##     filter
skim(inc)
## Skim summary statistics
##  n obs: 5001 
##  n variables: 8 
## 
## ── Variable type:factor ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##  variable missing complete    n n_unique
##      City       0     5001 5001     1519
##  Industry       0     5001 5001       25
##      Name       0     5001 5001     5001
##     State       0     5001 5001       52
##                              top_counts ordered
##     New: 160, Chi: 90, Aus: 88, Hou: 76   FALSE
##  IT : 733, Bus: 482, Adv: 471, Hea: 355   FALSE
##          (Ad: 1, @Pr: 1, 1-S: 1, 110: 1   FALSE
##      CA: 701, TX: 387, NY: 311, VA: 283   FALSE
## 
## ── Variable type:integer ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##   variable missing complete    n    mean      sd p0  p25  p50  p75  p100
##  Employees      12     4989 5001  232.72 1353.13  1   25   53  132 66803
##       Rank       0     5001 5001 2501.64 1443.51  1 1252 2502 3751  5000
##      hist
##  ▇▁▁▁▁▁▁▁
##  ▇▇▇▇▇▇▇▇
## 
## ── Variable type:numeric ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##     variable missing complete    n    mean       sd       p0        p25
##  Growth_Rate       0     5001 5001 4.61    14.12        0.34       0.77
##      Revenue       0     5001 5001 4.8e+07  2.4e+08 2e+06    5100000   
##      p50     p75     p100     hist
##  1.42    3.29      421.48 ▇▁▁▁▁▁▁▁
##  1.1e+07 2.9e+07 1e+10    ▇▁▁▁▁▁▁▁

Some interesting information is revealed by the skim() function. The inc data set contains 5001 observations and 8 variables. Four of these variables are categorical and four are numeric. The Employees variable has 12 missing peices of data. In this dataset there are 1519 unique City names, 25 unique industry names and 52 unique state names.The average number of employees across all companies is 232.72.

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

#str(inc)
stateCount <- dplyr::group_by(inc, State) %>% dplyr::summarize(Count=n())%>%dplyr::arrange(desc(Count))
stateCount
## # A tibble: 52 x 2
##    State Count
##    <fct> <int>
##  1 CA      701
##  2 TX      387
##  3 NY      311
##  4 VA      283
##  5 FL      282
##  6 IL      273
##  7 GA      212
##  8 OH      186
##  9 MA      182
## 10 PA      164
## # ... with 42 more rows
ggplot(stateCount, aes(x=reorder(State,Count),y=Count))+ 
  geom_bar(stat="identity", fill="skyblue1")+
  labs(title="Distribution of Unique Companies by State", 
        x="State",y="Count of Unique companies")+
  geom_text(aes(label=Count), vjust=0.5, size=2, position=position_dodge(width = 1), hjust=1.5)+
  theme_bw(base_size=5)+
  theme(axis.text.y=element_text(size=6, vjust=0.5))+
  theme(plot.title = element_text(size=12))+
  theme(plot.title = element_text(hjust = 0.5))+
  
  coord_flip()

Question 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

comp3 = inc%>%dplyr::filter(State=='NY')
comp3 = comp3[complete.cases(comp3), ]
comp3 = comp3%>%dplyr::group_by(Industry)%>%dplyr::summarise(average_emp = mean(Employees, na.rm=TRUE))

ggplot(comp3, aes(x=reorder(Industry, average_emp), y=average_emp)) +
  geom_bar(stat='identity', fill='#E69F00') +
  labs(title="NY-Total Number of Employees per Industry", 
            x='Industry', y='Employee Count') +
  geom_text(aes(y=average_emp-40, label=round(average_emp,0)), color='black', size=3) +
  coord_flip()

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

rev_emp = inc[complete.cases(inc),]
rev_emp = inc%>%dplyr::group_by(Industry)%>%dplyr::summarise(TotEmp = sum(Employees, na.rm = TRUE), TotRev = sum(Revenue, na.rm = TRUE))
rev_emp$rev_per_emp = rev_emp$TotRev/rev_emp$TotEmp

ggplot(rev_emp, aes(x=reorder(Industry, rev_per_emp), y=rev_per_emp)) +
  geom_bar(stat='identity', fill="pink" , width = 0.5) +
  labs(title="Revenue per Employee by Industry", 
       x='Industry', y='Revenue per Employee')+
  theme(plot.title = element_text(hjust = 0.5))+
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
  geom_text(aes(y=rev_per_emp-50000, label=round(rev_per_emp,0)), color='black', size=2)