(A <- matrix(c(1, 2, 3, 4,-1, 0, 1, 3, 0, 1, -2, 1, 5, 4, -2, -3), nrow=4, byrow = TRUE))
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
print(det(A))
## [1] -9
print(Rank(A))
## [1] 4
mum rank, assuming that the matrix is non-zero?
(B <- matrix(c(1, 2, 1, 3, 6, 3, 2, 4, 2), nrow=3, byrow = TRUE))
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
R1 <-
R2 <-
R3 <-
a <- B[1, ]-(1/3)%*%B[2, ]
b <- B[3, ]-(2/3)%*%B[2, ]
matrix(c(a,b,B[2, ]), nrow = 3, byrow = T)
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 3 6 3
(A <- matrix(c(1, 2, 3, 0, 4, 5, 0, 0, 6), nrow=3, byrow = T))
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
\[ Ax = \lambda x \] \[ Ax - \lambda x = 0 \]
\[ det \left( A - \lambda I \right)x = 0\]
\[\begin{equation*} \mathbf{} A-\lambda I = \left[\begin{matrix} 1 - \lambda & 2 & 4\\ 0 & 4-\lambda & 5\\ 0 & 0 & 6-\lambda \end{matrix}\right] \end{equation*} \]
The determinant of the matrix will be the product of the diagonal elements. Therefore,
\[det\left( A-\lambda I\right) = \left(1-\lambda\right)\left(4-\lambda \right)\left(6-\lambda \right) = 0 \]
\[ \left(4-\lambda - 4\lambda + \lambda^{2}\right)\left(6-\lambda \right) = 0\]
\[ \left(24-6\lambda - 24\lambda + 6\lambda^{2}-4\lambda + \lambda^{2} + 4\lambda^{2} - \lambda^3\right) = 0\]
\[-\lambda^3 + 11\lambda^2 - 34\lambda + 24 = 0\]
At \(\lambda_1 = 1\), the corresponding eigen vectors are:
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 1.0000\\ 0.0000\\ 0.0000 \end{matrix}\right] \end{equation*} \] At \(\lambda_2 = 4\), the corresponding eigen vectors are:
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 1.6000\\ 2.5000\\ 1.0000 \end{matrix}\right] \end{equation*} \]
At \(\lambda_3 = 6\), the corresponding eigen vectors are:
\[\begin{equation*} \mathbf{}\left[\begin{matrix} 1.6667\\ 1.0000\\ 0.0000 \end{matrix}\right] \end{equation*} \]