#Downloading neccessary libraries for project, each accompanied with functions neccessary to perfrom this project. Two datasets are imported: The first dataset represents the number of students enrolled in Census Tracts nationwide The second dataset represents the number of people living in each Census Tract by race - also nationwide. I merge these datasets together, joining them via the GISJOIN variable.
library(readxl)
library(car)
## Loading required package: carData
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(pastecs)
##
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
##
## first, last
cen_sch_enroll <- read_excel("~/Library/CloudStorage/iCloud Drive/Desktop/cen_sch_enroll.xlsx")
census_race_eth <- read_excel("~/Library/CloudStorage/iCloud Drive/Desktop/census_race_eth.xlsx")
project1 <- merge(cen_sch_enroll, census_race_eth, by="GISJOIN")
#The dataset provides the number of children enrolled for each grade. I sum the number of children enrolled in K-12 (from kindergarten ending in 004 to 12th grade ending in 16). I do this by race, where k_12 = total students, bk_12 = total black students, wk_12 = white students and lk_12 = latinx students.
project1$k_12<-project1$AH0TE004+project1$AH0TE005+project1$AH0TE006+project1$AH0TE007+project1$AH0TE008+project1$AH0TE009+project1$AH0TE010+project1$AH0TE011+project1$AH0TE012+project1$AH0TE013+project1$AH0TE014+project1$AH0TE015+project1$AH0TE016
#total amount of black students enrolled in primary school in the tract
project1$bk_12<-project1$AH0VE004+project1$AH0VE005+project1$AH0VE006+project1$AH0VE007+project1$AH0VE008+project1$AH0VE009+project1$AH0VE010+project1$AH0VE011+project1$AH0VE012+project1$AH0VE013+project1$AH0VE014+project1$AH0VE015+project1$AH0VE016
#total amount of white students enrolled in primary school in the tract
project1$wk_12<-project1$AH01E004+project1$AH01E005+project1$AH01E006+project1$AH01E007+project1$AH01E008+project1$AH01E009+project1$AH01E010+project1$AH01E011+project1$AH01E012+project1$AH01E013+project1$AH01E014+project1$AH01E015+project1$AH01E016
#total amount of latinx students enrolled in primary school in the tract
project1$lk_12<-project1$AH02E004+project1$AH02E005+project1$AH02E006+project1$AH02E007+project1$AH02E008+project1$AH02E009+project1$AH02E010+project1$AH02E011+project1$AH02E012+project1$AH02E013+project1$AH02E014+project1$AH02E015+project1$AH02E016
#Changing the variable names for population (by race) in tract variables
project1$total_pop<-project1$AHZAE001
project1$latinx_pop<-project1$AHZAE012
project1$black_pop<-project1$AHZAE004
project1$white_pop<-project1$AHZAE003
#Creating a percentage (really a proportion) of racial groups within tract.
project1$black_per_k_12<-project1$bk_12/project1$k_12
project1$white_per_k_12<-project1$wk_12/project1$k_12
project1$latinx_per_k_12<-project1$lk_12/project1$k_12
project1$black_per_pop<-project1$black_pop/project1$total_pop
project1$white_per_pop<-project1$white_pop/project1$total_pop
project1$latinx_per_pop<-project1$latinx_pop/project1$total_pop
#Subsetting the dataset to pull Travis County and exclude the rest of nation.
proj3<-subset(project1,COUNTY.x == "Travis County")
This section displays descriptive statistics, quartile distributions, correlations, scatterplots and regression models pertaining to the aforementioned variables selected for this project.
As previously noted, I seek to examine the association between white student enrollment (DV) and the proportion of Black and Latinx residents living in the tract. Specifically in Travis county. I hypothesize a negative asssociation between the outcome and both predictor variables because of the current nature of gentrification and displacement in the city of Austin. Much of the city’s historically black and latinx neighborhoods are rapidly becoming white, but that gentrification is only exhibited in the communities, not the schools serving those communities. In other words, there is a possibillity that the white children living in the tract are not attending these schools. This gives me the opportunity to examine how white student enrollment relates to tracts carrying significant black and latinx populations, an alternative reflection of segregation.
First, I run descriptives:
#Descriptives
attach(proj3)
x<-cbind(black_per_k_12,latinx_per_k_12,white_per_k_12,black_per_pop,latinx_per_pop,white_per_pop)
stat.desc(x)
## black_per_k_12 latinx_per_k_12 white_per_k_12 black_per_pop
## nbr.val 2.160000e+02 216.00000000 216.00000000 2.170000e+02
## nbr.null 7.400000e+01 10.00000000 8.00000000 7.000000e+00
## nbr.na 2.000000e+00 2.00000000 2.00000000 1.000000e+00
## min 0.000000e+00 0.00000000 0.00000000 0.000000e+00
## max 5.346260e-01 0.97905028 1.00000000 4.650048e-01
## range 5.346260e-01 0.97905028 1.00000000 4.650048e-01
## sum 1.746119e+01 96.24496664 82.38281712 1.638517e+01
## median 3.364780e-02 0.42907900 0.33445383 4.864434e-02
## mean 8.083886e-02 0.44557855 0.38140193 7.550771e-02
## SE.mean 7.490153e-03 0.01972697 0.02002380 5.598515e-03
## CI.mean.0.95 1.476353e-02 0.03888303 0.03946810 1.103471e-02
## var 1.211812e-02 0.08405715 0.08660576 6.801511e-03
## std.dev 1.100823e-01 0.28992611 0.29428857 8.247127e-02
## coef.var 1.361750e+00 0.65067341 0.77159695 1.092223e+00
## latinx_per_pop white_per_pop
## nbr.val 217.00000000 217.00000000
## nbr.null 0.00000000 0.00000000
## nbr.na 1.00000000 1.00000000
## min 0.04510184 0.03805395
## max 0.85106033 0.94204656
## range 0.80595849 0.90399261
## sum 70.58179050 111.41492040
## median 0.27374486 0.53327186
## mean 0.32526171 0.51343281
## SE.mean 0.01448204 0.01571734
## CI.mean.0.95 0.02854422 0.03097899
## var 0.04551132 0.05360654
## std.dev 0.21333382 0.23153087
## coef.var 0.65588361 0.45094677
summary(x)
## black_per_k_12 latinx_per_k_12 white_per_k_12 black_per_pop
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.1794 1st Qu.:0.1091 1st Qu.:0.02010
## Median :0.03365 Median :0.4291 Median :0.3345 Median :0.04864
## Mean :0.08084 Mean :0.4456 Mean :0.3814 Mean :0.07551
## 3rd Qu.:0.12813 3rd Qu.:0.7203 3rd Qu.:0.6693 3rd Qu.:0.10305
## Max. :0.53463 Max. :0.9791 Max. :1.0000 Max. :0.46500
## NA's :2 NA's :2 NA's :2 NA's :1
## latinx_per_pop white_per_pop
## Min. :0.0451 Min. :0.03805
## 1st Qu.:0.1423 1st Qu.:0.30426
## Median :0.2737 Median :0.53327
## Mean :0.3253 Mean :0.51343
## 3rd Qu.:0.4863 3rd Qu.:0.72905
## Max. :0.8511 Max. :0.94205
## NA's :1 NA's :1
The descriptives here are telling. First, we see that the median proportion of students enrolled in school is highest among latinx (.429), followed by whites (.335). The proportion of black students enrolled is fairly low among blacks. This of course can be due to the difference in the number of school aged children per race or even differences in fertility rates. Surely, tract population sizes matter. The number of residents living in the tract however is highest among whites (.533) than any other group. In pure descriptives, there are more whites living in the tract than attending schools. Again, the number of school aged children by race would be essential to examining why. It is important to note that the mean for each variable is relatively similar to the mode, sometimes falling no more than 3 tenths away from eacother. This indicates that there are few outliers that manipulate the mean’s credibiliity.
Next, I compute quartile distributions.
#Quartiles
quantile(proj3$white_per_k_12, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.0000000 0.1091225 0.3344538 0.6693167 1.0000000
qqnorm(proj3$white_per_k_12,main="White School Enrollment: Source - ACS 2013-2017",pch=1,frame=FALSE)
quantile(proj3$black_per_k_12, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.0000000 0.0000000 0.0336478 0.1281264 0.5346260
qqnorm(proj3$black_per_k_12,main="Black School Enrollment: Source - ACS 2013-2017",pch=1,frame=FALSE)
quantile(proj3$latinx_per_k_12, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.0000000 0.1794015 0.4290790 0.7203101 0.9790503
qqnorm(proj3$latinx_per_k_12,main="Latinx School Enrollment: Source - ACS 2013-2017",pch=1,frame=FALSE)
quantile(proj3$white_per_pop, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.03805395 0.30426022 0.53327186 0.72904586 0.94204656
qqnorm(proj3$white_per_pop,pch=1,main="White Tract Population: Source - ACS 2013-2017",frame=FALSE)
quantile(proj3$black_per_pop, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.00000000 0.02010211 0.04864434 0.10304659 0.46500479
qqnorm(proj3$black_per_pop,pch=1,main="Black Tract Population: Source - ACS 2013-2017",frame=FALSE)
quantile(proj3$latinx_per_pop, na.rm=TRUE)
## 0% 25% 50% 75% 100%
## 0.04510184 0.14226861 0.27374486 0.48632634 0.85106033
qqnorm(proj3$latinx_per_pop,pch=1,main="Latinx Tract Population: Source - ACS 2013-2017",frame=FALSE)
Comparing quartiles across the variables, we see the spread of data is more evenly distributed across white student enrollment and white population within in tract. This is partially true for latinx, both in enrollment and population. However, the spread of data for black student enrollment and tract population is less informative. Majority of the data for black student enrollment takes place above the mean - and because the mean is so low, this indicates that there are numerous census tracts in Travis County that do not carry black students whatsoever. So too is this similar for black population shares. I would wager that the majority of the black population in the county is situated in suburban cities, but are fairly minimal contrast to white and latinx population shares.
Now, we run correlations.
#Correlations performed between % of white student enrollment and % of black and latinx population living in tract.
cor.test(proj3$white_per_k_12, proj3$black_per_pop, method="pearson",use="complete.obs")
##
## Pearson's product-moment correlation
##
## data: proj3$white_per_k_12 and proj3$black_per_pop
## t = -9.6693, df = 214, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6379467 -0.4511272
## sample estimates:
## cor
## -0.5514128
cor.test(proj3$white_per_k_12, proj3$latinx_per_pop, method="pearson",use="complete.obs")
##
## Pearson's product-moment correlation
##
## data: proj3$white_per_k_12 and proj3$latinx_per_pop
## t = -21.95, df = 214, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8690797 -0.7859383
## sample estimates:
## cor
## -0.8321268
cor.test(proj3$white_per_k_12, proj3$white_per_pop, method="pearson",use="complete.obs")
##
## Pearson's product-moment correlation
##
## data: proj3$white_per_k_12 and proj3$white_per_pop
## t = 29.978, df = 214, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8695317 0.9216303
## sample estimates:
## cor
## 0.8987061
cor.test(proj3$white_per_k_12, proj3$black_per_k_12, method="pearson",use="complete.obs")
##
## Pearson's product-moment correlation
##
## data: proj3$white_per_k_12 and proj3$black_per_k_12
## t = -8.3476, df = 214, p-value = 8.637e-15
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5900685 -0.3877780
## sample estimates:
## cor
## -0.4956151
cor.test(proj3$white_per_k_12, proj3$latinx_per_k_12, method="pearson",use="complete.obs")
##
## Pearson's product-moment correlation
##
## data: proj3$white_per_k_12 and proj3$latinx_per_k_12
## t = -27.856, df = 214, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9111475 -0.8526147
## sample estimates:
## cor
## -0.88534
As expected, the assocation between white student enrollment and each variable attibuted to minorty student enrollment and/or tract population size is negative. Each of these tests are significant, but the largest and most pronounced assocation i seen among white and latinx school enrollment (-.89). Naturally, I run scatterplots and regression models to determine the unit of change for each association. Here, I only run models for those predictor variables that represent the proportion of residents in tract across each racial category. The only student enrollment vaiable I use going forward is my dependent variable, white student enrollment.
#Scatterplots and Regressions
model1 <- lm(white_per_k_12~black_per_pop, data=proj3)
model2 <- lm(white_per_k_12~latinx_per_pop, data=proj3)
model3 <- lm(white_per_k_12~white_per_pop, data=proj3)
equation = function(x) {
lm_coef <- list(a = round(coef(x)[1], digits = 2),
b = round(coef(x)[2], digits = 2),
r2 = round(summary(x)$r.squared, digits = 2));
lm_eq <- substitute(italic(y) == a + b %.% italic(x)*","~~italic(R)^2~"="~r2,lm_coef)
as.character(as.expression(lm_eq));
}
m1 <- ggplot(proj3, aes(x=white_per_k_12, y=black_per_pop)) + geom_point(shape=1) + geom_smooth(method=lm, se=FALSE) +
ggtitle("Associating Blacks in Tract and Whites Enrolled: Source: ACS 2013-2017") +
scale_x_continuous(name = "White Children Enrolled in School K-12") +
scale_y_continuous(name = "Black Residents in Tract") +
annotate("rect", xmin = 0.00, xmax = 0.1, ymin = -0.056, ymax = -0.044, fill="white", colour="red") +
annotate("text", x = 0.05, y = -0.05, label = equation(model1), parse = TRUE)
m2 <- ggplot(proj3, aes(x=white_per_k_12, y=latinx_per_pop)) + geom_point(shape=1) + geom_smooth(method=lm, se=FALSE) +
ggtitle("Associating Latinx in Tract and Whites Enrolled: Source: ACS 2013-2017") +
scale_x_continuous(name = "White Children Enrolled in School K-12") +
scale_y_continuous(name = "Latinx Residents in Tract") +
annotate("rect", xmin = 0.00, xmax = 0.1, ymin = -0.056, ymax = -0.044, fill="white", colour="red") +
annotate("text", x = 0.05, y = -0.05, label = equation(model2), parse = TRUE)
m3 <- ggplot(proj3, aes(x=white_per_k_12, y=white_per_pop)) + geom_point(shape=1) + geom_smooth(method=lm, se=FALSE) +
ggtitle("Associating Whites in Tract and Whites Enrolled: Source: ACS 2013-2017") +
scale_x_continuous(name = "White Children Enrolled in School K-12") +
scale_y_continuous(name = "White Residents in Tract") +
annotate("rect", xmin = 0.00, xmax = 0.1, ymin = -0.056, ymax = -0.044, fill="white", colour="red") +
annotate("text", x = 0.05, y = -0.05, label = equation(model3), parse = TRUE)
m1
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
m2
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
m3
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
## Warning: Removed 2 rows containing missing values (geom_point).
model1 <- lm(white_per_k_12~black_per_pop, data=proj3)
summary(model1)
##
## Call:
## lm(formula = white_per_k_12 ~ black_per_pop, data = proj3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.44996 -0.19903 -0.01124 0.21098 0.53482
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.52980 0.02271 23.326 <2e-16 ***
## black_per_pop -1.96328 0.20304 -9.669 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2461 on 214 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.3041, Adjusted R-squared: 0.3008
## F-statistic: 93.5 on 1 and 214 DF, p-value: < 2.2e-16
model2 <- lm(white_per_k_12~latinx_per_pop, data=proj3)
summary(model2)
##
## Call:
## lm(formula = white_per_k_12 ~ latinx_per_pop, data = proj3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.54576 -0.10982 0.02302 0.11546 0.49314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.75512 0.02034 37.12 <2e-16 ***
## latinx_per_pop -1.14654 0.05223 -21.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1636 on 214 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.6924, Adjusted R-squared: 0.691
## F-statistic: 481.8 on 1 and 214 DF, p-value: < 2.2e-16
model3 <- lm(white_per_k_12~black_per_pop+latinx_per_pop, data=proj3)
summary(model3)
##
## Call:
## lm(formula = white_per_k_12 ~ black_per_pop + latinx_per_pop,
## data = proj3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.53526 -0.09409 0.01337 0.09282 0.46018
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.79172 0.01786 44.34 <2e-16 ***
## black_per_pop -1.09523 0.12238 -8.95 <2e-16 ***
## latinx_per_pop -1.00485 0.04736 -21.22 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1398 on 213 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.7765, Adjusted R-squared: 0.7744
## F-statistic: 370 on 2 and 213 DF, p-value: < 2.2e-16
model4 <- lm(white_per_k_12~black_per_pop+latinx_per_pop+white_per_pop, data=proj3)
summary(model4)
##
## Call:
## lm(formula = white_per_k_12 ~ black_per_pop + latinx_per_pop +
## white_per_pop, data = proj3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42044 -0.08201 0.01131 0.07608 0.52917
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04349 0.11986 0.363 0.7171
## black_per_pop -0.24409 0.17582 -1.388 0.1665
## latinx_per_pop -0.26756 0.12484 -2.143 0.0332 *
## white_per_pop 0.86407 0.13711 6.302 1.67e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1286 on 212 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.8118, Adjusted R-squared: 0.8091
## F-statistic: 304.7 on 3 and 212 DF, p-value: < 2.2e-16
This is interesting. I run four models. The first demonstrates the individual relationship between black populaiton in tract and white student enrollment (model 1) and the second, latinx population in tract and white student enrollment. Both models show that every unit increase in black inhabitants in the tract corresponds with a subsequent decrease in white student enrollment. The R^2 is much larger however for latinx, at almost 70 percent contrast to blacks, 30 percent. The third models includes both variables as they explain white student enrollment. The R^2 is relatively high at 77 percent, and the coefficent is once again higher when controlling for the proportion of black populations in tract (though the standard error is higher). Lastly, the final model includes black, white and latinx population in tract as they work to predict white student enrollment. Naturally, the positive assocation between the proportion of white students enrolled and the proporiton of whites living in tract is high. As it relates to black inhabitancy, the effect is no longer significant, and is only barely significant for latinx inhabtancy.
This report speaks to the constant prevalence of segregation in the state of Texas, and in particular, the current migratory patterns of residents in Travis County. It is possible that the influx of black migrants into suburban cities could be triggering this response, assuming that the proportion of black students attending schools is increasing in line with their respective population. Also, tracts carrying large population shares of black residents are likely residentially segregated, and if white residents living in the tract are of higher ses, research suggests that they are likely to send their children to schools outside the district. This may explain the negative association.
The Latinx populatin in Travis county continues to increase substantially. The fact that tracts carrying significant populations of latinx residents are strongly correlated with a subsequent decrease in white student enrollment is not much different than the black association. But one wonders how long this trend can persist given the aforementioned growing increase of latinx inhabitancy.
One huge limitation to this project is the large margin of errors seens across the variables. Being that this is the ACS, reliability is not as assured as the census.
#Changing the variable names. Total enrollment by grade
project1$total_kinder<-project1$AH0TE004
project1$total_1st<-project1$AH0TE005
project1$total_2nd<-project1$AH0TE006
project1$total_3rd<-project1$AH0TE007
project1$total_4th<-project1$AH0TE008
project1$total_5th<-project1$AH0TE009
project1$total_6th<-project1$AH0TE010
project1$total_7th<-project1$AH0TE011
project1$total_8th<-project1$AH0TE012
project1$total_9th<-project1$AH0TE013
project1$total_10th<-project1$AH0TE014
project1$total_11th<-project1$AH0TE015
project1$total_12th<-project1$AH0TE016
#Changing the variable names. Total enrollment by grade (margin of error)
project1$total_kindererror<-project1$AH0TM004
project1$total_1sterror<-project1$AH0TM005
project1$total_2nderror<-project1$AH0TM006
project1$total_3rderror<-project1$AH0TM007
project1$total_4therror<-project1$AH0TM008
project1$total_5therror<-project1$AH0TM009
project1$total_6therror<-project1$AH0TM010
project1$total_7therror<-project1$AH0TM011
project1$total_8therror<-project1$AH0TM012
project1$total_9therror<-project1$AH0TM013
project1$total_10therror<-project1$AH0TM014
project1$total_11therror<-project1$AH0TM015
project1$total_12therror<-project1$AH0TM016
attach(project1)
## The following objects are masked from proj3:
##
## AH01E001, AH01E002, AH01E003, AH01E004, AH01E005, AH01E006,
## AH01E007, AH01E008, AH01E009, AH01E010, AH01E011, AH01E012,
## AH01E013, AH01E014, AH01E015, AH01E016, AH01E017, AH01E018,
## AH01E019, AH01M001, AH01M002, AH01M003, AH01M004, AH01M005,
## AH01M006, AH01M007, AH01M008, AH01M009, AH01M010, AH01M011,
## AH01M012, AH01M013, AH01M014, AH01M015, AH01M016, AH01M017,
## AH01M018, AH01M019, AH02E001, AH02E002, AH02E003, AH02E004,
## AH02E005, AH02E006, AH02E007, AH02E008, AH02E009, AH02E010,
## AH02E011, AH02E012, AH02E013, AH02E014, AH02E015, AH02E016,
## AH02E017, AH02E018, AH02E019, AH02M001, AH02M002, AH02M003,
## AH02M004, AH02M005, AH02M006, AH02M007, AH02M008, AH02M009,
## AH02M010, AH02M011, AH02M012, AH02M013, AH02M014, AH02M015,
## AH02M016, AH02M017, AH02M018, AH02M019, AH0TE001, AH0TE002,
## AH0TE003, AH0TE004, AH0TE005, AH0TE006, AH0TE007, AH0TE008,
## AH0TE009, AH0TE010, AH0TE011, AH0TE012, AH0TE013, AH0TE014,
## AH0TE015, AH0TE016, AH0TE017, AH0TE018, AH0TE019, AH0TM001,
## AH0TM002, AH0TM003, AH0TM004, AH0TM005, AH0TM006, AH0TM007,
## AH0TM008, AH0TM009, AH0TM010, AH0TM011, AH0TM012, AH0TM013,
## AH0TM014, AH0TM015, AH0TM016, AH0TM017, AH0TM018, AH0TM019,
## AH0VE001, AH0VE002, AH0VE003, AH0VE004, AH0VE005, AH0VE006,
## AH0VE007, AH0VE008, AH0VE009, AH0VE010, AH0VE011, AH0VE012,
## AH0VE013, AH0VE014, AH0VE015, AH0VE016, AH0VE017, AH0VE018,
## AH0VE019, AH0VM001, AH0VM002, AH0VM003, AH0VM004, AH0VM005,
## AH0VM006, AH0VM007, AH0VM008, AH0VM009, AH0VM010, AH0VM011,
## AH0VM012, AH0VM013, AH0VM014, AH0VM015, AH0VM016, AH0VM017,
## AH0VM018, AH0VM019, AH1PE001, AH1PM001, AHYQE001, AHYQE002,
## AHYQE003, AHYQE004, AHYQE005, AHYQE006, AHYQE007, AHYQE008,
## AHYQE009, AHYQE010, AHYQE011, AHYQE012, AHYQE013, AHYQE014,
## AHYQE015, AHYQE016, AHYQE017, AHYQE018, AHYQE019, AHYQE020,
## AHYQE021, AHYQE022, AHYQE023, AHYQE024, AHYQE025, AHYQE026,
## AHYQE027, AHYQE028, AHYQE029, AHYQE030, AHYQE031, AHYQE032,
## AHYQE033, AHYQE034, AHYQE035, AHYQE036, AHYQE037, AHYQE038,
## AHYQE039, AHYQE040, AHYQE041, AHYQE042, AHYQE043, AHYQE044,
## AHYQE045, AHYQE046, AHYQE047, AHYQE048, AHYQE049, AHYQM001,
## AHYQM002, AHYQM003, AHYQM004, AHYQM005, AHYQM006, AHYQM007,
## AHYQM008, AHYQM009, AHYQM010, AHYQM011, AHYQM012, AHYQM013,
## AHYQM014, AHYQM015, AHYQM016, AHYQM017, AHYQM018, AHYQM019,
## AHYQM020, AHYQM021, AHYQM022, AHYQM023, AHYQM024, AHYQM025,
## AHYQM026, AHYQM027, AHYQM028, AHYQM029, AHYQM030, AHYQM031,
## AHYQM032, AHYQM033, AHYQM034, AHYQM035, AHYQM036, AHYQM037,
## AHYQM038, AHYQM039, AHYQM040, AHYQM041, AHYQM042, AHYQM043,
## AHYQM044, AHYQM045, AHYQM046, AHYQM047, AHYQM048, AHYQM049,
## AHZAE001, AHZAE002, AHZAE003, AHZAE004, AHZAE005, AHZAE006,
## AHZAE007, AHZAE008, AHZAE009, AHZAE010, AHZAE011, AHZAE012,
## AHZAE013, AHZAE014, AHZAE015, AHZAE016, AHZAE017, AHZAE018,
## AHZAE019, AHZAE020, AHZAE021, AHZAM001, AHZAM002, AHZAM003,
## AHZAM004, AHZAM005, AHZAM006, AHZAM007, AHZAM008, AHZAM009,
## AHZAM010, AHZAM011, AHZAM012, AHZAM013, AHZAM014, AHZAM015,
## AHZAM016, AHZAM017, AHZAM018, AHZAM019, AHZAM020, AHZAM021,
## AIANHHA.x, AIANHHA.y, AITSCEA.x, AITSCEA.y, ANRCA.x, ANRCA.y,
## bk_12, black_per_k_12, black_per_pop, black_pop, BLKGRPA.x,
## BLKGRPA.y, BTBGA.x, BTBGA.y, BTTRA.x, BTTRA.y, CBSAA.x,
## CBSAA.y, CDCURRA.x, CDCURRA.y, CNECTAA.x, CNECTAA.y,
## CONCITA.x, CONCITA.y, COUNTY.x, COUNTY.y, COUNTYA.x,
## COUNTYA.y, COUSUBA.x, COUSUBA.y, CSAA.x, CSAA.y, DIVISIONA.x,
## DIVISIONA.y, GISJOIN, k_12, latinx_per_k_12, latinx_per_pop,
## latinx_pop, lk_12, METDIVA.x, METDIVA.y, NAME_E.x, NAME_E.y,
## NAME_M.x, NAME_M.y, NECTAA.x, NECTAA.y, NECTADIVA.x,
## NECTADIVA.y, PLACEA.x, PLACEA.y, PUMA5A.x, PUMA5A.y,
## REGIONA.x, REGIONA.y, RES_ONLYA.x, RES_ONLYA.y, SDELMA.x,
## SDELMA.y, SDSECA.x, SDSECA.y, SDUNIA.x, SDUNIA.y, SLDLA.x,
## SLDLA.y, SLDUA.x, SLDUA.y, STATE.x, STATE.y, STATEA.x,
## STATEA.y, SUBMCDA.x, SUBMCDA.y, total_pop, TRACTA.x, TRACTA.y,
## TRUSTA.x, TRUSTA.y, UAA.x, UAA.y, white_per_k_12,
## white_per_pop, white_pop, wk_12, YEAR.x, YEAR.y, ZCTA5A.x,
## ZCTA5A.y
total<-cbind(total_kinder,total_kindererror,total_1st,total_1sterror,total_2nd,total_2nderror,total_3rd,total_3rderror,total_4th,total_4therror,total_5th,total_5therror,total_6th,total_6therror,total_7th,total_7therror,total_8th,total_8therror,total_9th,total_9therror,total_10th,total_10therror,total_11th,total_11therror,total_12th,total_12therror)
## The following objects are masked from project1 (pos = 3):
##
## AH01E001, AH01E002, AH01E003, AH01E004, AH01E005, AH01E006,
## AH01E007, AH01E008, AH01E009, AH01E010, AH01E011, AH01E012,
## AH01E013, AH01E014, AH01E015, AH01E016, AH01E017, AH01E018,
## AH01E019, AH01M001, AH01M002, AH01M003, AH01M004, AH01M005,
## AH01M006, AH01M007, AH01M008, AH01M009, AH01M010, AH01M011,
## AH01M012, AH01M013, AH01M014, AH01M015, AH01M016, AH01M017,
## AH01M018, AH01M019, AH02E001, AH02E002, AH02E003, AH02E004,
## AH02E005, AH02E006, AH02E007, AH02E008, AH02E009, AH02E010,
## AH02E011, AH02E012, AH02E013, AH02E014, AH02E015, AH02E016,
## AH02E017, AH02E018, AH02E019, AH02M001, AH02M002, AH02M003,
## AH02M004, AH02M005, AH02M006, AH02M007, AH02M008, AH02M009,
## AH02M010, AH02M011, AH02M012, AH02M013, AH02M014, AH02M015,
## AH02M016, AH02M017, AH02M018, AH02M019, AH0TE001, AH0TE002,
## AH0TE003, AH0TE004, AH0TE005, AH0TE006, AH0TE007, AH0TE008,
## AH0TE009, AH0TE010, AH0TE011, AH0TE012, AH0TE013, AH0TE014,
## AH0TE015, AH0TE016, AH0TE017, AH0TE018, AH0TE019, AH0TM001,
## AH0TM002, AH0TM003, AH0TM004, AH0TM005, AH0TM006, AH0TM007,
## AH0TM008, AH0TM009, AH0TM010, AH0TM011, AH0TM012, AH0TM013,
## AH0TM014, AH0TM015, AH0TM016, AH0TM017, AH0TM018, AH0TM019,
## AH0VE001, AH0VE002, AH0VE003, AH0VE004, AH0VE005, AH0VE006,
## AH0VE007, AH0VE008, AH0VE009, AH0VE010, AH0VE011, AH0VE012,
## AH0VE013, AH0VE014, AH0VE015, AH0VE016, AH0VE017, AH0VE018,
## AH0VE019, AH0VM001, AH0VM002, AH0VM003, AH0VM004, AH0VM005,
## AH0VM006, AH0VM007, AH0VM008, AH0VM009, AH0VM010, AH0VM011,
## AH0VM012, AH0VM013, AH0VM014, AH0VM015, AH0VM016, AH0VM017,
## AH0VM018, AH0VM019, AH1PE001, AH1PM001, AHYQE001, AHYQE002,
## AHYQE003, AHYQE004, AHYQE005, AHYQE006, AHYQE007, AHYQE008,
## AHYQE009, AHYQE010, AHYQE011, AHYQE012, AHYQE013, AHYQE014,
## AHYQE015, AHYQE016, AHYQE017, AHYQE018, AHYQE019, AHYQE020,
## AHYQE021, AHYQE022, AHYQE023, AHYQE024, AHYQE025, AHYQE026,
## AHYQE027, AHYQE028, AHYQE029, AHYQE030, AHYQE031, AHYQE032,
## AHYQE033, AHYQE034, AHYQE035, AHYQE036, AHYQE037, AHYQE038,
## AHYQE039, AHYQE040, AHYQE041, AHYQE042, AHYQE043, AHYQE044,
## AHYQE045, AHYQE046, AHYQE047, AHYQE048, AHYQE049, AHYQM001,
## AHYQM002, AHYQM003, AHYQM004, AHYQM005, AHYQM006, AHYQM007,
## AHYQM008, AHYQM009, AHYQM010, AHYQM011, AHYQM012, AHYQM013,
## AHYQM014, AHYQM015, AHYQM016, AHYQM017, AHYQM018, AHYQM019,
## AHYQM020, AHYQM021, AHYQM022, AHYQM023, AHYQM024, AHYQM025,
## AHYQM026, AHYQM027, AHYQM028, AHYQM029, AHYQM030, AHYQM031,
## AHYQM032, AHYQM033, AHYQM034, AHYQM035, AHYQM036, AHYQM037,
## AHYQM038, AHYQM039, AHYQM040, AHYQM041, AHYQM042, AHYQM043,
## AHYQM044, AHYQM045, AHYQM046, AHYQM047, AHYQM048, AHYQM049,
## AHZAE001, AHZAE002, AHZAE003, AHZAE004, AHZAE005, AHZAE006,
## AHZAE007, AHZAE008, AHZAE009, AHZAE010, AHZAE011, AHZAE012,
## AHZAE013, AHZAE014, AHZAE015, AHZAE016, AHZAE017, AHZAE018,
## AHZAE019, AHZAE020, AHZAE021, AHZAM001, AHZAM002, AHZAM003,
## AHZAM004, AHZAM005, AHZAM006, AHZAM007, AHZAM008, AHZAM009,
## AHZAM010, AHZAM011, AHZAM012, AHZAM013, AHZAM014, AHZAM015,
## AHZAM016, AHZAM017, AHZAM018, AHZAM019, AHZAM020, AHZAM021,
## AIANHHA.x, AIANHHA.y, AITSCEA.x, AITSCEA.y, ANRCA.x, ANRCA.y,
## bk_12, black_per_k_12, black_per_pop, black_pop, BLKGRPA.x,
## BLKGRPA.y, BTBGA.x, BTBGA.y, BTTRA.x, BTTRA.y, CBSAA.x,
## CBSAA.y, CDCURRA.x, CDCURRA.y, CNECTAA.x, CNECTAA.y,
## CONCITA.x, CONCITA.y, COUNTY.x, COUNTY.y, COUNTYA.x,
## COUNTYA.y, COUSUBA.x, COUSUBA.y, CSAA.x, CSAA.y, DIVISIONA.x,
## DIVISIONA.y, GISJOIN, k_12, latinx_per_k_12, latinx_per_pop,
## latinx_pop, lk_12, METDIVA.x, METDIVA.y, NAME_E.x, NAME_E.y,
## NAME_M.x, NAME_M.y, NECTAA.x, NECTAA.y, NECTADIVA.x,
## NECTADIVA.y, PLACEA.x, PLACEA.y, PUMA5A.x, PUMA5A.y,
## REGIONA.x, REGIONA.y, RES_ONLYA.x, RES_ONLYA.y, SDELMA.x,
## SDELMA.y, SDSECA.x, SDSECA.y, SDUNIA.x, SDUNIA.y, SLDLA.x,
## SLDLA.y, SLDUA.x, SLDUA.y, STATE.x, STATE.y, STATEA.x,
## STATEA.y, SUBMCDA.x, SUBMCDA.y, total_10th, total_10therror,
## total_11th, total_11therror, total_12th, total_12therror,
## total_1st, total_1sterror, total_2nd, total_2nderror,
## total_3rd, total_3rderror, total_4th, total_4therror,
## total_5th, total_5therror, total_6th, total_6therror,
## total_7th, total_7therror, total_8th, total_8therror,
## total_9th, total_9therror, total_kinder, total_kindererror,
## total_pop, TRACTA.x, TRACTA.y, TRUSTA.x, TRUSTA.y, UAA.x,
## UAA.y, white_per_k_12, white_per_pop, white_pop, wk_12,
## YEAR.x, YEAR.y, ZCTA5A.x, ZCTA5A.y
## The following objects are masked from proj3:
##
## AH01E001, AH01E002, AH01E003, AH01E004, AH01E005, AH01E006,
## AH01E007, AH01E008, AH01E009, AH01E010, AH01E011, AH01E012,
## AH01E013, AH01E014, AH01E015, AH01E016, AH01E017, AH01E018,
## AH01E019, AH01M001, AH01M002, AH01M003, AH01M004, AH01M005,
## AH01M006, AH01M007, AH01M008, AH01M009, AH01M010, AH01M011,
## AH01M012, AH01M013, AH01M014, AH01M015, AH01M016, AH01M017,
## AH01M018, AH01M019, AH02E001, AH02E002, AH02E003, AH02E004,
## AH02E005, AH02E006, AH02E007, AH02E008, AH02E009, AH02E010,
## AH02E011, AH02E012, AH02E013, AH02E014, AH02E015, AH02E016,
## AH02E017, AH02E018, AH02E019, AH02M001, AH02M002, AH02M003,
## AH02M004, AH02M005, AH02M006, AH02M007, AH02M008, AH02M009,
## AH02M010, AH02M011, AH02M012, AH02M013, AH02M014, AH02M015,
## AH02M016, AH02M017, AH02M018, AH02M019, AH0TE001, AH0TE002,
## AH0TE003, AH0TE004, AH0TE005, AH0TE006, AH0TE007, AH0TE008,
## AH0TE009, AH0TE010, AH0TE011, AH0TE012, AH0TE013, AH0TE014,
## AH0TE015, AH0TE016, AH0TE017, AH0TE018, AH0TE019, AH0TM001,
## AH0TM002, AH0TM003, AH0TM004, AH0TM005, AH0TM006, AH0TM007,
## AH0TM008, AH0TM009, AH0TM010, AH0TM011, AH0TM012, AH0TM013,
## AH0TM014, AH0TM015, AH0TM016, AH0TM017, AH0TM018, AH0TM019,
## AH0VE001, AH0VE002, AH0VE003, AH0VE004, AH0VE005, AH0VE006,
## AH0VE007, AH0VE008, AH0VE009, AH0VE010, AH0VE011, AH0VE012,
## AH0VE013, AH0VE014, AH0VE015, AH0VE016, AH0VE017, AH0VE018,
## AH0VE019, AH0VM001, AH0VM002, AH0VM003, AH0VM004, AH0VM005,
## AH0VM006, AH0VM007, AH0VM008, AH0VM009, AH0VM010, AH0VM011,
## AH0VM012, AH0VM013, AH0VM014, AH0VM015, AH0VM016, AH0VM017,
## AH0VM018, AH0VM019, AH1PE001, AH1PM001, AHYQE001, AHYQE002,
## AHYQE003, AHYQE004, AHYQE005, AHYQE006, AHYQE007, AHYQE008,
## AHYQE009, AHYQE010, AHYQE011, AHYQE012, AHYQE013, AHYQE014,
## AHYQE015, AHYQE016, AHYQE017, AHYQE018, AHYQE019, AHYQE020,
## AHYQE021, AHYQE022, AHYQE023, AHYQE024, AHYQE025, AHYQE026,
## AHYQE027, AHYQE028, AHYQE029, AHYQE030, AHYQE031, AHYQE032,
## AHYQE033, AHYQE034, AHYQE035, AHYQE036, AHYQE037, AHYQE038,
## AHYQE039, AHYQE040, AHYQE041, AHYQE042, AHYQE043, AHYQE044,
## AHYQE045, AHYQE046, AHYQE047, AHYQE048, AHYQE049, AHYQM001,
## AHYQM002, AHYQM003, AHYQM004, AHYQM005, AHYQM006, AHYQM007,
## AHYQM008, AHYQM009, AHYQM010, AHYQM011, AHYQM012, AHYQM013,
## AHYQM014, AHYQM015, AHYQM016, AHYQM017, AHYQM018, AHYQM019,
## AHYQM020, AHYQM021, AHYQM022, AHYQM023, AHYQM024, AHYQM025,
## AHYQM026, AHYQM027, AHYQM028, AHYQM029, AHYQM030, AHYQM031,
## AHYQM032, AHYQM033, AHYQM034, AHYQM035, AHYQM036, AHYQM037,
## AHYQM038, AHYQM039, AHYQM040, AHYQM041, AHYQM042, AHYQM043,
## AHYQM044, AHYQM045, AHYQM046, AHYQM047, AHYQM048, AHYQM049,
## AHZAE001, AHZAE002, AHZAE003, AHZAE004, AHZAE005, AHZAE006,
## AHZAE007, AHZAE008, AHZAE009, AHZAE010, AHZAE011, AHZAE012,
## AHZAE013, AHZAE014, AHZAE015, AHZAE016, AHZAE017, AHZAE018,
## AHZAE019, AHZAE020, AHZAE021, AHZAM001, AHZAM002, AHZAM003,
## AHZAM004, AHZAM005, AHZAM006, AHZAM007, AHZAM008, AHZAM009,
## AHZAM010, AHZAM011, AHZAM012, AHZAM013, AHZAM014, AHZAM015,
## AHZAM016, AHZAM017, AHZAM018, AHZAM019, AHZAM020, AHZAM021,
## AIANHHA.x, AIANHHA.y, AITSCEA.x, AITSCEA.y, ANRCA.x, ANRCA.y,
## bk_12, black_per_k_12, black_per_pop, black_pop, BLKGRPA.x,
## BLKGRPA.y, BTBGA.x, BTBGA.y, BTTRA.x, BTTRA.y, CBSAA.x,
## CBSAA.y, CDCURRA.x, CDCURRA.y, CNECTAA.x, CNECTAA.y,
## CONCITA.x, CONCITA.y, COUNTY.x, COUNTY.y, COUNTYA.x,
## COUNTYA.y, COUSUBA.x, COUSUBA.y, CSAA.x, CSAA.y, DIVISIONA.x,
## DIVISIONA.y, GISJOIN, k_12, latinx_per_k_12, latinx_per_pop,
## latinx_pop, lk_12, METDIVA.x, METDIVA.y, NAME_E.x, NAME_E.y,
## NAME_M.x, NAME_M.y, NECTAA.x, NECTAA.y, NECTADIVA.x,
## NECTADIVA.y, PLACEA.x, PLACEA.y, PUMA5A.x, PUMA5A.y,
## REGIONA.x, REGIONA.y, RES_ONLYA.x, RES_ONLYA.y, SDELMA.x,
## SDELMA.y, SDSECA.x, SDSECA.y, SDUNIA.x, SDUNIA.y, SLDLA.x,
## SLDLA.y, SLDUA.x, SLDUA.y, STATE.x, STATE.y, STATEA.x,
## STATEA.y, SUBMCDA.x, SUBMCDA.y, total_pop, TRACTA.x, TRACTA.y,
## TRUSTA.x, TRUSTA.y, UAA.x, UAA.y, white_per_k_12,
## white_per_pop, white_pop, wk_12, YEAR.x, YEAR.y, ZCTA5A.x,
## ZCTA5A.y
| total_kinder | total_kindererror | total_1st | total_1sterror | total_2nd | total_2nderror | total_3rd | total_3rderror | total_4th | total_4therror | total_5th | total_5therror | total_6th | total_6therror | total_7th | total_7therror | total_8th | total_8therror | total_9th | total_9therror | total_10th | total_10therror | total_11th | total_11therror | total_12th | total_12therror |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17 | 22 | 26 | 29 | 7 | 11 | 34 | 30 | 18 | 21 | 11 | 13 | 51 | 37 | 9 | 11 | 8 | 9 | 24 | 23 | 95 | 45 | 14 | 15 | 16 | 22 |
| 53 | 33 | 57 | 41 | 29 | 24 | 18 | 20 | 41 | 37 | 50 | 43 | 46 | 33 | 34 | 31 | 19 | 18 | 18 | 27 | 52 | 52 | 16 | 16 | 30 | 26 |
| 68 | 49 | 35 | 48 | 56 | 53 | 111 | 83 | 181 | 88 | 7 | 15 | 32 | 31 | 15 | 18 | 27 | 28 | 30 | 36 | 67 | 35 | 35 | 37 | 14 | 16 |
| 57 | 54 | 11 | 17 | 43 | 34 | 87 | 58 | 18 | 22 | 51 | 46 | 130 | 106 | 90 | 69 | 68 | 74 | 59 | 34 | 44 | 46 | 31 | 25 | 41 | 34 |
| 190 | 155 | 44 | 67 | 238 | 159 | 131 | 106 | 162 | 115 | 65 | 70 | 182 | 141 | 241 | 159 | 170 | 132 | 128 | 103 | 139 | 105 | 176 | 94 | 60 | 73 |
| 22 | 26 | 81 | 66 | 77 | 61 | 21 | 30 | 38 | 48 | 75 | 52 | 17 | 19 | 86 | 57 | 54 | 44 | 84 | 70 | 59 | 40 | 63 | 49 | 98 | 65 |
| 24 | 28 | 25 | 49 | 24 | 35 | 54 | 69 | 79 | 59 | 52 | 67 | 63 | 59 | 82 | 69 | 34 | 41 | 57 | 55 | 92 | 57 | 6 | 11 | 17 | 28 |
| 43 | 33 | 30 | 29 | 40 | 30 | 35 | 35 | 70 | 46 | 32 | 36 | 58 | 35 | 38 | 46 | 71 | 42 | 63 | 41 | 64 | 45 | 29 | 28 | 36 | 26 |
| 304 | 125 | 176 | 94 | 157 | 93 | 143 | 105 | 66 | 55 | 339 | 133 | 106 | 82 | 127 | 106 | 156 | 103 | 245 | 125 | 318 | 158 | 121 | 81 | 279 | 187 |
| 61 | 54 | 105 | 70 | 70 | 65 | 70 | 86 | 0 | 16 | 38 | 39 | 81 | 86 | 96 | 75 | 29 | 36 | 69 | 74 | 157 | 94 | 95 | 85 | 63 | 68 |
| 90 | 51 | 17 | 21 | 1 | 3 | 97 | 75 | 10 | 17 | 5 | 9 | 55 | 40 | 46 | 49 | 38 | 38 | 1 | 5 | 34 | 38 | 34 | 29 | 33 | 38 |
| 19 | 21 | 41 | 31 | 57 | 36 | 14 | 16 | 62 | 58 | 15 | 18 | 57 | 55 | 45 | 32 | 10 | 14 | 42 | 46 | 34 | 35 | 19 | 24 | 35 | 35 |
| 11 | 18 | 30 | 40 | 92 | 72 | 17 | 27 | 10 | 16 | 47 | 41 | 26 | 44 | 59 | 58 | 94 | 57 | 30 | 39 | 0 | 11 | 43 | 51 | 35 | 55 |
| 80 | 68 | 0 | 11 | 28 | 33 | 79 | 67 | 22 | 31 | 40 | 42 | 20 | 34 | 21 | 27 | 80 | 77 | 71 | 57 | 11 | 19 | 20 | 24 | 22 | 34 |
| 233 | 112 | 57 | 70 | 155 | 104 | 118 | 91 | 126 | 137 | 135 | 98 | 155 | 156 | 113 | 71 | 157 | 121 | 150 | 104 | 203 | 154 | 73 | 78 | 84 | 87 |
| 39 | 37 | 35 | 33 | 60 | 46 | 87 | 62 | 95 | 77 | 64 | 44 | 34 | 41 | 45 | 61 | 34 | 31 | 63 | 60 | 143 | 101 | 82 | 69 | 9 | 14 |
| 64 | 54 | 70 | 56 | 91 | 69 | 66 | 47 | 102 | 71 | 63 | 50 | 104 | 68 | 22 | 30 | 69 | 73 | 49 | 56 | 29 | 32 | 13 | 22 | 77 | 84 |
| 102 | 96 | 91 | 80 | 82 | 88 | 14 | 38 | 86 | 53 | 64 | 65 | 48 | 51 | 97 | 81 | 0 | 11 | 47 | 64 | 54 | 47 | 31 | 52 | 118 | 115 |
| 115 | 68 | 72 | 52 | 113 | 69 | 143 | 83 | 110 | 85 | 89 | 59 | 84 | 49 | 167 | 84 | 104 | 56 | 79 | 58 | 103 | 59 | 158 | 101 | 214 | 116 |
| 234 | 129 | 295 | 212 | 461 | 230 | 244 | 201 | 283 | 205 | 137 | 98 | 330 | 153 | 171 | 111 | 362 | 197 | 255 | 164 | 315 | 162 | 183 | 123 | 405 | 230 |
| 38 | 36 | 108 | 89 | 117 | 84 | 82 | 71 | 63 | 52 | 190 | 124 | 181 | 104 | 190 | 103 | 84 | 56 | 81 | 65 | 57 | 55 | 99 | 83 | 75 | 61 |
| 38 | 44 | 108 | 96 | 125 | 93 | 114 | 94 | 214 | 137 | 22 | 36 | 98 | 73 | 170 | 131 | 125 | 107 | 126 | 86 | 106 | 95 | 153 | 111 | 241 | 160 |
| 21 | 35 | 67 | 79 | 88 | 69 | 30 | 49 | 106 | 101 | 39 | 54 | 174 | 143 | 62 | 57 | 129 | 119 | 74 | 64 | 233 | 130 | 85 | 90 | 200 | 128 |
| 35 | 31 | 61 | 45 | 36 | 39 | 17 | 19 | 68 | 42 | 65 | 47 | 36 | 29 | 112 | 64 | 39 | 37 | 92 | 49 | 157 | 68 | 13 | 19 | 107 | 62 |
| 44 | 45 | 90 | 81 | 45 | 49 | 28 | 34 | 91 | 67 | 53 | 52 | 96 | 63 | 135 | 91 | 102 | 98 | 117 | 78 | 85 | 63 | 69 | 56 | 87 | 62 |
| 257 | 121 | 80 | 83 | 96 | 88 | 54 | 45 | 140 | 95 | 44 | 39 | 54 | 45 | 96 | 101 | 70 | 54 | 56 | 39 | 114 | 63 | 35 | 36 | 154 | 149 |
project1\(black_kinder<-project1\)AH0TE004 project1\(black_1st<-project1\)AH0TE005 project1\(black_2nd<-project1\)AH0TE006 project1\(black_3rd<-project1\)AH0TE007 project1\(black_4th<-project1\)AH0TE008 project1\(black_5th<-project1\)AH0TE009 project1\(black_6th<-project1\)AH0TE010 project1\(black_7th<-project1\)AH0TE011 project1\(black_8th<-project1\)AH0TE012 project1\(black_9th<-project1\)AH0TE013 project1\(black_10th<-project1\)AH0TE014 project1\(black_11th<-project1\)AH0TE015 project1\(black_12th<-project1\)AH0TE016
project1\(k_12<-project1\)AH0TE004+project1\(AH0TE005+project1\)AH0TE006+project1\(AH0TE007+project1\)AH0TE008+project1\(AH0TE009+project1\)AH0TE010+project1\(AH0TE011+project1\)AH0TE012+project1\(AH0TE013+project1\)AH0TE014+project1\(AH0TE015+project1\)AH0TE016
#total amount of black students enrolled in primary school in the tract project1\(bk_12<-project1\)AH0VE004+project1\(AH0VE005+project1\)AH0VE006+project1\(AH0VE007+project1\)AH0VE008+project1\(AH0VE009+project1\)AH0VE010+project1\(AH0VE011+project1\)AH0VE012+project1\(AH0VE013+project1\)AH0VE014+project1\(AH0VE015+project1\)AH0VE016
#total amount of white students enrolled in primary school in the tract project1\(wk_12<-project1\)AH01E004+project1\(AH01E005+project1\)AH01E006+project1\(AH01E007+project1\)AH01E008+project1\(AH01E009+project1\)AH01E010+project1\(AH01E011+project1\)AH01E012+project1\(AH01E013+project1\)AH01E014+project1\(AH01E015+project1\)AH01E016
#total amount of latinx students enrolled in primary school in the tract project1\(lk_12<-project1\)AH02E004+project1\(AH02E005+project1\)AH02E006+project1\(AH02E007+project1\)AH02E008+project1\(AH02E009+project1\)AH02E010+project1\(AH02E011+project1\)AH02E012+project1\(AH02E013+project1\)AH02E014+project1\(AH02E015+project1\)AH02E016 ```