This data set related to Telecom domain . The link of adata set contain here http://ce.sharif.edu/courses/85-86/1/ce925/assignments/files/assignDir2/churn.txt .it contains 3000+ plus observations the Main objective is to predict whether customer is happy about the servoice or not.
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(randomForest)
## Warning: package 'randomForest' was built under R version 3.6.1
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
library(klaR)
## Warning: package 'klaR' was built under R version 3.6.1
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(e1071)
data=read.csv("C:\\Users\\SND\\Desktop\\Tele\\Telecom .csv")
data
## State Account.Length Area.Code Phone Int.l.Plan VMail.Plan
## 1 KS 128 415 382-4657 no yes
## 2 OH 107 415 371-7191 no yes
## 3 NJ 137 415 358-1921 no no
## 4 OH 84 408 375-9999 yes no
## 5 OK 75 415 330-6626 yes no
## 6 AL 118 510 391-8027 yes no
## 7 MA 121 510 355-9993 no yes
## 8 MO 147 415 329-9001 yes no
## 9 LA 117 408 335-4719 no no
## 10 WV 141 415 330-8173 yes yes
## 11 IN 65 415 329-6603 no no
## 12 RI 74 415 344-9403 no no
## 13 IA 168 408 363-1107 no no
## 14 MT 95 510 394-8006 no no
## 15 IA 62 415 366-9238 no no
## 16 NY 161 415 351-7269 no no
## 17 ID 85 408 350-8884 no yes
## 18 VT 93 510 386-2923 no no
## 19 VA 76 510 356-2992 no yes
## 20 TX 73 415 373-2782 no no
## 21 FL 147 415 396-5800 no no
## 22 CO 77 408 393-7984 no no
## 23 AZ 130 415 358-1958 no no
## 24 SC 111 415 350-2565 no no
## 25 VA 132 510 343-4696 no no
## 26 NE 174 415 331-3698 no no
## 27 WY 57 408 357-3817 no yes
## 28 MT 54 408 418-6412 no no
## 29 MO 20 415 353-2630 no no
## 30 HI 49 510 410-7789 no no
## 31 IL 142 415 416-8428 no no
## 32 NH 75 510 370-3359 no no
## 33 LA 172 408 383-1121 no no
## 34 AZ 12 408 360-1596 no no
## 35 OK 57 408 395-2854 no yes
## 36 GA 72 415 362-1407 no yes
## 37 AK 36 408 341-9764 no yes
## 38 MA 78 415 353-3305 no no
## 39 AK 136 415 402-1381 yes yes
## 40 NJ 149 408 332-9891 no no
## 41 GA 98 408 372-9976 no no
## 42 MD 135 408 383-6029 yes yes
## 43 AR 34 510 353-7289 no no
## 44 ID 160 415 390-7274 no no
## 45 WI 64 510 352-1237 no no
## 46 OR 59 408 353-3061 no yes
## 47 MI 65 415 363-5450 no no
## 48 DE 142 408 364-1995 no no
## 49 ID 119 415 398-1294 no no
## 50 WY 97 415 405-7146 no yes
## 51 IA 52 408 413-4957 no no
## 52 IN 60 408 420-5645 no no
## 53 VA 10 408 349-4396 no no
## 54 UT 96 415 404-3211 no no
## 55 WY 87 415 353-3759 no no
## 56 IN 81 408 363-5947 no no
## 57 CO 141 415 340-5121 no no
## 58 CO 121 408 370-7574 no yes
## 59 WI 68 415 403-9733 no no
## 60 OK 125 408 355-7251 no no
## 61 ID 174 408 359-5893 no no
## 62 CA 116 415 405-3371 no yes
## 63 MN 74 510 344-5117 no yes
## 64 SD 149 408 332-8160 no yes
## 65 NC 38 408 359-4081 no no
## 66 WA 40 415 352-8305 no yes
## 67 WY 43 415 329-9847 yes no
## 68 MN 113 408 365-9011 yes no
## 69 UT 126 408 338-9472 no no
## 70 TX 150 510 374-8042 no no
## 71 NJ 138 408 359-1231 no no
## 72 MN 162 510 413-7170 no yes
## 73 NM 147 510 415-2935 no no
## 74 NV 90 415 399-4246 no no
## 75 HI 85 415 362-5889 no no
## 76 MN 50 415 350-8921 no no
## 77 DC 82 415 374-5353 no no
## 78 NY 144 408 360-1171 no no
## 79 MN 46 415 355-8887 no no
## 80 MD 70 408 333-1967 no no
## 81 WV 144 415 354-4577 no no
## 82 OR 116 415 331-7425 yes no
## 83 CO 55 408 419-2637 no yes
## 84 GA 70 415 411-1530 no yes
## 85 TX 106 510 395-3026 no no
## 86 VT 128 510 388-6441 no yes
## 87 IN 94 408 402-1251 no no
## 88 WV 111 510 412-9997 no no
## 89 KY 74 415 346-7302 no yes
## 90 NJ 128 415 358-9095 no no
## 91 DC 82 510 400-9770 no no
## 92 LA 155 415 334-1275 no no
## 93 AR 80 415 340-4953 no no
## 94 ME 78 415 400-9510 no no
## 95 AZ 90 415 387-6103 no no
## 96 AK 104 408 366-4467 no no
## 97 MT 73 415 370-3450 no no
## 98 AZ 99 415 327-3954 no no
## 99 MS 120 408 355-6291 no no
## 100 ID 77 415 362-9748 no no
## 101 IA 98 510 379-6506 no yes
## 102 MA 108 415 347-7741 no no
## 103 VT 135 415 354-3783 no no
## 104 KY 95 408 401-7594 no no
## 105 IN 122 408 397-4976 no no
## 106 AZ 95 408 334-2577 no no
## 107 MI 36 510 400-3637 no yes
## 108 NM 93 510 383-4361 no yes
## 109 CO 141 415 371-4306 no yes
## 110 UT 157 408 403-4298 no no
## 111 MI 120 408 409-3786 no no
## 112 MA 103 415 337-4697 no no
## 113 AL 98 408 383-1509 no no
## 114 DE 125 408 359-9794 no no
## 115 AZ 63 415 407-7035 no no
## 116 ME 36 510 363-1069 yes yes
## 117 NJ 64 510 391-4652 no no
## 118 NV 74 415 355-6837 no no
## 119 MO 112 510 409-1244 no yes
## 120 ID 97 408 328-3266 no no
## 121 NE 46 408 352-7072 no no
## 122 TX 41 408 370-7550 no yes
## 123 MD 121 510 369-5526 no no
## 124 MS 193 415 329-4391 no no
## 125 NV 130 510 408-4195 no no
## 126 AZ 85 408 354-4445 no no
## 127 MS 162 415 335-4858 no no
## 128 MS 61 510 414-8718 no yes
## 129 TX 92 408 409-5939 no no
## 130 NE 131 408 331-4902 no yes
## 131 NE 90 415 353-6870 no no
## 132 CA 75 408 355-2909 no no
## 133 NJ 78 415 390-6101 no no
## 134 TX 82 408 400-3446 no no
## 135 AR 163 408 411-5859 no no
## 136 AL 91 510 387-2919 yes no
## 137 NY 75 415 374-8525 no yes
## 138 FL 91 510 379-5592 no no
## 139 AK 127 510 345-8237 no yes
## 140 NV 113 415 422-6690 no yes
## 141 DE 110 510 346-2359 no no
## 142 MD 120 415 374-3534 no yes
## 143 MI 157 415 381-4756 no yes
## 144 VT 103 510 390-2805 no no
## 145 VT 117 408 390-2390 yes no
## 146 MI 140 415 419-9097 no no
## 147 WA 127 408 386-7281 no no
## 148 UT 83 408 380-3561 yes no
## 149 LA 121 408 390-8760 no no
## 150 RI 145 408 366-6730 no yes
## 151 IA 113 408 395-5285 no no
## 152 NE 117 415 354-3436 no no
## 153 OH 65 408 336-7600 no no
## 154 RI 56 415 383-6293 no no
## 155 OK 96 415 362-4596 no no
## 156 LA 151 408 401-3926 no no
## 157 OH 83 415 370-9116 no no
## 158 VA 139 510 328-6289 no yes
## 159 MO 6 510 350-9994 no no
## 160 FL 115 510 351-4616 no yes
## 161 SC 87 415 360-5779 no no
## 162 VA 141 415 417-4885 no no
## 163 IA 141 510 406-4710 no yes
## 164 MI 62 415 409-8743 no no
## 165 OK 146 415 335-4584 no no
## 166 DE 92 415 361-9845 no yes
## 167 GA 185 510 366-5699 no yes
## 168 DC 148 415 329-9364 no no
## 169 AZ 94 408 390-7434 no yes
## 170 AL 32 510 404-9680 no no
## 171 CO 68 408 338-9398 no no
## 172 NH 64 408 394-2445 no yes
## 173 NM 25 415 381-2709 no no
## 174 OR 65 415 397-5060 no no
## 175 LA 179 408 415-2393 no no
## 176 NE 94 415 377-1765 no no
## 177 MN 62 415 409-2111 no no
## 178 MI 127 415 401-3170 no no
## 179 AR 116 408 405-5681 no no
## 180 KS 70 408 411-4582 no no
## 181 WV 94 510 355-5009 yes yes
## 182 AK 126 415 372-3750 no no
## 183 NY 67 408 405-2888 no yes
## 184 NH 19 408 361-3337 no no
## 185 VA 170 510 350-1639 yes no
## 186 NM 73 415 333-3221 no no
## 187 NY 106 408 422-1471 no no
## 188 AZ 93 415 399-7865 no no
## 189 WY 164 510 373-4819 no no
## 190 WA 51 408 338-6981 no no
## 191 CO 107 415 418-4365 no no
## 192 TX 130 415 359-5461 no no
## 193 KY 80 408 375-3586 no no
## 194 MT 94 415 407-8376 no no
## 195 OK 118 408 408-6496 no yes
## 196 MD 117 415 385-7688 no yes
## 197 TN 78 415 332-6934 no no
## 198 TX 208 510 378-3625 no no
## 199 ME 131 510 353-7292 yes yes
## 200 DC 63 408 399-6786 no no
## 201 MN 53 415 358-3261 no yes
## 202 DE 62 408 377-9932 no no
## 203 MD 97 415 397-4030 no no
## 204 MI 105 510 367-1062 no no
## 205 WA 157 415 341-8467 no no
## 206 MO 66 415 339-9453 no yes
## 207 IN 122 415 344-3388 no no
## 208 OR 38 415 375-8013 no no
## 209 MD 106 510 408-4142 no no
## 210 RI 99 510 386-3671 no no
## 211 LA 99 415 411-2284 no no
## 212 AZ 144 510 346-7795 yes no
## 213 PA 82 415 333-5609 no yes
## 214 AZ 86 408 405-1842 no yes
## 215 FL 70 510 366-6345 yes no
## 216 LA 93 415 337-9345 no no
## 217 FL 93 415 328-6770 no no
## 218 FL 120 415 380-7321 no no
## 219 MD 136 415 375-1476 no no
## 220 AL 106 415 356-1567 no no
## 221 WA 81 415 422-6685 no no
## 222 TN 127 408 336-1090 no yes
## 223 MS 65 415 343-2095 no no
## 224 ME 35 408 345-3934 no no
## 225 OK 88 408 338-8050 no no
## 226 IN 65 415 388-9568 no no
## 227 MO 123 415 402-6591 no no
## 228 IA 126 408 403-6419 no yes
## 229 VA 104 415 386-9790 no yes
## 230 KY 45 415 378-5692 no yes
## 231 MD 93 408 360-3324 yes no
## 232 OH 63 415 410-3719 yes yes
## 233 OK 100 415 352-4221 no no
## 234 NV 53 415 327-6179 no no
## 235 ID 92 415 359-6196 yes no
## 236 MN 139 510 374-9107 no no
## 237 SD 110 408 357-4078 no yes
## 238 IL 110 408 366-5780 no no
## 239 WY 215 510 393-9619 no no
## 240 AL 73 415 355-9295 no no
## 241 NJ 138 510 400-5751 no no
## 242 NV 137 415 338-1027 yes no
## 243 IN 36 415 405-8867 no no
## 244 WV 85 408 336-5616 no no
## 245 VA 108 408 335-1697 no no
## 246 SC 22 408 331-5138 no no
## 247 RI 107 415 385-8240 no yes
## 248 IN 51 510 348-1359 no no
## 249 AZ 94 408 354-7339 no no
## 250 NM 119 510 349-1687 no yes
## 251 OR 33 415 380-2558 no yes
## 252 NJ 106 415 365-2153 no no
## 253 MS 82 408 345-6043 no no
## 254 MI 86 510 349-2808 no yes
## 255 TX 97 415 411-1715 yes no
## 256 FL 106 408 385-2488 no yes
## 257 DC 108 510 377-7177 no no
## 258 TX 114 415 342-1099 no no
## 259 KS 92 408 386-4170 yes no
## 260 UT 59 510 413-1269 no no
## 261 MN 24 510 396-4460 no yes
## 262 IL 151 408 334-2730 no no
## 263 NM 117 415 340-3182 no no
## 264 SC 78 510 377-8608 no no
## 265 NC 155 408 417-3676 no no
## 266 WV 114 510 417-6774 no yes
## 267 RI 114 510 411-9554 no yes
## 268 NH 119 408 420-3192 no no
## 269 MO 64 510 389-1475 no yes
## 270 MA 118 408 343-7734 yes no
## 271 PA 101 415 410-3390 no no
## 272 OK 117 415 344-6495 no no
## 273 AL 49 415 331-6229 no yes
## 274 WY 139 415 337-7501 no no
## 275 PA 92 408 339-9631 no yes
## 276 WA 83 415 369-4384 no no
## 277 HI 148 510 416-3915 yes no
## 278 SD 144 408 339-3049 no yes
## 279 AL 131 415 361-7998 no yes
## 280 VT 146 510 355-4842 yes no
## 281 MT 143 415 387-6440 no no
## 282 MN 81 415 369-2625 no no
## 283 AK 48 415 389-7073 no yes
## 284 MI 86 415 370-8463 no yes
## 285 DE 71 415 362-7318 no no
## 286 SD 145 408 412-1194 no yes
## 287 MI 137 510 355-9508 no no
## 288 KS 137 408 352-8202 no no
## 289 AL 167 510 335-5882 no no
## 290 OK 89 510 352-6976 no no
## 291 CT 199 415 393-6733 no yes
## 292 NE 132 510 335-1838 no no
## 293 WI 94 510 355-6930 no no
## 294 CT 96 415 387-5860 no yes
## 295 WI 96 510 343-2605 no yes
## 296 IN 166 510 350-6759 no no
## 297 DC 74 415 371-1514 no no
## 298 AR 36 415 346-9317 no no
## 299 ME 113 415 398-4313 no no
## 300 MN 94 415 412-4399 no no
## 301 MD 67 415 330-1835 no no
## 302 FL 127 415 416-1676 no no
## 303 RI 121 408 329-7347 no no
## 304 IA 158 415 360-6868 no no
## 305 AZ 136 510 405-6641 no no
## 306 MO 196 415 393-2373 no no
## 307 VT 113 415 419-1714 no no
## 308 IN 122 408 336-3819 no no
## 309 RI 112 510 341-3464 no no
## 310 SD 209 415 413-5310 no no
## 311 MN 62 415 366-7912 no no
## 312 TX 110 415 399-8845 no yes
## 313 VA 16 510 368-2583 no no
## 314 MA 73 408 360-6309 no no
## 315 ID 128 408 359-5890 no no
## 316 MA 39 408 332-2462 no no
## 317 GA 103 415 381-9196 no yes
## 318 RI 119 415 329-3222 no yes
## 319 ID 173 510 363-5819 no yes
## 320 SD 128 510 413-9269 yes yes
## 321 MA 86 510 330-7483 no no
## 322 WY 114 415 403-7775 no yes
## 323 VA 104 408 360-2479 no no
## 324 OR 148 415 394-3791 no no
## 325 VA 129 408 384-2632 no no
## 326 ME 100 510 359-8466 no yes
## 327 AL 121 408 331-8909 no yes
## 328 GA 143 408 359-5160 no yes
## 329 IA 76 510 330-9833 no no
## 330 AZ 158 510 362-2314 no no
## 331 FL 116 510 338-8478 no no
## 332 MT 54 415 387-5453 no no
## 333 AL 86 415 380-3437 no no
## 334 DE 108 510 365-8779 no no
## 335 MT 66 510 407-2750 no no
## 336 KY 151 408 396-8265 no yes
## 337 SC 99 510 397-4304 no no
## 338 WA 55 415 333-2611 no no
## 339 OR 77 510 409-8814 no no
## 340 AK 78 408 336-5406 no no
## 341 GA 89 415 343-6940 no no
## 342 MN 101 415 361-9923 no no
## 343 IL 44 415 350-6639 no yes
## 344 IN 98 408 376-4300 no yes
## 345 SC 64 510 349-6567 no yes
## 346 VA 141 415 333-7749 no no
## 347 WI 81 415 408-6089 no yes
## 348 VT 162 510 375-2165 no no
## 349 AZ 83 415 400-6999 no yes
## 350 FL 100 510 420-7823 no no
## 351 AK 59 510 366-5241 no no
## 352 AR 179 415 413-3412 yes yes
## 353 AR 79 408 406-2752 no no
## 354 AK 117 415 337-8078 no no
## 355 MS 64 408 402-1942 yes no
## 356 ME 31 415 371-7917 no no
## 357 CA 124 408 343-6374 yes no
## 358 NM 122 408 385-8730 no yes
## 359 NE 37 408 393-7892 yes yes
## 360 SC 90 408 407-6748 no yes
## 361 CO 159 408 341-4463 yes no
## 362 DE 148 415 351-2587 no no
## 363 OH 39 415 421-9752 no yes
## 364 MS 77 408 356-4001 no no
## 365 OK 194 408 328-9869 no no
## 366 CO 154 415 343-5709 no no
## 367 NC 112 415 334-1872 no no
## 368 MD 45 415 350-1040 no no
## 369 KS 132 415 369-3214 no no
## 370 MA 128 415 385-6778 no no
## 371 NC 135 415 383-7689 no no
## 372 NM 56 408 385-5722 no no
## 373 CA 151 415 357-1909 yes no
## 374 NY 32 415 364-3567 no no
## 375 AZ 90 415 422-4241 no no
## 376 SD 87 415 370-2957 no yes
## 377 DC 138 415 329-6562 no no
## 378 ND 79 408 363-3515 no no
## 379 MO 95 415 374-7787 yes no
## 380 KS 127 415 345-2931 no no
## 381 SD 137 510 373-5732 no no
## 382 OK 97 415 348-7437 no no
## 383 OR 149 415 332-9460 yes no
## 384 IN 117 415 355-6531 yes yes
## 385 OH 84 408 336-9390 no no
## 386 KS 137 415 346-8581 no no
## 387 CT 99 415 363-8824 no no
## 388 NH 54 510 353-3351 no no
## 389 WI 85 415 360-4320 no no
## 390 MS 150 510 417-6252 no no
## 391 WV 43 415 393-4949 no no
## 392 MA 35 415 401-3156 no no
## 393 MD 98 415 338-6283 no no
## 394 PA 112 510 352-9017 no no
## 395 WI 16 510 405-5305 no no
## 396 TN 98 415 376-9249 no yes
## 397 TX 84 408 339-7139 no no
## 398 OR 94 415 328-6011 no no
## 399 IL 84 510 378-1303 no no
## 400 DC 66 415 402-5155 no no
## 401 GA 98 415 333-5430 no yes
## 402 ID 74 415 365-9696 no no
## 403 UT 96 408 410-4023 no yes
## 404 KY 119 510 411-7649 no no
## 405 OH 73 415 338-4065 no no
## 406 WI 92 415 421-9401 yes no
## 407 IL 21 415 343-9658 no no
## 408 DE 122 510 332-5521 no no
## 409 RI 133 510 349-4369 yes no
## 410 TX 145 415 351-4288 no no
## 411 OR 25 408 422-5874 no no
## 412 NV 64 415 396-2324 no no
## 413 NE 85 415 416-5662 no no
## 414 MS 126 415 363-9663 no no
## 415 OR 76 415 410-9477 no no
## 416 DE 113 415 352-4418 no no
## 417 DE 224 510 361-6563 yes no
## 418 AZ 117 408 417-4404 no no
## 419 SD 128 408 372-8048 no yes
## 420 NV 115 415 356-3646 no no
## 421 NM 141 415 351-9604 no yes
## 422 MN 51 510 355-9581 no no
## 423 NJ 100 415 396-5189 no no
## 424 IN 96 415 356-9187 no yes
## 425 DC 112 415 394-5537 no yes
## 426 MA 129 510 408-2712 yes no
## 427 ME 163 415 404-4486 no no
## 428 NH 67 415 355-1113 no yes
## 429 AZ 140 408 411-4674 no no
## 430 OR 49 510 376-4519 no no
## 431 KS 46 510 365-5979 no no
## 432 NE 148 415 382-2879 no no
## 433 MI 112 510 420-1383 no no
## 434 SC 78 415 411-7390 no no
## 435 PA 61 408 383-8848 no yes
## 436 MT 58 510 387-9301 no yes
## 437 NM 155 415 399-3164 no no
## 438 OH 100 510 385-8997 no no
## 439 WY 113 510 352-6573 no no
## 440 MI 81 415 408-3384 no no
## 441 AR 135 510 419-6033 no yes
## 442 FL 99 408 336-2090 no no
## 443 AR 59 510 343-7242 no yes
## 444 MO 135 510 376-1713 no no
## 445 WI 85 408 381-5878 yes no
## 446 TX 70 510 390-5470 no no
## 447 TX 88 510 414-4803 no no
## 448 NM 55 510 382-5478 no no
## 449 GA 75 415 333-7637 no no
## 450 ID 79 510 341-1647 no yes
## 451 AL 85 408 411-4232 no no
## 452 KS 86 408 339-2616 no yes
## 453 SD 91 510 327-3850 no no
## 454 LA 149 415 328-7209 no yes
## 455 OH 97 408 405-6189 no no
## 456 MA 88 415 418-6737 no no
## 457 AZ 60 415 366-2212 no no
## 458 KY 54 408 356-1420 no no
## 459 DC 11 415 343-1323 no yes
## 460 WA 109 415 361-8239 no no
## 461 UT 90 415 384-1621 no no
## 462 RI 115 408 360-3525 no no
## 463 OH 144 415 392-3813 no yes
## 464 NV 91 408 337-6898 no no
## 465 ND 105 415 366-8036 no yes
## 466 NV 71 415 352-8327 yes no
## 467 FL 132 510 334-9505 no yes
## 468 MD 112 415 336-5702 no no
## 469 AZ 86 415 392-2381 no yes
## 470 AL 41 510 369-6880 no yes
## 471 NE 44 415 416-8697 no no
## 472 NV 78 408 345-3451 no no
## 473 IL 149 408 379-2514 no no
## 474 WV 72 510 418-6651 no yes
## 475 MI 139 415 421-3528 no yes
## 476 AR 74 510 329-9046 no no
## 477 UT 50 510 406-3890 no no
## 478 GA 141 510 403-8904 no yes
## 479 AZ 140 408 393-4086 no no
## 480 ID 99 408 400-1367 no no
## 481 HI 166 408 377-9473 no no
## 482 NV 124 408 396-3068 no no
## 483 MD 74 415 331-9293 no no
## 484 GA 117 510 347-1914 no no
## 485 GA 85 510 395-1962 no no
## 486 UT 36 415 401-5485 no yes
## 487 MA 102 510 355-6560 yes no
## 488 IN 76 415 363-3911 no no
## 489 VT 165 510 345-1998 no no
## 490 IA 130 415 361-5277 no no
## 491 IN 78 415 376-7145 no no
## 492 AL 55 415 375-2975 yes no
## 493 ME 92 415 376-8573 yes no
## 494 RI 129 415 366-7360 no yes
## 495 MD 18 408 347-7898 no no
## 496 FL 161 415 390-7328 yes no
## 497 CA 93 415 356-5491 no yes
## 498 AL 144 415 373-3251 no no
## 499 ME 75 408 343-1965 yes no
## 500 WV 95 415 378-8019 no no
## 501 SD 126 415 386-1548 no yes
## 502 FL 124 415 397-1649 no yes
## 503 MI 93 415 366-7247 yes no
## 504 MI 109 415 402-9691 yes yes
## 505 NM 80 510 334-9806 no no
## 506 AK 41 415 378-7733 no no
## 507 OH 136 415 407-2248 no yes
## 508 MO 92 415 405-3916 no no
## 509 KS 143 408 407-2081 no yes
## 510 MS 118 415 397-9148 no yes
## 511 VT 193 408 415-4857 no yes
## 512 NE 73 415 354-7314 no no
## 513 VA 62 408 346-5611 no no
## 514 DE 30 415 349-4703 no yes
## 515 AL 60 408 411-7778 yes yes
## 516 ID 148 510 421-1469 no yes
## 517 MS 96 510 420-5990 no no
## 518 OK 52 408 389-4780 no no
## 519 NM 87 415 357-2735 no no
## 520 WI 41 408 409-4791 no no
## 521 WV 112 415 380-5286 no no
## 522 SC 88 510 394-8402 no no
## 523 KY 122 408 392-1616 no yes
## 524 MO 61 408 364-1969 no no
## 525 IL 87 510 390-4152 no no
## 526 OK 176 408 367-7039 no no
## 527 MI 30 510 391-6607 no no
## 528 NJ 95 415 379-6652 no yes
## 529 ID 46 415 384-1833 no no
## 530 DC 100 510 403-2455 yes no
## 531 NY 47 415 391-1348 no yes
## 532 AL 77 415 408-4174 no no
## 533 OR 98 415 366-4334 no yes
## 534 OK 125 415 406-5059 no yes
## 535 LA 67 510 373-6784 no no
## 536 NE 194 408 408-3532 no no
## 537 TX 128 415 350-8680 no yes
## 538 UT 190 415 398-9870 no yes
## 539 OR 165 415 343-3356 no no
## 540 NY 59 408 415-4609 no no
## 541 AL 47 408 404-5387 no yes
## 542 RI 150 415 415-8151 no yes
## 543 MN 152 415 416-2778 yes yes
## 544 NC 26 415 393-3300 no no
## 545 MD 79 510 391-7661 no yes
## 546 RI 95 510 339-4317 no yes
## 547 WI 69 510 418-6455 yes no
## 548 VT 95 510 378-3508 yes yes
## 549 CT 31 415 390-9359 no yes
## 550 OK 121 408 364-2495 no yes
## 551 AK 111 415 364-7719 no no
## 552 NY 157 415 421-1189 no no
## 553 GA 44 510 419-8987 no no
## 554 UT 61 510 402-9980 yes no
## 555 NM 65 415 376-5908 no no
## 556 NE 74 415 400-3150 no yes
## 557 NJ 123 408 336-1749 no no
## 558 TX 58 408 420-1259 no yes
## 559 MT 74 408 339-7541 no no
## 560 CO 125 415 378-9029 no no
## 561 VT 80 415 342-7514 no no
## 562 RI 53 408 422-4956 no yes
## 563 WY 99 408 389-8606 no yes
## 564 ID 99 415 406-7261 no no
## 565 CT 66 415 417-7973 no yes
## 566 ME 97 510 390-2891 no no
## 567 AZ 75 510 385-7387 no yes
## 568 MD 85 510 362-2776 yes no
## 569 IN 108 510 329-1955 no no
## 570 NC 133 408 344-3160 yes yes
## 571 DE 51 510 406-2454 no no
## 572 MN 186 415 335-3913 no yes
## 573 WI 44 415 355-7705 yes no
## 574 FL 64 408 410-7108 no yes
## 575 WV 44 510 419-1674 no no
## 576 SD 114 415 351-7369 no yes
## 577 FL 92 415 349-9566 no no
## 578 OR 110 408 333-3421 no no
## 579 CO 90 408 393-8199 no yes
## 580 CT 72 408 388-4879 no yes
## 581 IN 113 415 353-6007 no no
## 582 PA 171 415 416-1557 no yes
## 583 NM 104 415 356-7217 no no
## 584 ME 165 408 350-2012 no no
## 585 SD 104 510 420-9838 no no
## 586 AR 110 408 373-6379 no no
## 587 TX 90 408 355-7293 yes no
## 588 NH 114 415 406-4588 no no
## 589 OK 101 408 345-1524 no no
## 590 WI 117 408 375-8493 no yes
## 591 AL 109 408 361-2924 no no
## 592 PA 82 408 359-6163 no no
## 593 OK 92 510 411-8140 no no
## 594 ME 82 510 381-9049 no yes
## 595 WV 90 415 344-4478 no no
## 596 HI 87 408 360-2690 no yes
## 597 MN 124 510 410-7383 no no
## 598 NY 39 408 356-1889 no no
## 599 AZ 84 415 341-2360 no no
## 600 OH 75 510 370-3021 no yes
## 601 MI 102 510 336-4656 no no
## 602 MA 62 415 386-2810 yes no
## 603 WV 143 510 350-1354 no no
## 604 MI 53 415 346-5707 no no
## 605 NM 30 415 405-8370 no no
## 606 MO 112 415 373-2053 no no
## 607 RI 129 415 369-5222 no no
## 608 NC 63 415 347-7420 no yes
## 609 WY 28 415 392-6856 no no
## 610 WY 111 415 371-5556 no no
## 611 PA 91 510 334-5337 no no
## 612 KY 90 415 334-8817 no no
## 613 OR 151 510 339-1405 no no
## 614 NV 105 415 380-7742 yes yes
## 615 DC 41 408 329-6191 no yes
## 616 UT 48 510 340-3075 no yes
## 617 WA 166 408 416-5849 yes yes
## 618 FL 79 510 334-7443 no no
## 619 VA 153 510 394-9121 no no
## 620 KS 110 415 383-1657 yes no
## 621 KS 163 415 347-4112 no no
## 622 DC 126 510 362-8280 no no
## 623 ME 105 408 402-9982 no yes
## 624 LA 172 415 392-8905 no no
## 625 DC 126 415 392-5512 no no
## 626 TX 97 510 351-6384 no no
## 627 NJ 95 408 348-8015 yes yes
## 628 DE 87 510 374-6966 no no
## 629 VT 97 415 328-2236 no no
## 630 GA 76 415 372-6497 no no
## 631 TX 140 408 417-8617 no no
## 632 MT 169 415 361-9621 no no
## 633 ND 68 408 421-2723 no yes
## 634 NJ 122 415 327-9341 no yes
## 635 MO 36 408 383-5474 no no
## 636 CO 120 510 328-8147 no yes
## 637 KS 121 408 373-5438 no no
## 638 NC 64 408 333-9253 no yes
## 639 MT 13 415 347-9421 no yes
## 640 DE 106 415 419-3167 no no
## 641 ND 88 415 414-4162 no no
## 642 VA 74 408 416-5341 no no
## 643 IL 83 415 368-8600 no no
## 644 OK 49 415 336-6085 no no
## 645 CO 111 510 377-1479 no yes
## 646 MT 50 415 360-2107 no yes
## 647 WV 153 408 405-9384 no yes
## 648 ME 88 415 420-5179 no no
## 649 WI 131 415 331-3174 no yes
## 650 MO 79 408 411-5958 no no
## 651 NY 140 415 333-8180 no no
## 652 CT 105 408 357-2679 no no
## 653 AR 54 415 396-2867 no yes
## 654 WY 87 415 341-9443 no yes
## 655 CA 96 510 341-4103 no yes
## 656 CA 79 510 416-8701 no no
## 657 MN 55 415 397-6109 no no
## 658 AK 130 415 392-5587 no no
## 659 VA 34 415 392-9342 no no
## 660 CO 139 415 368-2845 no no
## 661 MT 109 408 405-4920 no no
## 662 SD 65 408 348-7484 no yes
## 663 NE 63 415 338-5207 no no
## 664 VT 152 415 418-7846 no no
## 665 ND 147 408 358-8729 no no
## 666 GA 112 415 349-1943 no yes
## 667 OR 120 415 368-8283 no no
## 668 MT 27 510 345-1419 no no
## 669 WY 171 415 358-8025 no no
## 670 GA 101 415 383-8695 no yes
## 671 WV 32 408 370-7565 no yes
## 672 CT 3 415 401-6162 no yes
## 673 IL 151 408 386-5303 no no
## 674 CO 60 408 351-6552 no no
## 675 DE 119 415 345-5338 no no
## 676 LA 43 415 330-2849 no no
## 677 MA 42 408 364-6801 no no
## 678 IN 84 408 375-3003 no no
## 679 NY 65 510 383-8878 no no
## 680 TX 75 415 384-2372 yes no
## 681 KS 116 510 377-7107 no no
## 682 WV 107 415 361-1581 no no
## 683 NE 189 415 417-7888 no yes
## 684 ND 123 408 383-8364 no no
## 685 AK 110 408 396-2335 no no
## 686 CO 63 415 408-4530 no yes
## 687 ME 176 415 408-6621 no no
## 688 SC 108 510 393-7522 no no
## 689 MN 13 510 338-7120 no yes
## 690 CO 71 415 357-4265 no no
## 691 KS 88 415 398-8801 no no
## 692 MS 137 510 346-2347 no no
## 693 NE 82 408 343-2741 no no
## 694 NJ 92 510 420-8242 no yes
## 695 WI 165 510 402-7746 no no
## 696 MT 96 415 332-1494 no no
## 697 AR 156 415 388-6223 no no
## 698 WA 63 408 404-9539 no no
## 699 NH 37 415 341-7332 no no
## 700 IA 98 415 338-7886 no no
## 701 WV 121 415 332-5596 no no
## 702 RI 94 415 348-9945 no no
## 703 KS 99 415 407-1896 no no
## 704 MT 163 510 398-9408 no yes
## 705 MO 161 510 369-8005 no no
## 706 HI 99 415 346-2530 no no
## 707 CO 108 415 400-5984 no no
## 708 CT 84 510 351-1007 no yes
## 709 ID 83 415 345-5980 yes yes
## 710 DC 139 510 368-8964 no no
## 711 TN 69 510 358-1912 no no
## 712 WY 129 510 379-3132 no no
## 713 MO 106 415 340-9910 no no
## 714 VA 158 415 396-2719 no no
## 715 SD 168 415 369-6204 no yes
## 716 WV 115 510 420-9971 yes no
## 717 GA 57 408 410-3782 yes yes
## 718 AZ 67 415 404-4481 no no
## 719 AK 127 408 383-9255 no no
## 720 AK 78 510 418-9385 no no
## 721 CT 100 415 360-9676 no yes
## 722 UT 103 510 327-3587 no yes
## 723 KY 113 415 385-4715 no no
## 724 MI 78 510 414-2695 no no
## 725 OR 129 510 331-5999 no yes
## 726 TN 57 510 337-7739 no no
## 727 WV 82 408 388-6658 no no
## 728 NJ 64 415 405-6943 no no
## 729 MS 86 510 382-4084 no yes
## 730 ME 151 415 352-8249 no yes
## 731 WY 94 510 353-8363 no no
## 732 WY 90 415 416-2825 no no
## 733 IN 48 510 342-6696 no no
## 734 NM 85 408 338-9210 no yes
## 735 NJ 93 415 328-1768 yes yes
## 736 DC 169 415 406-5870 yes no
## 737 UT 68 415 398-3834 no no
## 738 KY 91 415 330-7754 yes no
## 739 KS 68 510 414-9054 no no
## 740 MI 101 510 350-2832 no no
## 741 UT 67 510 414-9027 no yes
## 742 NE 66 415 337-1225 no no
## 743 FL 116 415 394-6577 no yes
## 744 LA 158 408 359-6995 no no
## 745 MT 78 415 377-7561 no no
## 746 WA 119 415 380-6631 no yes
## 747 MI 120 415 390-8876 no no
## 748 KY 155 510 413-2201 no no
## 749 LA 106 408 374-2073 no no
## 750 NM 87 510 417-1272 yes no
## 751 AL 146 415 358-1129 no yes
## 752 MO 101 415 394-1211 no yes
## 753 CO 22 510 327-1319 no yes
## 754 TX 90 415 399-4413 no no
## 755 NY 41 415 393-9985 no no
## 756 OR 69 415 401-8377 no no
## 757 WY 33 415 331-3202 no no
## 758 UT 112 415 358-5953 no no
## 759 LA 108 510 380-7624 no yes
## 760 NV 136 415 416-5261 no yes
## 761 NC 128 510 417-5067 no no
## 762 NC 27 408 345-6515 no no
## 763 WY 161 415 406-1349 yes no
## 764 TN 33 415 360-9038 no yes
## 765 FL 120 415 348-3444 no yes
## 766 CA 113 415 370-2892 no no
## 767 PA 122 415 383-4061 yes no
## 768 WV 148 415 391-7937 no yes
## 769 NJ 74 415 389-4083 no no
## 770 MT 106 415 410-9633 no no
## 771 MN 179 415 418-9502 no no
## 772 WI 149 415 339-6637 yes yes
## 773 ID 77 510 356-3403 no no
## 774 MA 127 408 371-9457 yes no
## 775 OR 80 415 391-8087 no no
## 776 MT 106 510 392-6420 no no
## 777 AL 61 415 399-4094 no yes
## 778 ND 135 510 378-4013 yes yes
## 779 LA 115 415 386-6306 no yes
## 780 ND 167 408 359-3618 yes no
## 781 MS 107 510 340-8875 yes no
## 782 WV 112 415 330-2693 yes no
## 783 WI 35 510 403-7627 no yes
## 784 KS 103 408 342-3678 yes no
## 785 MO 107 415 344-9943 no yes
## 786 PA 69 415 390-5686 no no
## 787 SD 85 408 358-5826 no no
## 788 NJ 24 408 393-7826 no no
## 789 AL 90 415 335-9786 no no
## 790 ME 137 510 368-9860 no no
## 791 AZ 92 415 416-9522 yes yes
## 792 VT 38 415 416-7307 no no
## 793 NV 69 510 397-6789 yes yes
## 794 WI 45 408 335-9501 no no
## 795 HI 73 408 388-1250 no no
## 796 DE 92 415 386-1374 no no
## 797 AZ 113 415 346-8112 no yes
## 798 VA 68 408 364-9040 yes no
## 799 GA 135 415 366-3944 no yes
## 800 AZ 100 415 331-9861 no yes
## 801 MN 96 415 330-2881 no yes
## 802 ME 108 510 402-9558 no no
## 803 FL 84 510 341-3180 no no
## 804 WA 134 408 371-8598 no no
## 805 MT 72 415 398-8385 no no
## 806 AL 83 408 333-4154 no no
## 807 WV 137 408 330-3589 no no
## 808 GA 56 415 417-1477 no yes
## 809 OH 61 510 327-5525 yes yes
## 810 DE 171 510 363-8244 no yes
## 811 NE 123 510 419-9104 no no
## 812 FL 58 510 363-1560 no no
## 813 AK 156 510 341-4075 no no
## 814 WI 166 510 366-9074 no no
## 815 WA 75 510 367-1424 no yes
## 816 KY 75 415 341-1191 no no
## 817 OH 83 510 342-9480 no no
## 818 UT 243 510 355-9360 no no
## 819 NM 153 408 343-1538 no no
## 820 MN 150 415 335-2331 no no
## 821 WV 92 510 335-7257 no yes
## 822 MN 80 415 332-2137 no no
## 823 AL 134 415 352-2998 no no
## 824 PA 77 510 346-6941 no yes
## 825 DE 147 510 400-2203 no no
## 826 MO 74 415 421-2955 no no
## 827 IL 138 510 331-6629 yes no
## 828 FL 143 415 343-6314 no no
## 829 HI 64 415 414-6638 no no
## 830 ME 120 510 350-5883 no no
## 831 CO 121 408 409-4447 yes no
## 832 NH 88 415 376-4856 no no
## 833 SC 87 408 335-1874 no no
## 834 IN 100 510 397-6255 no no
## 835 FL 104 415 381-5047 no no
## 836 GA 27 510 403-6850 no no
## 837 IL 81 415 375-3658 no yes
## 838 NC 64 510 341-2603 yes yes
## 839 VT 107 510 342-5062 no yes
## 840 DC 88 415 354-1558 no yes
## 841 VT 111 408 351-9537 no no
## 842 NV 77 415 401-1252 no no
## 843 OR 67 415 366-9538 yes no
## 844 AL 102 408 364-7622 no no
## 845 ND 146 408 393-9918 no yes
## 846 FL 144 415 376-4484 no yes
## 847 NE 96 415 410-6791 no no
## 848 ND 70 415 343-2392 no yes
## 849 ME 149 408 408-4323 no no
## 850 IL 129 415 395-1718 no no
## 851 WA 166 408 354-9492 no no
## 852 MA 136 408 367-8168 yes no
## 853 KS 149 510 340-3500 no no
## 854 RI 70 415 369-4962 no no
## 855 MO 120 415 334-8967 no yes
## 856 IA 66 510 402-2377 no no
## 857 WY 104 408 366-3917 no no
## 858 NV 160 415 333-3531 no no
## 859 WI 129 415 333-8954 no yes
## 860 AL 93 408 374-9203 no no
## 861 HI 169 415 334-3289 no no
## 862 MO 58 415 353-7822 no no
## 863 CA 75 510 350-1422 no yes
## 864 MO 45 408 385-8406 no no
## 865 CT 155 510 380-7277 no no
## 866 MD 52 415 352-1798 no no
## 867 OH 119 415 385-7922 no yes
## 868 NV 86 510 353-7730 no no
## 869 MD 42 408 337-7163 no no
## 870 NE 127 510 348-5567 yes no
## 871 OH 123 408 420-9575 no no
## 872 MA 98 510 366-3358 no no
## 873 OK 149 510 359-9972 no yes
## 874 MA 160 408 387-3332 no no
## 875 WA 103 415 354-6960 no no
## 876 HI 132 415 405-3335 no yes
## 877 CO 137 415 379-4257 no no
## 878 FL 129 415 355-4992 yes no
## 879 WI 62 415 383-6373 no no
## 880 ID 122 510 382-7993 no yes
## 881 WY 32 408 422-5865 no no
## 882 GA 86 510 410-9961 no no
## 883 FL 130 415 343-9946 no no
## 884 WY 42 408 357-7060 no no
## 885 DE 73 415 355-9541 no no
## 886 ME 66 408 378-4145 no yes
## 887 DC 103 510 386-2317 no yes
## 888 IA 128 408 335-8146 no no
## 889 CO 104 415 377-2235 no no
## 890 MN 103 415 386-9141 no no
## 891 VT 124 415 416-5623 no no
## 892 AZ 87 510 327-3053 no no
## 893 LA 109 415 395-6195 no yes
## 894 MO 167 415 397-8772 yes no
## 895 ME 97 510 346-7656 no no
## 896 MD 106 415 343-2350 no no
## 897 VT 125 415 372-4722 no no
## 898 DC 108 408 399-8615 no yes
## 899 WY 125 415 379-8248 no no
## 900 VA 89 415 414-6219 no yes
## 901 VA 72 510 387-1343 yes yes
## 902 CT 23 510 370-5527 no no
## 903 HI 149 510 393-8736 no no
## 904 WI 73 415 402-7626 no no
## 905 MD 61 415 370-2688 no no
## 906 WV 161 415 418-9036 no no
## 907 VT 73 408 417-2035 no no
## 908 UT 118 415 355-3602 no yes
## 909 CO 23 408 393-4027 no no
## 910 NC 127 415 418-5141 no yes
## 911 NJ 42 415 406-1247 no yes
## 912 AR 118 415 402-3892 no no
## 913 IA 45 510 332-2965 no no
## 914 GA 50 408 377-1218 no yes
## 915 MO 179 510 355-2464 no no
## 916 MO 152 408 404-4611 no no
## 917 WY 105 415 373-2339 no no
## 918 HI 72 415 410-3503 no no
## 919 PA 52 408 410-4739 no no
## 920 TX 125 415 365-3562 no no
## 921 VA 143 510 387-7641 no no
## 922 RI 65 415 385-9744 no no
## 923 WI 80 415 398-5006 no no
## 924 MS 1 415 408-3977 no no
## 925 KY 60 408 334-2729 no no
## 926 NC 43 415 334-7685 no no
## 927 NV 143 415 350-9228 no no
## 928 UT 81 415 407-5774 no yes
## 929 ME 205 510 413-4039 no yes
## 930 HI 24 415 343-2077 no no
## 931 OH 74 415 336-5661 no no
## 932 WV 77 510 355-4143 no no
## 933 OK 74 415 366-5918 no no
## 934 KY 74 510 368-7555 yes no
## 935 AL 200 408 408-2119 no no
## 936 MD 86 408 329-2789 no no
## 937 NE 91 510 334-1508 no yes
## 938 DC 76 415 337-1506 no no
## 939 TX 130 415 396-8400 no no
## 940 OH 56 408 349-2654 no no
## 941 DE 117 415 417-2716 no no
## 942 IA 63 510 402-1725 no no
## 943 VT 126 415 403-3229 no no
## 944 OR 132 510 353-6056 no no
## 945 NV 81 415 399-9802 no yes
## 946 NC 122 415 366-7069 no no
## 947 NJ 46 408 332-5949 no no
## 948 MN 150 415 393-6376 no yes
## 949 ID 99 408 354-7025 no no
## 950 AL 87 408 351-6585 no no
## 951 AK 108 415 330-5462 no no
## 952 VT 101 415 407-2292 no no
## 953 PA 53 415 340-3011 no no
## 954 AK 132 415 345-9153 no yes
## 955 CA 158 510 379-5503 no no
## 956 MS 114 415 389-6790 no yes
## 957 AR 77 415 408-3610 no yes
## 958 NV 144 415 375-8238 yes no
## 959 AL 91 510 378-5633 no yes
## 960 GA 58 408 389-9120 no no
## 961 AR 5 415 380-2758 no no
## 962 MA 97 408 402-2728 no no
## 963 NJ 107 415 354-9062 no no
## 964 MO 142 415 417-2054 no yes
## 965 NY 9 408 353-1941 no yes
## 966 AZ 73 415 328-1522 no no
## 967 NJ 48 510 408-4529 no yes
## 968 WV 43 408 417-5320 no no
## 969 NM 122 408 370-9755 no yes
## 970 SC 93 415 372-4835 no no
## 971 VT 85 415 334-6605 no no
## 972 TN 59 415 399-5564 no no
## 973 LA 87 415 392-2887 no no
## 974 OH 137 408 328-2110 no no
## 975 OR 21 510 383-5976 no yes
## 976 DE 129 510 332-6181 no no
## 977 KY 104 415 330-5255 no no
## 978 GA 93 408 413-5190 no yes
## 979 VT 63 415 394-7447 no no
## 980 OR 161 415 353-7096 no no
## 981 TX 50 510 395-6002 no no
## 982 MO 103 408 372-9816 no yes
## 983 ND 84 415 400-7253 no yes
## 984 MN 92 510 344-7470 no no
## 985 NV 77 415 378-8572 no no
## 986 NY 64 415 345-9140 yes no
## 987 FL 159 415 340-5460 no yes
## 988 KS 110 415 369-8024 yes yes
## 989 NV 138 510 395-8595 no no
## 990 NV 178 408 359-4587 no no
## 991 SC 38 415 375-5439 no yes
## 992 MI 50 415 361-3779 no yes
## 993 MI 45 510 375-8934 no yes
## 994 TN 70 510 395-4757 no no
## 995 NY 147 510 421-7205 no yes
## 996 NV 94 510 379-8805 no no
## 997 IL 179 510 348-2150 no no
## 998 MS 116 415 417-9128 no no
## 999 ND 59 510 351-4226 no no
## 1000 NC 165 415 330-6630 no no
## 1001 MI 133 408 387-9137 no no
## 1002 TN 140 415 372-3987 no no
## 1003 VT 93 408 408-5183 no yes
## 1004 OK 52 510 412-9357 no yes
## 1005 DE 64 415 402-3599 no yes
## 1006 ND 12 510 379-5211 yes no
## 1007 OR 48 415 405-9217 no no
## 1008 NY 181 408 340-9200 no no
## 1009 MO 168 415 339-9026 no yes
## 1010 FL 155 415 343-4772 no no
## 1011 ND 105 510 345-2108 no no
## 1012 NY 11 415 401-4650 no no
## 1013 ND 182 415 400-3945 no no
## 1014 NY 104 415 338-3781 no no
## 1015 OH 102 415 342-6316 no no
## 1016 AL 122 415 336-5920 no no
## 1017 SC 41 415 332-1060 no no
## 1018 GA 132 415 418-3426 no no
## 1019 WY 76 415 408-6326 no no
## 1020 WV 13 415 334-6142 no no
## 1021 HI 115 415 336-6128 no yes
## 1022 WV 67 408 406-6708 no no
## 1023 LA 154 510 388-8670 no no
## 1024 AR 100 510 363-5853 no no
## 1025 AK 146 510 383-6544 yes no
## 1026 DC 148 415 378-2940 no yes
## 1027 AL 67 415 338-7683 no yes
## 1028 UT 161 510 329-2786 yes no
## 1029 KS 70 415 369-9465 no no
## 1030 MN 116 510 337-3769 no no
## 1031 VA 99 415 400-6257 no yes
## 1032 UT 87 415 411-6663 no no
## 1033 IN 87 510 384-3101 no no
## 1034 CT 70 408 339-5329 no no
## 1035 DE 131 408 388-9944 no no
## 1036 VT 119 510 403-1769 no no
## 1037 MO 119 408 390-1612 no yes
## 1038 RI 87 510 421-7214 yes no
## 1039 CA 112 415 338-6962 no no
## 1040 RI 75 415 333-9826 no no
## 1041 CT 150 510 411-8549 no no
## 1042 IN 161 510 381-9234 no yes
## 1043 FL 91 510 387-9855 yes yes
## 1044 KS 124 415 371-6990 no no
## 1045 NY 94 510 417-3046 yes no
## 1046 TX 217 408 385-7082 no no
## 1047 RI 158 510 365-5886 no no
## 1048 NV 102 415 373-5196 no no
## 1049 UT 85 510 327-6194 no no
## 1050 OK 79 510 381-4565 no no
## 1051 MN 139 510 357-9832 no yes
## 1052 NC 103 415 396-4845 no no
## 1053 OR 98 415 378-6772 yes no
## 1054 NH 78 408 353-4296 no no
## 1055 AK 50 408 362-8331 no no
## 1056 OR 161 415 362-4685 no no
## 1057 KS 67 408 383-1431 no no
## 1058 WV 86 415 332-2258 no yes
## 1059 GA 92 510 375-8304 no no
## 1060 NM 174 415 340-5580 no no
## 1061 OH 124 510 362-1490 no no
## 1062 ND 132 415 336-4281 no yes
## 1063 RI 190 415 361-1315 no yes
## 1064 HI 101 510 342-5906 no no
## 1065 WY 185 415 405-7904 yes yes
## 1066 NY 68 415 349-4762 no yes
## 1067 KS 117 510 385-3263 no yes
## 1068 LA 118 408 405-9496 no no
## 1069 PA 124 415 396-6775 no no
## 1070 NV 22 510 393-6475 no no
## 1071 MN 75 415 379-7779 no no
## 1072 PA 134 408 408-8650 no no
## 1073 MO 164 408 400-3497 no yes
## 1074 NY 44 510 407-9244 no no
## 1075 ME 177 415 406-8809 no no
## 1076 NH 110 408 358-1778 no no
## 1077 WY 53 415 337-4339 no yes
## 1078 NY 108 415 344-7197 no no
## 1079 ME 80 408 333-7631 no no
## 1080 MN 158 408 372-6623 no no
## 1081 OH 114 415 363-2602 no no
## 1082 NC 64 408 387-7757 no yes
## 1083 SD 88 415 397-5381 no no
## 1084 UT 82 510 406-4604 yes no
## 1085 KY 111 415 376-9513 no no
## 1086 MT 60 408 360-1852 no no
## 1087 NJ 113 408 421-7270 no no
## 1088 FL 109 408 371-9482 no no
## 1089 IN 105 510 337-4101 no yes
## 1090 DE 85 510 420-2796 no no
## 1091 AL 131 510 366-4225 no no
## 1092 ME 59 510 398-4567 no no
## 1093 SD 148 408 388-4571 no no
## 1094 VA 210 408 360-8666 no no
## 1095 AK 115 415 333-3704 no no
## 1096 ID 106 510 383-2566 no no
## 1097 RI 93 415 406-5584 no no
## 1098 KY 57 415 344-4691 no yes
## 1099 ND 98 510 347-9737 no no
## 1100 HI 157 415 333-7961 no no
## 1101 WI 116 415 364-2439 no yes
## 1102 WV 30 510 411-8043 no no
## 1103 NJ 111 510 332-5084 no no
## 1104 KS 52 415 413-4831 no no
## 1105 AL 72 415 343-4806 no no
## 1106 NJ 135 510 401-8735 no yes
## 1107 NC 86 510 391-8626 no no
## 1108 DE 98 415 327-5817 no yes
## 1109 WY 151 510 381-4712 no no
## 1110 ID 118 415 335-3320 no no
## 1111 NY 117 415 415-8780 no no
## 1112 MO 55 510 362-1146 no no
## 1113 ID 82 408 352-7413 no no
## 1114 IA 152 415 387-6716 no no
## 1115 TN 108 408 352-1127 no yes
## 1116 OH 98 408 368-1288 no no
## 1117 IL 130 415 403-5279 no no
## 1118 FL 136 408 397-9333 yes no
## 1119 MA 47 415 411-7353 no no
## 1120 OK 189 415 383-2537 no no
## 1121 KY 107 415 330-4419 no no
## 1122 MI 91 415 390-7930 no no
## 1123 NE 159 415 362-5111 no no
## 1124 VA 11 408 358-6796 no yes
## 1125 NY 167 415 409-7494 no no
## 1126 MT 111 408 400-1636 no no
## 1127 VT 99 408 389-2747 no yes
## 1128 KS 159 415 415-2176 no yes
## 1129 VA 114 415 377-8067 yes yes
## 1130 AL 71 415 362-7835 no no
## 1131 PA 122 415 361-5225 no no
## 1132 AL 100 408 333-3447 no yes
## 1133 WV 83 415 341-3044 no yes
## 1134 NV 64 408 350-7306 no no
## 1135 TN 105 408 353-8849 no no
## 1136 ID 144 415 402-3476 no yes
## 1137 WY 106 415 338-6018 yes yes
## 1138 TX 19 510 409-3520 no yes
## 1139 MA 46 408 357-1085 no no
## 1140 IL 127 510 353-3285 no no
## 1141 LA 9 415 409-9885 no yes
## 1142 CO 157 415 388-7701 no no
## 1143 UT 105 415 385-8184 no no
## 1144 MI 105 415 345-2863 no yes
## 1145 NH 155 408 353-6300 no no
## 1146 ID 31 415 389-5649 no no
## 1147 WA 161 415 378-8137 no no
## 1148 MN 95 408 340-4627 no yes
## 1149 NY 122 415 352-6833 no no
## 1150 MD 37 415 420-2000 yes no
## 1151 GA 132 415 368-5437 no no
## 1152 HI 119 408 418-8170 no yes
## 1153 AL 16 408 403-9417 no no
## 1154 CT 99 408 330-6165 no no
## 1155 CO 76 408 412-4185 no yes
## 1156 KS 167 415 409-4734 no no
## 1157 NJ 129 415 348-9828 no no
## 1158 FL 116 408 418-8850 no no
## 1159 CA 60 415 330-8351 yes no
## 1160 KS 128 415 347-7773 no no
## 1161 TX 47 408 392-6841 no yes
## 1162 MN 40 510 354-2189 yes no
## 1163 AK 173 510 349-9060 no no
## 1164 OR 157 510 334-1311 no yes
## 1165 MS 66 408 415-3120 no yes
## 1166 VT 50 415 387-5891 yes yes
## 1167 UT 72 415 368-8026 no no
## 1168 KS 130 510 332-9446 no no
## 1169 NV 143 408 393-5284 no no
## 1170 DE 89 510 376-1677 yes no
## 1171 IN 108 415 392-2268 no no
## 1172 TX 32 408 396-4311 no no
## 1173 MA 166 415 363-4005 no no
## 1174 VT 109 408 344-9966 no no
## 1175 CA 72 408 337-7377 no yes
## 1176 IA 134 415 373-7037 no yes
## 1177 NH 13 415 356-7580 no no
## 1178 GA 90 415 390-3401 no no
## 1179 WI 111 415 350-9313 no yes
## 1180 CO 101 408 420-9009 no yes
## 1181 SC 72 415 415-2641 no no
## 1182 MI 67 510 392-4929 no yes
## 1183 MD 172 408 346-5068 no no
## 1184 IN 154 510 389-2631 no yes
## 1185 ME 69 510 368-3808 no no
## 1186 DC 123 415 406-8599 no no
## 1187 TN 130 415 386-7456 no yes
## 1188 FL 142 415 357-4936 no yes
## 1189 WA 29 415 397-7411 no no
## 1190 HI 87 408 353-6218 no yes
## 1191 NE 149 415 369-5942 no no
## 1192 TN 146 408 416-8543 yes no
## 1193 MD 88 415 358-4576 yes no
## 1194 NM 119 415 352-5118 yes yes
## 1195 VT 48 510 408-2621 no no
## 1196 OR 135 415 353-3994 no no
## 1197 IN 100 510 367-4277 no no
## 1198 MO 98 415 354-3237 no no
## 1199 FL 75 510 394-8504 no yes
## 1200 DC 180 415 370-4139 no yes
## 1201 VT 100 415 382-6135 no yes
## 1202 OH 119 415 359-5718 no yes
## 1203 MO 86 415 385-3111 no no
## 1204 LA 155 408 353-4880 no yes
## 1205 IL 78 415 343-7019 yes no
## 1206 NJ 153 415 419-6133 no no
## 1207 IA 92 510 350-7344 no yes
## 1208 WA 13 510 397-6064 no yes
## 1209 NE 154 415 363-6896 no no
## 1210 CT 144 510 416-9021 yes yes
## 1211 WV 48 408 408-3269 no no
## 1212 ND 94 408 408-9463 no no
## 1213 UT 139 415 340-7062 no no
## 1214 MS 126 415 417-4309 no no
## 1215 MN 122 415 421-2659 no no
## 1216 NH 139 510 383-2017 no no
## 1217 LA 95 415 411-6294 no no
## 1218 ME 80 408 332-9525 no yes
## 1219 KS 131 415 401-5012 no yes
## 1220 KS 36 510 368-8835 no no
## 1221 NV 180 510 351-1382 no no
## 1222 MT 25 415 359-7694 no no
## 1223 MT 113 415 419-5505 no no
## 1224 ID 88 415 341-4570 no yes
## 1225 AK 120 415 366-6991 no no
## 1226 UT 74 415 377-7399 no no
## 1227 AR 109 510 377-9092 no no
## 1228 LA 162 510 373-6681 no yes
## 1229 KS 124 510 417-7736 no yes
## 1230 OR 177 408 393-2812 no no
## 1231 WI 91 510 398-3176 no no
## 1232 CO 105 408 334-8694 no no
## 1233 KS 24 510 369-5449 no no
## 1234 IL 48 510 380-5246 no no
## 1235 IA 86 408 390-3873 no no
## 1236 AZ 163 510 354-4568 no no
## 1237 NE 91 510 339-6968 no no
## 1238 ID 56 510 379-5933 no no
## 1239 OH 147 415 365-5682 yes yes
## 1240 TX 64 415 382-8518 no no
## 1241 TN 108 510 356-8449 no yes
## 1242 OK 159 510 333-3460 no no
## 1243 ND 136 510 375-8596 yes no
## 1244 MT 116 415 384-5907 no yes
## 1245 NC 45 408 373-2903 no yes
## 1246 MN 122 415 361-7702 no no
## 1247 MN 138 415 388-5850 no no
## 1248 MA 132 415 405-6298 no no
## 1249 PA 101 415 368-2074 yes no
## 1250 GA 58 510 328-5050 no no
## 1251 NV 81 415 395-5783 no no
## 1252 TX 87 415 420-7301 no no
## 1253 ME 116 510 328-2478 no no
## 1254 RI 85 415 381-2460 yes no
## 1255 MN 62 510 390-9811 no yes
## 1256 NH 90 415 373-5670 no no
## 1257 TN 98 415 351-7016 no no
## 1258 UT 73 415 394-9934 no no
## 1259 RI 107 510 422-8268 yes no
## 1260 NH 55 408 373-7690 no yes
## 1261 AK 76 415 366-9781 no yes
## 1262 NC 30 510 404-5427 no no
## 1263 AZ 157 415 389-9783 no no
## 1264 MA 40 408 351-7005 no yes
## 1265 TN 72 408 348-2009 no no
## 1266 WY 95 415 340-4236 no yes
## 1267 IA 42 415 348-1528 no no
## 1268 IN 86 415 365-5039 no no
## 1269 NJ 131 415 411-1810 no no
## 1270 FL 55 510 364-7644 no yes
## 1271 MT 74 415 335-9066 no no
## 1272 ND 81 408 362-7581 yes yes
## 1273 MI 81 408 346-1095 no no
## 1274 MT 28 415 357-9136 no no
## 1275 AL 111 510 390-7863 no no
## 1276 NV 3 510 344-2416 no yes
## 1277 MI 51 415 373-1448 no no
## 1278 FL 68 415 360-7076 no yes
## 1279 NY 163 408 413-2241 no no
## 1280 KS 87 510 343-3961 no no
## 1281 NC 58 510 375-4107 no no
## 1282 MN 109 408 414-7410 no no
## 1283 RI 111 415 351-2535 no no
## 1284 UT 144 415 416-9615 no no
## 1285 OR 135 415 377-1293 no no
## 1286 SC 109 415 388-6479 no yes
## 1287 IL 107 415 390-2755 no yes
## 1288 OH 149 408 340-5930 no no
## 1289 MA 56 510 401-3622 no no
## 1290 OR 129 408 382-1104 no no
## 1291 CA 92 408 355-9324 no no
## 1292 WV 67 415 393-4843 no yes
## 1293 VT 120 415 401-4052 no no
## 1294 ID 166 415 385-1830 no no
## 1295 OR 66 408 348-7409 no no
## 1296 GA 76 408 361-4910 no no
## 1297 ME 79 415 415-6578 no no
## 1298 HI 98 415 395-5015 no yes
## 1299 AZ 141 510 369-6012 no yes
## 1300 UT 49 415 394-4520 no no
## 1301 IA 46 510 380-5873 no no
## 1302 CT 137 415 372-5384 no no
## 1303 WA 171 408 419-1863 no no
## 1304 VA 10 415 352-5697 no no
## 1305 CO 88 510 373-4274 no no
## 1306 LA 89 415 382-4024 no no
## 1307 TX 82 415 395-9215 no no
## 1308 SD 139 510 331-9149 no no
## 1309 VA 87 415 347-3958 no no
## 1310 NY 137 415 389-2540 yes no
## 1311 WA 45 510 399-3083 no no
## 1312 WI 90 415 420-8308 no no
## 1313 TN 103 415 384-7724 no no
## 1314 CT 100 415 389-2114 no no
## 1315 WA 110 510 335-4414 no no
## 1316 NH 124 415 370-5361 no no
## 1317 MT 10 510 374-5965 no no
## 1318 NE 89 415 420-6414 no yes
## 1319 WA 121 408 392-2708 no no
## 1320 WI 101 415 352-7234 no no
## 1321 AR 103 415 337-9878 no yes
## 1322 WI 51 408 350-7288 no no
## 1323 DE 2 415 415-8448 yes no
## 1324 NH 111 510 392-6331 no no
## 1325 VA 118 415 392-3315 no no
## 1326 TN 17 510 382-5401 no yes
## 1327 VA 130 408 389-7012 no no
## 1328 ID 193 415 411-4714 no no
## 1329 TN 114 510 343-3846 no no
## 1330 AZ 137 415 370-4395 no no
## 1331 MT 185 408 422-4394 no yes
## 1332 OK 101 408 405-1780 no no
## 1333 ID 95 415 393-2220 no yes
## 1334 NV 7 408 355-8299 no yes
## 1335 KS 126 408 379-8681 no no
## 1336 WY 71 415 409-7034 no no
## 1337 MS 124 415 358-1922 no no
## 1338 WY 97 510 346-1629 yes no
## 1339 TX 28 415 347-1870 no no
## 1340 WA 90 415 374-9576 yes no
## 1341 HI 190 408 380-1096 no no
## 1342 IL 31 415 396-5790 no yes
## 1343 AK 52 415 356-5244 no yes
## 1344 MD 73 510 341-1412 no no
## 1345 MA 111 415 387-7371 no no
## 1346 SD 98 415 392-2555 no no
## 1347 PA 106 408 403-9167 yes no
## 1348 NC 111 408 338-6550 no no
## 1349 VT 59 408 357-5801 no no
## 1350 KY 71 510 403-1953 no yes
## 1351 WA 55 408 357-6039 no no
## 1352 LA 13 415 388-9653 no no
## 1353 WA 136 415 359-2915 no yes
## 1354 ME 123 408 381-4562 no no
## 1355 WI 105 408 406-2213 no no
## 1356 TX 50 408 330-6436 no yes
## 1357 IA 118 415 332-4289 no no
## 1358 AZ 97 408 386-3596 no no
## 1359 ND 51 510 337-3740 no no
## 1360 VT 73 415 414-1496 no no
## 1361 HI 35 415 349-7291 no no
## 1362 WY 64 415 385-1985 no no
## 1363 WV 63 510 329-7102 no no
## 1364 OK 117 415 394-2553 no yes
## 1365 CT 115 415 339-1330 no no
## 1366 UT 162 408 398-1959 no no
## 1367 NY 89 415 408-7015 no no
## 1368 VA 94 415 384-9254 yes no
## 1369 VT 129 408 355-9475 no no
## 1370 SD 86 415 334-1337 no no
## 1371 PA 96 510 359-1441 no no
## 1372 ND 190 415 391-5442 no no
## 1373 CT 80 408 374-1551 no no
## 1374 SC 108 415 399-6233 no no
## 1375 MI 97 408 337-4749 no yes
## 1376 VT 84 415 403-5552 no yes
## 1377 OH 65 415 405-3097 no no
## 1378 VT 131 415 364-9240 no yes
## 1379 IL 58 415 404-9348 yes yes
## 1380 MO 36 415 336-1462 no no
## 1381 WI 54 415 364-8981 no no
## 1382 NJ 45 510 412-7606 no no
## 1383 GA 125 415 380-6342 no yes
## 1384 VT 72 415 418-3017 no yes
## 1385 CT 141 408 367-3648 no no
## 1386 AZ 113 510 341-5892 no no
## 1387 SD 20 415 334-4678 no yes
## 1388 CT 212 415 366-6751 no no
## 1389 IN 99 415 397-8512 yes no
## 1390 OH 94 510 367-9495 no no
## 1391 NY 40 510 379-2991 no no
## 1392 NE 86 510 356-4832 no yes
## 1393 OK 101 415 413-4040 no no
## 1394 NC 170 415 366-4444 no no
## 1395 HI 105 510 394-3806 no no
## 1396 UT 103 415 368-5647 no no
## 1397 MD 140 415 412-1076 yes yes
## 1398 VT 101 510 413-7655 no no
## 1399 TX 98 408 371-2316 no yes
## 1400 AZ 104 408 420-3346 no no
## 1401 VA 115 415 367-3971 no no
## 1402 WI 112 408 417-5813 no no
## 1403 NE 70 415 421-8535 no no
## 1404 KY 126 510 375-1721 no no
## 1405 NV 87 510 331-8484 no yes
## 1406 MT 125 510 366-5829 no no
## 1407 MO 86 415 367-7906 no no
## 1408 MS 73 415 412-2520 no yes
## 1409 NM 232 408 386-9177 no no
## 1410 NJ 1 415 420-6780 no yes
## 1411 NH 133 408 401-1454 no no
## 1412 NC 103 510 379-2508 no no
## 1413 MT 131 415 353-3492 no yes
## 1414 SD 95 408 406-4840 no yes
## 1415 VA 182 415 391-7982 no no
## 1416 LA 99 510 379-9821 no no
## 1417 NV 27 510 398-7414 no no
## 1418 AK 141 408 338-8566 no no
## 1419 OH 29 415 397-3058 yes yes
## 1420 NM 65 415 389-8096 no no
## 1421 MI 81 415 393-6840 yes no
## 1422 MN 37 415 360-7404 no yes
## 1423 WY 107 510 411-5740 no yes
## 1424 WY 127 415 412-3726 yes yes
## 1425 WA 78 408 372-7326 no no
## 1426 NM 55 510 338-9873 no no
## 1427 VA 86 415 383-4322 no yes
## 1428 RI 176 415 401-7654 no no
## 1429 AL 96 415 410-5455 yes no
## 1430 WV 11 510 419-4310 no yes
## 1431 WV 48 415 367-2056 no yes
## 1432 NJ 127 510 363-6695 no no
## 1433 TN 63 415 374-6217 no no
## 1434 MI 79 510 337-9569 no no
## 1435 UT 47 408 350-9720 no yes
## 1436 IL 89 415 380-4080 yes yes
## 1437 MI 83 510 333-7460 no yes
## 1438 WI 126 415 378-3722 yes yes
## 1439 ND 60 510 353-9339 no no
## 1440 VT 122 415 386-6535 no no
## 1441 WA 136 408 403-5575 no no
## 1442 NC 172 408 331-5962 no yes
## 1443 ME 102 510 390-9627 no no
## 1444 SD 113 415 406-4560 yes no
## 1445 WV 79 415 359-6931 no no
## 1446 ID 55 510 331-7342 no yes
## 1447 LA 111 415 367-2227 no yes
## 1448 GA 160 415 335-8836 no no
## 1449 FL 110 415 398-6703 no no
## 1450 CO 192 415 370-8379 no no
## 1451 NV 93 408 335-3880 no no
## 1452 IN 101 415 375-8761 no yes
## 1453 VA 77 510 367-1398 no no
## 1454 UT 105 415 395-7857 no yes
## 1455 UT 133 408 398-8745 no yes
## 1456 MO 131 408 386-3717 no no
## 1457 CT 106 510 330-1175 no yes
## 1458 HI 118 415 418-6752 no no
## 1459 MD 125 408 349-6464 no no
## 1460 VA 95 415 366-7331 no no
## 1461 MT 80 415 361-8288 no no
## 1462 SC 145 408 377-6635 no no
## 1463 CO 37 408 408-1513 no no
## 1464 ID 87 415 370-7546 no no
## 1465 AL 69 415 389-4278 no no
## 1466 CO 83 510 379-3012 no no
## 1467 UT 195 415 355-3620 no no
## 1468 DE 67 415 413-7743 yes yes
## 1469 OH 75 510 372-2296 no yes
## 1470 RI 123 415 333-9728 no yes
## 1471 FL 41 415 415-6110 no yes
## 1472 OH 75 415 340-9803 no no
## 1473 MD 76 415 400-7002 yes no
## 1474 IL 86 415 395-7435 yes no
## 1475 PA 140 408 336-7143 no no
## 1476 AZ 70 415 352-2175 no no
## 1477 NH 121 510 346-6352 no yes
## 1478 RI 112 415 405-7467 no no
## 1479 HI 118 415 379-8526 no no
## 1480 NJ 66 415 410-5713 no yes
## 1481 WI 78 408 408-5916 no no
## 1482 MD 129 415 370-5626 no yes
## 1483 OR 6 408 408-1331 no no
## 1484 NV 107 510 419-9688 yes no
## 1485 AR 107 415 343-5219 yes no
## 1486 MT 138 415 401-5586 no no
## 1487 CT 103 510 377-9178 no no
## 1488 UT 116 415 345-5639 no yes
## 1489 GA 189 408 336-3488 no no
## 1490 NV 161 415 414-6426 no no
## 1491 TN 1 415 335-5591 no no
## 1492 DE 89 408 421-9144 no no
## 1493 NY 64 408 422-7728 no no
## 1494 MT 126 415 344-3466 no yes
## 1495 IA 129 415 398-7978 no no
## 1496 VT 128 510 346-8368 no yes
## 1497 LA 81 415 392-2722 no yes
## 1498 MT 114 510 393-3274 no no
## 1499 NH 50 408 339-4636 no no
## 1500 WV 86 415 349-7138 no no
## 1501 ID 96 408 363-3295 no no
## 1502 AZ 72 510 407-9830 no no
## 1503 SC 64 510 333-8822 no yes
## 1504 WV 57 415 419-6418 yes yes
## 1505 OH 65 510 351-8955 no no
## 1506 MD 163 408 338-1840 no no
## 1507 MD 136 415 336-6997 no no
## 1508 MN 116 408 408-6266 no no
## 1509 NE 93 408 332-4291 no no
## 1510 MN 142 510 355-7895 no yes
## 1511 NY 92 408 348-2916 no no
## 1512 HI 70 415 339-8132 no no
## 1513 MO 22 408 374-1684 no yes
## 1514 NV 37 415 362-7604 no no
## 1515 MA 51 415 389-3206 no no
## 1516 NH 174 408 336-2829 no no
## 1517 UT 68 415 403-8916 no no
## 1518 FL 130 415 384-1135 no no
## 1519 WA 104 415 390-2320 no no
## 1520 CT 134 408 398-8578 no no
## 1521 KY 108 415 393-9424 no yes
## 1522 NM 103 415 417-6330 no no
## 1523 ND 62 510 340-6339 no no
## 1524 NV 162 415 380-6571 no no
## 1525 CA 93 510 368-6488 no yes
## 1526 ID 42 415 363-2193 no no
## 1527 OK 155 415 328-1206 no yes
## 1528 IA 36 510 385-3540 no no
## 1529 OH 143 415 337-7167 no no
## 1530 NJ 197 510 372-8405 no no
## 1531 IA 81 510 377-1273 no no
## 1532 DE 138 510 380-7816 yes no
## 1533 CA 103 415 402-6744 no yes
## 1534 WY 127 510 400-2181 yes no
## 1535 OR 136 510 366-1613 no no
## 1536 ME 99 415 347-8205 no no
## 1537 AR 95 415 328-2982 no no
## 1538 ME 118 408 384-8723 yes yes
## 1539 WV 113 415 341-7686 no no
## 1540 PA 128 408 353-6038 yes no
## 1541 HI 117 408 416-8827 no no
## 1542 MT 48 415 418-8450 no yes
## 1543 DC 81 510 385-7861 yes no
## 1544 AR 57 510 393-3507 no no
## 1545 MS 140 408 372-5262 no no
## 1546 OH 107 510 411-3095 no yes
## 1547 MO 56 415 331-5919 no no
## 1548 TX 159 415 402-1556 no no
## 1549 MD 102 415 349-7362 no no
## 1550 CT 107 408 339-2734 no no
## 1551 SC 106 408 330-4914 no no
## 1552 MI 225 415 371-2500 no no
## 1553 SD 75 408 335-3681 no no
## 1554 CO 86 415 405-1132 no no
## 1555 ID 169 415 399-9239 no no
## 1556 AZ 122 510 350-7227 no yes
## 1557 FL 106 408 384-6654 no no
## 1558 MN 52 415 376-4271 no yes
## 1559 DE 79 415 391-8124 no yes
## 1560 MI 135 415 393-2524 no no
## 1561 MS 70 408 384-4385 no no
## 1562 MA 80 408 377-8266 no no
## 1563 CA 37 415 345-1243 no no
## 1564 MN 161 415 394-8086 no yes
## 1565 VT 137 510 348-9145 no no
## 1566 CT 123 415 376-5201 no no
## 1567 WV 80 415 356-2093 no yes
## 1568 WV 94 415 353-2080 no no
## 1569 NE 105 415 397-7500 no yes
## 1570 NC 73 415 414-5786 no yes
## 1571 NE 112 415 388-4282 no no
## 1572 IL 179 408 415-5132 no no
## 1573 MA 57 510 352-4541 no no
## 1574 AZ 127 415 373-5928 no yes
## 1575 SD 122 415 406-7737 yes yes
## 1576 MT 33 510 332-7607 no yes
## 1577 VT 94 408 359-7788 no no
## 1578 UT 100 408 384-1549 no no
## 1579 HI 106 415 352-8508 no no
## 1580 DC 148 415 404-1002 no yes
## 1581 WI 120 415 414-2905 no yes
## 1582 UT 91 415 380-9849 no yes
## 1583 WA 86 510 387-6498 no no
## 1584 SD 78 415 360-6024 no yes
## 1585 MT 94 510 352-5815 no no
## 1586 NJ 85 415 366-2273 no no
## 1587 CT 89 415 414-9119 no no
## 1588 VA 128 415 409-8796 no no
## 1589 NC 115 415 337-2442 yes no
## 1590 AK 76 415 404-1931 no no
## 1591 MD 75 415 367-9765 no yes
## 1592 IL 90 415 378-7299 no yes
## 1593 CT 30 408 410-5192 no no
## 1594 KS 105 415 405-1108 yes no
## 1595 MA 102 415 392-1734 no yes
## 1596 NJ 83 415 395-6030 no no
## 1597 AR 63 510 330-5168 no yes
## 1598 MS 155 408 334-3142 no no
## 1599 ND 82 415 362-9983 no yes
## 1600 IN 87 510 414-2606 no no
## 1601 MI 115 415 402-4501 no yes
## 1602 AR 99 510 387-2604 yes no
## 1603 VT 121 415 400-3343 yes yes
## 1604 WV 54 510 353-2450 no yes
## 1605 ME 105 408 406-2032 no no
## 1606 IA 73 415 409-4462 no no
## 1607 CT 95 415 392-5941 no no
## 1608 NM 21 415 334-9182 no yes
## 1609 OR 163 408 346-3445 no yes
## 1610 VT 57 415 368-9507 no no
## 1611 RI 104 408 382-3966 yes no
## 1612 RI 83 415 334-5844 no yes
## 1613 NM 141 415 362-9411 no no
## 1614 AL 95 415 390-3565 no no
## 1615 MT 184 415 417-4810 no no
## 1616 CT 74 408 384-3389 no no
## 1617 TN 67 415 414-9717 no no
## 1618 ID 104 415 357-1700 yes no
## 1619 TX 71 415 376-7207 no yes
## 1620 NH 149 415 368-7706 no no
## 1621 ND 154 408 346-4216 no yes
## 1622 SC 138 510 370-9533 no yes
## 1623 KS 117 415 372-1493 no no
## 1624 ME 130 408 387-6031 no no
## 1625 RI 73 415 366-6248 no no
## 1626 WI 100 510 369-3756 no yes
## 1627 NC 149 510 363-1719 no no
## 1628 OH 29 408 402-6666 no no
## 1629 WY 131 510 408-9779 no no
## 1630 NJ 153 510 407-2441 no no
## 1631 ND 84 510 384-5027 no no
## 1632 WI 133 510 380-3161 no no
## 1633 KY 112 415 360-8135 no no
## 1634 NY 87 415 399-5426 no no
## 1635 MO 72 415 385-2564 no no
## 1636 AZ 66 510 337-8618 no no
## 1637 MN 65 510 354-8491 no yes
## 1638 CO 74 415 394-6278 no no
## 1639 MD 116 408 405-2276 no no
## 1640 AR 68 510 376-1000 no no
## 1641 TN 68 415 397-1659 no no
## 1642 DE 54 415 379-3953 yes no
## 1643 TN 99 408 418-6512 no no
## 1644 WI 107 408 392-5296 no no
## 1645 WV 124 510 355-3814 no no
## 1646 CT 95 415 375-2098 no yes
## 1647 MN 173 510 372-7990 no no
## 1648 MO 110 408 356-4558 no no
## 1649 VA 102 510 398-5788 no no
## 1650 NH 130 408 390-4003 no no
## 1651 OK 91 408 332-8103 no yes
## 1652 CT 64 415 406-9926 yes no
## 1653 TN 176 415 418-2402 no yes
## 1654 MD 93 510 384-3299 yes no
## 1655 WI 84 510 378-9090 no yes
## 1656 SD 138 510 350-6473 no no
## 1657 ND 101 415 379-4583 no yes
## 1658 VA 136 408 411-5078 no no
## 1659 UT 111 510 347-4982 no no
## 1660 MA 132 408 341-9274 no yes
## 1661 SD 128 415 353-7461 no no
## 1662 AL 92 408 371-7366 no yes
## 1663 AL 197 415 395-7923 yes no
## 1664 WV 191 408 351-8398 no no
## 1665 SC 99 415 329-2204 no yes
## 1666 FL 106 415 407-7507 no yes
## 1667 KY 88 415 405-8075 no no
## 1668 UT 78 415 390-9698 no no
## 1669 NY 98 408 403-4917 no no
## 1670 MS 17 408 391-6709 no yes
## 1671 NH 56 415 389-5988 no yes
## 1672 VA 84 415 372-1534 no no
## 1673 VT 95 510 395-6369 no no
## 1674 WY 16 415 400-3197 no no
## 1675 NV 76 510 377-4169 yes no
## 1676 WV 93 415 384-5343 no no
## 1677 WA 83 408 338-4472 no no
## 1678 KS 123 415 332-2126 no no
## 1679 VT 64 408 349-2157 no no
## 1680 OK 82 510 393-4823 no no
## 1681 GA 107 510 385-2683 no no
## 1682 CO 110 510 345-8350 no no
## 1683 AK 96 408 334-4506 no yes
## 1684 TN 47 415 332-3544 no yes
## 1685 KY 115 510 380-5102 no no
## 1686 PA 69 415 395-6149 no no
## 1687 CT 163 408 398-8122 no yes
## 1688 CT 90 415 334-4438 no no
## 1689 MN 98 415 384-7459 no no
## 1690 WY 90 408 368-3931 no yes
## 1691 PA 174 415 353-1352 no yes
## 1692 OR 95 415 348-5725 no no
## 1693 PA 79 415 365-2008 no no
## 1694 OK 123 415 393-3635 no yes
## 1695 VT 99 415 380-8727 no no
## 1696 ID 114 415 381-2376 no no
## 1697 PA 141 510 365-8114 no no
## 1698 NM 132 408 415-5008 no no
## 1699 FL 133 510 392-8318 no no
## 1700 TX 133 408 401-4007 no no
## 1701 VT 93 510 338-7709 no yes
## 1702 MA 34 415 374-1981 no no
## 1703 OR 140 415 333-5101 no no
## 1704 DE 96 415 345-3734 no yes
## 1705 FL 144 510 384-5004 no no
## 1706 ID 24 408 341-9396 no yes
## 1707 MD 54 415 408-6302 no no
## 1708 WV 50 408 348-7193 no no
## 1709 ID 92 415 417-4063 no yes
## 1710 NV 96 408 375-6911 no no
## 1711 OH 146 415 358-3604 no no
## 1712 ID 138 415 339-7485 yes yes
## 1713 SC 102 408 368-3078 no no
## 1714 MO 76 510 418-7055 no no
## 1715 NE 99 415 386-9981 no no
## 1716 NC 83 510 366-2541 no yes
## 1717 ME 36 510 335-3110 no yes
## 1718 MI 70 510 400-7809 no no
## 1719 AZ 109 415 404-3106 yes no
## 1720 AZ 100 415 333-2337 no no
## 1721 HI 104 408 353-6482 no no
## 1722 NJ 106 415 397-8162 no no
## 1723 MS 84 510 380-6722 no no
## 1724 MA 80 510 329-2918 no no
## 1725 SC 100 510 348-8022 no no
## 1726 MN 99 408 388-4459 no no
## 1727 WV 50 510 358-3114 no no
## 1728 MS 105 415 343-9654 no no
## 1729 VA 113 415 401-9909 no yes
## 1730 MS 111 415 404-9978 no yes
## 1731 NM 161 408 397-8011 no no
## 1732 TX 70 415 341-8719 no no
## 1733 HI 97 415 408-1242 no yes
## 1734 WA 130 510 406-7726 no no
## 1735 WI 92 415 351-2773 no no
## 1736 CO 119 408 368-6174 no no
## 1737 NV 115 415 334-5029 no no
## 1738 RI 134 415 413-1789 no no
## 1739 VA 127 408 414-1246 no yes
## 1740 NJ 80 415 330-4978 no no
## 1741 ND 153 415 386-1631 no yes
## 1742 MN 85 415 363-1208 no no
## 1743 HI 79 415 334-5263 no no
## 1744 ND 35 415 361-4137 no no
## 1745 WI 120 408 374-8187 no yes
## 1746 MN 68 510 370-1525 no no
## 1747 DC 60 408 355-3801 no no
## 1748 KS 120 510 392-5605 no no
## 1749 MT 71 510 363-1366 no yes
## 1750 WV 124 415 358-5274 no no
## 1751 ME 23 510 376-9607 no no
## 1752 WY 225 415 374-1213 no no
## 1753 NY 181 415 421-8537 yes no
## 1754 VT 63 415 351-5576 no no
## 1755 NC 54 415 407-7258 yes no
## 1756 MO 80 408 405-4420 yes yes
## 1757 NC 118 408 340-2855 yes yes
## 1758 NJ 42 408 342-8002 yes no
## 1759 OH 134 408 355-6826 no no
## 1760 TX 66 415 402-3886 no yes
## 1761 WA 66 415 336-5900 no no
## 1762 TN 127 415 339-7684 no yes
## 1763 HI 146 510 390-2433 no no
## 1764 WY 93 408 360-7246 no yes
## 1765 CT 77 415 335-6508 no no
## 1766 NM 111 415 348-6720 no no
## 1767 NJ 125 415 406-6400 no no
## 1768 AL 115 510 390-7370 no yes
## 1769 MN 115 510 390-5055 yes no
## 1770 NC 114 408 405-7542 no no
## 1771 OH 106 415 364-4927 no no
## 1772 ND 118 415 329-3458 no yes
## 1773 CO 59 510 331-3842 no no
## 1774 ND 87 415 343-4147 yes yes
## 1775 NY 21 415 335-2274 no no
## 1776 WI 142 408 343-3227 no yes
## 1777 WY 62 415 336-6907 no no
## 1778 OR 149 415 331-1391 no no
## 1779 CO 54 510 360-1643 no yes
## 1780 LA 112 510 410-2518 no no
## 1781 AL 68 510 344-4970 no no
## 1782 TX 201 415 408-1486 no yes
## 1783 PA 88 510 396-1648 no no
## 1784 IL 85 415 391-2022 no yes
## 1785 DE 51 415 420-6465 yes no
## 1786 MO 45 510 398-2628 no yes
## 1787 AR 116 510 409-5519 no no
## 1788 OH 146 408 391-8554 no yes
## 1789 WI 63 510 395-1693 no yes
## 1790 GA 133 510 393-3194 no no
## 1791 KY 125 408 328-3402 no no
## 1792 OH 72 510 411-4781 no no
## 1793 TN 130 408 401-2581 no no
## 1794 SD 97 415 385-1214 no no
## 1795 NY 54 415 348-6853 no no
## 1796 GA 160 415 341-8412 no yes
## 1797 TX 79 415 330-8142 no no
## 1798 WV 92 415 361-1404 no yes
## 1799 MI 59 415 375-9671 no no
## 1800 ND 132 510 372-1824 no no
## 1801 NE 21 510 408-3606 no no
## 1802 SD 93 415 333-3595 no no
## 1803 NJ 147 415 379-7009 no yes
## 1804 AK 101 510 411-4940 no no
## 1805 CT 125 415 409-7523 yes no
## 1806 CO 63 415 408-6725 no no
## 1807 MD 107 415 350-2384 no no
## 1808 ND 110 408 348-1706 no no
## 1809 NH 83 415 415-6145 no no
## 1810 MN 117 408 373-3731 no no
## 1811 KY 124 415 341-3349 no no
## 1812 NH 115 510 399-8859 no no
## 1813 CO 156 408 377-4518 yes no
## 1814 KY 89 408 341-1594 no no
## 1815 KY 72 415 418-8770 no no
## 1816 IN 101 415 332-9118 no yes
## 1817 OR 53 415 386-1418 no no
## 1818 SD 116 408 393-3535 no no
## 1819 DE 78 408 328-9006 no no
## 1820 OR 117 415 402-2482 no yes
## 1821 NE 56 510 408-4865 no no
## 1822 OH 123 408 396-6247 no yes
## 1823 OH 127 408 396-9462 no no
## 1824 AR 116 415 396-9279 no yes
## 1825 KS 138 510 363-8715 no yes
## 1826 TX 120 415 356-1358 no no
## 1827 WI 102 408 360-7839 no no
## 1828 OR 95 415 364-8774 no no
## 1829 VA 102 408 348-5038 no no
## 1830 AR 89 415 365-4728 no yes
## 1831 CT 50 408 351-9037 no no
## 1832 OH 93 415 397-9184 no yes
## 1833 WY 68 510 398-4538 no no
## 1834 IL 70 408 382-6827 no no
## 1835 MO 138 415 408-1340 no yes
## 1836 DC 141 415 333-9511 no yes
## 1837 MA 112 415 358-7379 no yes
## 1838 NH 117 510 397-1766 yes no
## 1839 IA 1 408 331-2144 no yes
## 1840 AL 70 415 345-7014 no no
## 1841 OR 87 510 395-1898 no yes
## 1842 WV 52 510 373-8920 no yes
## 1843 WA 97 408 373-8908 no no
## 1844 NV 105 408 415-1203 no no
## 1845 SC 77 510 369-7017 no yes
## 1846 NC 80 415 420-8435 yes no
## 1847 NH 120 510 395-2579 no yes
## 1848 WY 54 408 405-7850 no yes
## 1849 FL 148 510 394-7710 yes no
## 1850 PA 119 408 342-4122 no no
## 1851 NC 162 408 340-1876 no yes
## 1852 MO 85 510 383-6095 no no
## 1853 KS 101 510 413-1061 no yes
## 1854 KY 172 415 343-5347 no no
## 1855 DE 80 415 376-4861 no no
## 1856 WI 67 510 417-2265 no no
## 1857 CO 86 408 419-7415 no no
## 1858 NM 107 415 407-2259 no no
## 1859 DE 133 510 333-2906 no no
## 1860 IL 116 510 360-7477 no no
## 1861 WA 63 408 342-5243 no no
## 1862 MA 119 408 417-3999 yes yes
## 1863 OH 133 408 379-1720 yes no
## 1864 TN 94 408 368-3117 yes no
## 1865 MA 69 510 352-5000 no no
## 1866 MI 146 408 405-7676 no no
## 1867 TX 119 510 361-2349 no no
## 1868 NH 142 408 383-2901 yes yes
## 1869 MD 123 408 369-7049 no no
## 1870 MS 101 408 387-5533 no no
## 1871 AZ 43 415 362-3660 no no
## 1872 IN 69 408 357-3577 no no
## 1873 NY 15 510 394-3312 yes no
## 1874 WI 107 510 395-8330 no yes
## 1875 WV 67 510 373-8895 no no
## 1876 NY 99 415 386-4581 no no
## 1877 OK 46 415 354-8191 no no
## 1878 NC 55 408 359-7562 yes no
## 1879 KY 39 415 359-4336 no no
## 1880 TX 92 510 336-9901 no no
## 1881 CT 56 415 406-3069 no no
## 1882 NE 76 415 334-6519 no no
## 1883 HI 132 408 361-8113 yes yes
## 1884 SC 140 510 347-9769 no yes
## 1885 AK 51 510 352-9130 yes yes
## 1886 SD 27 408 378-4557 no no
## 1887 ID 224 510 360-8919 no no
## 1888 OK 105 510 405-4109 yes yes
## 1889 WA 117 408 381-2498 no no
## 1890 SD 91 415 357-5696 no no
## 1891 OH 135 415 412-2947 no no
## 1892 VA 146 415 363-3571 no no
## 1893 WI 147 415 405-5403 yes no
## 1894 IN 68 510 330-9354 no no
## 1895 NM 68 408 396-7091 no no
## 1896 HI 86 408 398-3004 no yes
## 1897 KY 131 415 400-4020 no no
## 1898 OH 86 415 356-3448 no yes
## 1899 VT 159 415 335-2019 no no
## 1900 AZ 134 415 332-6633 no yes
## 1901 VT 113 510 359-7648 no no
## 1902 MO 132 408 412-9190 no no
## 1903 AL 85 415 368-9007 no no
## 1904 NJ 93 510 384-5632 yes yes
## 1905 WA 174 408 352-6068 no yes
## 1906 NY 61 415 343-9645 no no
## 1907 DC 91 415 384-7873 no yes
## 1908 NE 88 408 396-2187 no yes
## 1909 MA 88 408 383-5109 no yes
## 1910 VT 195 415 377-7843 no yes
## 1911 NM 182 415 382-7999 no no
## 1912 CO 118 408 328-1222 no no
## 1913 NH 103 408 371-1727 no no
## 1914 IL 65 510 369-8871 no no
## 1915 UT 61 408 335-9726 no yes
## 1916 WV 172 415 357-3709 no no
## 1917 NJ 72 415 422-9964 no no
## 1918 NM 113 510 366-9211 no no
## 1919 ND 177 408 384-9033 no no
## 1920 WA 100 408 382-4932 no no
## 1921 NM 67 415 404-7518 no no
## 1922 DE 136 415 353-1954 no no
## 1923 GA 71 415 391-7166 no no
## 1924 HI 134 408 370-9000 no no
## 1925 CT 124 415 332-3642 no no
## 1926 NJ 84 415 412-3898 no no
## 1927 ME 39 408 366-5640 no no
## 1928 OK 110 510 356-2302 no no
## 1929 TN 102 510 345-9018 no no
## 1930 WY 70 415 365-6205 no no
## 1931 NY 142 415 337-1151 no no
## 1932 DE 81 510 374-4664 yes no
## 1933 RI 17 415 396-9656 no no
## 1934 PA 119 408 377-5043 no no
## 1935 HI 105 415 401-7359 no no
## 1936 MD 108 415 375-2184 yes yes
## 1937 VA 90 415 367-6005 no no
## 1938 IN 100 415 364-2166 no yes
## 1939 OR 155 408 414-4741 no yes
## 1940 AZ 113 510 403-9719 no no
## 1941 WI 123 415 371-8452 no no
## 1942 VA 145 408 392-6239 no no
## 1943 MO 42 415 410-5250 no no
## 1944 NV 125 510 336-1574 no no
## 1945 HI 131 415 406-8324 no yes
## 1946 WA 107 415 411-7110 no no
## 1947 IL 48 408 341-9907 no no
## 1948 IL 76 510 400-8952 no no
## 1949 LA 128 415 333-9266 no no
## 1950 WI 73 415 419-4894 no no
## 1951 TX 52 415 364-9904 no no
## 1952 MI 126 415 394-3048 yes yes
## 1953 NC 124 415 352-6265 no no
## 1954 WA 137 408 357-3187 no no
## 1955 ND 71 510 373-8483 no no
## 1956 NE 139 415 375-9930 no no
## 1957 MS 107 510 352-6282 no yes
## 1958 KY 147 408 396-2945 no no
## 1959 RI 116 510 412-3527 no no
## 1960 NY 60 510 328-4231 no yes
## 1961 TX 38 510 413-9055 no no
## 1962 DE 63 408 363-8755 no no
## 1963 NM 94 415 388-8891 no no
## 1964 RI 131 415 360-1776 no no
## 1965 MS 158 510 411-3578 no no
## 1966 NY 139 510 399-7268 no no
## 1967 NE 77 415 350-1532 no no
## 1968 WI 140 415 359-2197 no no
## 1969 KY 72 408 407-9290 no no
## 1970 SD 52 510 358-6672 no yes
## 1971 VA 103 510 393-4621 no no
## 1972 KS 74 415 336-7357 no yes
## 1973 ND 124 415 351-1466 no no
## 1974 CO 85 510 394-6668 no yes
## 1975 KY 113 408 403-2673 no yes
## 1976 WA 71 408 355-1735 no no
## 1977 NV 177 415 416-7679 no yes
## 1978 SC 49 415 340-4972 yes no
## 1979 RI 106 510 417-4826 yes no
## 1980 ID 60 510 408-6676 no no
## 1981 KY 43 408 417-6683 no no
## 1982 ME 66 510 331-6270 no no
## 1983 SD 125 415 404-9754 no no
## 1984 SC 114 510 364-9425 no yes
## 1985 TN 112 415 339-6477 no no
## 1986 MT 101 408 362-2787 no yes
## 1987 WI 70 415 405-9233 no no
## 1988 AK 59 408 416-1845 no no
## 1989 AZ 59 408 385-9657 no no
## 1990 MT 124 415 420-5652 no yes
## 1991 DE 99 415 415-1141 no no
## 1992 VA 150 510 334-5634 no no
## 1993 MA 81 510 403-4200 no no
## 1994 IN 86 510 357-7893 no no
## 1995 MD 84 510 369-2899 no no
## 1996 NV 118 510 381-1026 no yes
## 1997 CO 89 415 388-8722 no no
## 1998 KS 93 415 418-3135 no no
## 1999 AR 85 415 380-3974 no no
## 2000 WY 160 408 338-7232 no no
## 2001 PA 28 415 334-5223 no no
## 2002 TX 73 408 340-8323 no no
## 2003 NY 156 408 337-6851 no no
## 2004 OR 33 415 344-5973 yes no
## 2005 CA 77 510 335-2261 no no
## 2006 NY 119 415 343-1458 no no
## 2007 AR 91 510 415-4875 no yes
## 2008 MI 102 510 381-2726 no no
## 2009 OK 86 415 395-3852 no yes
## 2010 TX 82 415 358-7914 no no
## 2011 NC 89 408 332-6958 no no
## 2012 ID 86 415 355-1019 no no
## 2013 IL 134 408 382-9447 no no
## 2014 OR 92 415 386-8536 no no
## 2015 SD 87 510 363-3818 no no
## 2016 NE 64 408 360-6416 no no
## 2017 RI 80 510 332-8764 no no
## 2018 MD 165 415 398-4814 no yes
## 2019 ID 153 415 410-5963 no yes
## 2020 ME 41 415 399-6642 no yes
## 2021 SD 108 415 390-9986 no no
## 2022 NY 104 415 391-1793 no yes
## 2023 DE 115 408 352-5542 no no
## 2024 OK 87 415 386-8118 no no
## 2025 SC 159 415 394-9825 no yes
## 2026 IN 119 510 382-4952 no no
## 2027 NV 69 415 387-2698 no no
## 2028 IL 87 408 417-1360 yes yes
## 2029 SD 93 510 408-4836 no no
## 2030 OK 154 415 374-8329 yes no
## 2031 KS 57 415 363-8424 no yes
## 2032 IA 130 510 408-8910 no no
## 2033 NJ 151 415 399-3840 no no
## 2034 NJ 162 408 367-8692 no no
## 2035 MT 60 415 387-4504 no no
## 2036 IA 81 510 328-2647 no no
## 2037 WA 132 415 369-7903 no no
## 2038 NE 86 408 399-6852 no no
## 2039 TX 136 408 335-4888 no no
## 2040 MS 121 415 344-2260 no yes
## 2041 IA 105 510 349-4070 no yes
## 2042 WI 105 415 394-6505 no yes
## 2043 MT 51 415 419-3612 no yes
## 2044 GA 64 408 356-1952 no no
## 2045 MT 80 510 416-7866 yes yes
## 2046 ND 56 415 398-1759 no no
## 2047 VT 120 415 338-9950 no no
## 2048 SD 103 510 412-7278 no no
## 2049 OH 164 510 347-1263 no yes
## 2050 OH 116 415 386-5684 no yes
## 2051 MT 121 408 334-4354 no no
## 2052 IL 55 415 398-5970 yes no
## 2053 NV 183 415 330-3429 no no
## 2054 UT 104 408 418-4637 no no
## 2055 NH 90 408 393-7322 no no
## 2056 LA 82 415 353-5557 no no
## 2057 VT 101 415 411-5334 no no
## 2058 NY 9 415 398-8588 no yes
## 2059 CT 97 415 374-7285 no no
## 2060 KS 94 408 379-7215 no no
## 2061 MI 127 510 357-7875 no yes
## 2062 SD 125 510 393-9677 no yes
## 2063 ME 140 415 345-9598 no no
## 2064 MD 90 415 353-3203 no no
## 2065 VA 67 415 330-7486 no no
## 2066 NJ 113 415 397-6425 no no
## 2067 TN 121 510 338-1815 no yes
## 2068 DC 93 408 406-5023 no no
## 2069 DC 121 408 368-2458 no no
## 2070 OR 53 408 400-8375 no no
## 2071 RI 75 415 387-8201 no no
## 2072 AK 132 510 346-4360 no no
## 2073 WI 162 408 412-8811 no no
## 2074 IN 140 415 413-3990 no no
## 2075 MI 91 408 345-2448 no no
## 2076 ID 73 510 394-4512 no yes
## 2077 NH 95 408 400-8538 yes no
## 2078 MN 145 408 412-8769 no no
## 2079 AZ 100 415 390-1552 no no
## 2080 MN 122 415 389-2477 no no
## 2081 MO 109 415 389-4695 no no
## 2082 AL 82 408 406-8037 no no
## 2083 PA 65 415 382-9138 no yes
## 2084 AK 52 510 414-7942 no no
## 2085 MS 136 415 348-7071 no yes
## 2086 IA 75 415 404-2942 no no
## 2087 WY 146 408 348-3581 no no
## 2088 NE 105 408 327-6764 no no
## 2089 ND 48 415 405-2831 no no
## 2090 CT 45 415 416-4351 no no
## 2091 NC 106 415 419-3196 no yes
## 2092 CT 33 510 411-6211 no no
## 2093 ND 68 408 391-8369 no no
## 2094 WA 106 408 416-4464 no no
## 2095 NV 141 415 347-1814 no no
## 2096 CO 98 408 386-7337 no no
## 2097 KS 94 510 375-8505 no yes
## 2098 CO 65 510 407-5056 no no
## 2099 MO 85 415 367-8924 no no
## 2100 MA 71 510 419-5171 no no
## 2101 NY 112 408 396-7687 no yes
## 2102 AK 110 415 394-4548 no no
## 2103 WI 111 415 382-6438 no no
## 2104 NH 74 408 413-2194 no no
## 2105 TN 105 510 366-2622 no no
## 2106 NY 40 408 416-7591 no no
## 2107 GA 128 408 355-2634 yes yes
## 2108 MN 123 408 422-5350 no no
## 2109 MI 122 510 329-2388 no no
## 2110 ID 114 408 381-5273 no yes
## 2111 CT 102 415 421-6694 no yes
## 2112 NC 126 415 342-1702 no no
## 2113 LA 150 415 381-4029 no no
## 2114 NJ 60 408 335-2967 no no
## 2115 TX 123 408 416-6594 no no
## 2116 CA 138 510 388-6026 yes no
## 2117 MD 29 510 367-1024 no no
## 2118 WY 111 415 386-7118 no no
## 2119 TX 37 510 346-2020 yes no
## 2120 CA 111 408 329-9067 no no
## 2121 UT 81 510 329-6144 no no
## 2122 WA 46 510 332-1502 no no
## 2123 MS 69 510 342-8320 no yes
## 2124 OH 125 408 411-5748 no no
## 2125 KS 43 415 381-9367 no no
## 2126 RI 127 415 400-1280 no yes
## 2127 IN 94 510 360-5794 no no
## 2128 VT 46 408 373-3538 no no
## 2129 MT 73 408 394-9942 no yes
## 2130 CT 146 408 380-3329 no yes
## 2131 NM 93 415 334-7618 no no
## 2132 OH 52 408 327-9289 no yes
## 2133 GA 202 510 351-2589 no no
## 2134 MN 129 510 368-6892 no yes
## 2135 CT 94 415 337-9303 no no
## 2136 AL 100 415 377-5258 no no
## 2137 WV 43 415 348-5767 no no
## 2138 NH 130 415 373-3549 no no
## 2139 WY 124 415 422-8344 no no
## 2140 VA 92 510 411-2958 yes no
## 2141 VT 48 415 384-2908 no no
## 2142 OH 98 510 347-6393 no yes
## 2143 MT 100 415 385-7148 no no
## 2144 MA 79 415 419-2767 no no
## 2145 VA 164 415 375-1746 no no
## 2146 NM 105 415 362-7870 no no
## 2147 AR 89 408 410-3725 yes no
## 2148 NE 126 415 387-1535 no no
## 2149 WY 96 408 329-2045 no no
## 2150 IA 120 415 341-6743 no yes
## 2151 SC 212 415 336-8343 no no
## 2152 NC 72 415 368-5758 no no
## 2153 HI 155 415 346-8362 yes yes
## 2154 UT 89 415 345-9690 no no
## 2155 WY 126 408 339-9798 yes no
## 2156 AL 172 408 359-5731 no no
## 2157 VA 75 415 373-2091 no no
## 2158 WI 143 510 367-3439 no no
## 2159 FL 166 510 367-1681 yes no
## 2160 KS 132 415 420-9973 no no
## 2161 NV 94 408 351-4025 yes no
## 2162 NY 99 415 393-5897 no no
## 2163 VA 136 415 384-7216 no yes
## 2164 KS 119 415 384-4595 no no
## 2165 NC 115 510 329-9667 yes no
## 2166 MO 160 415 347-5063 no no
## 2167 ND 166 510 345-8433 no no
## 2168 CA 120 510 339-7602 no no
## 2169 WV 173 415 332-1109 no no
## 2170 IL 156 415 343-3296 no no
## 2171 NY 70 415 366-2536 no no
## 2172 NV 41 510 355-2293 no no
## 2173 AL 132 408 350-9318 no no
## 2174 KS 47 510 418-5300 yes no
## 2175 ND 160 510 395-2626 no no
## 2176 OK 180 415 402-7372 no no
## 2177 UT 93 415 337-9710 no no
## 2178 OH 109 415 363-4967 no no
## 2179 WY 80 510 400-5389 no no
## 2180 NM 54 415 416-9162 no yes
## 2181 AL 121 415 414-6541 no no
## 2182 DC 157 510 392-6647 no yes
## 2183 ID 170 510 343-2465 no yes
## 2184 AR 138 510 338-9171 no no
## 2185 ID 92 415 405-4606 no yes
## 2186 TX 126 415 386-9711 no no
## 2187 NM 41 415 327-8495 no no
## 2188 WA 167 415 416-5660 no no
## 2189 UT 91 510 370-3032 no no
## 2190 RI 127 510 331-8462 no no
## 2191 NC 88 408 414-4037 no yes
## 2192 RI 113 415 415-2865 no no
## 2193 NY 78 510 362-2353 no no
## 2194 TX 123 408 329-5114 no no
## 2195 DE 136 408 351-1389 yes yes
## 2196 MS 68 415 375-3668 no yes
## 2197 OH 132 415 375-5414 no yes
## 2198 LA 133 415 360-7079 no no
## 2199 FL 127 415 344-9302 no no
## 2200 WA 110 415 418-1775 no no
## 2201 WV 121 510 401-2468 no no
## 2202 NY 116 510 346-4984 no no
## 2203 NE 112 415 351-2928 yes yes
## 2204 PA 97 510 365-7774 yes no
## 2205 MS 43 510 358-3691 no no
## 2206 IN 110 415 364-9059 no no
## 2207 VA 67 408 356-7208 no no
## 2208 MN 166 408 333-5551 no no
## 2209 DE 129 408 362-6528 no no
## 2210 OR 103 510 394-2560 yes no
## 2211 UT 71 415 367-3220 no no
## 2212 CT 112 415 418-5708 no yes
## 2213 AL 8 415 421-2245 no yes
## 2214 TX 98 415 406-2242 no no
## 2215 CT 90 415 347-6994 no no
## 2216 MS 13 415 413-7468 no no
## 2217 AR 58 415 389-6082 no no
## 2218 CA 137 415 415-3689 no yes
## 2219 MI 116 408 379-2503 no no
## 2220 WV 94 415 396-1106 no yes
## 2221 DE 87 415 379-4372 no no
## 2222 FL 120 415 336-3738 no no
## 2223 AK 97 415 380-2600 no yes
## 2224 ID 134 415 345-4473 no no
## 2225 OH 68 510 380-9990 no no
## 2226 NH 93 408 411-1045 no no
## 2227 MA 120 415 413-5306 no no
## 2228 SC 41 408 417-6906 no no
## 2229 OR 80 510 331-4807 no no
## 2230 OH 83 415 376-5375 no yes
## 2231 NC 109 510 361-9839 yes no
## 2232 KY 66 510 348-8679 no yes
## 2233 ID 104 510 403-6565 no no
## 2234 WA 89 510 346-5287 no no
## 2235 WV 127 510 413-6769 no no
## 2236 RI 117 408 370-5042 no yes
## 2237 KS 128 510 397-9486 no no
## 2238 NV 88 415 364-3286 no no
## 2239 NE 61 408 420-8897 no no
## 2240 FL 22 415 378-9506 no no
## 2241 WY 78 415 399-6259 no no
## 2242 WA 56 415 335-5806 no yes
## 2243 CO 192 415 401-6392 no no
## 2244 WI 70 415 379-9859 no no
## 2245 KS 148 510 415-4051 no no
## 2246 RI 65 415 368-5612 no yes
## 2247 MT 119 510 374-5301 no no
## 2248 CO 80 415 406-5710 no no
## 2249 CT 152 408 354-7077 no yes
## 2250 FL 113 510 343-3340 no no
## 2251 VT 75 510 377-8267 no no
## 2252 OH 80 415 382-2453 no no
## 2253 NH 148 408 333-7449 no no
## 2254 RI 63 415 366-4287 yes no
## 2255 FL 97 415 415-2285 no yes
## 2256 MD 166 415 381-1328 no no
## 2257 WY 94 408 344-4022 no no
## 2258 FL 85 408 415-6601 no yes
## 2259 TN 80 415 351-7309 yes no
## 2260 NC 210 415 363-7802 no yes
## 2261 IN 88 415 408-4870 yes yes
## 2262 IA 100 408 378-9478 no no
## 2263 WV 154 408 401-4778 no yes
## 2264 UT 32 510 370-9563 no yes
## 2265 GA 18 408 394-6382 no no
## 2266 AK 126 415 333-5295 no yes
## 2267 UT 144 510 370-2451 no yes
## 2268 MS 29 510 401-6982 no no
## 2269 AR 86 408 329-8115 no yes
## 2270 AK 138 415 340-3409 no yes
## 2271 AK 146 415 397-5911 no no
## 2272 ME 175 415 415-6127 no no
## 2273 WV 74 510 392-6073 no no
## 2274 CT 48 415 419-6564 no no
## 2275 GA 74 510 340-8245 no yes
## 2276 NV 105 415 376-4540 yes no
## 2277 VT 157 510 361-5936 no no
## 2278 DC 217 415 421-9846 no no
## 2279 TN 68 415 356-1582 no no
## 2280 OR 80 415 375-4900 no no
## 2281 MS 38 415 420-8953 no yes
## 2282 NC 107 415 376-4035 no yes
## 2283 CO 140 415 344-5206 no no
## 2284 AR 98 415 328-7833 no no
## 2285 PA 114 415 417-4266 no no
## 2286 MN 46 408 351-6574 no no
## 2287 NM 118 415 372-8925 no yes
## 2288 UT 37 510 340-5678 no no
## 2289 NE 34 415 361-6814 no no
## 2290 MS 98 415 336-7155 yes yes
## 2291 NV 113 510 342-8167 no no
## 2292 OR 69 408 375-9180 no no
## 2293 VA 121 415 357-7064 no no
## 2294 NJ 59 510 347-5354 yes yes
## 2295 WV 59 510 362-9391 no no
## 2296 OR 190 415 386-8984 no no
## 2297 KY 109 415 384-6372 no no
## 2298 MO 136 415 358-1329 no no
## 2299 TX 86 510 400-7987 no no
## 2300 MN 100 415 327-8732 no yes
## 2301 FL 106 510 389-6955 no no
## 2302 PA 104 415 396-1800 no no
## 2303 WV 129 415 349-4979 no no
## 2304 IN 205 510 361-5864 no no
## 2305 OK 93 415 418-4658 no yes
## 2306 NE 123 415 330-6208 no no
## 2307 DE 99 415 416-6628 no no
## 2308 MI 61 415 349-5617 no yes
## 2309 IL 71 415 397-8051 no no
## 2310 UT 4 510 413-6346 yes no
## 2311 IL 148 408 395-9270 no yes
## 2312 WA 141 415 401-7575 no no
## 2313 NM 56 408 332-5964 no no
## 2314 MD 160 415 348-3338 no no
## 2315 VA 43 408 387-5411 no yes
## 2316 MT 42 415 378-7872 no no
## 2317 CT 135 415 389-6037 yes no
## 2318 AL 106 415 349-3732 no no
## 2319 WV 106 510 347-9738 no no
## 2320 MO 83 415 380-6074 no yes
## 2321 ND 110 415 338-4307 no no
## 2322 AR 153 408 339-3636 no no
## 2323 GA 109 510 328-9315 no yes
## 2324 FL 31 510 402-3634 no no
## 2325 LA 124 510 348-4316 no no
## 2326 UT 110 415 375-3826 no no
## 2327 AZ 124 415 360-1406 no no
## 2328 NY 82 415 356-5475 no no
## 2329 KY 122 415 363-9969 no no
## 2330 AL 137 415 350-4367 no no
## 2331 IN 69 510 348-1592 no no
## 2332 IN 46 415 368-9751 no yes
## 2333 FL 103 415 380-6413 no no
## 2334 NM 16 510 367-9259 no no
## 2335 AL 119 415 404-8765 no no
## 2336 MN 124 510 371-6284 yes no
## 2337 NY 122 415 403-9468 no yes
## 2338 MD 139 415 335-3133 no no
## 2339 KS 67 510 366-4426 no no
## 2340 WV 84 408 354-4752 no no
## 2341 ID 101 510 406-4768 no yes
## 2342 LA 40 510 367-9257 no no
## 2343 MI 61 415 342-8348 no no
## 2344 TN 120 408 410-7611 yes no
## 2345 CA 95 415 341-3270 no no
## 2346 FL 98 408 416-7452 no no
## 2347 LA 114 415 356-8982 no no
## 2348 IL 68 415 340-6908 yes yes
## 2349 AL 149 415 348-6659 no yes
## 2350 CT 22 408 345-2401 no no
## 2351 PA 176 415 422-5264 no no
## 2352 TX 152 415 422-1799 no no
## 2353 VA 118 408 404-2877 no no
## 2354 MO 101 415 417-7913 yes no
## 2355 MT 102 408 399-2457 no no
## 2356 ND 118 408 419-3427 no no
## 2357 FL 105 415 358-2490 no no
## 2358 WI 153 510 349-3112 no no
## 2359 KY 71 415 414-5422 no no
## 2360 MD 71 415 386-3766 no yes
## 2361 IN 68 415 386-9724 no no
## 2362 MA 66 415 416-7393 no no
## 2363 ND 101 415 395-1380 no no
## 2364 VT 116 415 408-4911 no no
## 2365 CT 54 415 387-4064 no yes
## 2366 VA 112 408 380-5667 no yes
## 2367 MS 122 408 402-8930 no yes
## 2368 AK 74 415 336-6533 no no
## 2369 WY 90 415 359-9992 no no
## 2370 NY 112 415 391-1737 no no
## 2371 NC 85 510 404-2871 no no
## 2372 IL 100 415 420-6121 no no
## 2373 OH 114 415 369-4012 no no
## 2374 RI 83 510 357-2294 no no
## 2375 WY 157 415 348-9938 yes no
## 2376 OR 51 510 394-3023 no no
## 2377 NV 42 415 352-5466 no no
## 2378 ND 101 415 364-5510 no yes
## 2379 OR 112 510 396-6462 no no
## 2380 ND 56 510 384-5335 no no
## 2381 NJ 53 408 416-6886 no no
## 2382 WV 64 415 357-2748 no yes
## 2383 VA 123 408 386-7976 no no
## 2384 ID 68 510 403-9199 no yes
## 2385 CT 40 510 361-1900 yes no
## 2386 NM 132 408 405-3848 no no
## 2387 CT 120 408 344-1136 yes no
## 2388 MI 108 408 378-6276 no yes
## 2389 SC 161 510 343-2592 no no
## 2390 SC 130 415 396-4410 no no
## 2391 NY 122 510 397-3943 no no
## 2392 MT 130 408 347-3821 no yes
## 2393 WY 90 510 400-8069 no no
## 2394 NE 139 415 346-5349 no yes
## 2395 IN 57 415 345-5089 no no
## 2396 CO 128 510 410-4613 no no
## 2397 WY 127 510 356-4706 yes no
## 2398 MD 107 415 347-3406 no no
## 2399 OK 177 408 333-9133 no no
## 2400 SD 121 415 392-2459 no no
## 2401 SC 99 510 401-3685 yes yes
## 2402 NY 126 415 352-7752 yes no
## 2403 NY 77 415 388-9285 no yes
## 2404 WV 21 415 332-5582 no no
## 2405 WA 56 408 376-2550 no no
## 2406 ID 92 415 333-4594 no yes
## 2407 MN 81 510 375-2522 no no
## 2408 TX 139 510 388-2240 yes yes
## 2409 AZ 68 415 420-1782 no no
## 2410 DE 183 415 384-8890 no yes
## 2411 CO 90 408 371-4788 no no
## 2412 WI 165 408 360-5636 no no
## 2413 WI 89 415 373-4264 no no
## 2414 NJ 59 510 352-9836 no no
## 2415 IL 16 415 342-2013 yes no
## 2416 DC 114 415 354-5689 no no
## 2417 IA 113 510 335-8427 no no
## 2418 GA 120 408 409-6753 no no
## 2419 AK 115 415 349-1756 no no
## 2420 CA 37 510 328-8980 no no
## 2421 MN 100 415 399-2151 yes no
## 2422 CO 132 415 379-9524 no no
## 2423 KY 38 408 352-9947 no yes
## 2424 SC 1 408 336-1043 no no
## 2425 MT 97 415 416-7013 no yes
## 2426 KY 55 415 345-4551 no yes
## 2427 WV 75 415 405-9864 no no
## 2428 ID 83 415 350-4297 no no
## 2429 MN 40 510 350-7114 no no
## 2430 MA 101 415 400-4244 no yes
## 2431 MD 120 415 417-2608 no yes
## 2432 SD 183 415 372-2990 no yes
## 2433 PA 75 510 353-9998 no no
## 2434 KY 80 415 330-3008 no no
## 2435 ID 88 415 384-8629 no no
## 2436 NY 112 415 404-9504 no yes
## 2437 NM 63 510 405-8753 no no
## 2438 CA 105 415 409-9911 no yes
## 2439 ID 92 415 394-4260 no no
## 2440 WY 177 415 380-9063 no no
## 2441 NM 118 510 395-4509 no no
## 2442 HI 111 408 401-6671 no yes
## 2443 ID 82 510 405-7204 no yes
## 2444 NC 74 415 329-5377 no no
## 2445 TX 121 415 408-9572 no yes
## 2446 GA 131 408 380-9879 no no
## 2447 AL 125 408 384-9243 no no
## 2448 ME 19 415 404-5597 no no
## 2449 VA 138 415 359-7521 no no
## 2450 ID 119 415 327-4795 no no
## 2451 NY 137 510 338-7955 no no
## 2452 NC 182 415 379-6970 no no
## 2453 OH 135 415 351-7807 no no
## 2454 HI 134 415 342-9394 no yes
## 2455 DC 45 415 384-6264 no no
## 2456 TN 129 408 352-4534 no no
## 2457 VT 142 415 378-4617 no no
## 2458 MD 130 415 364-9567 no yes
## 2459 LA 163 408 371-5875 no yes
## 2460 HI 105 415 383-6489 no no
## 2461 FL 119 415 345-7117 no no
## 2462 WY 78 408 384-3902 no no
## 2463 NE 92 415 386-2759 no no
## 2464 WY 146 415 356-1270 no yes
## 2465 OR 125 408 379-1336 no yes
## 2466 IN 88 415 354-7201 no no
## 2467 MD 83 408 404-5057 no yes
## 2468 TN 3 510 407-8012 yes no
## 2469 WV 152 510 332-6139 yes yes
## 2470 WA 48 510 328-1373 no no
## 2471 MS 189 415 411-6501 no no
## 2472 OH 95 415 329-8056 no yes
## 2473 IN 129 415 415-4564 no no
## 2474 CO 66 408 329-6192 no yes
## 2475 TX 80 510 384-3904 no yes
## 2476 AK 1 408 373-1028 no no
## 2477 WV 84 408 369-1220 no no
## 2478 MA 96 415 359-9369 no no
## 2479 TN 123 415 415-3016 no yes
## 2480 ID 116 510 414-7090 yes yes
## 2481 DE 105 415 350-2250 yes no
## 2482 VA 80 415 383-9355 no no
## 2483 MT 157 408 417-3257 no no
## 2484 ID 67 510 336-8010 no yes
## 2485 IN 141 415 354-7718 no yes
## 2486 MD 79 415 358-4412 no yes
## 2487 MS 76 408 368-8972 no no
## 2488 WA 111 510 407-9841 no no
## 2489 OH 94 415 393-5208 no no
## 2490 RI 143 408 332-2889 no no
## 2491 AR 109 510 374-5530 no no
## 2492 AZ 138 415 332-3381 no no
## 2493 SC 73 415 344-9347 no no
## 2494 KY 21 415 412-1991 no no
## 2495 AL 148 415 393-4528 no yes
## 2496 NE 103 408 347-2378 no no
## 2497 MT 143 408 385-2699 no yes
## 2498 MN 79 408 383-4319 no yes
## 2499 NV 89 415 352-7915 no no
## 2500 CA 120 415 375-5547 no no
## 2501 UT 121 415 337-2348 no yes
## 2502 IL 101 415 342-8702 no no
## 2503 DC 115 408 393-5802 no no
## 2504 IN 168 415 384-2219 no no
## 2505 NM 90 415 347-6164 no no
## 2506 MS 70 510 376-9940 no no
## 2507 VT 138 415 354-4352 no no
## 2508 VT 43 408 331-8713 no no
## 2509 UT 117 510 341-3663 no yes
## 2510 KY 108 408 376-4665 no no
## 2511 VA 118 408 421-9034 no no
## 2512 OH 169 408 401-5169 no no
## 2513 AZ 62 408 370-8262 no yes
## 2514 NY 86 510 387-2041 no no
## 2515 VA 44 408 356-4146 no no
## 2516 MD 111 510 372-8883 no no
## 2517 MA 127 510 336-1880 no yes
## 2518 IL 151 415 347-5843 yes no
## 2519 LA 53 415 370-8023 no no
## 2520 MO 15 415 417-9814 no no
## 2521 DC 123 408 387-3422 no yes
## 2522 PA 137 415 365-1664 no no
## 2523 TN 106 415 367-2436 no no
## 2524 NJ 88 510 344-6258 no no
## 2525 VA 106 415 353-8928 no no
## 2526 TN 95 510 365-7784 no no
## 2527 NJ 57 510 330-2635 yes no
## 2528 WA 184 408 344-3131 no no
## 2529 AR 109 510 378-4294 no no
## 2530 WI 127 415 343-9365 no no
## 2531 WA 82 510 362-5579 no no
## 2532 RI 180 415 366-7616 no no
## 2533 ME 174 415 397-2870 no no
## 2534 CO 92 415 408-3262 no no
## 2535 CO 81 408 372-9091 no no
## 2536 RI 125 408 410-3159 no no
## 2537 CT 119 408 344-5181 no no
## 2538 NC 122 415 396-8662 no no
## 2539 WY 34 408 339-6446 no no
## 2540 OR 138 415 384-7236 yes yes
## 2541 FL 90 415 353-5257 no yes
## 2542 KY 73 408 369-7295 no no
## 2543 SC 19 510 408-5322 no no
## 2544 WA 120 408 344-9620 no yes
## 2545 MT 160 415 329-8436 no no
## 2546 PA 141 510 414-6739 no no
## 2547 MA 90 408 406-1730 no no
## 2548 VT 72 415 336-9327 no no
## 2549 MN 117 408 378-7418 no yes
## 2550 IL 79 408 412-6019 yes no
## 2551 AR 87 408 390-4789 no no
## 2552 MD 102 415 386-9774 no no
## 2553 MT 49 408 353-8970 no no
## 2554 VT 67 408 410-5370 no no
## 2555 CO 107 415 404-4421 no no
## 2556 NC 190 408 409-3353 no no
## 2557 WA 118 510 422-2571 no no
## 2558 TN 120 415 412-3404 no no
## 2559 AR 94 408 333-2964 no no
## 2560 DC 115 510 406-6669 no yes
## 2561 MN 61 415 409-8802 no no
## 2562 IA 143 510 354-6183 no yes
## 2563 KS 110 510 354-2434 no no
## 2564 ND 104 415 389-7620 no no
## 2565 MT 16 510 338-1724 no no
## 2566 IL 183 510 399-1750 no no
## 2567 DC 147 408 354-8914 no no
## 2568 KY 58 415 409-2983 no no
## 2569 MS 102 510 329-9689 yes no
## 2570 TN 123 415 337-8950 no no
## 2571 IA 64 415 374-1836 no yes
## 2572 AK 103 510 359-9454 no no
## 2573 MN 152 415 378-9542 no no
## 2574 WV 124 415 344-1970 no no
## 2575 OR 97 415 417-2774 no no
## 2576 MS 131 415 333-9002 no no
## 2577 ME 57 415 369-8576 no yes
## 2578 MN 157 510 372-6920 no no
## 2579 GA 194 510 333-6575 no no
## 2580 DC 66 415 410-1190 no no
## 2581 GA 155 510 376-1641 no no
## 2582 NY 123 415 329-6731 no no
## 2583 OK 116 510 393-3976 no no
## 2584 OK 63 415 388-7355 no no
## 2585 GA 64 510 412-7791 no no
## 2586 NJ 96 510 368-6111 no no
## 2587 MN 53 415 401-9420 no no
## 2588 ME 105 510 352-5750 no no
## 2589 MI 53 510 417-3702 no yes
## 2590 MT 101 415 353-5714 no no
## 2591 NE 129 510 409-9494 no yes
## 2592 ND 122 408 395-1901 no no
## 2593 VA 163 415 378-8342 no no
## 2594 VT 93 408 417-6044 no no
## 2595 OH 115 510 348-1163 yes no
## 2596 AL 25 408 337-4600 no no
## 2597 DC 73 408 355-5922 no no
## 2598 ND 120 415 369-5810 no no
## 2599 TN 196 415 340-8291 no no
## 2600 DE 97 510 354-7397 no no
## 2601 NY 148 408 407-7464 no no
## 2602 AL 85 408 386-6411 no yes
## 2603 OK 86 510 397-3746 yes no
## 2604 MS 78 415 410-5236 no yes
## 2605 MD 106 415 409-2412 no no
## 2606 NE 147 415 400-7280 no yes
## 2607 AR 145 415 332-5820 no no
## 2608 IL 91 415 373-4483 no no
## 2609 IN 81 408 347-6717 no yes
## 2610 UT 116 415 380-2929 no yes
## 2611 LA 69 415 420-7692 no yes
## 2612 ID 135 510 380-6437 no no
## 2613 KY 73 510 377-8309 no no
## 2614 MI 48 415 407-2718 no no
## 2615 NH 125 415 357-1938 yes no
## 2616 WV 100 415 381-3735 no no
## 2617 OR 165 415 409-8453 no yes
## 2618 SD 64 415 395-6758 no no
## 2619 MD 116 510 399-5424 yes yes
## 2620 ND 147 408 409-4671 yes yes
## 2621 TN 115 415 374-6525 no no
## 2622 MO 84 415 406-8665 no yes
## 2623 IL 86 510 342-7716 no yes
## 2624 UT 134 415 417-2221 no no
## 2625 MI 105 415 376-5213 no no
## 2626 AR 88 408 348-7448 no no
## 2627 TX 90 408 328-8179 no yes
## 2628 AK 86 408 389-4602 no no
## 2629 TN 37 415 413-2238 no no
## 2630 NH 141 415 402-3370 no yes
## 2631 NM 148 408 348-6008 no no
## 2632 MN 163 408 371-5655 no yes
## 2633 IA 89 415 374-5224 no yes
## 2634 RI 63 415 371-1187 no no
## 2635 AL 102 415 337-1100 no no
## 2636 NC 76 510 421-8141 no no
## 2637 SD 104 408 406-2678 no no
## 2638 MT 109 510 415-9649 no no
## 2639 HI 105 510 364-8128 no no
## 2640 MT 63 415 356-7817 no yes
## 2641 KY 105 415 404-6357 no yes
## 2642 DC 68 415 398-2138 yes yes
## 2643 CO 63 408 378-8029 yes yes
## 2644 MI 74 415 386-4215 no no
## 2645 AL 76 415 367-8156 no no
## 2646 KS 91 408 382-8079 yes no
## 2647 NC 101 415 354-2985 no no
## 2648 SC 116 408 373-6922 no no
## 2649 CO 131 415 397-7125 no yes
## 2650 MN 84 415 333-6296 no no
## 2651 WY 104 415 365-6022 no no
## 2652 FL 108 510 365-1688 no no
## 2653 NY 111 415 382-4872 no no
## 2654 OK 155 408 367-6136 no yes
## 2655 ME 66 510 404-3592 no no
## 2656 NE 64 510 415-2949 no no
## 2657 OH 69 415 375-8880 no no
## 2658 CT 116 415 335-6832 no no
## 2659 DC 101 415 361-8367 no no
## 2660 OK 15 415 408-2002 no no
## 2661 NJ 88 415 347-8659 no no
## 2662 IA 197 415 376-2922 no no
## 2663 VA 50 415 382-2182 yes no
## 2664 VA 172 510 408-2089 no no
## 2665 NM 188 415 369-6890 yes yes
## 2666 FL 85 408 347-2951 yes no
## 2667 RI 103 510 420-6324 yes no
## 2668 NJ 136 408 402-7650 no yes
## 2669 NE 155 408 391-2702 no yes
## 2670 WV 145 415 383-3375 no no
## 2671 WY 116 510 392-2733 no yes
## 2672 SC 152 408 397-9933 no no
## 2673 MS 65 415 383-9306 yes no
## 2674 ND 180 415 369-1929 no no
## 2675 IL 67 415 369-4377 no no
## 2676 OR 60 415 366-9430 no no
## 2677 UT 138 510 353-7407 no no
## 2678 IA 44 415 359-7426 no no
## 2679 ME 25 510 332-7391 no no
## 2680 WY 145 408 405-6559 no no
## 2681 WI 122 510 338-8784 no yes
## 2682 SC 121 415 415-6347 no no
## 2683 DC 55 510 354-5058 yes no
## 2684 CT 77 415 342-5701 no no
## 2685 OR 12 415 378-4179 no no
## 2686 OR 64 510 407-6391 no no
## 2687 NV 92 415 404-3105 no yes
## 2688 MN 125 415 390-9735 yes yes
## 2689 OK 160 408 350-4820 no no
## 2690 KS 79 415 383-8807 no no
## 2691 RI 36 415 366-8382 no no
## 2692 DC 102 415 402-9704 no no
## 2693 IL 138 408 405-2209 yes no
## 2694 UT 164 510 397-3939 no no
## 2695 MN 125 415 343-2689 no no
## 2696 WI 72 408 383-9448 no no
## 2697 MI 74 415 359-6232 no no
## 2698 MI 134 415 369-9772 no yes
## 2699 MA 145 415 381-7003 no no
## 2700 AL 136 510 352-6732 no no
## 2701 SC 209 510 388-7540 no no
## 2702 WI 66 415 356-3333 yes no
## 2703 VT 152 510 333-9664 no yes
## 2704 CT 162 408 363-3763 no no
## 2705 OR 72 510 345-7900 no no
## 2706 HI 101 415 400-5511 no no
## 2707 WV 125 415 381-7597 no no
## 2708 RI 46 408 404-9775 no no
## 2709 MI 132 408 389-4608 no no
## 2710 ME 193 415 403-1742 no yes
## 2711 WV 63 510 328-9797 no no
## 2712 NE 124 510 359-9223 no no
## 2713 DC 144 415 336-7696 no no
## 2714 NH 116 408 369-2214 no yes
## 2715 MD 189 415 411-1325 no yes
## 2716 NH 97 408 410-7553 no yes
## 2717 WV 137 510 376-4284 no yes
## 2718 IL 142 415 334-2800 no yes
## 2719 OK 84 510 369-1904 no no
## 2720 NH 119 415 359-3833 no yes
## 2721 MI 158 415 348-5569 no no
## 2722 ND 50 415 342-1960 no no
## 2723 LA 98 408 352-9050 no no
## 2724 HI 101 415 390-5316 no yes
## 2725 NJ 182 415 418-8568 no no
## 2726 WV 51 408 401-4844 no no
## 2727 NC 117 510 376-5471 no no
## 2728 PA 92 415 409-2917 yes no
## 2729 MI 86 408 369-6308 no no
## 2730 WY 122 415 357-7385 no no
## 2731 NJ 156 408 405-7119 no yes
## 2732 NJ 127 510 405-3309 no no
## 2733 NC 130 408 384-4938 yes no
## 2734 NM 158 408 377-2725 no no
## 2735 MS 145 510 405-6398 yes yes
## 2736 TX 90 415 355-9366 yes yes
## 2737 OK 127 510 403-1128 no yes
## 2738 ID 109 415 384-9682 no no
## 2739 AL 88 415 352-5393 no no
## 2740 WY 101 510 395-1229 no yes
## 2741 HI 171 510 361-9195 no no
## 2742 VA 21 415 351-6366 no no
## 2743 WV 145 408 346-4919 no yes
## 2744 DE 90 415 354-9068 no no
## 2745 CA 33 408 369-2743 no no
## 2746 PA 61 408 343-1347 no yes
## 2747 CO 107 415 336-5495 no no
## 2748 MD 147 408 376-4292 no no
## 2749 AL 117 510 391-8677 no no
## 2750 AL 95 415 350-7273 no no
## 2751 KS 186 510 400-6454 no no
## 2752 MI 128 415 422-3052 no no
## 2753 AK 55 408 365-6756 no yes
## 2754 OH 134 415 406-4158 no no
## 2755 IN 96 415 383-4641 no yes
## 2756 SC 107 415 368-5165 no no
## 2757 KS 123 415 378-2432 no no
## 2758 OK 35 415 362-4159 no no
## 2759 WI 74 408 363-7979 no no
## 2760 IN 130 408 334-9818 no no
## 2761 IL 137 408 352-5787 yes no
## 2762 TN 88 415 332-3617 no no
## 2763 DC 80 408 327-9957 no no
## 2764 NC 116 408 338-7527 no yes
## 2765 RI 123 510 348-8711 no yes
## 2766 MS 120 415 421-3226 no no
## 2767 VA 146 415 391-4358 yes no
## 2768 KY 106 510 379-2523 no yes
## 2769 NV 121 408 419-2369 no yes
## 2770 WI 137 510 382-1227 no no
## 2771 NH 84 408 409-5749 no yes
## 2772 NE 67 510 362-7951 no yes
## 2773 WI 161 408 415-3537 no no
## 2774 NJ 134 510 373-3959 no yes
## 2775 ME 62 415 358-1346 yes yes
## 2776 WY 120 415 381-8422 no yes
## 2777 IN 130 408 360-9005 no yes
## 2778 WI 20 408 344-5967 no no
## 2779 VT 68 415 396-6390 no no
## 2780 CA 112 415 346-5036 no no
## 2781 IN 77 408 328-7252 no no
## 2782 SC 109 415 360-1745 no no
## 2783 IN 108 415 358-2046 no no
## 2784 IA 79 415 344-6935 no yes
## 2785 MD 119 408 401-9665 no no
## 2786 MN 38 510 399-5291 no no
## 2787 AR 109 415 409-6588 no yes
## 2788 MS 78 415 358-5721 no no
## 2789 MN 134 415 414-7446 no no
## 2790 WA 47 415 329-9517 no yes
## 2791 MS 59 408 415-9553 no yes
## 2792 ID 151 415 413-3177 no no
## 2793 NC 129 415 347-5113 no no
## 2794 VA 107 510 330-2662 no yes
## 2795 MT 137 408 330-5824 yes no
## 2796 MI 76 510 411-1261 no no
## 2797 HI 24 415 329-8788 no no
## 2798 NC 169 408 333-7869 no no
## 2799 MN 30 408 399-4800 no no
## 2800 WV 70 415 402-2072 no no
## 2801 SD 52 510 403-6187 yes no
## 2802 HI 3 408 355-2872 no no
## 2803 MS 38 415 386-2970 no no
## 2804 NY 104 415 389-6081 no no
## 2805 LA 27 408 348-7556 no no
## 2806 KS 166 415 334-9163 yes yes
## 2807 MA 13 408 411-4293 no no
## 2808 AK 52 408 375-5562 no no
## 2809 SD 114 415 386-3823 no yes
## 2810 CO 156 408 364-6445 no no
## 2811 NH 90 415 383-2251 no yes
## 2812 WV 62 415 351-3169 no no
## 2813 AZ 82 415 413-6380 no yes
## 2814 ME 52 510 380-9674 no no
## 2815 NH 146 510 345-2319 no no
## 2816 RI 120 415 377-5441 no yes
## 2817 ID 130 415 358-3692 no no
## 2818 WI 90 408 400-5831 no no
## 2819 NM 147 408 357-5995 yes no
## 2820 WY 159 415 391-2159 no no
## 2821 IL 74 510 398-5954 no yes
## 2822 TX 130 408 385-6175 no no
## 2823 RI 155 408 334-2961 yes no
## 2824 MI 87 415 405-4303 no no
## 2825 OR 81 415 406-4100 no no
## 2826 VA 99 510 352-4401 no no
## 2827 SD 131 510 347-1473 no no
## 2828 AL 89 510 347-2016 no no
## 2829 MS 123 415 388-8948 yes no
## 2830 MS 130 510 402-5509 no yes
## 2831 HI 99 415 367-2598 no no
## 2832 WV 36 408 370-5001 no no
## 2833 WV 87 415 332-3693 no no
## 2834 WV 139 415 403-9766 no no
## 2835 IN 189 510 363-2407 no no
## 2836 NM 96 415 395-9214 no yes
## 2837 DE 112 408 351-8894 no no
## 2838 NC 75 408 406-5003 no no
## 2839 NM 178 415 398-1332 no yes
## 2840 SC 112 415 363-8033 no no
## 2841 NJ 108 415 333-1012 no yes
## 2842 AZ 100 510 391-6260 no no
## 2843 RI 121 510 336-1353 no yes
## 2844 SD 116 415 365-5629 no no
## 2845 NH 161 415 349-4397 no no
## 2846 AL 19 415 380-3910 yes no
## 2847 WV 104 415 354-7820 no no
## 2848 ID 119 415 338-9952 yes yes
## 2849 MD 125 415 405-1821 no no
## 2850 IN 156 510 329-8669 no no
## 2851 WY 109 415 328-8808 no no
## 2852 NH 95 510 409-3018 no no
## 2853 MN 90 408 421-5994 no no
## 2854 MA 105 415 354-4448 no yes
## 2855 NH 101 510 352-5081 no no
## 2856 MN 95 415 401-7803 no no
## 2857 IA 123 415 420-6052 no no
## 2858 NY 160 408 352-6084 no no
## 2859 AL 141 510 388-8583 no yes
## 2860 WV 87 415 415-3158 no no
## 2861 NM 81 415 402-9304 no no
## 2862 CA 75 415 341-1916 no yes
## 2863 MA 126 408 381-2745 no yes
## 2864 ME 28 415 402-5014 no no
## 2865 FL 153 415 399-8846 no no
## 2866 NH 97 408 328-9267 no yes
## 2867 IN 115 408 348-7224 no no
## 2868 WI 95 408 336-2190 no no
## 2869 MA 17 415 376-4705 yes no
## 2870 NH 105 415 381-4076 no yes
## 2871 TX 121 415 348-8464 no no
## 2872 NC 125 408 412-7020 no no
## 2873 CT 124 415 386-8432 no no
## 2874 NJ 35 408 337-1802 no no
## 2875 WY 134 510 366-1084 no no
## 2876 LA 123 510 352-4182 no yes
## 2877 NV 124 415 368-5628 no no
## 2878 WV 133 510 333-8996 no no
## 2879 AR 185 415 353-2557 no yes
## 2880 SC 1 415 356-8621 no yes
## 2881 KS 107 415 354-6942 no no
## 2882 NY 91 415 377-9829 no yes
## 2883 MI 178 408 348-4660 yes no
## 2884 MA 123 415 410-5199 no no
## 2885 UT 170 415 397-6542 no no
## 2886 HI 135 415 333-4492 no no
## 2887 PA 85 408 405-9573 no no
## 2888 OR 134 415 359-7255 no yes
## 2889 TN 148 415 419-5501 no yes
## 2890 CT 93 415 404-4809 no no
## 2891 AZ 138 415 344-6334 no no
## 2892 OR 159 510 400-1899 no no
## 2893 DE 103 415 346-5053 no yes
## 2894 MA 150 408 398-2148 no yes
## 2895 CT 37 408 347-7675 no no
## 2896 AR 33 415 411-8956 yes no
## 2897 SD 55 415 390-3761 no no
## 2898 CT 134 408 377-3876 no yes
## 2899 CT 107 408 345-2476 no no
## 2900 MA 80 408 337-7879 no yes
## 2901 MS 78 408 361-7283 no no
## 2902 MT 85 408 372-4868 no yes
## 2903 AK 61 415 346-8863 no yes
## 2904 DE 97 415 390-5267 no yes
## 2905 OH 136 408 392-1547 yes no
## 2906 MN 135 408 340-8177 no no
## 2907 CA 87 415 383-4802 no yes
## 2908 OH 165 510 378-8567 no no
## 2909 NV 148 415 406-7844 no no
## 2910 SC 99 415 402-9173 no no
## 2911 WV 123 415 352-3440 no no
## 2912 NM 127 415 363-1413 yes no
## 2913 WY 151 415 394-8861 no no
## 2914 CA 185 408 358-4036 no no
## 2915 KS 65 415 392-4680 no yes
## 2916 WY 58 510 354-2762 no no
## 2917 OK 104 415 371-5811 no no
## 2918 UT 44 415 387-2014 no no
## 2919 MA 58 408 411-6598 no no
## 2920 UT 108 415 355-9356 no no
## 2921 MN 132 510 406-4720 no no
## 2922 NE 80 415 356-7239 no no
## 2923 OH 162 415 328-8747 no no
## 2924 KY 110 510 388-9464 no no
## 2925 WA 96 415 406-2866 no no
## 2926 NY 168 408 333-5729 no no
## 2927 IN 72 510 391-1499 no no
## 2928 CO 125 408 386-8690 no yes
## 2929 DC 170 510 391-2231 no no
## 2930 AK 71 510 332-2275 no no
## 2931 SC 124 415 340-4028 no no
## 2932 KS 68 415 363-3486 no no
## 2933 UT 97 415 418-3181 no no
## 2934 IL 98 510 351-3316 yes no
## 2935 DC 24 408 369-3626 no no
## 2936 DC 136 510 353-2763 no no
## 2937 OK 44 408 358-7165 no no
## 2938 KY 96 415 353-3223 no yes
## 2939 NE 31 415 338-9044 no no
## 2940 AL 72 415 341-7296 no no
## 2941 HI 24 415 398-4431 no no
## 2942 SC 112 415 408-5601 no yes
## 2943 GA 117 415 328-5188 yes no
## 2944 KS 137 415 329-4474 no yes
## 2945 PA 136 408 357-4573 no no
## 2946 UT 95 415 341-7112 no no
## 2947 OR 82 415 400-3147 no yes
## 2948 ND 145 415 378-1936 no no
## 2949 KY 56 415 347-1640 yes no
## 2950 MN 155 408 374-9531 yes no
## 2951 OH 133 408 380-4374 no no
## 2952 TX 53 415 380-9409 no no
## 2953 WY 123 415 387-1116 no no
## 2954 GA 136 415 400-7509 no no
## 2955 TX 57 415 403-6225 no no
## 2956 WV 62 408 382-8274 no no
## 2957 NM 112 415 354-5764 no no
## 2958 MI 55 415 387-6912 no yes
## 2959 NC 95 408 384-3413 no no
## 2960 NY 125 415 367-3950 no no
## 2961 TX 1 415 396-4254 no no
## 2962 KY 98 415 333-3010 no yes
## 2963 SD 105 415 393-1891 no no
## 2964 ID 113 415 336-9053 no yes
## 2965 OR 99 408 353-3372 no no
## 2966 WI 103 415 386-8943 no no
## 2967 WV 177 408 376-9716 no no
## 2968 SC 149 415 370-8676 no yes
## 2969 CT 160 415 360-2329 no no
## 2970 NV 116 408 360-1320 no no
## 2971 ND 90 415 329-8638 no yes
## 2972 MI 148 415 385-1118 yes no
## 2973 MT 147 415 408-8269 no yes
## 2974 NE 95 510 391-2334 no no
## 2975 UT 201 510 373-8900 no no
## 2976 WV 80 415 382-3512 no no
## 2977 AR 122 415 420-4089 yes no
## 2978 MT 132 408 406-8465 no no
## 2979 UT 83 510 386-6114 no no
## 2980 HI 99 408 413-9328 no no
## 2981 KS 84 415 335-7144 no no
## 2982 NY 46 415 414-5177 no no
## 2983 OH 87 510 350-5993 no no
## 2984 HI 150 415 370-1465 no no
## 2985 KS 73 408 385-2370 no no
## 2986 IN 7 415 358-9146 no no
## 2987 OR 89 415 357-8515 no yes
## 2988 NY 131 408 406-8995 yes no
## 2989 VA 105 415 344-3145 no no
## 2990 MI 108 408 341-9890 yes no
## 2991 ID 47 415 365-4387 no yes
## 2992 MO 101 415 375-3341 yes no
## 2993 AL 182 415 418-3096 no yes
## 2994 OR 161 408 378-3879 no no
## 2995 VT 128 408 344-1362 no no
## 2996 AZ 69 415 419-3937 no yes
## 2997 VA 113 408 348-4961 no yes
## 2998 PA 87 408 329-1410 no yes
## 2999 CO 71 415 332-9896 no no
## 3000 KY 76 415 407-8575 no no
## 3001 NJ 87 510 387-2799 no no
## 3002 IL 117 408 373-9108 no no
## 3003 WA 177 415 345-3947 no no
## 3004 WV 95 415 356-7511 no no
## 3005 RI 76 415 343-4516 no no
## 3006 OH 66 415 408-6305 no no
## 3007 MO 110 415 338-7305 no no
## 3008 MD 204 510 401-3077 no no
## 3009 OH 32 415 401-6977 no yes
## 3010 VA 133 408 385-1464 no yes
## 3011 FL 185 408 417-5034 no no
## 3012 CO 103 415 420-7066 no yes
## 3013 NY 91 510 394-8256 no no
## 3014 WV 131 415 362-5044 no no
## 3015 LA 153 510 350-2075 no no
## 3016 MA 132 415 343-5372 no yes
## 3017 UT 148 510 377-9520 no no
## 3018 AL 141 408 391-6773 no no
## 3019 ME 105 415 403-4442 no no
## 3020 TX 169 408 379-5885 no no
## 3021 ND 127 415 399-1021 no yes
## 3022 CO 57 415 342-4004 no no
## 3023 LA 123 415 382-7659 no yes
## 3024 MT 103 510 342-1004 no yes
## 3025 OR 101 415 398-5851 no no
## 3026 NH 123 415 396-4869 no yes
## 3027 NE 78 510 422-8333 no yes
## 3028 WV 101 415 367-9127 no yes
## 3029 NV 129 415 420-3028 no no
## 3030 MA 67 415 357-6348 no yes
## 3031 MI 37 415 386-1131 no no
## 3032 KY 64 415 349-8391 yes no
## 3033 WV 173 510 421-1484 no no
## 3034 KY 135 510 414-2663 no no
## 3035 NJ 75 415 327-6989 no yes
## 3036 ME 88 415 405-5513 no no
## 3037 TX 112 415 345-9168 no no
## 3038 MN 113 408 417-5146 no no
## 3039 VA 121 510 339-2792 no yes
## 3040 DC 70 415 345-8397 no no
## 3041 MD 90 415 344-6404 no no
## 3042 RI 39 408 417-9455 no no
## 3043 MA 142 408 343-1009 no no
## 3044 MD 176 408 365-3493 no no
## 3045 NM 105 408 376-7043 no no
## 3046 MN 57 415 348-5728 no no
## 3047 MI 110 510 357-5784 no no
## 3048 AZ 88 415 417-9844 no no
## 3049 AL 95 408 333-7225 no no
## 3050 MI 147 415 382-4943 no no
## 3051 SC 101 415 345-4589 no no
## 3052 MS 115 415 404-6337 no no
## 3053 MS 103 415 412-1470 no no
## 3054 CA 82 415 394-9220 no no
## 3055 MD 141 415 364-5362 no no
## 3056 ND 149 408 372-9852 no no
## 3057 IL 131 510 394-9984 no no
## 3058 SD 119 510 402-1668 no no
## 3059 AL 112 510 339-5659 no no
## 3060 NV 116 510 341-7279 no yes
## 3061 LA 94 415 371-3236 no no
## 3062 VA 90 408 343-5679 no no
## 3063 DE 114 415 347-4626 no yes
## 3064 CT 63 408 344-8498 no yes
## 3065 CO 130 408 349-3005 no no
## 3066 MA 122 408 371-3498 no yes
## 3067 OR 166 510 367-4853 no no
## 3068 WA 62 415 422-3454 no no
## 3069 SC 78 415 403-8915 no yes
## 3070 IN 148 415 371-2418 no yes
## 3071 MD 154 510 411-2977 no no
## 3072 NV 110 408 389-8163 no yes
## 3073 TX 75 415 417-4456 no no
## 3074 ND 84 408 351-1894 no yes
## 3075 WV 113 510 386-6408 no no
## 3076 CO 181 510 370-9592 no yes
## 3077 TX 51 415 397-9251 no no
## 3078 FL 102 408 395-6913 no yes
## 3079 AL 107 408 332-3804 no no
## 3080 WV 88 510 421-1326 no no
## 3081 MI 82 415 415-8200 no no
## 3082 NY 204 415 371-9414 no no
## 3083 MS 130 510 347-3895 no no
## 3084 MO 174 510 342-5854 no no
## 3085 AR 129 415 379-7192 no no
## 3086 MS 190 415 394-5753 yes no
## 3087 NY 54 510 390-6932 yes no
## 3088 SD 78 408 394-3171 no no
## 3089 AK 100 415 394-5202 no yes
## 3090 WV 70 510 348-3777 no yes
## 3091 SC 111 510 407-3949 no no
## 3092 VA 117 408 363-4779 no no
## 3093 MS 68 415 340-2239 no no
## 3094 SD 27 510 359-3423 no no
## 3095 MN 91 415 382-9297 no no
## 3096 AL 181 415 330-9294 no yes
## 3097 CO 118 415 362-8763 no yes
## 3098 ME 112 415 403-4816 no no
## 3099 GA 93 415 371-2155 no no
## 3100 AZ 102 408 334-1339 no no
## 3101 MA 93 415 341-7412 no no
## 3102 AZ 107 415 375-4770 no yes
## 3103 IN 100 415 406-7643 no yes
## 3104 DE 115 415 415-8164 no no
## 3105 WI 63 510 354-3545 no yes
## 3106 ME 57 415 377-3139 no no
## 3107 DC 119 408 418-7478 no yes
## 3108 GA 73 408 385-6952 no no
## 3109 HI 98 408 381-8593 no yes
## 3110 VA 139 415 365-9371 yes no
## 3111 NY 31 408 401-7335 no yes
## 3112 PA 129 510 364-5126 no yes
## 3113 AR 115 415 385-7157 no no
## 3114 HI 108 415 385-4766 no no
## 3115 DE 139 408 390-1760 no no
## 3116 WV 102 408 365-8831 no no
## 3117 OK 149 408 353-4002 no no
## 3118 OR 113 415 367-5923 no no
## 3119 ND 131 408 393-9548 no yes
## 3120 MO 83 408 362-2356 no no
## 3121 AR 96 415 365-2341 no yes
## 3122 GA 98 408 388-8797 no no
## 3123 TN 3 415 400-4713 no no
## 3124 MA 77 408 420-3042 no yes
## 3125 ND 75 408 396-4171 no yes
## 3126 IA 40 510 389-8417 no no
## 3127 NJ 108 415 339-4068 no no
## 3128 MT 100 415 341-4873 no no
## 3129 AL 16 415 336-2322 no no
## 3130 NY 115 510 402-1607 no yes
## 3131 PA 108 510 379-3037 no yes
## 3132 VT 107 510 382-1399 no no
## 3133 NC 161 415 394-5489 no no
## 3134 CT 147 415 387-6065 no no
## 3135 MO 107 415 327-6087 no no
## 3136 WV 120 510 341-8667 no no
## 3137 NJ 107 408 338-9612 no yes
## 3138 AK 58 510 364-1134 no no
## 3139 LA 91 408 413-4811 no no
## 3140 AL 13 415 354-4333 no no
## 3141 IN 104 408 382-2026 no no
## 3142 MA 93 415 368-3287 no yes
## 3143 DE 95 510 367-8298 no no
## 3144 SC 104 415 391-1783 no no
## 3145 NH 35 408 393-8762 no no
## 3146 LA 62 415 385-1423 no no
## 3147 MS 143 510 406-7670 no no
## 3148 NM 62 415 339-5423 no no
## 3149 WA 60 415 366-8939 yes no
## 3150 SC 41 510 353-2391 no no
## 3151 MT 34 415 372-4203 no yes
## 3152 ME 56 408 385-5688 no no
## 3153 NM 183 415 397-7453 no no
## 3154 AZ 94 415 366-9015 no no
## 3155 CT 73 415 356-1654 no yes
## 3156 IL 123 408 337-3932 no no
## 3157 IN 64 408 350-1126 no no
## 3158 AR 127 415 416-3649 yes no
## 3159 RI 33 415 349-1726 no no
## 3160 ND 27 415 405-1589 no no
## 3161 NH 123 408 366-7560 no no
## 3162 NV 148 510 333-9643 no no
## 3163 UT 81 415 355-6422 no no
## 3164 NC 122 510 329-5400 no yes
## 3165 MI 52 415 383-6356 no no
## 3166 WI 91 408 377-7276 no yes
## 3167 AR 54 415 337-1586 no no
## 3168 NH 152 510 336-9273 no no
## 3169 TX 201 415 415-5476 no no
## 3170 ID 78 415 332-2650 no no
## 3171 CT 67 415 418-8257 no no
## 3172 NH 100 408 407-3121 no no
## 3173 WY 41 510 381-2413 no no
## 3174 OR 133 415 378-1144 no no
## 3175 SC 36 408 359-5091 no yes
## 3176 MD 51 510 378-6986 no yes
## 3177 NY 122 415 386-6580 no no
## 3178 NM 84 408 419-9713 no yes
## 3179 LA 91 415 382-6153 no no
## 3180 UT 110 408 332-1690 no no
## 3181 AL 91 408 348-9383 yes no
## 3182 DE 121 408 420-3857 no no
## 3183 WV 109 415 405-2653 no no
## 3184 KY 95 510 417-9278 no no
## 3185 NC 72 415 352-5663 no no
## 3186 WV 73 415 370-8786 no no
## 3187 AZ 108 415 415-6333 no no
## 3188 WV 58 408 391-6558 no yes
## 3189 ND 148 415 396-4234 yes no
## 3190 WA 76 510 345-6961 yes no
## 3191 ID 103 415 346-5992 no no
## 3192 CT 87 415 402-3908 no no
## 3193 OK 35 510 350-2340 no yes
## 3194 IA 88 415 410-2015 no no
## 3195 NE 67 415 380-3311 no yes
## 3196 ID 77 510 399-7029 no yes
## 3197 OR 124 510 337-3868 no no
## 3198 SD 30 415 354-8088 no no
## 3199 DE 53 415 416-9723 no yes
## 3200 WA 152 510 337-4403 no no
## 3201 CT 100 510 416-1536 yes no
## 3202 MN 59 408 386-3796 no yes
## 3203 WA 143 510 340-4989 no no
## 3204 PA 142 510 340-6221 no yes
## 3205 ID 105 408 363-3469 no no
## 3206 MS 111 408 345-3787 no no
## 3207 WA 143 510 362-3107 no no
## 3208 DC 93 408 345-1994 no yes
## 3209 KY 79 415 377-5417 no no
## 3210 OH 68 415 369-8574 yes yes
## 3211 TN 93 510 344-6847 yes no
## 3212 ID 103 415 391-7528 no no
## 3213 WV 144 510 393-6053 no yes
## 3214 WI 93 415 392-6286 no no
## 3215 OK 149 510 365-9079 yes no
## 3216 WV 23 510 399-3089 no yes
## 3217 SD 221 510 365-2192 no yes
## 3218 KS 164 510 394-3051 no yes
## 3219 NC 104 415 357-2429 no yes
## 3220 NY 150 415 421-6268 no yes
## 3221 WI 184 408 401-5915 no yes
## 3222 SC 88 408 348-6057 no no
## 3223 UT 61 415 349-3843 yes yes
## 3224 NC 110 408 396-5561 no no
## 3225 IN 115 415 370-9622 no no
## 3226 AR 33 408 371-9602 no no
## 3227 ME 100 510 351-2815 no no
## 3228 NY 209 415 369-8703 no no
## 3229 OR 27 510 355-2840 no no
## 3230 IL 117 415 372-1115 no no
## 3231 MA 87 408 337-2986 no no
## 3232 CT 129 510 404-3238 no yes
## 3233 WI 142 510 397-4968 no no
## 3234 OK 112 415 327-1058 no no
## 3235 DE 75 510 419-9509 no yes
## 3236 AZ 97 408 349-7282 no yes
## 3237 AK 121 408 382-5743 no yes
## 3238 MI 142 415 358-2694 yes no
## 3239 WA 121 510 378-1884 no no
## 3240 SD 87 415 330-1627 no yes
## 3241 SD 34 408 392-5716 no no
## 3242 AK 177 415 384-6132 yes no
## 3243 MA 58 415 359-2740 no yes
## 3244 AR 113 415 338-6714 yes no
## 3245 KS 101 415 347-9968 no no
## 3246 OR 89 415 343-3399 no no
## 3247 NC 77 408 334-6129 yes yes
## 3248 OK 146 510 377-4975 no no
## 3249 NJ 93 415 405-3533 no no
## 3250 OH 160 415 337-9326 no no
## 3251 NM 55 415 338-6556 no no
## 3252 OH 88 408 354-3040 no no
## 3253 MI 63 510 396-1278 no no
## 3254 KS 127 415 354-6810 no yes
## 3255 IL 57 415 403-6237 no yes
## 3256 RI 138 510 411-6823 yes no
## 3257 AR 115 408 338-1400 no no
## 3258 NY 171 415 412-6245 no no
## 3259 WY 148 408 377-3417 no no
## 3260 NC 127 510 343-2597 no no
## 3261 OR 61 415 388-8282 no no
## 3262 VT 131 415 416-8394 no no
## 3263 SD 88 408 343-6643 no no
## 3264 DC 130 510 330-4364 no no
## 3265 RI 89 415 414-1537 no yes
## 3266 ID 82 415 408-1913 no no
## 3267 OK 138 510 406-5532 no yes
## 3268 MN 115 415 417-7722 no no
## 3269 WA 84 415 367-5226 no no
## 3270 WV 117 510 344-5766 yes no
## 3271 NH 60 415 405-1370 no no
## 3272 WI 62 415 368-9073 no no
## 3273 MD 133 510 373-7974 no no
## 3274 IN 131 408 371-4633 no no
## 3275 IN 65 408 336-4960 no no
## 3276 NY 120 510 405-5083 no yes
## 3277 OR 142 510 392-1105 no yes
## 3278 OK 134 415 378-2397 no no
## 3279 WI 87 415 331-4184 no no
## 3280 NJ 139 415 376-2408 no yes
## 3281 AR 76 408 345-3614 no no
## 3282 UT 100 408 370-9296 no no
## 3283 DC 99 415 402-5076 no yes
## 3284 AK 99 510 401-7334 no no
## 3285 AZ 48 415 409-3428 no yes
## 3286 KS 57 415 362-2067 no no
## 3287 OH 106 415 352-2270 no yes
## 3288 KS 170 415 404-5840 no yes
## 3289 SC 78 415 360-3126 no no
## 3290 TN 39 408 364-8731 no no
## 3291 CA 127 510 388-4331 no no
## 3292 MI 119 510 335-7324 yes yes
## 3293 IN 114 408 362-8886 no no
## 3294 RI 95 408 410-4882 no no
## 3295 MO 116 408 371-1139 no no
## 3296 TN 110 415 391-5516 no no
## 3297 CT 74 510 380-3186 no no
## 3298 ME 148 408 347-9995 no yes
## 3299 MD 83 510 340-9013 no no
## 3300 NC 73 408 362-8378 no no
## 3301 SC 111 415 418-8969 no yes
## 3302 CA 84 415 417-1488 no no
## 3303 LA 75 510 358-9898 yes no
## 3304 WI 114 415 373-7308 no yes
## 3305 IL 71 510 330-7137 yes no
## 3306 IN 58 415 406-8445 no yes
## 3307 AL 106 408 404-5283 no yes
## 3308 OK 172 408 398-3632 no no
## 3309 IA 45 415 399-5763 no no
## 3310 VT 100 408 340-9449 yes no
## 3311 NY 94 415 363-1123 no no
## 3312 LA 128 415 361-2170 no no
## 3313 SC 181 408 406-6304 no no
## 3314 ID 127 408 392-5090 no no
## 3315 MO 89 415 373-7713 no no
## 3316 ME 149 415 392-1376 no yes
## 3317 MS 103 510 390-6388 no yes
## 3318 SD 163 415 379-7290 yes no
## 3319 OK 52 415 397-9928 no no
## 3320 WY 89 415 378-6924 no no
## 3321 GA 122 510 411-5677 yes no
## 3322 VT 60 415 400-2738 no no
## 3323 MD 62 408 409-1856 no no
## 3324 IN 117 415 362-5899 no no
## 3325 WV 159 415 377-1164 no no
## 3326 OH 78 408 368-8555 no no
## 3327 OH 96 415 347-6812 no no
## 3328 SC 79 415 348-3830 no no
## 3329 AZ 192 415 414-4276 no yes
## 3330 WV 68 415 370-3271 no no
## 3331 RI 28 510 328-8230 no no
## 3332 CT 184 510 364-6381 yes no
## 3333 TN 74 415 400-4344 no yes
## EMail.Message Day.Mins Day.Calls Day.Charge Eve.Mins Eve.Calls
## 1 25 265.1 110 45.07 197.4 99
## 2 26 161.6 123 27.47 195.5 103
## 3 0 243.4 114 41.38 121.2 110
## 4 0 299.4 71 50.90 61.9 88
## 5 0 166.7 113 28.34 148.3 122
## 6 0 223.4 98 37.98 220.6 101
## 7 24 218.2 88 37.09 348.5 108
## 8 0 157.0 79 26.69 103.1 94
## 9 0 184.5 97 31.37 351.6 80
## 10 37 258.6 84 43.96 222.0 111
## 11 0 129.1 137 21.95 228.5 83
## 12 0 187.7 127 31.91 163.4 148
## 13 0 128.8 96 21.90 104.9 71
## 14 0 156.6 88 26.62 247.6 75
## 15 0 120.7 70 20.52 307.2 76
## 16 0 332.9 67 56.59 317.8 97
## 17 27 196.4 139 33.39 280.9 90
## 18 0 190.7 114 32.42 218.2 111
## 19 33 189.7 66 32.25 212.8 65
## 20 0 224.4 90 38.15 159.5 88
## 21 0 155.1 117 26.37 239.7 93
## 22 0 62.4 89 10.61 169.9 121
## 23 0 183.0 112 31.11 72.9 99
## 24 0 110.4 103 18.77 137.3 102
## 25 0 81.1 86 13.79 245.2 72
## 26 0 124.3 76 21.13 277.1 112
## 27 39 213.0 115 36.21 191.1 112
## 28 0 134.3 73 22.83 155.5 100
## 29 0 190.0 109 32.30 258.2 84
## 30 0 119.3 117 20.28 215.1 109
## 31 0 84.8 95 14.42 136.7 63
## 32 0 226.1 105 38.44 201.5 107
## 33 0 212.0 121 36.04 31.2 115
## 34 0 249.6 118 42.43 252.4 119
## 35 25 176.8 94 30.06 195.0 75
## 36 37 220.0 80 37.40 217.3 102
## 37 30 146.3 128 24.87 162.5 80
## 38 0 130.8 64 22.24 223.7 116
## 39 33 203.9 106 34.66 187.6 99
## 40 0 140.4 94 23.87 271.8 92
## 41 0 126.3 102 21.47 166.8 85
## 42 41 173.1 85 29.43 203.9 107
## 43 0 124.8 82 21.22 282.2 98
## 44 0 85.8 77 14.59 165.3 110
## 45 0 154.0 67 26.18 225.8 118
## 46 28 120.9 97 20.55 213.0 92
## 47 0 211.3 120 35.92 162.6 122
## 48 0 187.0 133 31.79 134.6 74
## 49 0 159.1 114 27.05 231.3 117
## 50 24 133.2 135 22.64 217.2 58
## 51 0 191.9 108 32.62 269.8 96
## 52 0 220.6 57 37.50 211.1 115
## 53 0 186.1 112 31.64 190.2 66
## 54 0 160.2 117 27.23 267.5 67
## 55 0 151.0 83 25.67 219.7 116
## 56 0 175.5 67 29.84 249.3 85
## 57 0 126.9 98 21.57 180.0 62
## 58 30 198.4 129 33.73 75.3 77
## 59 0 148.8 70 25.30 246.5 164
## 60 0 229.3 103 38.98 177.4 126
## 61 0 192.1 97 32.66 169.9 94
## 62 34 268.6 83 45.66 178.2 142
## 63 33 193.7 91 32.93 246.1 96
## 64 28 180.7 92 30.72 187.8 64
## 65 0 131.2 98 22.30 162.9 97
## 66 41 148.1 74 25.18 169.5 88
## 67 0 251.5 105 42.76 212.8 104
## 68 0 125.2 93 21.28 206.4 119
## 69 0 211.6 70 35.97 216.9 80
## 70 0 178.9 101 30.41 169.1 110
## 71 0 241.8 93 41.11 170.5 83
## 72 46 224.9 97 38.23 188.2 84
## 73 0 248.6 83 42.26 148.9 85
## 74 0 203.4 146 34.58 226.7 117
## 75 0 235.8 109 40.09 157.2 94
## 76 0 157.1 90 26.71 223.3 72
## 77 0 300.3 109 51.05 181.0 100
## 78 0 61.6 117 10.47 77.1 85
## 79 0 214.1 72 36.40 164.4 104
## 80 0 170.2 98 28.93 155.2 102
## 81 0 201.1 99 34.19 303.5 74
## 82 0 215.4 104 36.62 204.8 79
## 83 25 165.6 123 28.15 136.1 95
## 84 24 249.5 101 42.42 259.7 98
## 85 0 210.6 96 35.80 249.2 85
## 86 29 179.3 104 30.48 225.9 86
## 87 0 157.9 105 26.84 155.0 101
## 88 0 214.3 118 36.43 208.5 76
## 89 35 154.1 104 26.20 123.4 84
## 90 0 237.9 125 40.44 247.6 93
## 91 0 143.9 61 24.46 194.9 105
## 92 0 203.4 100 34.58 190.9 104
## 93 0 124.3 100 21.13 173.0 107
## 94 0 252.9 93 42.99 178.4 112
## 95 0 179.1 71 30.45 190.6 81
## 96 0 278.4 106 47.33 81.0 113
## 97 0 160.1 110 27.22 213.3 72
## 98 0 198.2 87 33.69 207.3 76
## 99 0 212.1 131 36.06 209.4 104
## 100 0 251.8 72 42.81 205.7 126
## 101 21 161.2 114 27.40 252.2 83
## 102 0 178.3 137 30.31 189.0 76
## 103 0 151.7 82 25.79 119.0 105
## 104 0 135.0 99 22.95 183.6 106
## 105 0 170.5 94 28.99 173.7 109
## 106 0 238.1 65 40.48 187.2 98
## 107 29 281.4 102 47.84 202.2 76
## 108 21 117.9 131 20.04 164.5 115
## 109 32 148.6 91 25.26 131.1 97
## 110 0 229.8 90 39.07 147.9 121
## 111 0 165.0 100 28.05 317.2 83
## 112 0 185.0 117 31.45 223.3 94
## 113 0 161.0 117 27.37 190.9 113
## 114 0 126.7 108 21.54 206.0 90
## 115 0 58.9 125 10.01 169.6 59
## 116 42 196.8 89 33.46 254.9 122
## 117 0 162.6 83 27.64 152.3 109
## 118 0 282.5 114 48.03 219.9 48
## 119 36 113.7 117 19.33 157.5 82
## 120 0 239.8 125 40.77 214.8 111
## 121 0 210.2 92 35.73 227.3 77
## 122 22 213.8 102 36.35 141.8 86
## 123 0 190.7 103 32.42 183.5 117
## 124 0 170.9 124 29.05 132.3 95
## 125 0 154.2 119 26.21 110.2 98
## 126 0 201.4 52 34.24 229.4 104
## 127 0 70.7 108 12.02 157.5 87
## 128 27 187.5 124 31.88 146.6 103
## 129 0 91.7 90 15.59 193.7 123
## 130 36 214.2 115 36.41 161.7 117
## 131 0 145.5 92 24.74 217.7 114
## 132 0 166.3 125 28.27 158.2 86
## 133 0 231.0 115 39.27 230.4 140
## 134 0 200.3 96 34.05 201.2 102
## 135 0 197.0 109 33.49 202.6 128
## 136 0 129.9 112 22.08 173.3 83
## 137 21 175.8 97 29.89 217.5 106
## 138 0 203.1 106 34.53 210.1 113
## 139 36 183.2 117 31.14 126.8 76
## 140 23 205.0 101 34.85 152.0 60
## 141 0 148.5 115 25.25 276.4 84
## 142 39 200.3 68 34.05 220.4 97
## 143 28 192.6 107 32.74 195.5 74
## 144 0 246.5 47 41.91 195.5 84
## 145 0 167.1 86 28.41 177.5 87
## 146 0 231.9 101 39.42 160.1 94
## 147 0 146.7 91 24.94 203.5 78
## 148 0 271.5 87 46.16 216.3 126
## 149 0 181.5 121 30.86 218.4 98
## 150 43 257.7 97 43.81 162.1 95
## 151 0 193.8 99 32.95 221.4 125
## 152 0 102.8 119 17.48 206.7 91
## 153 0 187.9 116 31.94 157.6 117
## 154 0 226.0 112 38.42 248.5 118
## 155 0 260.4 115 44.27 146.0 46
## 156 0 178.7 116 30.38 292.1 138
## 157 0 337.4 120 57.36 227.4 116
## 158 23 157.6 129 26.79 247.0 96
## 159 0 183.6 117 31.21 256.7 72
## 160 24 142.1 124 24.16 183.4 129
## 161 0 136.3 97 23.17 172.2 108
## 162 0 217.1 110 36.91 241.5 111
## 163 36 187.5 99 31.88 241.4 116
## 164 0 98.9 103 16.81 135.4 122
## 165 0 206.3 151 35.07 148.6 89
## 166 33 243.1 92 41.33 213.8 92
## 167 31 189.8 126 32.27 163.3 133
## 168 0 202.0 102 34.34 243.2 128
## 169 38 170.1 124 28.92 193.3 116
## 170 0 230.9 87 39.25 187.4 90
## 171 0 237.1 105 40.31 223.5 105
## 172 27 182.1 91 30.96 169.7 98
## 173 0 119.3 87 20.28 211.5 101
## 174 0 116.8 87 19.86 178.9 93
## 175 0 219.2 92 37.26 149.4 125
## 176 0 252.6 104 42.94 169.0 125
## 177 0 147.1 91 25.01 190.4 107
## 178 0 202.1 103 34.36 229.4 86
## 179 0 173.5 93 29.50 194.1 76
## 180 0 232.1 122 39.46 292.3 112
## 181 23 197.1 125 33.51 214.5 136
## 182 0 58.2 94 9.89 138.7 118
## 183 36 115.6 111 19.65 237.7 94
## 184 0 186.1 98 31.64 254.3 57
## 185 0 259.9 68 44.18 245.0 122
## 186 0 214.3 145 36.43 268.5 135
## 187 0 158.7 74 26.98 64.3 139
## 188 0 271.6 71 46.17 229.4 108
## 189 0 160.6 111 27.30 163.2 126
## 190 0 232.4 109 39.51 187.4 95
## 191 0 133.8 85 22.75 180.5 94
## 192 0 176.9 109 30.07 90.7 104
## 193 0 209.9 74 35.68 195.1 77
## 194 0 137.5 118 23.38 203.2 88
## 195 23 289.5 52 49.22 166.6 111
## 196 23 198.1 86 33.68 177.0 86
## 197 0 149.7 119 25.45 182.2 115
## 198 0 326.5 67 55.51 176.3 113
## 199 26 292.9 101 49.79 199.7 97
## 200 0 83.0 64 14.11 177.0 106
## 201 24 145.7 146 24.77 220.5 136
## 202 0 182.3 101 30.99 328.2 93
## 203 0 218.0 86 37.06 184.0 94
## 204 0 140.6 109 23.90 178.6 51
## 205 0 152.7 105 25.96 257.5 80
## 206 36 106.7 76 18.14 209.8 77
## 207 0 243.8 98 41.45 83.9 72
## 208 0 194.4 94 33.05 186.7 95
## 209 0 213.9 95 36.36 151.9 70
## 210 0 217.2 112 36.92 246.7 89
## 211 0 241.1 72 40.99 155.6 98
## 212 0 203.5 100 34.60 247.6 103
## 213 24 155.2 131 26.38 244.5 106
## 214 31 167.6 139 28.49 113.0 118
## 215 0 226.7 98 38.54 228.1 115
## 216 0 179.3 93 30.48 178.6 98
## 217 0 151.4 89 25.74 186.4 76
## 218 0 180.0 80 30.60 224.2 82
## 219 0 250.2 121 42.53 267.1 118
## 220 0 223.0 121 37.91 110.1 98
## 221 0 183.6 116 31.21 152.6 98
## 222 22 166.0 114 28.22 174.5 103
## 223 0 136.1 112 23.14 272.9 96
## 224 0 149.3 113 25.38 242.2 122
## 225 0 65.4 97 11.12 168.2 76
## 226 0 213.4 111 36.28 234.5 94
## 227 0 206.9 85 35.17 244.7 78
## 228 27 186.2 78 31.65 189.6 83
## 229 23 280.2 136 47.63 220.5 92
## 230 22 196.6 84 33.42 313.2 92
## 231 0 312.0 109 53.04 129.4 100
## 232 36 199.0 110 33.83 291.3 111
## 233 0 203.1 96 34.53 217.0 126
## 234 0 168.8 97 28.70 220.3 87
## 235 0 173.1 140 29.43 240.3 105
## 236 0 134.4 106 22.85 211.3 98
## 237 40 202.6 103 34.44 118.8 128
## 238 0 74.5 117 12.67 200.8 98
## 239 0 83.6 148 14.21 120.9 91
## 240 0 192.2 86 32.67 168.6 116
## 241 0 220.2 89 37.43 88.3 125
## 242 0 135.1 95 22.97 134.1 102
## 243 0 253.4 77 43.08 182.4 151
## 244 0 225.0 81 38.25 176.9 63
## 245 0 198.5 99 33.75 267.8 60
## 246 0 110.3 107 18.75 166.5 93
## 247 37 60.0 102 10.20 102.2 80
## 248 0 214.8 94 36.52 149.7 58
## 249 0 181.8 85 30.91 202.4 98
## 250 23 154.0 114 26.18 278.0 137
## 251 29 157.4 99 26.76 117.9 80
## 252 0 207.9 91 35.34 172.0 109
## 253 0 207.0 90 35.19 232.9 83
## 254 41 119.0 101 20.23 230.0 134
## 255 0 143.7 117 24.43 273.0 82
## 256 32 165.9 126 28.20 216.5 93
## 257 0 138.6 122 23.56 172.3 117
## 258 0 84.7 118 14.40 249.9 86
## 259 0 62.6 111 10.64 180.6 126
## 260 0 155.2 79 26.38 235.3 123
## 261 25 164.9 110 28.03 209.3 105
## 262 0 134.5 88 22.87 143.1 112
## 263 0 143.3 103 24.36 211.3 108
## 264 0 168.3 110 28.61 221.2 73
## 265 0 262.4 55 44.61 194.6 113
## 266 30 206.2 79 35.05 260.0 91
## 267 28 225.8 94 38.39 193.0 117
## 268 0 138.3 89 23.51 170.5 78
## 269 48 94.4 104 16.05 136.2 101
## 270 0 160.0 123 27.20 175.4 96
## 271 0 206.6 105 35.12 224.9 117
## 272 0 134.7 121 22.90 180.0 83
## 273 28 214.4 78 36.45 235.2 100
## 274 0 192.8 104 32.78 234.4 96
## 275 28 151.1 90 25.69 194.8 79
## 276 0 221.4 103 37.64 231.8 103
## 277 0 218.9 88 37.21 208.0 85
## 278 48 189.8 96 32.27 123.4 67
## 279 25 192.7 85 32.76 225.9 105
## 280 0 204.4 135 34.75 219.1 90
## 281 0 172.3 97 29.29 174.0 108
## 282 0 198.4 93 33.73 210.9 108
## 283 37 211.7 115 35.99 159.9 84
## 284 28 221.6 74 37.67 288.4 100
## 285 0 197.9 108 33.64 181.5 109
## 286 24 147.5 90 25.08 175.7 108
## 287 0 206.4 122 35.09 128.0 102
## 288 0 205.9 88 35.00 209.3 86
## 289 0 207.6 88 35.29 132.4 63
## 290 0 303.9 95 51.66 260.9 114
## 291 34 230.6 121 39.20 219.4 99
## 292 0 99.5 110 16.92 129.1 80
## 293 0 177.1 112 30.11 194.0 112
## 294 37 172.7 93 29.36 120.1 116
## 295 18 172.7 86 29.36 133.4 113
## 296 0 204.2 115 34.71 179.9 152
## 297 0 85.7 83 14.57 247.7 67
## 298 0 157.6 117 26.79 184.3 58
## 299 0 215.5 129 36.64 218.7 117
## 300 0 181.5 98 30.86 199.9 88
## 301 0 171.7 80 29.19 110.4 81
## 302 0 266.6 106 45.32 264.8 168
## 303 0 170.4 108 28.97 350.5 68
## 304 0 158.0 106 26.86 292.5 114
## 305 0 92.0 117 15.64 253.6 77
## 306 0 234.0 109 39.78 249.5 114
## 307 0 272.1 111 46.26 268.5 118
## 308 0 296.4 99 50.39 214.8 89
## 309 0 194.4 101 33.05 190.3 82
## 310 0 227.2 128 38.62 258.4 92
## 311 0 248.7 109 42.28 220.0 118
## 312 38 236.3 102 40.17 195.9 112
## 313 0 205.6 69 34.95 169.5 93
## 314 0 94.1 136 16.00 280.3 122
## 315 0 125.2 99 21.28 205.4 107
## 316 0 60.4 158 10.27 306.2 120
## 317 28 121.0 105 20.57 270.4 100
## 318 29 117.8 66 20.03 256.8 114
## 319 21 232.4 96 39.51 211.9 118
## 320 32 223.5 81 38.00 188.8 74
## 321 0 176.3 79 29.97 259.2 97
## 322 32 125.2 79 21.28 177.8 105
## 323 0 138.7 107 23.58 256.9 113
## 324 0 86.3 134 14.67 246.6 92
## 325 0 207.0 91 35.19 154.9 121
## 326 30 58.8 104 10.00 219.5 107
## 327 35 68.7 95 11.68 209.2 69
## 328 33 239.2 109 40.66 235.5 112
## 329 0 198.3 130 33.71 217.1 86
## 330 0 205.2 97 34.88 240.6 77
## 331 0 192.1 98 32.66 312.9 135
## 332 0 272.6 83 46.34 248.7 74
## 333 0 128.3 121 21.81 197.1 93
## 334 0 169.6 99 28.83 264.1 87
## 335 0 201.3 95 34.22 152.8 66
## 336 17 214.7 97 36.50 138.5 90
## 337 0 169.2 70 28.76 271.5 77
## 338 0 194.1 121 33.00 176.6 110
## 339 0 233.8 104 39.75 266.5 94
## 340 0 225.1 67 38.27 199.2 127
## 341 0 213.0 63 36.21 176.6 71
## 342 0 183.9 115 31.26 255.9 101
## 343 34 221.8 105 37.71 161.7 85
## 344 21 64.6 98 10.98 176.1 86
## 345 37 154.6 92 26.28 83.4 103
## 346 0 260.2 131 44.23 179.2 120
## 347 33 161.6 117 27.47 123.0 90
## 348 0 220.6 117 37.50 155.2 121
## 349 41 155.9 122 26.50 162.3 107
## 350 0 107.0 63 18.19 105.7 67
## 351 0 182.5 104 31.03 204.7 95
## 352 38 220.1 78 37.42 234.3 71
## 353 0 152.2 112 25.87 177.2 132
## 354 0 181.5 95 30.86 205.1 88
## 355 0 236.2 77 40.15 218.6 85
## 356 0 166.1 105 28.24 79.3 93
## 357 0 244.6 89 41.58 188.8 80
## 358 23 134.2 85 22.81 227.3 132
## 359 39 149.7 122 25.45 211.1 75
## 360 29 150.1 109 25.52 264.7 103
## 361 0 257.1 53 43.71 312.2 127
## 362 0 124.4 83 21.15 179.7 81
## 363 36 141.7 121 24.09 232.3 113
## 364 0 230.0 87 39.10 103.2 138
## 365 0 162.3 88 27.59 213.7 118
## 366 0 350.8 75 59.64 216.5 94
## 367 0 193.3 96 32.86 264.1 123
## 368 0 78.2 127 13.29 253.4 108
## 369 0 83.4 110 14.18 232.2 137
## 370 0 195.6 99 33.25 267.8 120
## 371 0 201.8 81 34.31 225.0 114
## 372 0 197.0 110 33.49 222.8 102
## 373 0 218.0 57 37.06 114.4 88
## 374 0 164.8 98 28.02 229.9 96
## 375 0 179.2 77 30.46 210.7 99
## 376 21 214.0 113 36.38 180.0 114
## 377 0 170.5 87 28.99 118.2 116
## 378 0 205.7 123 34.97 214.5 108
## 379 0 165.5 84 28.14 286.2 112
## 380 0 221.0 100 37.57 160.7 113
## 381 0 242.1 118 41.16 191.0 93
## 382 0 151.6 107 25.77 155.4 96
## 383 0 176.2 87 29.95 145.0 81
## 384 22 196.0 82 33.32 322.7 82
## 385 0 159.5 125 27.12 247.1 90
## 386 0 230.2 113 39.13 220.4 79
## 387 0 146.7 64 24.94 274.0 99
## 388 0 210.5 102 35.79 204.5 83
## 389 0 102.0 95 17.34 270.2 139
## 390 0 126.0 99 21.42 238.5 73
## 391 0 168.4 125 28.63 243.8 89
## 392 0 105.6 129 17.95 258.2 129
## 393 0 206.5 92 35.11 176.2 152
## 394 0 217.1 76 36.91 205.2 100
## 395 0 229.6 78 39.03 205.7 108
## 396 22 278.3 89 47.31 93.4 143
## 397 0 138.6 102 23.56 199.0 93
## 398 0 234.4 103 39.85 279.3 109
## 399 0 181.5 129 30.86 130.7 112
## 400 0 167.3 91 28.44 230.0 68
## 401 31 121.0 105 20.57 218.9 98
## 402 0 221.1 124 37.59 110.8 94
## 403 26 145.8 108 24.79 192.2 89
## 404 0 222.8 122 37.88 163.2 107
## 405 0 183.4 80 31.18 242.0 115
## 406 0 264.3 91 44.93 160.9 115
## 407 0 146.0 78 24.82 109.7 79
## 408 0 157.1 134 26.71 184.9 122
## 409 0 127.3 108 21.64 251.3 81
## 410 0 187.9 110 31.94 197.0 117
## 411 0 178.8 90 30.40 141.2 72
## 412 0 97.2 80 16.52 186.2 90
## 413 0 259.8 85 44.17 242.3 117
## 414 0 256.5 112 43.61 199.5 90
## 415 0 169.5 77 28.82 124.0 87
## 416 0 239.7 47 40.75 282.9 110
## 417 0 171.5 99 29.16 160.0 103
## 418 0 239.9 84 40.78 174.8 106
## 419 34 142.3 73 24.19 194.8 79
## 420 0 184.1 98 31.30 327.0 73
## 421 28 206.9 126 35.17 264.4 126
## 422 0 259.9 114 44.18 176.2 94
## 423 0 203.8 122 34.65 283.1 76
## 424 45 248.8 124 42.30 140.3 77
## 425 16 221.6 110 37.67 130.2 123
## 426 0 192.9 131 32.79 185.5 101
## 427 0 122.4 129 20.81 113.4 108
## 428 40 104.9 65 17.83 216.3 93
## 429 0 173.2 91 29.44 196.8 106
## 430 0 119.4 69 20.30 273.3 92
## 431 0 250.3 100 42.55 260.6 90
## 432 0 178.3 98 30.31 282.6 110
## 433 0 243.4 77 41.38 182.1 97
## 434 0 155.0 106 26.35 175.3 101
## 435 31 288.7 101 49.08 203.8 102
## 436 29 240.4 80 40.87 118.9 91
## 437 0 190.3 123 32.35 301.3 96
## 438 0 278.0 76 47.26 176.7 74
## 439 0 155.0 93 26.35 330.6 106
## 440 0 153.5 99 26.10 197.6 102
## 441 27 273.4 141 46.48 154.0 99
## 442 0 155.3 93 26.40 265.7 95
## 443 29 133.1 114 22.63 221.2 82
## 444 0 246.8 129 41.96 187.8 121
## 445 0 165.4 107 28.12 196.0 126
## 446 0 59.5 103 10.12 257.2 106
## 447 0 138.3 116 23.51 236.0 138
## 448 0 286.7 100 48.74 134.4 121
## 449 0 117.3 114 19.94 201.1 61
## 450 21 264.3 79 44.93 202.8 118
## 451 0 127.9 107 21.74 271.2 124
## 452 23 225.5 107 38.34 246.3 105
## 453 0 149.0 115 25.33 245.3 105
## 454 20 198.9 77 33.81 274.0 88
## 455 0 256.4 125 43.59 273.9 100
## 456 0 264.8 124 45.02 245.4 112
## 457 0 98.2 88 16.69 180.5 69
## 458 0 159.8 99 27.17 264.0 64
## 459 28 190.6 86 32.40 220.1 122
## 460 0 184.0 120 31.28 120.4 119
## 461 0 261.8 128 44.51 220.6 104
## 462 0 147.9 109 25.14 228.4 117
## 463 18 106.4 109 18.09 108.1 113
## 464 0 133.7 75 22.73 195.3 87
## 465 23 193.5 85 32.90 220.2 90
## 466 0 178.2 113 30.29 167.8 94
## 467 36 226.2 103 38.45 181.6 125
## 468 0 170.4 103 28.97 200.2 71
## 469 32 70.9 163 12.05 166.7 121
## 470 34 194.4 63 33.05 254.9 110
## 471 0 240.3 146 40.85 164.6 83
## 472 0 75.0 116 12.75 248.7 87
## 473 0 69.1 117 11.75 136.3 100
## 474 33 96.6 59 16.42 315.4 98
## 475 20 214.6 101 36.48 235.1 132
## 476 0 148.5 111 25.25 146.5 42
## 477 0 258.1 106 43.88 161.4 106
## 478 23 149.7 112 25.45 162.5 118
## 479 0 149.8 134 25.47 164.4 98
## 480 0 190.4 102 32.37 158.1 107
## 481 0 181.4 108 30.84 253.8 54
## 482 0 151.1 123 25.69 187.4 104
## 483 0 155.7 116 26.47 173.7 63
## 484 0 149.9 95 25.48 256.1 110
## 485 0 222.3 132 37.79 231.5 101
## 486 16 149.4 111 25.40 131.8 113
## 487 0 233.8 103 39.75 221.6 131
## 488 0 204.2 100 34.71 292.6 139
## 489 0 242.9 126 41.29 209.8 65
## 490 0 150.4 119 25.57 230.5 99
## 491 0 208.9 119 35.51 252.4 132
## 492 0 191.9 91 32.62 256.1 110
## 493 0 130.7 113 22.22 260.6 122
## 494 33 119.6 104 20.33 278.7 88
## 495 0 273.6 93 46.51 114.6 116
## 496 0 156.1 114 26.54 180.3 63
## 497 36 178.7 134 30.38 178.6 102
## 498 0 177.5 93 30.18 287.4 75
## 499 0 211.3 61 35.92 105.6 119
## 500 0 175.2 91 29.78 244.4 109
## 501 23 114.3 102 19.43 190.3 103
## 502 28 251.4 104 42.74 225.1 89
## 503 0 216.9 61 36.87 207.4 120
## 504 26 217.2 138 36.92 145.5 111
## 505 0 206.3 97 35.07 154.9 98
## 506 0 159.3 66 27.08 125.9 75
## 507 31 143.1 88 24.33 236.6 65
## 508 0 154.0 122 26.18 329.8 88
## 509 24 186.6 69 31.72 222.0 116
## 510 26 170.8 114 29.04 199.5 125
## 511 17 124.0 102 21.08 202.9 81
## 512 0 198.3 94 33.71 279.3 101
## 513 0 172.8 101 29.38 204.8 97
## 514 30 217.4 74 36.96 213.8 86
## 515 29 265.9 113 45.20 215.8 94
## 516 14 93.6 137 15.91 193.8 72
## 517 0 98.2 100 16.69 307.2 88
## 518 0 214.7 68 36.50 158.6 138
## 519 0 168.2 92 28.59 224.7 100
## 520 0 202.9 97 34.49 153.8 104
## 521 0 261.4 108 44.44 154.5 102
## 522 0 73.3 86 12.46 161.4 82
## 523 27 253.7 84 43.13 229.2 109
## 524 0 45.0 108 7.65 151.3 74
## 525 0 231.3 105 39.32 171.7 108
## 526 0 47.4 125 8.06 167.8 90
## 527 0 227.4 88 38.66 182.5 100
## 528 22 40.9 126 6.95 133.4 90
## 529 0 124.8 133 21.22 157.3 143
## 530 0 68.5 110 11.65 337.1 115
## 531 37 163.5 77 27.80 203.1 102
## 532 0 163.0 112 27.71 219.1 89
## 533 38 213.7 61 36.33 253.0 104
## 534 36 201.3 117 34.22 42.2 78
## 535 0 310.4 97 52.77 66.5 123
## 536 0 48.4 101 8.23 281.1 138
## 537 40 171.2 88 29.10 145.7 109
## 538 22 166.5 93 28.31 183.0 92
## 539 0 216.6 126 36.82 190.8 104
## 540 0 107.8 113 18.33 216.6 125
## 541 28 141.3 94 24.02 168.0 108
## 542 29 209.9 77 35.68 158.0 52
## 543 20 237.5 120 40.38 253.4 94
## 544 0 234.5 109 39.87 216.5 129
## 545 31 103.1 90 17.53 243.0 135
## 546 27 129.5 106 22.02 248.9 90
## 547 0 279.8 90 47.57 248.7 91
## 548 41 136.8 91 23.26 200.8 61
## 549 31 100.1 54 17.02 246.3 97
## 550 31 237.1 63 40.31 205.6 117
## 551 0 172.8 58 29.38 183.1 108
## 552 0 224.5 111 38.17 200.7 99
## 553 0 288.1 112 48.98 258.0 92
## 554 0 78.2 103 13.29 195.9 149
## 555 0 148.7 80 25.28 259.0 94
## 556 25 194.6 84 33.08 119.9 103
## 557 0 159.5 77 27.12 303.8 92
## 558 20 194.5 110 33.07 213.7 89
## 559 0 174.1 96 29.60 251.1 94
## 560 0 131.8 97 22.41 136.7 100
## 561 0 160.6 103 27.30 237.0 109
## 562 18 146.8 107 24.96 310.0 84
## 563 28 200.7 88 34.12 264.2 116
## 564 0 145.6 106 24.75 98.3 106
## 565 29 229.4 104 39.00 257.4 84
## 566 0 211.0 76 35.87 189.0 100
## 567 37 121.5 97 20.66 271.4 110
## 568 0 216.0 73 36.72 188.2 117
## 569 0 293.0 88 49.81 160.6 101
## 570 32 221.1 137 37.59 264.9 99
## 571 0 181.5 108 30.86 196.9 87
## 572 26 74.3 107 12.63 177.3 116
## 573 0 62.3 92 10.59 275.0 82
## 574 31 228.6 88 38.86 248.5 109
## 575 0 228.1 121 38.78 276.5 79
## 576 36 309.9 90 52.68 200.3 89
## 577 0 201.9 74 34.32 226.8 119
## 578 0 149.8 112 25.47 180.0 93
## 579 30 183.8 76 31.25 229.7 95
## 580 21 186.7 108 31.74 335.0 86
## 581 0 209.4 151 35.60 347.3 113
## 582 25 223.2 77 37.94 183.2 118
## 583 0 164.2 109 27.91 155.4 90
## 584 0 150.5 75 25.59 193.1 93
## 585 0 234.2 128 39.81 293.1 92
## 586 0 55.3 102 9.40 164.7 124
## 587 0 221.8 97 37.71 203.8 134
## 588 0 169.6 85 28.83 58.9 86
## 589 0 89.7 118 15.25 260.1 79
## 590 14 80.2 81 13.63 219.0 103
## 591 0 218.9 105 37.21 299.9 87
## 592 0 125.7 96 21.37 207.6 137
## 593 0 176.3 85 29.97 93.4 125
## 594 29 207.2 111 35.22 254.1 137
## 595 0 205.7 138 34.97 161.9 83
## 596 28 151.4 95 25.74 152.4 97
## 597 0 157.5 70 26.78 130.7 79
## 598 0 160.4 68 27.27 102.6 103
## 599 0 159.0 80 27.03 167.9 128
## 600 46 214.1 62 36.40 200.9 111
## 601 0 102.6 89 17.44 246.0 77
## 602 0 159.7 86 27.15 197.5 76
## 603 0 202.8 109 34.48 165.8 104
## 604 0 57.5 95 9.78 265.5 131
## 605 0 169.9 144 28.88 225.2 118
## 606 0 335.5 77 57.04 212.5 109
## 607 0 139.5 119 23.72 289.3 105
## 608 29 142.3 107 24.19 118.7 56
## 609 0 187.8 94 31.93 248.6 86
## 610 0 146.2 55 24.85 261.5 83
## 611 0 231.8 120 39.41 150.6 106
## 612 0 193.7 83 32.93 154.2 79
## 613 0 156.4 108 26.59 233.4 118
## 614 29 220.7 82 37.52 217.7 110
## 615 37 239.8 110 40.77 221.9 115
## 616 43 172.0 111 29.24 200.2 64
## 617 35 128.2 138 21.79 274.5 113
## 618 0 130.2 119 22.13 290.9 121
## 619 0 195.4 107 33.22 154.6 96
## 620 0 293.3 79 49.86 188.5 90
## 621 0 191.3 89 32.52 193.9 87
## 622 0 122.4 88 20.81 143.8 111
## 623 33 209.6 68 35.63 146.9 140
## 624 0 215.7 140 36.67 146.3 84
## 625 0 161.4 110 27.44 220.6 125
## 626 0 144.2 91 24.51 226.7 137
## 627 37 220.2 109 37.43 185.3 99
## 628 0 256.2 105 43.55 160.7 102
## 629 0 112.7 119 19.16 217.7 109
## 630 0 299.5 125 50.92 226.7 92
## 631 0 194.8 107 33.12 170.9 99
## 632 0 100.8 112 17.14 230.0 69
## 633 22 82.5 97 14.03 289.9 94
## 634 34 146.4 104 24.89 89.7 103
## 635 0 177.9 129 30.24 224.6 87
## 636 27 153.5 84 26.10 194.0 73
## 637 0 150.7 105 25.62 197.3 133
## 638 19 180.1 106 30.62 127.5 92
## 639 31 265.3 94 45.10 147.6 95
## 640 0 128.6 83 21.86 134.0 114
## 641 0 161.5 92 27.46 173.5 108
## 642 0 165.3 120 28.10 198.5 106
## 643 0 195.0 92 33.15 210.5 83
## 644 0 213.8 79 36.35 265.1 93
## 645 24 205.5 114 34.94 219.3 99
## 646 22 252.9 112 42.99 177.9 99
## 647 28 235.6 74 40.05 227.9 37
## 648 0 192.0 91 32.64 127.6 127
## 649 39 69.1 122 11.75 101.3 136
## 650 0 261.7 97 44.49 210.6 48
## 651 0 235.5 81 40.04 257.2 130
## 652 0 213.4 100 36.28 204.9 52
## 653 39 206.9 143 35.17 127.8 72
## 654 22 263.8 65 44.85 103.4 115
## 655 31 183.4 126 31.18 195.5 106
## 656 0 157.6 85 26.79 194.1 92
## 657 0 175.6 147 29.85 161.8 118
## 658 0 242.5 101 41.23 102.8 114
## 659 0 151.0 102 25.67 131.4 101
## 660 0 138.1 103 23.48 164.5 100
## 661 0 264.7 69 45.00 305.0 120
## 662 31 282.3 70 47.99 152.0 89
## 663 0 211.2 80 35.90 237.7 93
## 664 0 197.1 126 33.51 130.1 76
## 665 0 205.3 95 34.90 166.7 128
## 666 22 181.8 110 30.91 228.1 123
## 667 0 252.0 120 42.84 150.2 106
## 668 0 193.8 102 32.95 118.9 104
## 669 0 231.2 135 39.30 188.7 74
## 670 33 200.1 108 34.02 188.9 122
## 671 26 266.7 109 45.34 232.3 107
## 672 36 118.1 117 20.08 221.5 125
## 673 0 175.3 106 29.80 144.3 87
## 674 0 125.1 99 21.27 248.8 62
## 675 0 176.8 90 30.06 224.7 81
## 676 0 241.9 101 41.12 129.4 121
## 677 0 241.2 134 41.00 116.5 114
## 678 0 217.1 99 36.91 236.0 68
## 679 0 195.4 110 33.22 181.2 109
## 680 0 222.4 78 37.81 327.0 111
## 681 0 189.5 90 32.22 189.8 118
## 682 0 123.1 100 20.93 158.4 82
## 683 38 256.7 98 43.64 150.5 120
## 684 0 159.1 94 27.05 241.6 119
## 685 0 100.1 90 17.02 233.3 93
## 686 32 30.9 113 5.25 187.0 113
## 687 0 223.2 76 37.94 214.4 131
## 688 0 187.4 101 31.86 199.9 126
## 689 21 315.6 105 53.65 208.9 71
## 690 0 277.5 104 47.18 131.8 121
## 691 0 189.8 111 32.27 197.3 101
## 692 0 147.2 119 25.02 192.8 91
## 693 0 185.8 36 31.59 276.5 134
## 694 29 155.4 110 26.42 188.5 104
## 695 0 154.2 91 26.21 268.6 108
## 696 0 97.6 98 16.59 105.5 118
## 697 0 178.8 94 30.40 178.4 97
## 698 0 149.3 104 25.38 273.6 75
## 699 0 206.0 89 35.02 186.0 88
## 700 0 216.8 86 36.86 190.8 114
## 701 0 103.3 110 17.56 129.1 82
## 702 0 139.4 95 23.70 159.1 92
## 703 0 191.2 110 32.50 163.9 102
## 704 23 160.0 104 27.20 189.4 64
## 705 0 221.7 95 37.69 193.0 82
## 706 0 62.9 81 10.69 231.0 64
## 707 0 215.6 78 36.65 195.3 119
## 708 42 165.3 97 28.10 223.5 118
## 709 32 94.7 111 16.10 154.4 98
## 710 0 203.2 81 34.54 152.5 99
## 711 0 195.3 70 33.20 216.7 108
## 712 0 143.7 114 24.43 297.8 98
## 713 0 114.4 104 19.45 78.3 101
## 714 0 222.8 101 37.88 203.0 128
## 715 22 175.9 70 29.90 211.7 105
## 716 0 249.9 95 42.48 242.5 104
## 717 30 234.5 130 39.87 195.2 116
## 718 0 210.7 116 35.82 219.2 86
## 719 0 182.3 124 30.99 169.9 110
## 720 0 190.3 88 32.35 194.5 89
## 721 38 177.1 88 30.11 163.7 108
## 722 36 87.2 92 14.82 169.3 110
## 723 0 215.6 96 36.65 193.4 127
## 724 0 137.4 109 23.36 237.6 49
## 725 36 192.8 103 32.78 177.0 83
## 726 0 149.3 100 25.38 200.2 110
## 727 0 143.7 116 24.43 170.7 99
## 728 0 224.8 111 38.22 190.0 101
## 729 39 261.2 122 44.40 214.2 101
## 730 26 196.5 98 33.41 175.8 111
## 731 0 271.2 105 46.10 202.6 105
## 732 0 207.2 121 35.22 292.5 104
## 733 0 300.4 94 51.07 133.2 103
## 734 37 229.6 123 39.03 132.3 90
## 735 20 187.5 110 31.88 169.8 94
## 736 0 57.1 98 9.71 199.7 78
## 737 0 162.1 86 27.56 155.0 86
## 738 0 145.0 89 24.65 175.8 102
## 739 0 159.5 123 27.12 240.8 93
## 740 0 190.7 72 32.42 208.6 103
## 741 20 230.6 40 39.20 189.1 58
## 742 0 34.0 133 5.78 278.6 61
## 743 17 193.4 112 32.88 240.6 131
## 744 0 202.0 126 34.34 163.5 86
## 745 0 191.7 122 32.59 241.4 88
## 746 26 161.3 97 27.42 250.3 110
## 747 0 150.6 85 25.60 119.0 128
## 748 0 184.6 102 31.38 196.0 117
## 749 0 220.7 120 37.52 270.2 95
## 750 0 167.3 119 28.44 198.5 119
## 751 32 154.0 80 26.18 185.5 91
## 752 29 121.1 116 20.59 186.4 100
## 753 23 182.1 94 30.96 164.6 59
## 754 0 109.6 88 18.63 137.6 108
## 755 0 209.9 105 35.68 121.9 105
## 756 0 167.5 76 28.48 242.1 92
## 757 0 213.9 88 36.36 239.8 119
## 758 0 115.8 108 19.69 243.3 111
## 759 30 276.6 99 47.02 220.1 113
## 760 21 179.4 88 30.50 181.1 97
## 761 0 187.3 84 31.84 270.8 95
## 762 0 201.2 128 34.20 227.2 100
## 763 0 189.6 78 32.23 267.4 117
## 764 35 186.8 124 31.76 261.0 69
## 765 31 153.5 83 26.10 219.1 96
## 766 0 187.6 97 31.89 208.2 118
## 767 0 230.9 132 39.25 243.2 99
## 768 26 244.9 150 41.63 118.0 138
## 769 0 230.9 93 39.25 223.0 78
## 770 0 187.1 104 31.81 250.2 117
## 771 0 170.7 54 29.02 191.1 108
## 772 28 126.9 97 21.57 166.9 102
## 773 0 189.5 112 32.22 207.0 95
## 774 0 176.9 110 30.07 167.9 100
## 775 0 161.1 99 27.39 198.8 81
## 776 0 169.4 107 28.80 197.2 71
## 777 20 254.4 133 43.25 161.7 96
## 778 24 127.7 54 21.71 215.0 105
## 779 26 170.5 107 28.99 217.2 77
## 780 0 219.1 100 37.25 242.9 90
## 781 0 273.5 104 46.50 183.8 68
## 782 0 161.9 138 27.52 200.9 114
## 783 27 241.7 87 41.09 142.0 101
## 784 0 62.8 124 10.68 170.4 66
## 785 22 281.1 83 47.79 143.7 130
## 786 0 228.2 70 38.79 263.7 80
## 787 0 209.8 82 35.67 194.5 94
## 788 0 265.6 86 45.15 208.8 102
## 789 0 214.9 97 36.53 117.8 117
## 790 0 110.5 79 18.79 223.2 111
## 791 45 281.1 88 47.79 198.0 103
## 792 0 137.8 86 23.43 286.3 76
## 793 33 271.5 98 46.16 253.4 102
## 794 0 112.8 108 19.18 218.8 120
## 795 0 187.3 118 31.84 239.7 90
## 796 0 197.0 84 33.49 269.3 105
## 797 32 180.4 89 30.67 129.4 124
## 798 0 148.5 126 25.25 219.4 125
## 799 22 197.1 113 33.51 259.4 95
## 800 26 153.7 115 26.13 137.8 146
## 801 27 261.3 96 44.42 220.9 101
## 802 0 246.2 102 41.85 202.4 134
## 803 0 191.0 88 32.47 318.8 119
## 804 0 208.3 86 35.41 253.6 89
## 805 0 253.0 73 43.01 219.3 78
## 806 0 202.3 87 34.39 201.5 111
## 807 0 174.4 120 29.65 156.3 98
## 808 30 127.1 89 21.61 172.1 116
## 809 16 143.5 76 24.40 242.6 58
## 810 17 186.9 94 31.77 240.0 138
## 811 0 194.0 118 32.98 242.0 114
## 812 0 234.8 89 39.92 106.8 131
## 813 0 123.7 96 21.03 103.0 80
## 814 0 173.9 103 29.56 276.4 83
## 815 41 130.9 115 22.25 203.4 110
## 816 0 314.6 102 53.48 169.8 86
## 817 0 227.9 78 38.74 207.5 115
## 818 0 95.5 92 16.24 163.7 63
## 819 0 185.3 127 31.50 208.0 73
## 820 0 146.3 133 24.87 202.7 95
## 821 16 184.0 99 31.28 76.4 134
## 822 0 105.8 110 17.99 43.9 88
## 823 0 178.0 110 30.26 153.8 64
## 824 24 149.4 74 25.40 123.9 72
## 825 0 209.4 104 35.60 132.5 78
## 826 0 172.1 105 29.26 211.7 99
## 827 0 169.3 82 28.78 217.9 147
## 828 0 119.1 117 20.25 287.7 136
## 829 0 194.2 147 33.01 173.4 87
## 830 0 198.8 56 33.80 230.1 73
## 831 0 167.7 94 28.51 93.7 121
## 832 0 202.2 86 34.37 216.8 93
## 833 0 322.5 106 54.83 204.6 93
## 834 0 216.2 107 36.75 215.6 84
## 835 0 76.4 116 12.99 115.6 74
## 836 0 72.7 75 12.36 208.6 117
## 837 31 210.4 100 35.77 225.5 97
## 838 33 127.2 93 21.62 162.9 104
## 839 28 201.8 79 34.31 304.9 128
## 840 17 219.5 78 37.32 222.1 94
## 841 0 99.3 112 16.88 270.5 136
## 842 0 239.2 114 40.66 150.0 115
## 843 0 120.9 58 20.55 235.0 88
## 844 0 224.7 81 38.20 129.4 112
## 845 19 176.6 88 30.02 162.7 66
## 846 51 283.9 98 48.26 192.0 109
## 847 0 180.6 92 30.70 190.9 114
## 848 31 125.9 101 21.40 196.4 102
## 849 0 237.6 79 40.39 192.4 107
## 850 0 198.4 91 33.73 264.7 106
## 851 0 274.3 110 46.63 52.9 109
## 852 0 199.6 89 33.93 211.4 96
## 853 0 217.7 91 37.01 273.5 74
## 854 0 134.7 96 22.90 235.9 90
## 855 24 212.7 73 36.16 257.5 103
## 856 0 256.3 135 43.57 180.2 106
## 857 0 183.6 133 31.21 120.7 98
## 858 0 176.2 90 29.95 196.0 115
## 859 37 205.0 94 34.85 165.4 103
## 860 0 267.9 114 45.54 223.0 74
## 861 0 179.2 111 30.46 175.2 130
## 862 0 149.4 145 25.40 196.5 105
## 863 38 163.6 132 27.81 146.7 113
## 864 0 207.6 71 35.29 152.7 94
## 865 0 165.4 108 28.12 183.7 103
## 866 0 209.8 114 35.67 171.3 82
## 867 27 220.1 128 37.42 268.2 133
## 868 0 141.3 72 24.02 154.3 95
## 869 0 196.5 89 33.41 241.3 123
## 870 0 180.9 114 30.75 209.5 118
## 871 0 105.0 150 17.85 251.6 90
## 872 0 271.4 119 46.14 190.4 102
## 873 43 206.7 79 35.14 174.6 122
## 874 0 166.8 109 28.36 236.0 117
## 875 0 204.9 107 34.83 135.2 102
## 876 15 154.6 128 26.28 245.6 106
## 877 0 127.0 107 21.59 323.2 75
## 878 0 267.4 78 45.46 204.2 85
## 879 0 281.0 66 47.77 160.6 108
## 880 33 270.8 96 46.04 220.4 110
## 881 0 171.2 82 29.10 185.6 102
## 882 0 124.1 82 21.10 202.6 120
## 883 0 162.8 113 27.68 290.3 111
## 884 0 146.3 84 24.87 255.9 113
## 885 0 254.8 85 43.32 143.4 80
## 886 26 254.9 108 43.33 243.2 135
## 887 31 107.7 124 18.31 188.9 104
## 888 0 158.8 75 27.00 264.8 91
## 889 0 182.9 113 31.09 239.6 85
## 890 0 198.5 112 33.75 42.5 90
## 891 0 178.4 72 30.33 233.6 134
## 892 0 110.9 91 18.85 158.5 115
## 893 27 166.9 85 28.37 221.2 92
## 894 0 244.8 91 41.62 60.8 105
## 895 0 120.8 96 20.54 169.8 101
## 896 0 165.3 118 28.10 210.0 101
## 897 0 126.7 113 21.54 155.5 131
## 898 35 215.9 106 36.70 200.6 107
## 899 0 140.1 132 23.82 209.6 126
## 900 32 209.9 113 35.68 249.8 104
## 901 29 139.8 114 23.77 138.2 91
## 902 0 321.6 107 54.67 251.6 115
## 903 0 166.6 61 28.32 218.8 107
## 904 0 214.2 90 36.41 196.8 78
## 905 0 260.0 123 44.20 210.5 127
## 906 0 191.9 113 32.62 70.9 87
## 907 0 213.0 95 36.21 188.8 104
## 908 24 118.1 83 20.08 109.6 72
## 909 0 190.2 89 32.33 166.4 108
## 910 25 82.2 95 13.97 163.3 109
## 911 32 163.8 80 27.85 177.8 123
## 912 0 267.8 145 45.53 316.4 121
## 913 0 159.8 91 27.17 120.4 86
## 914 24 214.3 129 36.43 289.8 55
## 915 0 287.3 123 48.84 288.0 114
## 916 0 101.2 122 17.20 141.6 87
## 917 0 102.8 74 17.48 281.7 125
## 918 0 109.1 97 18.55 115.7 96
## 919 0 215.9 67 36.70 217.0 108
## 920 0 203.4 110 34.58 128.7 97
## 921 0 110.1 113 18.72 169.0 59
## 922 0 111.0 51 18.87 219.8 84
## 923 0 239.9 121 40.78 142.3 51
## 924 0 144.8 107 24.62 112.5 66
## 925 0 135.4 134 23.02 205.9 85
## 926 0 84.2 134 14.31 80.8 103
## 927 0 209.1 127 35.55 106.1 80
## 928 24 130.1 117 22.12 196.0 61
## 929 24 175.8 139 29.89 155.0 98
## 930 0 241.9 104 41.12 145.2 112
## 931 0 136.7 106 23.24 228.6 105
## 932 0 67.7 68 11.51 195.7 86
## 933 0 200.4 87 34.07 309.2 105
## 934 0 125.8 103 21.39 207.7 96
## 935 0 128.2 87 21.79 133.2 105
## 936 0 226.3 88 38.47 223.0 107
## 937 37 162.3 107 27.59 233.9 115
## 938 0 224.4 121 38.15 147.9 97
## 939 0 120.5 127 20.49 189.7 52
## 940 0 91.1 90 15.49 179.3 115
## 941 0 168.8 137 28.70 241.4 107
## 942 0 153.5 81 26.10 287.3 115
## 943 0 226.2 88 38.45 140.3 114
## 944 0 191.9 107 32.62 206.9 127
## 945 28 167.9 147 28.54 190.7 105
## 946 0 180.0 88 30.60 145.0 77
## 947 0 257.4 67 43.76 261.1 91
## 948 28 174.4 75 29.65 169.9 80
## 949 0 159.7 83 27.15 155.4 121
## 950 0 237.2 124 40.32 222.6 87
## 951 0 103.0 129 17.51 242.3 103
## 952 0 153.8 89 26.15 234.0 89
## 953 0 205.1 86 34.87 160.5 95
## 954 39 175.7 93 29.87 187.2 94
## 955 0 155.9 123 26.50 224.2 112
## 956 34 154.4 109 26.25 221.4 142
## 957 23 209.7 73 35.65 183.6 63
## 958 0 150.0 69 25.50 285.9 73
## 959 23 232.4 97 39.51 186.0 88
## 960 0 165.4 100 28.12 115.7 87
## 961 0 199.2 106 33.86 187.3 12
## 962 0 217.6 81 36.99 320.5 51
## 963 0 212.1 95 36.06 150.1 88
## 964 30 154.0 75 26.18 165.8 97
## 965 31 193.8 130 32.95 202.6 98
## 966 0 175.4 130 29.82 248.1 105
## 967 22 152.0 63 25.84 258.8 131
## 968 0 230.2 147 39.13 186.7 121
## 969 33 174.9 103 29.73 248.2 105
## 970 0 190.2 68 32.33 262.2 64
## 971 0 176.4 122 29.99 224.9 123
## 972 0 160.9 95 27.35 251.2 65
## 973 0 228.7 90 38.88 163.0 99
## 974 0 144.0 90 24.48 181.6 100
## 975 31 135.9 90 23.10 271.0 84
## 976 0 334.3 118 56.83 192.1 104
## 977 0 130.5 77 22.19 131.2 117
## 978 21 134.2 105 22.81 162.5 128
## 979 0 278.0 102 47.26 266.4 114
## 980 0 105.4 70 17.92 214.8 122
## 981 0 188.9 94 32.11 203.9 104
## 982 24 111.8 85 19.01 239.6 102
## 983 33 159.1 106 27.05 149.8 101
## 984 0 212.4 105 36.11 224.6 118
## 985 0 142.3 112 24.19 306.3 111
## 986 0 346.8 55 58.96 249.5 79
## 987 15 113.9 102 19.36 145.3 146
## 988 27 267.9 103 45.54 263.3 74
## 989 0 171.4 117 29.14 115.2 128
## 990 0 275.4 150 46.82 187.5 62
## 991 31 197.2 118 33.52 249.9 70
## 992 35 192.6 97 32.74 135.2 101
## 993 26 91.7 104 15.59 150.6 119
## 994 0 126.3 99 21.47 141.6 106
## 995 33 251.5 107 42.76 234.1 110
## 996 0 190.6 108 32.40 152.3 95
## 997 0 116.1 101 19.74 201.8 99
## 998 0 217.3 91 36.94 216.1 95
## 999 0 179.4 80 30.50 232.5 99
## 1000 0 207.7 109 35.31 164.8 94
## 1001 0 277.3 138 47.14 228.4 117
## 1002 0 125.3 84 21.30 167.6 121
## 1003 32 138.1 91 23.48 167.3 72
## 1004 38 169.3 88 28.78 225.9 97
## 1005 27 201.3 101 34.22 143.8 89
## 1006 0 216.7 117 36.84 116.5 126
## 1007 0 190.4 92 32.37 317.5 85
## 1008 0 143.3 91 24.36 195.5 58
## 1009 42 97.4 57 16.56 203.6 98
## 1010 0 181.4 111 30.84 167.7 92
## 1011 0 246.4 83 41.89 256.2 101
## 1012 0 143.4 130 24.38 289.4 50
## 1013 0 104.9 111 17.83 198.5 120
## 1014 0 156.2 93 26.55 193.0 54
## 1015 0 114.8 125 19.52 81.9 126
## 1016 0 232.5 96 39.53 205.5 120
## 1017 0 143.6 117 24.41 152.4 108
## 1018 0 176.7 132 30.04 244.1 80
## 1019 0 263.4 148 44.78 230.3 69
## 1020 0 146.4 74 24.89 148.5 92
## 1021 33 145.0 72 24.65 194.5 157
## 1022 0 167.8 91 28.53 167.7 69
## 1023 0 166.9 99 28.37 154.9 97
## 1024 0 142.5 87 24.23 195.7 88
## 1025 0 133.0 65 22.61 262.8 93
## 1026 11 252.9 129 42.99 284.3 88
## 1027 28 95.0 94 16.15 291.2 73
## 1028 0 194.2 106 33.01 249.4 105
## 1029 0 222.8 114 37.88 215.9 113
## 1030 0 201.8 82 34.31 231.5 95
## 1031 42 216.0 125 36.72 232.3 104
## 1032 0 146.3 108 24.87 171.8 102
## 1033 0 234.8 85 39.92 140.9 91
## 1034 0 198.6 111 33.76 213.9 115
## 1035 0 94.4 80 16.05 215.1 101
## 1036 0 190.4 74 32.37 215.6 113
## 1037 32 142.6 77 24.24 208.2 126
## 1038 0 134.2 80 22.81 165.0 71
## 1039 0 111.9 92 19.02 114.0 143
## 1040 0 122.8 89 20.88 211.3 104
## 1041 0 189.3 77 32.18 220.9 105
## 1042 38 240.4 112 40.87 201.8 102
## 1043 24 93.5 112 15.90 183.4 128
## 1044 0 158.6 104 26.96 211.2 77
## 1045 0 243.2 109 41.34 147.0 88
## 1046 0 176.4 115 29.99 158.8 128
## 1047 0 220.9 129 37.55 242.2 108
## 1048 0 144.4 87 24.55 266.5 128
## 1049 0 212.3 107 36.09 228.4 103
## 1050 0 147.0 72 24.99 165.7 102
## 1051 25 96.2 112 16.35 178.9 70
## 1052 0 263.4 118 44.78 179.1 69
## 1053 0 12.5 67 2.13 256.6 90
## 1054 0 162.3 116 27.59 192.4 86
## 1055 0 183.6 107 31.21 58.6 118
## 1056 0 178.1 109 30.28 146.5 86
## 1057 0 201.4 101 34.24 97.6 122
## 1058 38 123.0 158 20.91 133.9 119
## 1059 0 208.0 125 35.36 198.9 76
## 1060 0 239.2 72 40.66 188.5 124
## 1061 0 193.0 97 32.81 89.8 99
## 1062 31 174.5 101 29.67 245.6 105
## 1063 26 116.7 71 19.84 145.9 88
## 1064 0 93.8 127 15.95 150.0 104
## 1065 30 154.1 114 26.20 118.7 106
## 1066 29 239.5 82 40.72 203.8 105
## 1067 25 216.0 140 36.72 224.1 69
## 1068 0 187.4 97 31.86 177.8 89
## 1069 0 167.4 119 28.46 233.2 143
## 1070 0 160.4 108 27.27 218.1 88
## 1071 0 143.2 92 24.34 209.1 142
## 1072 0 205.3 122 34.90 240.5 155
## 1073 25 219.1 88 37.25 151.5 99
## 1074 0 143.2 77 24.34 169.8 114
## 1075 0 232.8 106 39.58 175.2 97
## 1076 0 162.0 81 27.54 247.5 89
## 1077 27 25.9 119 4.40 206.5 96
## 1078 0 154.2 123 26.21 112.3 86
## 1079 0 322.3 113 54.79 222.0 95
## 1080 0 209.9 112 35.68 221.3 82
## 1081 0 191.5 88 32.56 175.2 78
## 1082 19 291.1 150 49.49 226.7 123
## 1083 0 215.6 115 36.65 216.2 85
## 1084 0 208.8 101 35.50 213.7 87
## 1085 0 255.9 97 43.50 204.1 129
## 1086 0 252.7 97 42.96 221.1 121
## 1087 0 132.1 72 22.46 247.5 107
## 1088 0 217.0 115 36.89 207.0 142
## 1089 42 101.9 79 17.32 223.1 97
## 1090 0 211.5 100 35.96 184.6 88
## 1091 0 153.4 86 26.08 198.5 81
## 1092 0 166.3 95 28.27 239.3 87
## 1093 0 185.2 87 31.48 170.4 96
## 1094 0 104.6 121 17.78 149.5 71
## 1095 0 245.2 105 41.68 159.0 109
## 1096 0 274.4 120 46.65 198.6 82
## 1097 0 98.4 78 16.73 249.6 129
## 1098 29 279.9 121 47.58 223.1 109
## 1099 0 187.2 127 31.82 195.6 88
## 1100 0 276.2 95 46.95 165.8 119
## 1101 35 200.4 104 34.07 272.8 89
## 1102 0 162.3 96 27.59 244.0 122
## 1103 0 176.9 128 30.07 102.8 56
## 1104 0 165.5 78 28.14 205.5 89
## 1105 0 217.8 93 37.03 189.7 113
## 1106 28 201.4 100 34.24 246.5 117
## 1107 0 190.5 115 32.39 179.6 130
## 1108 29 179.9 97 30.58 189.2 89
## 1109 0 235.9 104 40.10 80.6 91
## 1110 0 140.4 112 23.87 187.1 60
## 1111 0 144.6 115 24.58 258.8 66
## 1112 0 189.0 100 32.13 118.5 99
## 1113 0 101.0 93 17.17 155.6 104
## 1114 0 206.3 98 35.07 292.8 82
## 1115 15 165.1 85 28.07 267.0 93
## 1116 0 165.0 129 28.05 202.6 113
## 1117 0 155.9 95 26.50 256.1 97
## 1118 0 199.2 122 33.86 214.7 114
## 1119 0 155.3 116 26.40 188.2 85
## 1120 0 208.3 106 35.41 236.7 123
## 1121 0 157.1 79 26.71 162.6 124
## 1122 0 154.4 165 26.25 168.3 121
## 1123 0 189.1 105 32.15 246.1 147
## 1124 24 131.5 98 22.36 230.2 111
## 1125 0 166.4 85 28.29 243.2 135
## 1126 0 142.3 75 24.19 122.8 106
## 1127 19 87.7 103 14.91 223.0 86
## 1128 19 184.1 78 31.30 194.5 71
## 1129 31 174.5 104 29.67 224.2 92
## 1130 0 103.3 103 17.56 138.5 79
## 1131 0 35.1 62 5.97 180.8 89
## 1132 25 246.6 94 41.92 141.4 112
## 1133 37 78.5 109 13.35 210.5 101
## 1134 0 148.1 73 25.18 164.9 101
## 1135 0 206.2 84 35.05 256.4 138
## 1136 33 251.6 87 42.77 197.6 118
## 1137 26 270.3 111 45.95 215.2 90
## 1138 34 156.6 97 26.62 224.2 97
## 1139 0 139.4 81 23.70 223.7 113
## 1140 0 220.2 108 37.43 188.4 124
## 1141 39 214.1 108 36.40 169.2 115
## 1142 0 196.0 74 33.32 213.4 96
## 1143 0 106.4 71 18.09 240.1 83
## 1144 29 179.4 113 30.50 275.4 100
## 1145 0 216.7 30 36.84 144.3 125
## 1146 0 177.3 129 30.14 152.8 105
## 1147 0 151.6 117 25.77 219.4 87
## 1148 32 262.2 123 44.57 165.2 82
## 1149 0 173.6 110 29.51 91.7 84
## 1150 0 106.6 76 18.12 147.4 89
## 1151 0 193.3 106 32.86 128.3 94
## 1152 24 217.2 94 36.92 138.7 52
## 1153 0 209.5 89 35.62 172.8 85
## 1154 0 95.4 105 16.22 207.2 101
## 1155 26 214.6 110 36.48 205.2 87
## 1156 0 131.6 120 22.37 211.3 96
## 1157 0 168.4 117 28.63 217.1 129
## 1158 0 146.4 123 24.89 176.6 113
## 1159 0 183.0 110 31.11 206.7 93
## 1160 0 103.3 122 17.56 245.9 123
## 1161 28 112.2 70 19.07 154.8 106
## 1162 0 170.7 55 29.02 179.1 108
## 1163 0 172.5 78 29.33 142.6 91
## 1164 30 194.3 107 33.03 243.2 108
## 1165 32 187.8 117 31.93 129.8 90
## 1166 26 307.1 94 52.21 289.4 78
## 1167 0 118.2 106 20.09 167.2 136
## 1168 0 154.0 95 26.18 205.9 106
## 1169 0 155.5 101 26.44 213.4 89
## 1170 0 125.6 108 21.35 213.0 90
## 1171 0 199.3 104 33.88 224.2 92
## 1172 0 157.9 88 26.84 180.8 132
## 1173 0 203.4 81 34.58 167.7 110
## 1174 0 222.2 113 37.77 218.5 122
## 1175 39 92.8 98 15.78 271.2 115
## 1176 32 216.8 78 36.86 102.2 111
## 1177 0 193.2 89 32.84 194.4 90
## 1178 0 113.2 108 19.24 189.3 63
## 1179 36 166.2 54 28.25 238.8 109
## 1180 23 262.2 101 44.57 157.0 80
## 1181 0 207.8 92 35.33 195.7 110
## 1182 35 245.4 89 41.72 148.2 102
## 1183 0 287.1 108 48.81 178.4 125
## 1184 32 192.3 82 32.69 165.3 134
## 1185 0 194.2 122 33.01 242.1 81
## 1186 0 211.0 92 35.87 217.0 102
## 1187 12 141.9 92 24.12 228.9 102
## 1188 26 220.5 94 37.49 239.5 126
## 1189 0 157.4 122 26.76 145.0 75
## 1190 28 143.5 106 24.40 223.5 147
## 1191 0 156.0 56 26.52 56.0 116
## 1192 0 160.1 63 27.22 208.4 112
## 1193 0 235.1 98 39.97 251.8 79
## 1194 15 160.0 95 27.20 209.5 110
## 1195 0 188.4 63 32.03 165.9 89
## 1196 0 194.8 97 33.12 235.3 118
## 1197 0 247.8 117 42.13 130.0 95
## 1198 0 221.2 80 37.60 213.6 104
## 1199 26 118.5 86 20.15 213.9 118
## 1200 33 231.8 78 39.41 232.9 79
## 1201 25 215.9 90 36.70 257.9 92
## 1202 35 217.1 92 36.91 220.8 134
## 1203 0 83.5 96 14.20 221.1 63
## 1204 39 183.3 106 31.16 205.1 101
## 1205 0 236.8 141 40.26 265.3 101
## 1206 0 193.8 90 32.95 195.3 121
## 1207 25 134.0 112 22.78 206.0 111
## 1208 25 176.6 65 30.02 172.7 96
## 1209 0 191.4 93 32.54 205.4 119
## 1210 35 174.8 127 29.72 219.6 93
## 1211 0 275.2 67 46.78 180.2 108
## 1212 0 174.0 85 29.58 241.1 114
## 1213 0 165.0 132 28.05 249.7 86
## 1214 0 228.7 102 38.88 168.7 99
## 1215 0 107.9 88 18.34 235.8 109
## 1216 0 221.3 140 37.62 157.8 89
## 1217 0 141.1 84 23.99 211.4 108
## 1218 31 166.4 92 28.29 238.3 74
## 1219 28 249.6 87 42.43 227.2 138
## 1220 0 178.6 83 30.36 213.1 103
## 1221 0 139.0 96 23.63 224.9 64
## 1222 0 134.3 98 22.83 202.3 109
## 1223 0 215.9 93 36.70 240.1 85
## 1224 31 181.6 91 30.87 213.2 120
## 1225 0 178.4 97 30.33 168.3 113
## 1226 0 106.4 84 18.09 140.2 104
## 1227 0 170.7 101 29.02 240.2 82
## 1228 33 184.5 139 31.37 183.2 78
## 1229 37 161.2 109 27.40 204.2 79
## 1230 0 84.9 77 14.43 257.5 109
## 1231 0 217.9 71 37.04 230.1 116
## 1232 0 270.9 98 46.05 226.2 110
## 1233 0 243.0 91 41.31 183.9 77
## 1234 0 128.2 71 21.79 48.1 78
## 1235 0 126.3 115 21.47 168.8 112
## 1236 0 178.7 56 30.38 215.7 79
## 1237 0 159.0 109 27.03 255.1 142
## 1238 0 150.9 79 25.65 161.8 87
## 1239 24 219.9 118 37.38 208.5 116
## 1240 0 168.0 116 28.56 192.4 94
## 1241 34 162.1 83 27.56 171.8 117
## 1242 0 198.8 107 33.80 195.5 91
## 1243 0 256.8 90 43.66 230.1 104
## 1244 35 182.8 122 31.08 212.7 119
## 1245 38 196.8 92 33.46 254.2 108
## 1246 0 140.1 120 23.82 231.4 128
## 1247 0 194.3 83 33.03 189.9 97
## 1248 0 117.6 66 19.99 214.0 108
## 1249 0 193.7 108 32.93 186.6 98
## 1250 0 243.1 105 41.33 231.4 108
## 1251 0 145.4 132 24.72 129.3 91
## 1252 0 169.1 105 28.75 169.9 102
## 1253 0 229.3 93 38.98 184.5 111
## 1254 0 197.2 97 33.52 211.7 115
## 1255 33 186.4 84 31.69 201.0 136
## 1256 0 76.1 121 12.94 290.3 73
## 1257 0 162.8 65 27.68 185.0 109
## 1258 0 182.3 115 30.99 199.2 97
## 1259 0 194.4 83 33.05 247.8 84
## 1260 20 189.3 95 32.18 118.6 113
## 1261 22 160.1 107 27.22 168.7 136
## 1262 0 145.0 76 24.65 240.7 112
## 1263 0 220.7 105 37.52 119.3 127
## 1264 31 224.7 69 38.20 134.5 81
## 1265 0 147.0 79 24.99 162.3 103
## 1266 39 260.8 130 44.34 213.4 111
## 1267 0 155.4 127 26.42 164.1 45
## 1268 0 166.2 112 28.25 255.3 81
## 1269 0 211.8 115 36.01 260.5 102
## 1270 45 130.5 114 22.19 208.4 94
## 1271 0 162.7 102 27.66 292.0 105
## 1272 37 237.1 76 40.31 264.2 125
## 1273 0 166.2 102 28.25 217.6 112
## 1274 0 121.7 48 20.69 125.8 112
## 1275 0 176.4 62 29.99 201.0 124
## 1276 27 67.4 116 11.46 244.0 78
## 1277 0 229.7 129 39.05 336.0 104
## 1278 24 176.0 118 29.92 277.9 116
## 1279 0 247.7 77 42.11 269.5 108
## 1280 0 115.4 90 19.62 262.6 68
## 1281 0 112.2 95 19.07 209.6 108
## 1282 0 162.6 138 27.64 154.0 109
## 1283 0 229.4 107 39.00 214.1 99
## 1284 0 139.6 96 23.73 124.2 93
## 1285 0 263.8 66 44.85 251.3 116
## 1286 46 217.5 123 36.98 233.7 84
## 1287 14 114.3 132 19.43 199.8 91
## 1288 0 196.3 108 33.37 136.8 96
## 1289 0 253.2 95 43.04 188.0 116
## 1290 0 98.0 99 16.66 240.7 62
## 1291 0 249.4 118 42.40 211.5 95
## 1292 30 129.6 107 22.03 233.0 104
## 1293 0 221.3 106 37.62 267.6 98
## 1294 0 220.7 106 37.52 177.8 118
## 1295 0 87.6 76 14.89 262.0 111
## 1296 0 203.6 61 34.61 161.7 127
## 1297 0 213.6 110 36.31 234.9 121
## 1298 31 181.6 112 30.87 220.7 100
## 1299 22 215.4 123 36.62 328.7 98
## 1300 0 266.3 90 45.27 207.8 117
## 1301 0 199.2 111 33.86 175.1 83
## 1302 0 115.0 130 19.55 137.8 83
## 1303 0 270.5 69 45.99 230.0 112
## 1304 0 222.2 127 37.77 153.1 125
## 1305 0 61.9 78 10.52 262.6 114
## 1306 0 141.1 92 23.99 249.1 126
## 1307 0 189.2 81 32.16 184.4 117
## 1308 0 196.0 135 33.32 186.0 146
## 1309 0 171.6 119 29.17 205.0 107
## 1310 0 174.0 123 29.58 161.3 115
## 1311 0 78.6 106 13.36 187.3 110
## 1312 0 200.9 92 34.15 164.3 91
## 1313 0 141.3 123 24.02 253.6 87
## 1314 0 235.8 130 40.09 176.0 69
## 1315 0 185.1 100 31.47 165.1 88
## 1316 0 254.3 113 43.23 78.9 104
## 1317 0 183.0 103 31.11 214.8 77
## 1318 29 163.5 80 27.80 274.8 136
## 1319 0 207.9 98 35.34 210.5 96
## 1320 0 248.6 102 42.26 174.9 93
## 1321 31 185.4 105 31.52 197.6 126
## 1322 0 197.8 60 33.63 221.0 64
## 1323 0 132.1 42 22.46 138.9 88
## 1324 0 197.1 117 33.51 227.8 128
## 1325 0 154.6 112 26.28 184.2 105
## 1326 31 153.1 115 26.03 185.9 59
## 1327 0 211.2 119 35.90 231.1 120
## 1328 0 96.8 92 16.46 142.6 103
## 1329 0 172.0 145 29.24 276.4 101
## 1330 0 141.1 91 23.99 147.2 100
## 1331 29 151.1 121 25.69 244.7 88
## 1332 0 209.6 107 35.63 228.8 96
## 1333 32 247.0 109 41.99 125.6 91
## 1334 30 221.4 114 37.64 165.8 116
## 1335 0 321.3 99 54.62 167.9 93
## 1336 0 243.7 124 41.43 60.0 90
## 1337 0 251.5 85 42.76 214.2 98
## 1338 0 236.9 107 40.27 157.6 105
## 1339 0 159.7 79 27.15 216.7 131
## 1340 0 148.2 96 25.19 220.4 111
## 1341 0 150.9 86 25.65 268.6 129
## 1342 28 210.5 101 35.79 250.5 86
## 1343 24 170.9 71 29.05 201.4 80
## 1344 0 254.7 80 43.30 90.2 79
## 1345 0 284.4 89 48.35 157.0 113
## 1346 0 0.0 0 0.00 159.6 130
## 1347 0 133.7 45 22.73 187.8 107
## 1348 0 224.9 117 38.23 191.9 127
## 1349 0 151.8 98 25.81 209.9 92
## 1350 22 141.4 107 24.04 163.0 105
## 1351 0 285.7 124 48.57 230.9 106
## 1352 0 58.4 121 9.93 262.2 64
## 1353 16 90.4 105 15.37 201.3 109
## 1354 0 114.4 91 19.45 216.6 123
## 1355 0 147.7 103 25.11 222.7 78
## 1356 31 302.7 93 51.46 240.5 119
## 1357 0 136.1 120 23.14 204.2 103
## 1358 0 169.7 84 28.85 165.9 86
## 1359 0 227.2 89 38.62 194.4 106
## 1360 0 217.8 91 37.03 220.6 97
## 1361 0 124.2 102 21.11 123.9 115
## 1362 0 206.2 76 35.05 232.4 76
## 1363 0 132.9 122 22.59 67.0 62
## 1364 31 104.9 115 17.83 237.6 125
## 1365 0 245.0 97 41.65 250.7 75
## 1366 0 184.5 118 31.37 224.0 95
## 1367 0 89.5 66 15.22 179.3 104
## 1368 0 235.6 131 40.05 194.8 107
## 1369 0 186.0 127 31.62 262.3 96
## 1370 0 223.9 75 38.06 155.7 109
## 1371 0 179.5 125 30.52 162.3 139
## 1372 0 169.4 102 28.80 253.5 113
## 1373 0 118.1 90 20.08 144.3 77
## 1374 0 112.0 105 19.04 193.7 110
## 1375 32 168.4 129 28.63 225.9 97
## 1376 42 214.3 112 36.43 188.2 107
## 1377 0 245.7 139 41.77 241.9 113
## 1378 34 156.6 134 26.62 71.0 95
## 1379 43 142.8 96 24.28 272.3 100
## 1380 0 202.4 115 34.41 230.7 115
## 1381 0 116.8 119 19.86 123.1 123
## 1382 0 155.7 110 26.47 260.3 103
## 1383 39 236.1 107 40.14 289.2 110
## 1384 21 138.1 113 23.48 260.1 83
## 1385 0 51.9 108 8.82 162.0 83
## 1386 0 81.3 116 13.82 220.6 124
## 1387 35 171.5 98 29.16 153.1 127
## 1388 0 126.0 96 21.42 144.3 80
## 1389 0 197.2 127 33.52 156.0 92
## 1390 0 194.1 62 33.00 227.2 54
## 1391 0 115.7 105 19.67 127.8 113
## 1392 29 157.2 118 26.72 196.3 136
## 1393 0 269.7 85 45.85 207.6 86
## 1394 0 246.4 107 41.89 228.1 124
## 1395 0 227.4 121 38.66 268.5 89
## 1396 0 189.8 110 32.27 115.5 83
## 1397 27 188.9 124 32.11 160.9 102
## 1398 0 0.0 0 0.00 192.1 119
## 1399 19 110.5 87 18.79 227.8 97
## 1400 0 167.6 116 28.49 219.2 112
## 1401 0 132.0 90 22.44 197.5 75
## 1402 0 167.8 88 28.53 247.9 81
## 1403 0 213.4 86 36.28 204.7 77
## 1404 0 175.4 120 29.82 98.3 71
## 1405 39 82.6 113 14.04 224.4 63
## 1406 0 143.2 80 24.34 88.1 94
## 1407 0 125.5 139 21.34 269.8 93
## 1408 31 82.3 105 13.99 256.1 91
## 1409 0 165.6 104 28.15 195.9 115
## 1410 30 183.1 95 31.13 232.6 110
## 1411 0 162.1 91 27.56 212.1 94
## 1412 0 166.6 84 28.32 192.4 91
## 1413 24 135.9 60 23.10 233.2 78
## 1414 20 165.7 78 28.17 215.6 94
## 1415 0 176.1 90 29.94 174.9 106
## 1416 0 142.3 89 24.19 204.5 95
## 1417 0 177.6 121 30.19 296.8 92
## 1418 0 83.2 74 14.14 190.6 104
## 1419 37 235.0 101 39.95 183.3 79
## 1420 0 105.7 95 17.97 141.8 100
## 1421 0 149.4 68 25.40 171.9 98
## 1422 20 264.7 81 45.00 216.5 110
## 1423 31 160.3 45 27.25 221.5 70
## 1424 28 95.9 117 16.30 159.5 131
## 1425 0 140.7 77 23.92 195.2 114
## 1426 0 119.7 148 20.35 231.8 96
## 1427 30 99.9 84 16.98 263.5 125
## 1428 0 250.9 108 42.65 171.4 100
## 1429 0 200.6 117 34.10 289.5 120
## 1430 38 209.8 130 35.67 196.6 84
## 1431 34 198.0 70 33.66 273.7 121
## 1432 0 239.8 107 40.77 128.9 121
## 1433 0 164.5 75 27.97 147.9 118
## 1434 0 220.9 107 37.55 192.2 97
## 1435 37 112.8 150 19.18 243.9 97
## 1436 19 112.6 114 19.14 261.7 132
## 1437 26 226.4 117 38.49 234.7 97
## 1438 34 244.9 118 41.63 219.6 105
## 1439 0 203.2 99 34.54 235.8 131
## 1440 0 136.7 115 23.24 243.1 137
## 1441 0 152.6 97 25.94 208.9 85
## 1442 47 274.9 102 46.73 186.6 118
## 1443 0 195.7 116 33.27 209.1 87
## 1444 0 204.3 82 34.73 188.8 115
## 1445 0 222.3 99 37.79 146.2 82
## 1446 8 222.5 104 37.83 171.5 94
## 1447 28 128.8 104 21.90 157.3 52
## 1448 0 174.3 105 29.63 171.3 107
## 1449 0 242.5 110 41.23 162.3 140
## 1450 0 221.6 101 37.67 285.2 50
## 1451 0 114.3 100 19.43 221.1 103
## 1452 33 219.7 137 37.35 186.8 94
## 1453 0 144.9 136 24.63 151.3 115
## 1454 40 236.5 111 40.21 117.0 110
## 1455 44 174.0 80 29.58 209.4 113
## 1456 0 109.5 95 18.62 332.1 48
## 1457 33 81.6 120 13.87 235.6 85
## 1458 0 133.4 113 22.68 121.0 92
## 1459 0 137.1 94 23.31 209.8 83
## 1460 0 197.0 88 33.49 190.4 68
## 1461 0 198.1 160 33.68 156.7 87
## 1462 0 39.5 78 6.72 264.3 106
## 1463 0 199.5 107 33.92 207.5 110
## 1464 0 156.8 93 26.66 215.8 68
## 1465 0 183.4 85 31.18 237.6 100
## 1466 0 132.4 120 22.51 121.6 101
## 1467 0 63.2 108 10.74 220.2 88
## 1468 35 181.1 59 30.79 215.9 116
## 1469 27 117.5 102 19.98 206.8 127
## 1470 27 218.7 79 37.18 163.4 78
## 1471 41 207.3 95 35.24 137.3 120
## 1472 0 150.6 99 25.60 301.5 83
## 1473 0 273.3 66 46.46 263.6 121
## 1474 0 266.1 120 45.24 182.0 92
## 1475 0 112.8 89 19.18 156.7 65
## 1476 0 104.7 112 17.80 82.2 104
## 1477 35 193.8 62 32.95 197.6 97
## 1478 0 168.6 102 28.66 298.0 117
## 1479 0 253.2 122 43.04 201.0 78
## 1480 16 174.7 92 29.70 232.1 105
## 1481 0 87.0 102 14.79 193.6 64
## 1482 34 204.5 79 34.77 132.8 113
## 1483 0 226.5 93 38.51 152.1 122
## 1484 0 234.1 91 39.80 163.1 105
## 1485 0 133.3 106 22.66 182.9 89
## 1486 0 133.9 87 22.76 166.4 110
## 1487 0 160.2 104 27.23 138.9 70
## 1488 44 230.6 94 39.20 224.1 103
## 1489 0 227.4 84 38.66 176.0 81
## 1490 0 72.8 120 12.38 267.1 120
## 1491 0 196.1 107 33.34 296.5 82
## 1492 0 197.1 110 33.51 165.9 115
## 1493 0 219.6 126 37.33 303.3 100
## 1494 30 153.4 90 26.08 151.4 97
## 1495 0 216.0 85 36.72 186.9 114
## 1496 32 222.9 136 37.89 262.0 80
## 1497 36 115.9 120 19.70 236.6 95
## 1498 0 189.8 101 32.27 147.7 80
## 1499 0 154.7 102 26.30 298.0 108
## 1500 0 136.4 104 23.19 202.5 110
## 1501 0 170.5 86 28.99 277.5 88
## 1502 0 272.4 88 46.31 107.9 125
## 1503 40 210.0 116 35.70 232.7 89
## 1504 17 236.5 94 40.21 163.1 94
## 1505 0 153.9 117 26.16 220.1 122
## 1506 0 223.0 120 37.91 227.0 98
## 1507 0 252.4 74 42.91 167.9 81
## 1508 0 197.9 84 33.64 168.1 113
## 1509 0 152.4 74 25.91 274.6 88
## 1510 40 237.4 105 40.36 175.9 93
## 1511 0 265.6 82 45.15 180.7 75
## 1512 0 197.3 91 33.54 305.8 81
## 1513 14 199.1 100 33.85 221.8 103
## 1514 0 233.7 114 39.73 207.9 109
## 1515 0 183.1 99 31.13 160.1 107
## 1516 0 139.4 96 23.70 143.4 108
## 1517 0 213.9 112 36.36 260.5 100
## 1518 0 207.1 70 35.21 200.1 115
## 1519 0 139.7 78 23.75 202.6 119
## 1520 0 177.2 91 30.12 228.7 105
## 1521 35 169.8 136 28.87 173.7 101
## 1522 0 173.5 83 29.50 244.3 65
## 1523 0 159.9 100 27.18 172.2 99
## 1524 0 115.1 89 19.57 196.8 111
## 1525 19 136.8 113 23.26 179.5 105
## 1526 0 92.2 108 15.67 211.2 120
## 1527 23 243.9 112 41.46 133.0 106
## 1528 0 117.1 94 19.91 235.4 117
## 1529 0 223.3 99 37.96 167.1 128
## 1530 0 154.8 111 26.32 171.5 102
## 1531 0 261.4 141 44.44 215.7 102
## 1532 0 46.5 104 7.91 186.0 114
## 1533 18 149.9 84 25.48 170.9 84
## 1534 0 242.2 102 41.17 226.1 80
## 1535 0 259.4 99 44.10 172.7 125
## 1536 0 222.4 102 37.81 185.8 89
## 1537 0 69.4 79 11.80 190.8 109
## 1538 21 156.5 122 26.61 209.2 125
## 1539 0 61.2 111 10.40 92.3 88
## 1540 0 245.2 112 41.68 101.5 101
## 1541 0 102.3 100 17.39 135.2 104
## 1542 36 230.9 92 39.25 167.6 121
## 1543 0 227.4 105 38.66 211.5 120
## 1544 0 192.8 68 32.78 158.0 86
## 1545 0 162.6 98 27.64 206.2 109
## 1546 38 219.4 92 37.30 180.5 73
## 1547 0 137.2 111 23.32 165.9 119
## 1548 0 87.7 103 14.91 278.2 97
## 1549 0 271.1 80 46.09 172.0 133
## 1550 0 103.4 94 17.58 189.3 125
## 1551 0 52.2 106 8.87 220.1 113
## 1552 0 165.4 106 28.12 273.7 109
## 1553 0 147.5 110 25.08 191.7 97
## 1554 0 217.8 93 37.03 214.7 95
## 1555 0 235.7 79 40.07 136.9 85
## 1556 22 204.5 92 34.77 139.6 121
## 1557 0 178.4 143 30.33 247.0 123
## 1558 32 130.1 68 22.12 247.2 77
## 1559 34 103.7 100 17.63 236.3 78
## 1560 0 239.9 91 40.78 177.1 104
## 1561 0 148.4 110 25.23 267.1 90
## 1562 0 148.6 106 25.26 210.8 65
## 1563 0 191.1 69 32.49 129.2 113
## 1564 39 218.5 76 37.15 112.7 94
## 1565 0 97.5 95 16.58 195.8 82
## 1566 0 128.7 126 21.88 117.6 94
## 1567 38 236.6 69 40.22 197.5 68
## 1568 0 85.9 113 14.60 226.7 91
## 1569 27 141.2 96 24.00 167.7 94
## 1570 31 194.4 104 33.05 176.0 84
## 1571 0 167.6 100 28.49 154.5 90
## 1572 0 234.5 134 39.87 164.2 94
## 1573 0 154.2 78 26.21 196.7 85
## 1574 14 143.2 99 24.34 169.9 91
## 1575 40 216.4 80 36.79 249.7 90
## 1576 35 161.9 85 27.52 151.2 82
## 1577 0 118.7 90 20.18 205.1 57
## 1578 0 179.1 123 30.45 196.6 132
## 1579 0 147.9 97 25.14 209.3 99
## 1580 38 209.2 110 35.56 116.6 73
## 1581 29 244.3 140 41.53 322.3 89
## 1582 34 175.3 96 29.80 262.3 122
## 1583 0 150.5 92 25.59 120.3 95
## 1584 25 197.4 73 33.56 295.7 113
## 1585 0 163.5 136 27.80 143.7 111
## 1586 0 236.9 93 40.27 197.7 113
## 1587 0 82.3 77 13.99 167.2 80
## 1588 0 216.0 111 36.72 153.7 115
## 1589 0 180.0 119 30.60 198.8 126
## 1590 0 143.7 55 24.43 173.1 108
## 1591 39 198.2 107 33.69 280.4 132
## 1592 29 185.6 106 31.55 219.7 113
## 1593 0 137.6 108 23.39 162.0 80
## 1594 0 273.9 119 46.56 278.6 103
## 1595 31 125.3 92 21.30 141.2 108
## 1596 0 178.8 102 30.40 167.9 84
## 1597 49 214.9 86 36.53 198.2 89
## 1598 0 163.0 93 27.71 203.9 102
## 1599 29 163.8 77 27.85 134.9 112
## 1600 0 189.5 113 32.22 204.9 100
## 1601 26 155.2 110 26.38 230.9 133
## 1602 0 242.3 102 41.19 350.9 102
## 1603 44 254.1 127 43.20 180.2 108
## 1604 33 112.0 90 19.04 208.0 112
## 1605 0 115.5 73 19.64 267.3 83
## 1606 0 137.1 102 23.31 210.8 114
## 1607 0 198.4 113 33.73 235.9 144
## 1608 19 132.7 94 22.56 204.6 101
## 1609 25 219.6 99 37.33 210.4 99
## 1610 0 169.6 96 28.83 234.7 112
## 1611 0 160.4 73 27.27 293.9 103
## 1612 20 95.0 89 16.15 167.9 92
## 1613 0 160.1 87 27.22 256.7 120
## 1614 0 194.6 114 33.08 232.8 106
## 1615 0 236.4 73 40.19 287.3 120
## 1616 0 157.1 95 26.71 213.1 36
## 1617 0 179.8 125 30.57 173.2 86
## 1618 0 148.2 108 25.19 161.8 113
## 1619 39 183.2 103 31.14 209.4 111
## 1620 0 119.2 88 20.26 168.3 110
## 1621 35 224.0 102 38.08 192.0 99
## 1622 21 19.5 149 3.32 140.9 109
## 1623 0 184.8 83 31.42 248.6 101
## 1624 0 176.3 140 29.97 201.0 104
## 1625 0 241.7 115 41.09 168.5 133
## 1626 38 224.7 121 38.20 294.0 131
## 1627 0 207.3 115 35.24 198.4 82
## 1628 0 196.8 81 33.46 168.0 110
## 1629 0 110.9 74 18.85 115.6 90
## 1630 0 122.5 145 20.83 273.3 103
## 1631 0 226.9 144 38.57 201.6 122
## 1632 0 187.0 65 31.79 141.4 128
## 1633 0 170.5 113 28.99 193.2 129
## 1634 0 204.8 101 34.82 161.0 80
## 1635 0 165.9 114 28.20 235.9 97
## 1636 0 154.0 133 26.18 198.9 121
## 1637 29 158.1 104 26.88 322.2 81
## 1638 0 225.2 93 38.28 215.1 120
## 1639 0 159.4 79 27.10 179.5 88
## 1640 0 172.7 95 29.36 139.1 90
## 1641 0 222.8 99 37.88 175.8 85
## 1642 0 214.1 77 36.40 240.5 94
## 1643 0 54.8 92 9.32 173.0 103
## 1644 0 134.0 104 22.78 174.5 94
## 1645 0 184.8 74 31.42 175.1 84
## 1646 36 283.1 112 48.13 286.2 86
## 1647 0 291.8 143 49.61 214.3 134
## 1648 0 222.7 94 37.86 105.8 98
## 1649 0 174.5 79 29.67 236.8 136
## 1650 0 68.4 86 11.63 193.3 110
## 1651 31 273.0 78 46.41 215.5 98
## 1652 0 225.3 134 38.30 108.2 87
## 1653 23 283.2 130 48.14 162.6 74
## 1654 0 131.4 78 22.34 219.7 106
## 1655 12 89.7 87 15.25 138.6 73
## 1656 0 127.1 102 21.61 247.7 106
## 1657 28 105.9 132 18.00 231.7 107
## 1658 0 142.3 79 24.19 158.0 113
## 1659 0 191.3 80 32.52 138.5 94
## 1660 36 201.9 93 34.32 156.3 75
## 1661 0 247.3 91 42.04 182.7 60
## 1662 38 242.2 96 41.17 159.7 144
## 1663 0 127.3 80 21.64 222.3 115
## 1664 0 162.0 104 27.54 241.2 120
## 1665 33 179.1 93 30.45 238.3 102
## 1666 31 197.4 125 33.56 123.4 110
## 1667 0 148.2 82 25.19 308.7 67
## 1668 0 193.1 85 32.83 172.1 105
## 1669 0 171.7 99 29.19 174.8 87
## 1670 35 198.5 123 33.75 270.6 74
## 1671 24 121.7 87 20.69 184.0 76
## 1672 0 130.2 105 22.13 278.0 60
## 1673 0 203.4 96 34.58 168.6 61
## 1674 0 174.7 83 29.70 280.8 122
## 1675 0 241.0 120 40.97 231.8 96
## 1676 0 141.7 95 24.09 221.0 100
## 1677 0 134.8 96 22.92 167.2 78
## 1678 0 163.1 119 27.73 249.4 51
## 1679 0 145.5 116 24.74 228.4 110
## 1680 0 329.8 73 56.07 208.3 120
## 1681 0 194.5 97 33.07 186.3 131
## 1682 0 131.9 93 22.42 272.7 106
## 1683 29 150.0 91 25.50 159.4 75
## 1684 30 196.6 93 33.42 241.4 140
## 1685 0 99.7 107 16.95 145.1 96
## 1686 0 143.6 88 24.41 141.8 86
## 1687 40 231.9 56 39.42 211.8 91
## 1688 0 37.8 80 6.43 155.3 105
## 1689 0 72.8 107 12.38 186.4 103
## 1690 39 94.8 89 16.12 219.1 91
## 1691 15 221.8 143 37.71 210.6 115
## 1692 0 269.0 120 45.73 233.7 120
## 1693 0 268.3 114 45.61 185.5 111
## 1694 27 198.7 127 33.78 249.0 105
## 1695 0 115.5 75 19.64 218.1 111
## 1696 0 202.1 100 34.36 195.7 102
## 1697 0 215.6 113 36.65 200.6 81
## 1698 0 169.9 107 28.88 209.4 121
## 1699 0 201.7 85 34.29 169.4 116
## 1700 0 221.1 133 37.59 160.2 140
## 1701 32 218.7 117 37.18 115.0 61
## 1702 0 293.7 89 49.93 272.5 71
## 1703 0 120.3 108 20.45 240.4 84
## 1704 26 175.8 96 29.89 206.6 84
## 1705 0 278.5 95 47.35 240.7 90
## 1706 29 236.3 105 40.17 190.8 114
## 1707 0 273.8 113 46.55 119.6 156
## 1708 0 131.1 129 22.29 160.5 94
## 1709 23 167.4 83 28.46 258.6 129
## 1710 0 197.7 68 33.61 250.5 53
## 1711 0 169.5 93 28.82 230.9 71
## 1712 17 225.2 116 38.28 173.4 88
## 1713 0 174.5 73 29.67 213.7 114
## 1714 0 129.7 84 22.05 177.5 80
## 1715 0 200.0 66 34.00 107.9 104
## 1716 36 95.9 87 16.30 261.6 105
## 1717 25 152.8 110 25.98 242.8 67
## 1718 0 129.9 102 22.08 208.7 133
## 1719 0 268.4 85 45.63 150.6 131
## 1720 0 188.5 152 32.05 148.3 115
## 1721 0 170.6 97 29.00 162.1 111
## 1722 0 191.4 124 32.54 200.7 116
## 1723 0 75.3 96 12.80 179.9 113
## 1724 0 149.8 123 25.47 276.3 75
## 1725 0 115.9 87 19.70 111.3 56
## 1726 0 128.8 86 21.90 203.9 105
## 1727 0 131.7 108 22.39 216.5 103
## 1728 0 101.4 48 17.24 159.1 119
## 1729 23 149.0 104 25.33 235.8 67
## 1730 36 96.8 123 16.46 170.6 105
## 1731 0 107.5 121 18.28 256.4 46
## 1732 0 232.8 95 39.58 303.4 111
## 1733 43 121.1 105 20.59 260.2 115
## 1734 0 124.3 70 21.13 270.7 99
## 1735 0 157.7 101 26.81 298.6 100
## 1736 0 124.3 68 21.13 207.1 88
## 1737 0 286.4 125 48.69 205.7 74
## 1738 0 141.7 95 24.09 205.6 101
## 1739 25 173.0 91 29.41 245.8 64
## 1740 0 268.7 120 45.68 301.0 147
## 1741 31 218.5 130 37.15 134.2 103
## 1742 0 255.3 114 43.40 194.6 83
## 1743 0 41.9 124 7.12 211.0 95
## 1744 0 260.8 87 44.34 258.1 78
## 1745 26 239.4 94 40.70 259.4 88
## 1746 0 226.7 94 38.54 168.4 129
## 1747 0 179.3 147 30.48 208.9 89
## 1748 0 158.0 110 26.86 197.0 103
## 1749 23 175.7 82 29.87 258.9 136
## 1750 0 157.4 107 26.76 167.8 112
## 1751 0 113.1 74 19.23 168.8 95
## 1752 0 182.7 142 31.06 246.5 63
## 1753 0 161.3 83 27.42 124.4 83
## 1754 0 142.5 92 24.23 208.3 102
## 1755 0 190.5 108 32.39 259.7 108
## 1756 15 159.3 110 27.08 170.6 120
## 1757 39 153.8 106 26.15 123.3 111
## 1758 0 180.7 127 30.72 174.6 94
## 1759 0 202.7 105 34.46 224.9 90
## 1760 35 190.8 100 32.44 261.3 93
## 1761 0 205.1 102 34.87 232.7 109
## 1762 28 235.6 124 40.05 236.8 113
## 1763 0 189.3 77 32.18 155.9 128
## 1764 42 166.9 101 28.37 273.2 84
## 1765 0 245.2 87 41.68 254.1 83
## 1766 0 132.6 125 22.54 221.1 67
## 1767 0 182.3 64 30.99 139.8 121
## 1768 14 192.3 86 32.69 88.7 90
## 1769 0 122.0 110 20.74 220.2 100
## 1770 0 193.0 101 32.81 250.0 81
## 1771 0 158.6 112 26.96 220.0 114
## 1772 39 91.5 125 15.56 219.9 113
## 1773 0 153.6 92 26.11 205.5 88
## 1774 40 221.6 79 37.67 157.1 74
## 1775 0 244.7 81 41.60 168.0 117
## 1776 24 239.8 103 40.77 285.9 65
## 1777 0 172.4 132 29.31 230.5 100
## 1778 0 242.5 83 41.23 245.4 97
## 1779 39 117.6 82 19.99 159.2 60
## 1780 0 174.5 127 29.67 259.3 71
## 1781 0 157.3 83 26.74 220.9 85
## 1782 21 192.0 97 32.64 239.1 81
## 1783 0 218.2 76 37.09 169.3 60
## 1784 29 144.6 97 24.58 140.0 102
## 1785 0 153.6 108 26.11 232.9 85
## 1786 29 135.8 104 23.09 222.5 101
## 1787 0 160.7 69 27.32 146.8 106
## 1788 31 202.5 91 34.43 241.4 108
## 1789 34 152.2 119 25.87 227.1 91
## 1790 0 227.4 90 38.66 73.2 135
## 1791 0 191.6 115 32.57 205.6 108
## 1792 0 138.9 111 23.61 211.6 102
## 1793 0 127.0 102 21.59 206.9 107
## 1794 0 168.6 87 28.66 259.2 105
## 1795 0 286.6 73 48.72 223.2 108
## 1796 29 164.6 121 27.98 262.8 108
## 1797 0 144.0 90 24.48 135.8 91
## 1798 47 141.6 95 24.07 207.9 130
## 1799 0 204.3 65 34.73 247.3 123
## 1800 0 163.2 80 27.74 167.6 90
## 1801 0 225.0 110 38.25 244.2 111
## 1802 0 176.1 103 29.94 199.7 130
## 1803 36 254.2 78 43.21 228.1 105
## 1804 0 174.9 105 29.73 262.0 75
## 1805 0 187.3 118 31.84 160.7 111
## 1806 0 211.8 84 36.01 230.9 137
## 1807 0 241.9 102 41.12 126.9 117
## 1808 0 196.1 103 33.34 199.7 123
## 1809 0 231.3 100 39.32 210.4 84
## 1810 0 161.6 104 27.47 196.3 119
## 1811 0 194.0 103 32.98 241.0 116
## 1812 0 109.7 148 18.65 223.8 87
## 1813 0 277.0 119 47.09 238.3 106
## 1814 0 192.1 83 32.66 163.6 88
## 1815 0 198.4 147 33.73 216.9 121
## 1816 42 209.2 82 35.56 159.7 74
## 1817 0 184.8 98 31.42 216.4 125
## 1818 0 167.8 119 28.53 142.0 123
## 1819 0 139.2 140 23.66 191.4 113
## 1820 17 221.3 82 37.62 167.6 100
## 1821 0 121.6 84 20.67 165.3 115
## 1822 39 270.4 99 45.97 245.1 110
## 1823 0 139.6 94 23.73 240.9 112
## 1824 23 253.0 78 43.01 138.9 121
## 1825 26 183.9 83 31.26 240.7 93
## 1826 0 203.3 108 34.56 259.9 66
## 1827 0 200.6 106 34.10 152.5 127
## 1828 0 167.6 96 28.49 176.0 89
## 1829 0 156.5 67 26.61 204.3 103
## 1830 25 215.1 140 36.57 197.4 69
## 1831 0 301.7 82 51.29 167.1 118
## 1832 42 152.3 90 25.89 267.5 102
## 1833 0 195.4 116 33.22 212.1 101
## 1834 0 208.7 97 35.48 275.5 83
## 1835 29 190.1 87 32.32 223.2 123
## 1836 37 185.4 87 31.52 178.5 128
## 1837 17 183.2 95 31.14 252.8 125
## 1838 0 54.2 100 9.21 303.2 84
## 1839 26 208.0 115 35.36 185.0 113
## 1840 0 230.3 110 39.15 77.9 87
## 1841 22 240.8 102 40.94 75.9 106
## 1842 21 195.7 119 33.27 106.2 95
## 1843 0 276.1 82 46.94 201.1 106
## 1844 0 166.1 93 28.24 175.9 106
## 1845 28 135.9 117 23.10 244.5 102
## 1846 0 189.1 122 32.15 223.2 92
## 1847 43 177.9 117 30.24 175.1 70
## 1848 39 143.9 73 24.46 210.3 117
## 1849 0 148.2 138 25.19 159.6 123
## 1850 0 287.1 115 48.81 159.3 99
## 1851 26 179.7 144 30.55 218.1 129
## 1852 0 165.8 96 28.19 190.0 141
## 1853 25 144.1 144 24.50 167.6 105
## 1854 0 172.5 85 29.33 253.1 71
## 1855 0 199.8 138 33.97 167.1 91
## 1856 0 109.1 134 18.55 142.3 76
## 1857 0 171.8 106 29.21 301.7 44
## 1858 0 222.3 101 37.79 286.0 111
## 1859 0 245.8 102 41.79 264.7 90
## 1860 0 164.6 110 27.98 270.6 103
## 1861 0 211.7 107 35.99 271.7 77
## 1862 16 147.2 103 25.02 160.1 96
## 1863 0 254.7 103 43.30 252.2 80
## 1864 0 170.1 113 28.92 271.8 94
## 1865 0 195.1 91 33.17 261.5 57
## 1866 0 149.3 83 25.38 187.1 130
## 1867 0 81.9 75 13.92 253.8 114
## 1868 25 191.1 109 32.49 149.6 120
## 1869 0 206.9 115 35.17 224.4 86
## 1870 0 239.0 156 40.63 273.0 106
## 1871 0 179.3 97 30.48 252.7 126
## 1872 0 185.3 91 31.50 219.1 88
## 1873 0 141.4 80 24.04 123.9 76
## 1874 25 248.6 91 42.26 119.3 115
## 1875 0 152.5 131 25.93 252.4 107
## 1876 0 145.6 102 24.75 230.9 87
## 1877 0 164.2 116 27.91 196.2 153
## 1878 0 221.0 115 37.57 165.4 97
## 1879 0 295.4 126 50.22 232.1 117
## 1880 0 139.8 98 23.77 174.9 143
## 1881 0 162.3 99 27.59 149.1 78
## 1882 0 272.7 97 46.36 236.4 95
## 1883 33 200.3 75 34.05 226.6 67
## 1884 28 157.1 77 26.71 172.4 97
## 1885 12 135.8 60 23.09 200.6 134
## 1886 0 236.7 110 40.24 231.9 92
## 1887 0 111.4 133 18.94 175.0 66
## 1888 28 156.1 89 26.54 107.1 114
## 1889 0 191.1 93 32.49 282.8 56
## 1890 0 153.0 123 26.01 141.1 127
## 1891 0 218.8 123 37.20 242.8 64
## 1892 0 205.4 101 34.92 134.9 77
## 1893 0 225.2 111 38.28 184.9 98
## 1894 0 249.9 127 42.48 254.5 118
## 1895 0 131.6 89 22.37 137.0 109
## 1896 21 197.9 99 33.64 165.6 100
## 1897 0 166.5 129 28.31 210.2 107
## 1898 29 225.4 79 38.32 187.1 112
## 1899 0 275.8 103 46.89 189.5 108
## 1900 40 142.9 105 24.29 88.6 61
## 1901 0 207.2 113 35.22 256.0 80
## 1902 0 206.2 100 35.05 211.2 118
## 1903 0 210.3 66 35.75 195.8 76
## 1904 38 225.7 117 38.37 119.6 122
## 1905 33 167.8 91 28.53 205.3 91
## 1906 0 197.7 118 33.61 152.2 96
## 1907 39 169.8 105 28.87 65.2 116
## 1908 28 190.6 104 32.40 237.3 105
## 1909 45 80.3 140 13.65 153.3 101
## 1910 36 231.7 110 39.39 225.1 88
## 1911 0 69.1 114 11.75 230.3 109
## 1912 0 188.8 60 32.10 217.4 64
## 1913 0 150.6 125 25.60 169.1 126
## 1914 0 192.0 89 32.64 139.5 88
## 1915 25 163.7 78 27.83 113.2 112
## 1916 0 211.7 100 35.99 198.7 101
## 1917 0 175.5 103 29.84 132.3 120
## 1918 0 150.1 120 25.52 200.1 85
## 1919 0 189.5 99 32.22 176.3 117
## 1920 0 70.8 94 12.04 215.6 102
## 1921 0 215.5 102 36.64 190.7 95
## 1922 0 101.7 105 17.29 202.8 99
## 1923 0 258.4 132 43.93 126.8 119
## 1924 0 242.4 126 41.21 152.9 115
## 1925 0 131.8 82 22.41 284.3 119
## 1926 0 190.2 102 32.33 197.7 141
## 1927 0 154.1 104 26.20 204.2 112
## 1928 0 188.0 127 31.96 90.5 118
## 1929 0 103.1 70 17.53 275.0 129
## 1930 0 175.4 130 29.82 159.5 130
## 1931 0 145.4 93 24.72 209.1 98
## 1932 0 250.6 85 42.60 187.9 50
## 1933 0 161.5 123 27.46 214.2 81
## 1934 0 260.1 101 44.22 256.5 68
## 1935 0 281.3 124 47.82 301.5 96
## 1936 42 130.1 90 22.12 167.0 128
## 1937 0 102.0 118 17.34 113.3 134
## 1938 33 218.7 104 37.18 155.0 144
## 1939 30 128.5 86 21.85 188.4 91
## 1940 0 128.7 100 21.88 227.1 67
## 1941 0 172.2 92 29.27 162.6 76
## 1942 0 199.2 124 33.86 126.0 86
## 1943 0 184.5 98 31.37 200.5 93
## 1944 0 168.6 99 28.66 175.6 107
## 1945 30 174.0 118 29.58 205.3 81
## 1946 0 230.4 65 39.17 257.4 80
## 1947 0 198.2 73 33.69 202.8 115
## 1948 0 186.1 96 31.64 211.6 100
## 1949 0 148.5 105 25.25 243.0 106
## 1950 0 157.1 109 26.71 268.8 83
## 1951 0 155.0 110 26.35 133.4 104
## 1952 26 129.3 123 21.98 176.5 114
## 1953 0 188.5 77 32.05 182.0 123
## 1954 0 208.8 120 35.50 225.3 100
## 1955 0 238.0 82 40.46 278.5 94
## 1956 0 211.1 103 35.89 206.9 108
## 1957 30 198.9 87 33.81 207.0 90
## 1958 0 212.8 79 36.18 204.1 91
## 1959 0 137.4 126 23.36 120.0 94
## 1960 31 191.8 75 32.61 267.8 135
## 1961 0 149.0 92 25.33 49.2 78
## 1962 0 117.1 118 19.91 249.6 90
## 1963 0 108.0 79 18.36 241.9 152
## 1964 0 112.8 133 19.18 199.4 116
## 1965 0 175.9 105 29.90 188.3 88
## 1966 0 236.6 109 40.22 169.9 107
## 1967 0 169.4 102 28.80 184.9 144
## 1968 0 129.6 79 22.03 246.2 99
## 1969 0 177.1 97 30.11 184.7 105
## 1970 20 133.3 63 22.66 184.1 123
## 1971 0 167.8 121 28.53 212.9 123
## 1972 32 174.6 107 29.68 310.6 115
## 1973 0 150.3 101 25.55 255.9 112
## 1974 21 283.2 110 48.14 239.7 108
## 1975 20 157.8 83 26.83 161.5 56
## 1976 0 141.2 132 24.00 149.1 90
## 1977 27 230.2 106 39.13 196.1 78
## 1978 0 237.8 92 40.43 208.9 119
## 1979 0 204.0 84 34.68 168.5 61
## 1980 0 221.1 106 37.59 178.6 48
## 1981 0 177.2 93 30.12 142.6 60
## 1982 0 118.0 133 20.06 248.1 99
## 1983 0 163.8 73 27.85 255.6 85
## 1984 4 141.3 96 24.02 230.4 88
## 1985 0 272.5 119 46.33 226.1 94
## 1986 16 118.9 112 20.21 228.3 97
## 1987 0 7.9 100 1.34 136.4 83
## 1988 0 159.5 96 27.12 167.2 123
## 1989 0 150.2 70 25.53 185.7 98
## 1990 30 144.5 35 24.57 262.3 101
## 1991 0 140.7 88 23.92 210.9 98
## 1992 0 169.2 123 28.76 216.8 83
## 1993 0 220.8 77 37.54 148.5 87
## 1994 0 216.3 96 36.77 266.3 77
## 1995 0 169.5 96 28.82 157.6 94
## 1996 35 256.3 119 43.57 258.1 91
## 1997 0 179.7 128 30.55 299.8 92
## 1998 0 266.0 120 45.22 130.1 84
## 1999 0 96.7 97 16.44 193.8 95
## 2000 0 82.7 116 14.06 194.6 95
## 2001 0 168.2 87 28.59 161.7 92
## 2002 0 286.4 109 48.69 178.2 67
## 2003 0 174.3 95 29.63 186.6 128
## 2004 0 190.6 100 32.40 161.7 104
## 2005 0 175.5 86 29.84 205.1 78
## 2006 0 133.4 102 22.68 204.6 71
## 2007 27 204.6 96 34.78 136.0 93
## 2008 0 242.2 88 41.17 233.2 89
## 2009 33 253.1 112 43.03 210.1 94
## 2010 0 130.0 110 22.10 185.3 88
## 2011 0 105.9 151 18.00 189.6 142
## 2012 0 194.2 98 33.01 193.8 95
## 2013 0 183.8 111 31.25 123.5 92
## 2014 0 196.5 82 33.41 190.0 89
## 2015 0 184.5 81 31.37 172.0 103
## 2016 0 261.9 113 44.52 148.1 99
## 2017 0 202.4 118 34.41 260.2 67
## 2018 39 167.4 113 28.46 172.7 94
## 2019 22 167.7 104 28.51 246.8 91
## 2020 30 191.7 109 32.59 193.0 86
## 2021 0 240.2 78 40.83 230.3 109
## 2022 26 189.1 112 32.15 178.2 97
## 2023 0 127.7 67 21.71 182.9 90
## 2024 0 205.2 106 34.88 99.5 122
## 2025 23 153.6 93 26.11 216.9 88
## 2026 0 154.5 129 26.27 193.6 87
## 2027 0 153.7 109 26.13 194.0 105
## 2028 36 171.2 138 29.10 185.8 102
## 2029 0 328.1 106 55.78 151.7 89
## 2030 0 145.9 69 24.80 208.2 141
## 2031 37 201.2 76 34.20 280.1 122
## 2032 0 139.1 72 23.65 246.0 112
## 2033 0 118.9 128 20.21 278.3 65
## 2034 0 217.6 87 36.99 279.0 71
## 2035 0 145.0 133 24.65 209.1 92
## 2036 0 203.5 89 34.60 289.6 69
## 2037 0 240.1 115 40.82 180.4 91
## 2038 0 83.8 121 14.25 240.2 96
## 2039 0 269.8 106 45.87 228.8 101
## 2040 21 126.3 84 21.47 209.6 102
## 2041 15 88.1 125 14.98 175.9 142
## 2042 34 218.5 61 37.15 196.7 74
## 2043 26 236.8 61 40.26 263.4 97
## 2044 0 124.1 117 21.10 192.8 108
## 2045 30 184.2 132 31.31 167.5 109
## 2046 0 222.7 133 37.86 277.0 89
## 2047 0 149.2 98 25.36 193.6 88
## 2048 0 206.5 125 35.11 180.2 113
## 2049 27 159.7 102 27.15 168.8 113
## 2050 27 204.7 118 34.80 209.4 91
## 2051 0 213.2 79 36.24 120.7 116
## 2052 0 269.6 121 45.83 171.7 91
## 2053 0 116.7 92 19.84 213.8 112
## 2054 0 263.4 101 44.78 235.5 117
## 2055 0 140.2 97 23.83 213.9 102
## 2056 0 197.7 101 33.61 127.6 83
## 2057 0 136.2 92 23.15 220.9 110
## 2058 16 88.5 87 15.05 178.8 108
## 2059 0 215.3 58 36.60 242.4 91
## 2060 0 269.2 104 45.76 193.8 144
## 2061 25 203.8 118 34.65 267.1 48
## 2062 34 268.4 112 45.63 222.2 108
## 2063 0 159.1 104 27.05 269.8 106
## 2064 0 114.4 122 19.45 127.7 154
## 2065 0 138.9 65 23.61 208.9 109
## 2066 0 186.0 55 31.62 237.4 105
## 2067 26 170.4 91 28.97 254.5 90
## 2068 0 164.5 95 27.97 230.9 87
## 2069 0 168.6 121 28.66 168.6 94
## 2070 0 261.2 119 44.40 250.8 105
## 2071 0 190.5 91 32.39 178.4 75
## 2072 0 181.1 121 30.79 314.4 109
## 2073 0 177.1 131 30.11 114.7 122
## 2074 0 160.5 114 27.29 240.5 103
## 2075 0 134.7 116 22.90 295.3 98
## 2076 28 198.2 107 33.69 139.1 123
## 2077 0 228.9 134 38.91 255.7 71
## 2078 0 241.7 137 41.09 135.8 100
## 2079 0 131.1 108 22.29 176.2 81
## 2080 0 234.1 101 39.80 200.2 121
## 2081 0 200.1 72 34.02 300.9 120
## 2082 0 154.0 107 26.18 94.4 114
## 2083 23 224.2 106 38.11 189.6 100
## 2084 0 148.3 83 25.21 181.6 79
## 2085 24 174.6 76 29.68 176.6 114
## 2086 0 138.5 110 23.55 153.2 86
## 2087 0 109.0 69 18.53 265.8 98
## 2088 0 162.3 99 27.59 212.5 95
## 2089 0 210.8 84 35.84 189.6 98
## 2090 0 142.4 107 24.21 318.7 78
## 2091 37 223.5 104 38.00 235.1 99
## 2092 0 182.5 65 31.03 232.1 96
## 2093 0 219.6 97 37.33 141.1 144
## 2094 0 193.6 66 32.91 238.2 82
## 2095 0 192.4 111 32.71 156.9 87
## 2096 0 236.2 122 40.15 189.4 110
## 2097 28 233.2 88 39.64 113.3 102
## 2098 0 158.8 53 27.00 188.5 132
## 2099 0 126.1 112 21.44 274.7 126
## 2100 0 290.4 108 49.37 253.9 92
## 2101 30 60.6 113 10.30 165.9 96
## 2102 0 148.4 95 25.23 193.8 98
## 2103 0 246.5 108 41.91 216.3 89
## 2104 0 298.1 112 50.68 201.3 100
## 2105 0 119.3 82 20.28 185.1 111
## 2106 0 242.5 82 41.23 232.9 97
## 2107 18 222.1 89 37.76 160.6 109
## 2108 0 236.2 135 40.15 273.9 88
## 2109 0 144.2 87 24.51 212.2 74
## 2110 19 154.6 100 26.28 241.6 109
## 2111 25 137.4 100 23.36 176.7 83
## 2112 0 103.7 93 17.63 127.0 107
## 2113 0 136.6 112 23.22 209.4 81
## 2114 0 289.8 101 49.27 255.6 115
## 2115 0 260.9 85 44.35 168.5 103
## 2116 0 196.2 129 33.35 176.5 86
## 2117 0 195.6 71 33.25 126.4 74
## 2118 0 222.2 96 37.77 162.5 111
## 2119 0 172.9 119 29.39 183.0 86
## 2120 0 249.8 109 42.47 242.4 106
## 2121 0 154.5 84 26.27 216.2 91
## 2122 0 90.4 108 15.37 276.2 77
## 2123 27 268.8 78 45.70 246.6 89
## 2124 0 106.1 95 18.04 157.6 113
## 2125 0 27.0 117 4.59 160.9 97
## 2126 27 140.1 59 23.82 223.4 111
## 2127 0 245.0 112 41.65 180.4 91
## 2128 0 196.7 85 33.44 205.9 74
## 2129 26 131.2 98 22.30 106.5 97
## 2130 23 149.6 96 25.43 239.8 124
## 2131 0 239.8 70 40.77 251.8 99
## 2132 31 142.1 77 24.16 193.0 97
## 2133 0 115.4 137 19.62 178.7 70
## 2134 31 193.0 99 32.81 224.8 87
## 2135 0 206.1 49 35.04 224.6 115
## 2136 0 160.3 138 27.25 221.3 92
## 2137 0 199.9 108 33.98 288.4 80
## 2138 0 213.1 105 36.23 206.2 108
## 2139 0 178.3 102 30.31 235.0 120
## 2140 0 252.3 120 42.89 207.0 112
## 2141 0 197.7 64 33.61 136.7 126
## 2142 29 111.1 105 18.89 217.9 101
## 2143 0 96.5 86 16.41 210.2 133
## 2144 0 156.9 109 26.67 122.2 87
## 2145 0 123.3 78 20.96 170.0 85
## 2146 0 193.7 108 32.93 183.2 124
## 2147 0 206.9 134 35.17 167.7 105
## 2148 0 249.8 96 42.47 261.9 92
## 2149 0 144.0 102 24.48 224.7 73
## 2150 33 299.5 83 50.92 163.4 84
## 2151 0 226.0 127 38.42 304.6 83
## 2152 0 137.6 106 23.39 143.5 94
## 2153 26 211.7 121 35.99 139.2 123
## 2154 0 89.7 80 15.25 179.8 81
## 2155 0 197.6 126 33.59 246.5 112
## 2156 0 270.0 102 45.90 256.6 111
## 2157 0 224.7 116 38.20 192.0 79
## 2158 0 194.3 99 33.03 123.6 133
## 2159 0 47.7 89 8.11 264.4 95
## 2160 0 190.1 105 32.32 182.2 116
## 2161 0 89.5 94 15.22 339.9 106
## 2162 0 182.6 83 31.04 154.5 111
## 2163 35 205.5 86 34.94 298.5 119
## 2164 0 231.5 82 39.36 266.9 97
## 2165 0 251.3 69 42.72 252.5 96
## 2166 0 171.2 103 29.10 243.5 121
## 2167 0 197.9 89 33.64 251.0 113
## 2168 0 134.8 94 22.92 204.1 106
## 2169 0 191.4 114 32.54 168.5 138
## 2170 0 174.5 65 29.67 197.4 116
## 2171 0 177.4 125 30.16 226.2 104
## 2172 0 182.1 89 30.96 211.5 104
## 2173 0 222.4 85 37.81 165.4 76
## 2174 0 47.8 120 8.13 178.9 123
## 2175 0 121.8 97 20.71 89.3 97
## 2176 0 143.5 121 24.40 189.3 111
## 2177 0 164.9 68 28.03 210.4 86
## 2178 0 193.6 58 32.91 148.7 115
## 2179 0 101.1 121 17.19 263.2 110
## 2180 24 92.3 88 15.69 193.1 98
## 2181 0 168.9 128 28.71 123.9 99
## 2182 29 219.2 102 37.26 206.0 109
## 2183 37 178.1 130 30.28 242.8 103
## 2184 0 146.5 101 24.91 284.5 142
## 2185 31 172.3 116 29.29 266.2 91
## 2186 0 190.9 143 32.45 149.7 72
## 2187 0 232.1 74 39.46 327.1 88
## 2188 0 169.2 124 28.76 173.3 108
## 2189 0 123.8 107 21.05 319.0 125
## 2190 0 96.0 117 16.32 177.0 68
## 2191 27 93.4 106 15.88 252.0 92
## 2192 0 90.6 130 15.40 170.6 100
## 2193 0 152.9 81 25.99 256.6 82
## 2194 0 257.9 92 43.84 211.6 71
## 2195 29 85.2 98 14.48 230.4 85
## 2196 34 160.0 72 27.20 184.5 119
## 2197 10 182.9 54 31.09 292.4 68
## 2198 0 216.2 67 36.75 222.2 133
## 2199 0 261.7 105 44.49 181.8 107
## 2200 0 241.2 105 41.00 174.3 85
## 2201 0 177.2 142 30.12 123.5 88
## 2202 0 89.5 128 15.22 180.8 137
## 2203 16 200.3 72 34.05 197.8 91
## 2204 0 145.0 103 24.65 294.3 93
## 2205 0 159.5 99 27.12 119.7 149
## 2206 0 151.8 106 25.81 138.0 126
## 2207 0 176.2 120 29.95 236.0 138
## 2208 0 152.1 95 25.86 121.0 105
## 2209 0 161.3 122 27.42 220.6 95
## 2210 0 171.7 78 29.19 144.5 86
## 2211 0 278.9 110 47.41 190.2 67
## 2212 27 213.0 121 36.21 226.2 101
## 2213 36 242.9 67 41.29 170.9 59
## 2214 0 217.2 121 36.92 303.4 73
## 2215 0 175.9 111 29.90 285.2 115
## 2216 0 303.2 133 51.54 170.5 86
## 2217 0 238.9 107 40.61 187.2 88
## 2218 22 189.6 42 32.23 179.0 137
## 2219 0 133.3 94 22.66 247.8 126
## 2220 28 92.7 107 15.76 127.8 86
## 2221 0 177.2 72 30.12 248.9 105
## 2222 0 184.5 103 31.37 209.0 86
## 2223 24 176.1 109 29.94 159.4 81
## 2224 0 204.7 108 34.80 143.1 105
## 2225 0 143.6 80 24.41 134.3 65
## 2226 0 179.3 93 30.48 188.8 65
## 2227 0 137.3 100 23.34 212.2 129
## 2228 0 237.8 92 40.43 223.5 155
## 2229 0 203.7 92 34.63 216.4 97
## 2230 25 191.3 95 32.52 250.7 136
## 2231 0 209.1 141 35.55 205.0 93
## 2232 33 88.8 104 15.10 109.6 94
## 2233 0 97.2 88 16.52 155.6 85
## 2234 0 137.9 96 23.44 192.6 63
## 2235 0 224.3 112 38.13 185.7 103
## 2236 13 207.6 65 35.29 152.7 77
## 2237 0 268.1 95 45.58 120.5 126
## 2238 0 166.7 61 28.34 179.3 88
## 2239 0 267.1 104 45.41 180.4 131
## 2240 0 181.8 108 30.91 198.6 148
## 2241 0 147.1 80 25.01 199.7 100
## 2242 29 37.7 115 6.41 144.1 111
## 2243 0 185.0 88 31.45 224.9 98
## 2244 0 156.4 108 26.59 171.0 116
## 2245 0 239.3 84 40.68 195.7 85
## 2246 29 215.5 129 36.64 161.9 77
## 2247 0 134.9 70 22.93 211.5 74
## 2248 0 194.8 116 33.12 209.9 93
## 2249 20 239.1 105 40.65 209.1 111
## 2250 0 92.6 85 15.74 177.6 92
## 2251 0 209.4 133 35.60 211.5 121
## 2252 0 197.6 83 33.59 164.5 86
## 2253 0 17.6 121 2.99 161.7 125
## 2254 0 62.9 112 10.69 202.9 111
## 2255 28 202.3 97 34.39 69.2 84
## 2256 0 136.1 116 23.14 181.4 93
## 2257 0 207.0 109 35.19 167.4 80
## 2258 33 207.9 95 35.34 233.5 88
## 2259 0 276.5 122 47.01 195.6 79
## 2260 31 313.8 87 53.35 147.7 103
## 2261 25 288.5 114 49.05 203.4 74
## 2262 0 210.9 85 35.85 329.3 69
## 2263 35 64.9 76 11.03 184.1 91
## 2264 26 243.5 137 41.40 236.8 108
## 2265 0 197.0 97 33.49 203.7 107
## 2266 31 278.0 88 47.26 253.2 65
## 2267 37 219.9 102 37.38 222.1 77
## 2268 0 313.2 103 53.24 216.3 151
## 2269 16 145.7 88 24.77 191.0 129
## 2270 37 75.8 102 12.89 173.6 147
## 2271 0 195.9 86 33.30 228.6 82
## 2272 0 132.0 95 22.44 231.2 74
## 2273 0 124.0 102 21.08 262.1 101
## 2274 0 171.9 98 29.22 159.0 127
## 2275 31 249.4 70 42.40 209.5 59
## 2276 0 228.4 100 38.83 145.1 108
## 2277 0 168.6 71 28.66 205.1 48
## 2278 0 123.7 138 21.03 248.5 105
## 2279 0 178.7 61 30.38 252.3 84
## 2280 0 113.2 86 19.24 185.5 97
## 2281 25 142.4 106 24.21 313.7 109
## 2282 38 204.2 57 34.71 205.9 92
## 2283 0 149.7 71 25.45 212.5 97
## 2284 0 227.1 116 38.61 120.5 103
## 2285 0 155.3 75 26.40 169.9 87
## 2286 0 156.4 105 26.59 185.5 98
## 2287 42 148.7 105 25.28 167.3 105
## 2288 0 271.7 112 46.19 155.1 96
## 2289 0 193.7 74 32.93 126.9 84
## 2290 23 245.5 54 41.74 292.7 83
## 2291 0 245.3 108 41.70 259.9 140
## 2292 0 196.1 87 33.34 236.8 66
## 2293 0 134.1 112 22.80 195.1 104
## 2294 31 225.0 78 38.25 191.3 79
## 2295 0 189.7 100 32.25 115.9 133
## 2296 0 142.9 96 24.29 177.9 96
## 2297 0 175.6 80 29.85 238.0 94
## 2298 0 92.4 109 15.71 219.0 115
## 2299 0 92.8 92 15.78 159.6 87
## 2300 27 221.7 100 37.69 236.1 70
## 2301 0 159.6 94 27.13 276.8 118
## 2302 0 144.5 107 24.57 180.5 85
## 2303 0 159.1 100 27.05 202.5 90
## 2304 0 49.9 123 8.48 150.7 81
## 2305 32 116.9 120 19.87 232.4 97
## 2306 0 150.0 98 25.50 89.8 95
## 2307 0 254.4 120 43.25 159.3 92
## 2308 33 270.7 53 46.02 200.7 116
## 2309 0 207.0 112 35.19 173.8 96
## 2310 0 145.3 89 24.70 303.8 93
## 2311 25 230.7 102 39.22 233.8 109
## 2312 0 151.5 104 25.76 242.2 114
## 2313 0 146.1 57 24.84 196.2 97
## 2314 0 256.0 111 43.52 187.4 61
## 2315 35 200.2 105 34.03 244.4 88
## 2316 0 150.7 52 25.62 246.7 96
## 2317 0 186.0 107 31.62 66.0 94
## 2318 0 212.9 110 36.19 187.0 69
## 2319 0 194.8 133 33.12 213.4 73
## 2320 30 272.5 105 46.33 253.0 83
## 2321 0 135.1 109 22.97 205.2 99
## 2322 0 154.6 56 26.28 263.0 84
## 2323 35 230.5 116 39.19 265.8 130
## 2324 0 165.4 84 28.12 203.7 107
## 2325 0 143.3 120 24.36 230.7 111
## 2326 0 271.1 108 46.09 237.0 122
## 2327 0 253.5 104 43.10 117.9 123
## 2328 0 167.1 77 28.41 131.8 79
## 2329 0 168.3 96 28.61 87.6 91
## 2330 0 104.7 115 17.80 249.8 144
## 2331 0 135.4 101 23.02 238.1 124
## 2332 34 191.4 102 32.54 361.8 96
## 2333 0 158.7 90 26.98 198.4 117
## 2334 0 144.8 84 24.62 164.9 141
## 2335 0 98.8 97 16.80 146.9 68
## 2336 0 157.8 71 26.83 203.2 114
## 2337 37 163.0 107 27.71 312.8 118
## 2338 0 181.6 119 30.87 335.7 118
## 2339 0 129.0 78 21.93 188.0 116
## 2340 0 86.0 83 14.62 260.7 86
## 2341 17 193.9 71 32.96 189.8 81
## 2342 0 109.4 107 18.60 244.7 102
## 2343 0 188.9 105 32.11 153.6 116
## 2344 0 179.9 72 30.58 170.0 98
## 2345 0 183.4 98 31.18 281.3 95
## 2346 0 288.1 101 48.98 137.9 93
## 2347 0 169.2 96 28.76 149.9 83
## 2348 29 195.5 113 33.24 171.6 96
## 2349 20 264.4 102 44.95 219.6 123
## 2350 0 207.7 116 35.31 210.6 99
## 2351 0 169.5 151 28.82 112.9 84
## 2352 0 141.5 102 24.06 263.0 94
## 2353 0 154.8 71 26.32 244.0 73
## 2354 0 133.5 51 22.70 219.6 96
## 2355 0 273.2 85 46.44 211.1 82
## 2356 0 224.6 94 38.18 225.9 120
## 2357 0 273.8 97 46.55 289.7 106
## 2358 0 159.5 103 27.12 275.5 90
## 2359 0 104.0 92 17.68 197.0 125
## 2360 31 115.4 90 19.62 217.4 78
## 2361 0 222.1 107 37.76 199.4 102
## 2362 0 116.4 98 19.79 95.6 74
## 2363 0 217.7 118 37.01 231.7 128
## 2364 0 129.4 84 22.00 157.3 89
## 2365 33 161.8 73 27.51 273.0 58
## 2366 29 198.8 122 33.80 238.6 114
## 2367 45 147.8 85 25.13 147.4 93
## 2368 0 262.3 114 44.59 198.9 96
## 2369 0 246.4 83 41.89 160.3 88
## 2370 0 174.3 123 29.63 140.2 124
## 2371 0 183.4 111 31.18 168.8 98
## 2372 0 191.9 95 32.62 200.9 101
## 2373 0 187.8 109 31.93 154.6 97
## 2374 0 259.7 106 44.15 152.7 116
## 2375 0 180.4 123 30.67 194.0 98
## 2376 0 51.8 107 8.81 230.2 104
## 2377 0 303.9 106 51.66 232.2 54
## 2378 36 123.7 125 21.03 172.6 106
## 2379 0 206.2 122 35.05 164.5 94
## 2380 0 164.3 92 27.93 233.7 107
## 2381 0 228.6 117 38.86 132.8 123
## 2382 22 200.4 80 34.07 131.1 84
## 2383 0 154.3 107 26.23 183.0 111
## 2384 30 122.9 93 20.89 233.5 91
## 2385 0 220.8 100 37.54 265.7 106
## 2386 0 214.6 78 36.48 251.7 98
## 2387 0 202.0 123 34.34 184.3 78
## 2388 32 209.5 108 35.62 109.6 64
## 2389 0 297.9 141 50.64 238.1 107
## 2390 0 212.8 102 36.18 189.8 137
## 2391 0 145.6 102 24.75 284.7 111
## 2392 19 152.9 87 25.99 213.2 99
## 2393 0 125.4 158 21.32 269.1 83
## 2394 25 138.3 96 23.51 80.6 79
## 2395 0 189.3 157 32.18 174.9 70
## 2396 0 199.3 86 33.88 194.8 102
## 2397 0 247.5 99 42.08 108.5 118
## 2398 0 294.9 71 50.13 192.8 78
## 2399 0 175.4 99 29.82 155.3 83
## 2400 0 179.4 70 30.50 143.0 93
## 2401 39 126.8 94 21.56 293.6 115
## 2402 0 239.7 87 40.75 281.7 92
## 2403 33 143.0 101 24.31 212.2 102
## 2404 0 91.9 109 15.62 198.4 111
## 2405 0 210.4 80 35.77 176.6 96
## 2406 29 201.3 130 34.22 203.7 115
## 2407 0 145.6 59 24.75 287.9 131
## 2408 31 203.5 82 34.60 200.3 72
## 2409 0 232.4 76 39.51 153.3 103
## 2410 8 86.5 119 14.71 285.2 97
## 2411 0 109.9 102 18.68 220.8 114
## 2412 0 156.0 88 26.52 276.1 81
## 2413 0 326.3 112 55.47 165.1 110
## 2414 0 195.0 58 33.15 198.5 88
## 2415 0 110.0 91 18.70 147.3 75
## 2416 0 147.1 119 25.01 161.0 111
## 2417 0 156.0 141 26.52 256.8 72
## 2418 0 98.2 99 16.69 186.7 85
## 2419 0 210.6 120 35.80 153.1 84
## 2420 0 239.9 120 40.78 261.6 88
## 2421 0 159.9 94 27.18 179.9 95
## 2422 0 197.8 66 33.63 133.9 119
## 2423 36 115.4 98 19.62 166.2 83
## 2424 0 123.8 113 21.05 236.2 77
## 2425 15 117.6 97 19.99 196.3 126
## 2426 28 105.3 82 17.90 197.4 109
## 2427 0 111.7 121 18.99 237.3 119
## 2428 0 159.3 104 27.08 202.3 98
## 2429 0 81.7 123 13.89 210.2 108
## 2430 21 238.0 88 40.46 209.6 84
## 2431 40 128.1 99 21.78 247.7 78
## 2432 31 171.2 104 29.10 193.6 74
## 2433 0 109.0 88 18.53 259.3 120
## 2434 0 220.0 114 37.40 207.7 76
## 2435 0 55.6 65 9.45 242.7 121
## 2436 23 286.6 79 48.72 315.3 102
## 2437 0 207.6 96 35.29 229.0 112
## 2438 31 109.6 108 18.63 249.3 119
## 2439 0 197.2 113 33.52 242.3 116
## 2440 0 175.7 120 29.87 168.6 90
## 2441 0 205.2 115 34.88 184.8 137
## 2442 13 193.1 104 32.83 111.6 98
## 2443 34 232.6 121 39.54 153.2 115
## 2444 0 102.7 89 17.46 149.3 100
## 2445 31 263.1 70 44.73 279.3 118
## 2446 0 197.0 79 33.49 201.0 114
## 2447 0 169.3 90 28.78 156.0 138
## 2448 0 201.5 123 34.26 129.2 110
## 2449 0 251.0 119 42.67 91.2 96
## 2450 0 230.4 117 39.17 225.0 101
## 2451 0 109.8 120 18.67 230.5 86
## 2452 0 279.5 118 47.52 203.2 113
## 2453 0 173.4 107 29.48 222.0 84
## 2454 38 214.4 93 36.45 211.7 57
## 2455 0 96.1 103 16.34 246.8 134
## 2456 0 101.4 145 17.24 249.1 116
## 2457 0 232.5 74 39.53 181.8 142
## 2458 45 174.5 120 29.67 217.5 95
## 2459 23 224.0 126 38.08 233.5 89
## 2460 0 211.1 99 35.89 176.7 66
## 2461 0 109.2 96 18.56 153.1 80
## 2462 0 220.0 95 37.40 179.9 121
## 2463 0 181.4 98 30.84 164.5 98
## 2464 11 180.7 82 30.72 173.7 90
## 2465 32 96.5 109 16.41 145.8 109
## 2466 0 183.5 93 31.20 170.5 80
## 2467 38 107.9 90 18.34 140.4 94
## 2468 0 161.0 96 27.37 244.9 82
## 2469 41 146.8 128 24.96 285.6 96
## 2470 0 149.2 146 25.36 161.9 109
## 2471 0 227.8 124 38.73 169.5 112
## 2472 23 160.3 87 27.25 202.4 101
## 2473 0 137.8 120 23.43 225.8 110
## 2474 40 141.7 87 24.09 268.3 89
## 2475 22 196.4 115 33.39 150.3 109
## 2476 0 175.2 74 29.78 151.7 79
## 2477 0 146.8 133 24.96 171.7 73
## 2478 0 173.9 111 29.56 287.4 105
## 2479 34 305.2 80 51.88 156.5 109
## 2480 29 162.3 91 27.59 279.3 79
## 2481 0 150.0 106 25.50 293.8 123
## 2482 0 197.5 114 33.58 206.9 119
## 2483 0 240.2 67 40.83 153.0 98
## 2484 30 186.2 117 31.65 286.7 76
## 2485 39 116.9 127 19.87 276.5 88
## 2486 17 236.7 95 40.24 263.5 56
## 2487 0 173.2 93 29.44 131.2 80
## 2488 0 152.2 114 25.87 137.2 102
## 2489 0 181.3 135 30.82 182.4 108
## 2490 0 167.8 72 28.53 211.0 99
## 2491 0 175.4 125 29.82 250.7 87
## 2492 0 87.6 112 14.89 266.9 107
## 2493 0 203.3 45 34.56 141.9 87
## 2494 0 92.6 95 15.74 161.9 70
## 2495 21 262.9 135 44.69 149.5 96
## 2496 0 160.8 91 27.34 155.8 82
## 2497 22 141.8 116 24.11 167.3 99
## 2498 32 50.6 62 8.60 201.4 87
## 2499 0 134.9 59 22.93 156.0 152
## 2500 0 252.1 110 42.86 226.1 103
## 2501 41 215.5 95 36.64 241.8 92
## 2502 0 124.8 66 21.22 257.2 85
## 2503 0 178.7 114 30.38 271.0 96
## 2504 0 183.2 131 31.14 179.2 73
## 2505 0 167.5 96 28.48 139.1 104
## 2506 0 147.1 105 25.01 200.0 135
## 2507 0 230.1 107 39.12 212.0 120
## 2508 0 135.8 125 23.09 163.2 88
## 2509 20 205.7 98 34.97 136.1 107
## 2510 0 73.8 105 12.55 143.4 114
## 2511 0 189.3 119 32.18 233.5 112
## 2512 0 147.2 115 25.02 161.9 123
## 2513 42 137.3 95 23.34 184.2 94
## 2514 0 70.7 125 12.02 211.0 113
## 2515 0 204.6 117 34.78 205.2 94
## 2516 0 123.1 88 20.93 213.9 84
## 2517 19 129.7 115 22.05 160.8 101
## 2518 0 198.7 70 33.78 209.5 106
## 2519 0 145.1 116 24.67 233.7 82
## 2520 0 135.2 101 22.98 152.5 79
## 2521 28 124.7 105 21.20 250.4 78
## 2522 0 215.9 76 36.70 145.4 118
## 2523 0 119.2 142 20.26 228.4 139
## 2524 0 144.3 116 24.53 156.4 74
## 2525 0 235.2 121 39.98 220.6 87
## 2526 0 174.0 57 29.58 281.1 118
## 2527 0 115.0 65 19.55 122.3 96
## 2528 0 151.7 93 25.79 178.5 77
## 2529 0 153.1 102 26.03 234.1 77
## 2530 0 218.6 93 37.16 149.9 130
## 2531 0 265.2 122 45.08 178.7 102
## 2532 0 143.3 134 24.36 180.5 113
## 2533 0 190.3 98 32.35 252.7 70
## 2534 0 184.7 60 31.40 262.0 73
## 2535 0 115.3 99 19.60 224.7 117
## 2536 0 113.0 108 19.21 169.2 107
## 2537 0 294.2 100 50.01 232.5 53
## 2538 0 215.6 86 36.65 167.8 59
## 2539 0 128.8 80 21.90 208.7 93
## 2540 28 211.2 117 35.90 312.5 98
## 2541 24 71.2 82 12.10 181.6 103
## 2542 0 94.9 121 16.13 253.2 83
## 2543 0 259.4 116 44.10 269.7 109
## 2544 28 215.8 123 36.69 285.2 76
## 2545 0 97.5 113 16.58 268.1 69
## 2546 0 146.5 121 24.91 169.9 125
## 2547 0 157.9 72 26.84 234.0 93
## 2548 0 139.9 117 23.78 223.6 96
## 2549 21 153.2 112 26.04 263.3 110
## 2550 0 103.5 134 17.60 319.3 111
## 2551 0 185.8 119 31.59 192.3 83
## 2552 0 129.5 56 22.02 354.2 118
## 2553 0 236.6 91 40.22 220.9 146
## 2554 0 260.4 107 44.27 208.2 104
## 2555 0 167.3 100 28.44 163.9 79
## 2556 0 182.2 101 30.97 212.3 95
## 2557 0 113.0 80 19.21 150.1 87
## 2558 0 185.7 133 31.57 235.1 149
## 2559 0 136.2 114 23.15 165.1 118
## 2560 29 222.6 81 37.84 190.3 109
## 2561 0 197.3 67 33.54 264.5 106
## 2562 33 141.4 130 24.04 186.4 114
## 2563 0 208.0 69 35.36 95.1 94
## 2564 0 118.5 92 20.15 177.8 109
## 2565 0 153.2 65 26.04 229.7 90
## 2566 0 108.3 87 18.41 183.6 116
## 2567 0 168.6 92 28.66 187.7 107
## 2568 0 247.2 116 42.02 303.7 103
## 2569 0 224.2 81 38.11 243.3 90
## 2570 0 166.9 98 28.37 221.8 77
## 2571 43 118.4 100 20.13 144.1 108
## 2572 0 190.9 62 32.45 226.6 53
## 2573 0 317.8 60 54.03 152.9 100
## 2574 0 312.0 112 53.04 180.0 109
## 2575 0 146.0 121 24.82 203.0 141
## 2576 0 131.6 95 22.37 179.3 109
## 2577 33 193.4 105 32.88 231.6 79
## 2578 0 185.1 92 31.47 213.0 85
## 2579 0 193.3 106 32.86 169.0 150
## 2580 0 146.4 107 24.89 196.5 99
## 2581 0 71.2 90 12.10 304.4 119
## 2582 0 123.2 104 20.94 190.0 117
## 2583 0 205.0 90 34.85 140.9 114
## 2584 0 128.7 78 21.88 240.8 133
## 2585 0 216.9 78 36.87 211.0 115
## 2586 0 150.0 122 25.50 218.5 116
## 2587 0 164.1 106 27.90 206.0 56
## 2588 0 212.0 113 36.04 226.6 128
## 2589 37 167.3 99 28.44 194.7 99
## 2590 0 154.4 130 26.25 217.2 101
## 2591 30 177.3 95 30.14 211.8 102
## 2592 0 231.2 141 39.30 267.8 136
## 2593 0 202.9 100 34.49 178.6 46
## 2594 0 149.6 120 25.43 200.7 85
## 2595 0 345.3 81 58.70 203.4 106
## 2596 0 264.9 80 45.03 281.2 66
## 2597 0 122.0 92 20.74 138.3 114
## 2598 0 177.2 88 30.12 270.4 99
## 2599 0 133.1 80 22.63 206.5 120
## 2600 0 225.1 90 38.27 279.5 127
## 2601 0 208.4 120 35.43 174.4 99
## 2602 30 173.1 107 29.43 247.2 101
## 2603 0 162.4 131 27.61 167.0 102
## 2604 13 281.2 93 47.80 178.2 101
## 2605 0 208.3 89 35.41 169.4 67
## 2606 38 243.4 126 41.38 273.8 109
## 2607 0 224.2 89 38.11 314.9 121
## 2608 0 189.3 100 32.18 239.3 107
## 2609 46 168.3 124 28.61 270.9 103
## 2610 24 232.9 90 39.59 152.1 94
## 2611 37 155.0 98 26.35 142.4 105
## 2612 0 154.4 130 26.25 203.8 90
## 2613 0 234.7 102 39.90 195.7 110
## 2614 0 240.0 88 40.80 141.0 117
## 2615 0 298.4 78 50.73 270.5 142
## 2616 0 166.0 102 28.22 236.1 97
## 2617 33 111.6 140 18.97 213.3 111
## 2618 0 174.5 98 29.67 180.2 103
## 2619 27 175.5 137 29.84 210.6 60
## 2620 35 157.5 109 26.78 189.6 67
## 2621 0 206.2 113 35.05 176.4 102
## 2622 35 207.5 138 35.28 201.0 116
## 2623 16 144.8 105 24.62 206.2 111
## 2624 0 258.8 85 44.00 129.5 114
## 2625 0 226.9 106 38.57 182.2 77
## 2626 0 152.9 119 25.99 171.2 107
## 2627 27 156.7 51 26.64 236.5 118
## 2628 0 150.8 85 25.64 295.9 88
## 2629 0 221.0 126 37.57 204.5 110
## 2630 32 322.4 92 54.81 283.2 107
## 2631 0 153.6 148 26.11 262.1 87
## 2632 22 215.1 91 36.57 138.9 102
## 2633 35 174.4 108 29.65 196.7 100
## 2634 0 180.5 126 30.69 230.0 98
## 2635 0 123.1 106 20.93 182.0 102
## 2636 0 165.7 94 28.17 257.4 80
## 2637 0 200.2 92 34.03 118.7 87
## 2638 0 154.8 82 26.32 287.7 109
## 2639 0 125.4 116 21.32 261.5 95
## 2640 33 184.2 111 31.31 312.6 89
## 2641 24 274.7 99 46.70 193.5 118
## 2642 39 142.0 140 24.14 241.6 89
## 2643 21 151.5 99 25.76 147.8 89
## 2644 0 124.8 114 21.22 133.0 121
## 2645 0 179.2 85 30.46 222.9 66
## 2646 0 246.4 110 41.89 182.0 98
## 2647 0 232.7 114 39.56 186.4 123
## 2648 0 288.0 120 48.96 255.8 90
## 2649 23 170.8 145 29.04 236.7 93
## 2650 0 216.1 114 36.74 197.5 107
## 2651 0 138.7 100 23.58 215.4 58
## 2652 0 210.7 112 35.82 238.7 73
## 2653 0 181.8 117 30.91 158.1 91
## 2654 30 61.6 103 10.47 255.1 110
## 2655 0 207.7 85 35.31 196.7 112
## 2656 0 219.2 73 37.26 167.0 65
## 2657 0 227.0 122 38.59 258.7 111
## 2658 0 245.9 73 41.80 240.1 87
## 2659 0 257.3 84 43.74 184.8 115
## 2660 0 121.1 130 20.59 216.0 86
## 2661 0 301.5 136 51.26 257.7 72
## 2662 0 233.9 96 39.76 218.9 111
## 2663 0 99.6 108 16.93 308.7 102
## 2664 0 169.8 123 28.87 183.1 94
## 2665 26 198.8 115 33.80 166.6 67
## 2666 0 116.2 86 19.75 229.7 127
## 2667 0 255.9 128 43.50 140.9 92
## 2668 27 187.7 84 31.91 221.0 147
## 2669 21 195.9 91 33.30 213.9 84
## 2670 0 129.4 97 22.00 185.4 101
## 2671 12 221.0 108 37.57 151.0 118
## 2672 0 140.5 92 23.89 186.8 96
## 2673 0 277.9 123 47.24 155.8 112
## 2674 0 224.9 105 38.23 250.0 101
## 2675 0 109.1 117 18.55 217.4 124
## 2676 0 207.8 109 35.33 123.5 112
## 2677 0 205.9 96 35.00 257.1 94
## 2678 0 308.6 139 52.46 150.8 94
## 2679 0 242.6 69 41.24 209.0 117
## 2680 0 229.6 82 39.03 138.1 103
## 2681 28 166.0 62 28.22 233.9 88
## 2682 0 144.8 126 24.62 200.6 82
## 2683 0 106.1 77 18.04 123.5 100
## 2684 0 221.8 84 37.71 166.0 125
## 2685 0 204.6 98 34.78 212.5 90
## 2686 0 213.5 93 36.30 166.6 114
## 2687 44 152.0 95 25.84 274.9 73
## 2688 29 260.8 81 44.34 163.7 112
## 2689 0 166.4 117 28.29 317.0 129
## 2690 0 177.9 83 30.24 167.3 84
## 2691 0 235.1 97 39.97 196.8 104
## 2692 0 186.8 92 31.76 173.7 123
## 2693 0 268.4 81 45.63 174.4 115
## 2694 0 192.1 95 32.66 249.8 94
## 2695 0 240.7 82 40.92 269.4 85
## 2696 0 179.9 113 30.58 149.8 112
## 2697 0 314.1 86 53.40 222.4 99
## 2698 41 162.0 82 27.54 324.7 77
## 2699 0 175.8 89 29.89 274.3 119
## 2700 0 109.4 91 18.60 207.5 111
## 2701 0 255.1 124 43.37 230.6 110
## 2702 0 208.7 84 35.48 173.3 88
## 2703 20 214.6 108 36.48 96.6 82
## 2704 0 49.2 121 8.36 143.9 136
## 2705 0 141.3 133 24.02 134.9 96
## 2706 0 253.2 89 43.04 237.9 114
## 2707 0 206.0 128 35.02 198.1 71
## 2708 0 40.4 105 6.87 172.4 83
## 2709 0 291.2 104 49.50 234.2 132
## 2710 31 71.2 58 12.10 124.7 105
## 2711 0 261.8 69 44.51 245.0 135
## 2712 0 191.3 134 32.52 261.5 113
## 2713 0 133.3 101 22.66 255.5 127
## 2714 24 183.6 138 31.21 203.8 90
## 2715 30 155.2 116 26.38 195.5 50
## 2716 28 283.1 93 48.13 185.4 98
## 2717 50 186.5 94 31.71 178.0 106
## 2718 38 163.3 104 27.76 136.0 114
## 2719 0 203.4 125 34.58 182.9 88
## 2720 19 178.1 110 30.28 212.8 100
## 2721 0 195.9 103 33.30 89.1 95
## 2722 0 295.3 127 50.20 127.4 100
## 2723 0 136.1 82 23.14 156.3 118
## 2724 24 114.1 95 19.40 161.5 86
## 2725 0 279.1 124 47.45 180.5 108
## 2726 0 169.3 111 28.78 139.5 69
## 2727 0 214.4 94 36.45 138.0 149
## 2728 0 255.8 125 43.49 142.7 111
## 2729 0 148.2 71 25.19 285.1 91
## 2730 0 119.3 93 20.28 223.9 103
## 2731 27 192.3 137 32.69 199.9 115
## 2732 0 245.2 91 41.68 217.2 92
## 2733 0 216.2 106 36.75 363.7 86
## 2734 0 172.4 114 29.31 256.6 69
## 2735 30 175.3 107 29.80 153.3 116
## 2736 26 169.0 104 28.73 188.8 104
## 2737 27 2.6 113 0.44 254.0 102
## 2738 0 184.1 143 31.30 211.7 105
## 2739 0 181.9 90 30.92 151.5 87
## 2740 9 160.1 116 27.22 210.0 121
## 2741 0 189.8 122 32.27 173.7 85
## 2742 0 223.2 142 37.94 216.5 114
## 2743 31 216.0 94 36.72 225.1 123
## 2744 0 198.5 124 33.75 266.6 100
## 2745 0 159.5 115 27.12 195.4 118
## 2746 40 105.0 78 17.85 180.6 100
## 2747 0 204.5 108 34.77 162.4 110
## 2748 0 274.0 92 46.58 231.8 82
## 2749 0 158.7 84 26.98 181.7 91
## 2750 0 229.9 116 39.08 202.4 110
## 2751 0 137.8 97 23.43 187.7 118
## 2752 0 179.4 94 30.50 270.4 92
## 2753 39 139.3 101 23.68 178.3 117
## 2754 0 7.8 86 1.33 171.4 100
## 2755 23 183.1 88 31.13 147.4 89
## 2756 0 206.9 79 35.17 262.4 117
## 2757 0 140.0 106 23.80 153.7 101
## 2758 0 179.2 59 30.46 283.3 101
## 2759 0 177.4 136 30.16 240.3 104
## 2760 0 115.6 129 19.65 167.8 104
## 2761 0 237.3 103 40.34 176.7 84
## 2762 0 181.5 116 30.86 187.0 119
## 2763 0 51.5 90 8.76 164.0 98
## 2764 19 155.7 104 26.47 185.4 118
## 2765 23 245.0 88 41.65 265.0 105
## 2766 0 131.7 99 22.39 163.1 109
## 2767 0 111.1 126 18.89 313.4 95
## 2768 9 88.5 100 15.05 324.8 109
## 2769 44 116.0 85 19.72 150.1 120
## 2770 0 155.5 81 26.44 133.1 94
## 2771 30 106.5 65 18.11 225.7 108
## 2772 31 175.2 68 29.78 199.2 73
## 2773 0 154.7 84 26.30 177.8 125
## 2774 34 247.2 105 42.02 225.5 133
## 2775 32 218.4 93 37.13 236.7 132
## 2776 24 227.5 81 38.68 234.9 71
## 2777 30 185.0 117 31.45 249.5 141
## 2778 0 186.8 89 31.76 253.4 51
## 2779 0 158.8 119 27.00 211.8 105
## 2780 0 208.7 150 35.48 212.8 104
## 2781 0 185.9 95 31.60 212.0 98
## 2782 0 222.5 74 37.83 169.7 75
## 2783 0 201.1 101 34.19 170.7 86
## 2784 17 167.9 114 28.54 243.7 93
## 2785 0 239.1 88 40.65 243.5 79
## 2786 0 175.7 109 29.87 211.8 97
## 2787 29 111.2 90 18.90 263.5 98
## 2788 0 87.7 74 14.91 214.8 58
## 2789 0 244.1 99 41.50 246.9 111
## 2790 27 165.0 89 28.05 127.3 118
## 2791 27 127.4 110 21.66 103.3 99
## 2792 0 194.8 106 33.12 292.7 103
## 2793 0 54.7 131 9.30 256.1 105
## 2794 27 283.4 104 48.18 224.1 152
## 2795 0 258.0 112 43.86 246.5 117
## 2796 0 90.5 142 15.39 211.7 75
## 2797 0 235.6 132 40.05 115.9 129
## 2798 0 142.5 82 24.23 231.4 110
## 2799 0 54.0 68 9.18 179.3 96
## 2800 0 214.8 87 36.52 131.0 114
## 2801 0 251.4 118 42.74 196.6 80
## 2802 0 139.0 99 23.63 250.7 108
## 2803 0 117.3 114 19.94 208.7 105
## 2804 0 264.0 108 44.88 132.2 75
## 2805 0 82.6 105 14.04 204.0 99
## 2806 28 175.8 126 29.89 253.6 76
## 2807 0 220.4 100 37.47 211.2 79
## 2808 0 217.0 104 36.89 152.3 83
## 2809 25 129.0 77 21.93 290.0 110
## 2810 0 150.5 106 25.59 152.9 112
## 2811 42 193.3 66 32.86 263.3 85
## 2812 0 189.5 122 32.22 103.8 95
## 2813 33 137.8 95 23.43 235.5 128
## 2814 0 129.3 80 21.98 142.7 101
## 2815 0 115.6 77 19.65 213.6 100
## 2816 23 221.9 114 37.72 254.7 84
## 2817 0 263.7 113 44.83 186.5 103
## 2818 0 61.3 91 10.42 194.4 94
## 2819 0 183.8 113 31.25 164.7 110
## 2820 0 167.4 68 28.46 143.8 74
## 2821 27 154.1 122 26.20 195.3 150
## 2822 0 252.0 101 42.84 170.2 105
## 2823 0 163.1 94 27.73 291.7 108
## 2824 0 198.3 80 33.71 187.0 89
## 2825 0 324.7 48 55.20 236.4 82
## 2826 0 128.3 78 21.81 215.3 120
## 2827 0 187.9 110 31.94 200.5 101
## 2828 0 129.2 71 21.96 214.1 68
## 2829 0 125.5 106 21.34 128.9 96
## 2830 26 257.2 108 43.72 224.3 122
## 2831 0 124.6 90 21.18 146.4 70
## 2832 0 175.1 144 29.77 216.9 69
## 2833 0 124.3 91 21.13 173.4 105
## 2834 0 271.6 130 46.17 156.0 131
## 2835 0 219.9 80 37.38 143.3 117
## 2836 33 183.3 115 31.16 201.4 87
## 2837 0 101.1 119 17.19 214.4 67
## 2838 0 203.3 70 34.56 228.9 97
## 2839 35 175.4 88 29.82 190.0 65
## 2840 0 266.0 97 45.22 214.6 94
## 2841 41 171.6 110 29.17 136.1 78
## 2842 0 78.7 98 13.38 225.6 102
## 2843 20 211.9 110 36.02 215.1 120
## 2844 0 63.7 101 10.83 195.8 95
## 2845 0 173.4 100 29.48 213.7 74
## 2846 0 237.7 98 40.41 207.1 121
## 2847 0 225.9 123 38.40 162.8 106
## 2848 32 173.0 101 29.41 209.4 93
## 2849 0 224.9 102 38.23 143.8 87
## 2850 0 237.7 122 40.41 181.5 91
## 2851 0 137.0 128 23.29 217.0 116
## 2852 0 142.5 109 24.23 176.1 107
## 2853 0 142.4 126 24.21 126.2 118
## 2854 21 147.0 112 24.99 197.3 43
## 2855 0 220.3 124 37.45 188.6 101
## 2856 0 149.2 96 25.36 260.7 116
## 2857 0 204.4 88 34.75 137.5 111
## 2858 0 216.8 77 36.86 207.3 117
## 2859 28 308.0 123 52.36 247.8 128
## 2860 0 58.0 125 9.86 67.5 116
## 2861 0 173.2 80 29.44 236.2 94
## 2862 19 210.3 90 35.75 241.8 87
## 2863 24 58.9 125 10.01 305.5 90
## 2864 0 236.8 102 40.26 167.1 87
## 2865 0 228.9 102 38.91 160.7 136
## 2866 32 90.0 87 15.30 276.3 113
## 2867 0 146.7 128 24.94 106.2 74
## 2868 0 237.3 83 40.34 154.0 65
## 2869 0 162.8 118 27.68 229.6 91
## 2870 20 186.9 114 31.77 256.3 91
## 2871 0 86.1 100 14.64 259.8 113
## 2872 0 212.3 89 36.09 215.4 127
## 2873 0 151.0 98 25.67 120.6 119
## 2874 0 158.6 67 26.96 130.4 96
## 2875 0 296.0 93 50.32 226.4 117
## 2876 32 212.3 77 36.09 251.5 78
## 2877 0 234.4 61 39.85 179.3 111
## 2878 0 176.8 92 30.06 187.5 97
## 2879 19 157.3 123 26.74 257.7 94
## 2880 26 146.6 68 24.92 172.8 67
## 2881 0 260.5 108 44.29 102.4 110
## 2882 20 146.1 98 24.84 277.4 104
## 2883 0 124.5 134 21.17 141.2 78
## 2884 0 209.4 49 35.60 237.4 117
## 2885 0 285.7 44 48.57 167.5 144
## 2886 0 190.9 44 32.45 161.4 109
## 2887 0 144.4 88 24.55 264.6 105
## 2888 50 208.8 130 35.50 132.9 104
## 2889 36 77.6 141 13.19 207.0 60
## 2890 0 271.1 101 46.09 237.4 133
## 2891 0 240.8 104 40.94 144.5 92
## 2892 0 114.8 98 19.52 192.6 101
## 2893 34 138.8 80 23.60 142.0 108
## 2894 27 209.8 112 35.67 155.0 80
## 2895 0 134.9 98 22.93 248.4 130
## 2896 0 164.0 99 27.88 153.1 102
## 2897 0 245.5 130 41.74 192.7 54
## 2898 32 80.3 94 13.65 199.9 124
## 2899 0 90.7 90 15.42 207.5 109
## 2900 36 190.3 115 32.35 256.6 78
## 2901 0 108.6 108 18.46 209.9 126
## 2902 17 89.8 88 15.27 233.2 75
## 2903 15 252.4 106 42.91 187.8 69
## 2904 32 183.4 94 31.18 269.1 120
## 2905 0 183.4 103 31.18 141.9 113
## 2906 0 155.2 100 26.38 135.9 84
## 2907 19 165.8 122 28.19 186.9 89
## 2908 0 209.4 67 35.60 273.8 89
## 2909 0 279.3 104 47.48 201.6 87
## 2910 0 174.1 102 29.60 99.1 118
## 2911 0 175.7 78 29.87 184.6 96
## 2912 0 256.5 87 43.61 222.1 101
## 2913 0 170.2 89 28.93 187.5 83
## 2914 0 139.6 92 23.73 250.2 115
## 2915 34 208.8 119 35.50 142.1 106
## 2916 0 210.1 126 35.72 248.9 108
## 2917 0 113.6 87 19.31 158.6 98
## 2918 0 202.6 89 34.44 163.0 96
## 2919 0 174.4 112 29.65 265.8 122
## 2920 0 210.6 117 35.80 164.2 103
## 2921 0 121.5 88 20.66 253.0 124
## 2922 0 127.8 67 21.73 181.6 112
## 2923 0 135.2 98 22.98 242.0 107
## 2924 0 99.4 62 16.90 275.0 86
## 2925 0 276.9 105 47.07 246.9 94
## 2926 0 163.4 134 27.78 240.1 87
## 2927 0 287.4 116 48.86 235.3 126
## 2928 23 120.5 104 20.49 227.8 115
## 2929 0 184.1 106 31.30 204.9 70
## 2930 0 185.0 84 31.45 232.5 129
## 2931 0 160.9 109 27.35 144.2 152
## 2932 0 207.6 68 35.29 251.6 123
## 2933 0 209.2 134 35.56 0.0 0
## 2934 0 158.4 71 26.93 306.6 66
## 2935 0 149.0 73 25.33 131.0 81
## 2936 0 204.5 63 34.77 208.8 95
## 2937 0 288.8 86 49.10 175.9 87
## 2938 40 108.6 90 18.46 206.4 154
## 2939 0 97.5 129 16.58 260.4 78
## 2940 0 166.5 102 28.31 261.0 103
## 2941 0 156.2 104 26.55 90.0 101
## 2942 31 225.2 89 38.28 256.8 117
## 2943 0 287.4 118 48.86 259.6 84
## 2944 19 175.3 96 29.80 241.3 146
## 2945 0 102.1 75 17.36 219.5 97
## 2946 0 157.9 103 26.84 259.6 90
## 2947 19 146.5 73 24.91 246.4 65
## 2948 0 245.8 116 41.79 286.7 91
## 2949 0 177.7 114 30.21 215.6 110
## 2950 0 250.8 146 42.64 152.5 105
## 2951 0 117.8 100 20.03 199.2 105
## 2952 0 119.7 113 20.35 189.7 84
## 2953 0 242.2 87 41.17 226.1 101
## 2954 0 163.4 83 27.78 249.3 119
## 2955 0 161.0 113 27.37 208.0 134
## 2956 0 128.7 111 21.88 169.5 104
## 2957 0 81.6 94 13.87 268.1 112
## 2958 20 207.7 91 35.31 199.7 113
## 2959 0 128.6 115 21.86 216.2 88
## 2960 0 233.3 65 39.66 209.8 93
## 2961 0 182.1 106 30.96 134.9 106
## 2962 36 168.0 81 28.56 163.2 125
## 2963 0 251.6 88 42.77 175.1 103
## 2964 30 183.8 102 31.25 183.4 123
## 2965 0 256.4 44 43.59 214.5 105
## 2966 0 180.2 134 30.63 97.7 85
## 2967 0 227.8 81 38.73 161.8 97
## 2968 20 147.8 132 25.13 276.8 94
## 2969 0 234.9 136 39.93 270.8 134
## 2970 0 110.9 54 18.85 213.4 82
## 2971 22 124.5 94 21.17 231.7 90
## 2972 0 233.5 81 39.70 187.7 71
## 2973 35 197.3 134 33.54 141.1 99
## 2974 0 58.2 96 9.89 202.1 126
## 2975 0 212.7 72 36.16 225.2 90
## 2976 0 151.5 89 25.76 131.7 78
## 2977 0 146.3 117 24.87 218.7 93
## 2978 0 195.1 100 33.17 148.8 95
## 2979 0 208.9 71 35.51 214.8 92
## 2980 0 135.7 107 23.07 208.4 103
## 2981 0 225.9 86 38.40 275.6 105
## 2982 0 122.2 67 20.77 167.2 62
## 2983 0 153.3 106 26.06 224.5 117
## 2984 0 214.0 117 36.38 192.4 89
## 2985 0 194.8 112 33.12 167.2 85
## 2986 0 206.7 87 35.14 281.1 83
## 2987 12 188.0 105 31.96 151.3 107
## 2988 0 122.3 83 20.79 118.8 94
## 2989 0 259.3 96 44.08 175.2 97
## 2990 0 115.1 114 19.57 211.3 70
## 2991 28 172.9 109 29.39 137.6 94
## 2992 0 156.4 116 26.59 130.4 114
## 2993 24 128.1 104 21.78 143.4 127
## 2994 0 196.6 73 33.42 170.2 79
## 2995 0 227.9 130 38.74 302.6 71
## 2996 31 194.9 63 33.13 191.6 90
## 2997 34 44.9 63 7.63 134.2 82
## 2998 30 262.8 114 44.68 215.8 130
## 2999 0 211.2 70 35.90 252.7 122
## 3000 0 204.0 69 34.68 225.1 110
## 3001 0 223.2 109 37.94 127.5 86
## 3002 0 119.0 82 20.23 187.5 108
## 3003 0 266.1 91 45.24 225.2 79
## 3004 0 134.4 104 22.85 152.4 95
## 3005 0 171.1 78 29.09 257.2 83
## 3006 0 170.5 103 28.99 254.3 77
## 3007 0 178.5 124 30.35 146.9 141
## 3008 0 205.2 145 34.88 154.8 95
## 3009 31 232.8 97 39.58 183.5 111
## 3010 39 239.9 107 40.78 253.8 77
## 3011 0 55.6 97 9.45 288.7 83
## 3012 37 153.5 78 26.10 241.9 108
## 3013 0 109.8 100 18.67 189.6 104
## 3014 0 196.1 89 33.34 185.5 87
## 3015 0 166.8 127 28.36 143.5 121
## 3016 25 113.2 96 19.24 269.9 107
## 3017 0 203.0 92 34.51 150.9 125
## 3018 0 242.8 90 41.28 234.1 80
## 3019 0 156.5 102 26.61 140.2 134
## 3020 0 266.7 105 45.34 158.2 88
## 3021 23 182.0 80 30.94 216.1 85
## 3022 0 85.9 92 14.60 193.9 127
## 3023 33 146.6 87 24.92 114.8 59
## 3024 35 110.5 101 18.79 208.3 81
## 3025 0 118.6 89 20.16 199.6 97
## 3026 22 197.6 105 33.59 80.0 86
## 3027 32 210.3 116 35.75 192.2 83
## 3028 28 220.3 96 37.45 285.8 72
## 3029 0 150.0 98 25.50 232.4 101
## 3030 34 161.7 114 27.49 207.6 115
## 3031 0 191.4 116 32.54 167.4 99
## 3032 0 146.7 83 24.94 148.3 91
## 3033 0 109.4 103 18.60 101.3 111
## 3034 0 144.1 115 24.50 249.8 68
## 3035 42 248.9 93 42.31 170.8 108
## 3036 0 85.7 112 14.57 221.6 70
## 3037 0 214.8 112 36.52 209.7 104
## 3038 0 158.9 137 27.01 242.8 109
## 3039 28 110.0 94 18.70 141.5 76
## 3040 0 152.8 145 25.98 183.6 102
## 3041 0 145.6 103 24.75 197.1 137
## 3042 0 93.3 83 15.86 199.6 114
## 3043 0 216.8 134 36.86 187.8 106
## 3044 0 201.9 101 34.32 154.7 78
## 3045 0 146.4 81 24.89 225.1 80
## 3046 0 272.7 74 46.36 224.9 85
## 3047 0 18.9 92 3.21 258.4 81
## 3048 0 172.8 81 29.38 193.4 90
## 3049 0 190.2 119 32.33 157.1 70
## 3050 0 130.6 83 22.20 208.1 144
## 3051 0 158.4 92 26.93 188.0 117
## 3052 0 166.5 111 28.31 236.2 98
## 3053 0 129.3 103 21.98 202.8 89
## 3054 0 199.3 112 33.88 193.4 120
## 3055 0 185.1 126 31.47 233.0 98
## 3056 0 175.4 80 29.82 197.4 127
## 3057 0 263.4 123 44.78 151.9 74
## 3058 0 94.2 108 16.01 264.1 100
## 3059 0 189.4 83 32.20 219.0 89
## 3060 35 118.0 103 20.06 167.2 106
## 3061 0 212.1 98 36.06 189.4 89
## 3062 0 222.0 93 37.74 187.0 103
## 3063 31 222.8 98 37.88 180.5 105
## 3064 25 190.0 137 32.30 116.6 76
## 3065 0 271.8 129 46.21 237.2 128
## 3066 29 195.4 83 33.22 268.2 93
## 3067 0 199.6 93 33.93 214.3 99
## 3068 0 100.0 98 17.00 173.5 95
## 3069 21 160.6 85 27.30 223.1 79
## 3070 26 158.7 91 26.98 160.5 127
## 3071 0 154.5 122 26.27 214.2 71
## 3072 34 192.3 114 32.69 129.3 114
## 3073 0 305.1 106 51.87 188.0 115
## 3074 38 193.0 106 32.81 153.6 106
## 3075 0 72.5 88 12.33 204.0 112
## 3076 40 105.2 61 17.88 341.3 79
## 3077 0 180.5 88 30.69 134.7 102
## 3078 29 214.7 86 36.50 314.3 109
## 3079 0 86.8 95 14.76 108.1 85
## 3080 0 131.5 99 22.36 174.8 128
## 3081 0 135.4 102 23.02 237.1 122
## 3082 0 174.3 85 29.63 254.1 95
## 3083 0 203.9 63 34.66 191.8 93
## 3084 0 235.5 108 40.04 142.3 143
## 3085 0 157.0 113 26.69 256.9 97
## 3086 0 111.9 55 19.02 223.0 124
## 3087 0 236.3 91 40.17 152.8 130
## 3088 0 163.6 88 27.81 283.4 93
## 3089 29 213.6 127 36.31 175.9 82
## 3090 30 143.4 72 24.38 170.0 92
## 3091 0 78.3 119 13.31 198.2 94
## 3092 0 97.1 98 16.51 228.0 131
## 3093 0 94.1 93 16.00 147.6 80
## 3094 0 226.3 95 38.47 274.3 109
## 3095 0 133.8 61 22.75 158.8 96
## 3096 27 190.3 93 32.35 249.0 127
## 3097 36 294.9 106 50.13 165.7 115
## 3098 0 185.4 114 31.52 191.4 119
## 3099 0 179.5 121 30.52 191.9 131
## 3100 0 158.0 94 26.86 207.9 100
## 3101 0 173.0 131 29.41 190.4 108
## 3102 32 134.2 101 22.81 211.9 145
## 3103 32 125.2 123 21.28 230.9 101
## 3104 0 195.9 111 33.30 227.0 108
## 3105 13 214.2 61 36.41 181.2 88
## 3106 0 221.1 101 37.59 236.7 65
## 3107 26 132.0 100 22.44 173.3 121
## 3108 0 157.6 92 26.79 198.3 87
## 3109 30 110.3 71 18.75 182.4 108
## 3110 0 161.5 121 27.46 192.9 137
## 3111 28 171.8 116 29.21 240.7 125
## 3112 32 211.0 99 35.87 155.1 89
## 3113 0 139.3 89 23.68 192.3 95
## 3114 0 291.6 99 49.57 221.1 93
## 3115 0 139.0 110 23.63 132.9 93
## 3116 0 234.8 125 39.92 199.2 99
## 3117 0 187.6 83 31.89 201.4 81
## 3118 0 159.8 143 27.17 210.1 93
## 3119 33 177.1 100 30.11 194.0 85
## 3120 0 117.9 101 20.04 160.4 92
## 3121 21 247.6 95 42.09 256.3 150
## 3122 0 169.9 77 28.88 138.3 155
## 3123 0 185.0 120 31.45 203.7 129
## 3124 17 204.9 84 34.83 201.0 102
## 3125 24 225.5 119 38.34 182.0 108
## 3126 0 169.7 115 28.85 141.4 123
## 3127 0 239.3 102 40.68 223.4 127
## 3128 0 113.3 96 19.26 197.9 89
## 3129 0 161.9 100 27.52 230.1 138
## 3130 16 133.3 110 22.66 185.7 111
## 3131 25 170.7 88 29.02 109.9 113
## 3132 0 189.7 76 32.25 156.1 65
## 3133 0 322.3 100 54.79 230.4 135
## 3134 0 124.4 74 21.15 320.9 78
## 3135 0 146.9 94 24.97 114.3 111
## 3136 0 192.6 123 32.74 206.4 105
## 3137 36 96.3 83 16.37 179.6 91
## 3138 0 131.9 96 22.42 167.6 107
## 3139 0 147.2 121 25.02 175.2 87
## 3140 0 143.1 139 24.33 239.6 88
## 3141 0 280.4 127 47.67 179.4 79
## 3142 31 237.2 85 40.32 213.1 100
## 3143 0 184.2 95 31.31 181.6 101
## 3144 0 109.1 141 18.55 187.1 140
## 3145 0 138.1 115 23.48 158.2 82
## 3146 0 186.8 94 31.76 207.6 92
## 3147 0 155.4 112 26.42 290.9 92
## 3148 0 245.3 91 41.70 122.9 130
## 3149 0 205.9 97 35.00 277.4 117
## 3150 0 207.2 138 35.22 214.1 83
## 3151 14 151.5 100 25.76 248.7 126
## 3152 0 221.9 112 37.72 278.2 122
## 3153 0 190.0 100 32.30 246.6 78
## 3154 0 220.8 111 37.54 156.2 67
## 3155 47 173.7 117 29.53 204.0 114
## 3156 0 114.8 94 19.52 150.0 104
## 3157 0 113.8 97 19.35 192.3 97
## 3158 0 143.2 60 24.34 179.5 159
## 3159 0 184.4 111 31.35 203.8 110
## 3160 0 227.4 67 38.66 248.0 115
## 3161 0 224.0 99 38.08 210.7 80
## 3162 0 216.2 95 36.75 185.7 105
## 3163 0 129.9 121 22.08 230.1 105
## 3164 30 230.1 108 39.12 287.6 76
## 3165 0 204.4 97 34.75 273.2 128
## 3166 44 216.6 101 36.82 173.1 98
## 3167 0 247.5 85 42.08 225.4 93
## 3168 0 228.1 93 38.78 136.4 106
## 3169 0 225.9 110 38.40 299.1 86
## 3170 0 103.5 115 17.60 117.9 102
## 3171 0 115.5 70 19.64 252.2 143
## 3172 0 218.8 125 37.20 148.3 102
## 3173 0 223.8 67 38.05 244.8 74
## 3174 0 143.8 71 24.45 184.0 131
## 3175 43 29.9 123 5.08 129.1 117
## 3176 28 276.7 121 47.04 203.7 99
## 3177 0 141.4 128 24.04 146.4 70
## 3178 41 153.9 102 26.16 140.7 117
## 3179 0 190.5 128 32.39 205.5 103
## 3180 0 192.6 102 32.74 178.9 118
## 3181 0 151.8 115 25.81 103.6 116
## 3182 0 215.6 74 36.65 192.9 98
## 3183 0 180.0 100 30.60 229.0 103
## 3184 0 157.3 116 26.74 197.5 77
## 3185 0 196.5 88 33.41 158.6 129
## 3186 0 240.3 130 40.85 162.5 83
## 3187 0 193.3 126 32.86 154.7 85
## 3188 39 211.9 40 36.02 274.4 76
## 3189 0 218.7 111 37.18 155.6 133
## 3190 0 246.8 110 41.96 206.3 63
## 3191 0 174.7 151 29.70 148.0 56
## 3192 0 240.0 83 40.80 134.1 106
## 3193 37 181.2 76 30.80 177.6 98
## 3194 0 113.7 67 19.33 165.1 127
## 3195 41 174.7 86 29.70 160.6 93
## 3196 29 211.1 89 35.89 223.5 97
## 3197 0 169.3 108 28.78 178.6 91
## 3198 0 247.4 107 42.06 175.9 76
## 3199 32 131.2 63 22.30 227.4 125
## 3200 0 161.4 84 27.44 163.6 88
## 3201 0 107.2 98 18.22 86.8 122
## 3202 32 211.9 120 36.02 202.9 136
## 3203 0 160.4 120 27.27 285.9 104
## 3204 40 230.7 101 39.22 256.8 88
## 3205 0 232.6 96 39.54 253.4 117
## 3206 0 294.7 90 50.10 294.6 72
## 3207 0 133.4 107 22.68 223.9 117
## 3208 22 306.2 123 52.05 189.7 83
## 3209 0 236.8 135 40.26 186.4 87
## 3210 24 125.7 92 21.37 275.9 98
## 3211 0 168.4 114 28.63 276.0 127
## 3212 0 70.9 134 12.05 134.5 112
## 3213 38 105.0 86 17.85 121.8 123
## 3214 0 152.1 141 25.86 215.5 107
## 3215 0 180.9 79 30.75 194.9 83
## 3216 31 156.6 84 26.62 161.5 96
## 3217 24 180.5 85 30.69 224.1 92
## 3218 30 238.8 100 40.60 230.0 121
## 3219 18 182.1 66 30.96 213.6 65
## 3220 35 139.6 72 23.73 332.8 170
## 3221 12 200.3 76 34.05 253.6 105
## 3222 0 153.5 94 26.10 251.7 118
## 3223 29 128.2 119 21.79 171.7 83
## 3224 0 159.5 145 27.12 202.3 101
## 3225 0 226.4 101 38.49 276.8 60
## 3226 0 251.9 81 42.82 194.6 96
## 3227 0 264.5 117 44.97 194.0 111
## 3228 0 153.7 105 26.13 188.6 87
## 3229 0 232.1 81 39.46 210.8 101
## 3230 0 201.9 86 34.32 212.3 96
## 3231 0 186.9 79 31.77 182.6 105
## 3232 27 196.6 89 33.42 180.6 95
## 3233 0 232.1 102 39.46 168.2 110
## 3234 0 166.0 79 28.22 74.6 100
## 3235 28 200.6 96 34.10 164.1 111
## 3236 25 141.0 101 23.97 212.0 85
## 3237 34 245.0 95 41.65 216.9 66
## 3238 0 140.8 140 23.94 228.6 119
## 3239 0 255.1 93 43.37 266.9 97
## 3240 33 125.0 99 21.25 235.3 81
## 3241 0 180.6 65 30.70 280.4 99
## 3242 0 248.7 118 42.28 172.3 73
## 3243 30 178.1 111 30.28 236.7 109
## 3244 0 122.2 112 20.77 131.7 94
## 3245 0 231.3 87 39.32 224.7 88
## 3246 0 111.2 101 18.90 122.1 94
## 3247 44 103.2 117 17.54 236.3 86
## 3248 0 138.4 104 23.53 158.9 122
## 3249 0 146.3 85 24.87 216.6 95
## 3250 0 206.3 66 35.07 241.1 109
## 3251 0 132.0 103 22.44 279.6 114
## 3252 0 274.6 105 46.68 161.1 121
## 3253 0 185.3 87 31.50 225.3 87
## 3254 24 154.8 69 26.32 177.2 105
## 3255 30 179.2 105 30.46 283.2 83
## 3256 0 286.2 61 48.65 187.2 60
## 3257 0 268.0 115 45.56 153.6 106
## 3258 0 137.5 110 23.38 198.1 109
## 3259 0 243.0 115 41.31 191.8 91
## 3260 0 134.9 79 22.93 221.5 114
## 3261 0 234.2 76 39.81 216.7 108
## 3262 0 175.1 73 29.77 171.9 116
## 3263 0 142.2 107 24.17 262.4 84
## 3264 0 132.4 81 22.51 200.3 110
## 3265 24 97.8 98 16.63 207.2 67
## 3266 0 266.9 83 45.37 229.7 74
## 3267 33 155.2 139 26.38 268.3 79
## 3268 0 200.2 92 34.03 244.9 107
## 3269 0 289.1 100 49.15 233.8 97
## 3270 0 198.4 121 33.73 249.5 104
## 3271 0 180.3 67 30.65 208.0 68
## 3272 0 86.3 84 14.67 238.7 99
## 3273 0 295.0 141 50.15 223.6 101
## 3274 0 240.9 108 40.95 167.4 91
## 3275 0 207.7 109 35.31 217.5 117
## 3276 27 128.5 115 21.85 163.7 91
## 3277 22 224.4 114 38.15 146.0 106
## 3278 0 164.9 115 28.03 126.5 96
## 3279 0 238.0 97 40.46 164.5 97
## 3280 43 231.0 85 39.27 222.3 82
## 3281 0 107.3 140 18.24 238.2 133
## 3282 0 185.0 122 31.45 182.5 92
## 3283 31 244.1 71 41.50 203.4 58
## 3284 0 238.4 96 40.53 246.5 130
## 3285 27 141.1 109 23.99 224.7 94
## 3286 0 158.1 117 26.88 115.2 149
## 3287 30 220.1 105 37.42 222.2 109
## 3288 42 199.5 119 33.92 135.0 90
## 3289 0 109.5 105 18.62 286.1 90
## 3290 0 187.2 110 31.82 114.7 116
## 3291 0 107.9 128 18.34 187.0 77
## 3292 22 172.1 119 29.26 223.6 133
## 3293 0 203.8 85 34.65 87.8 110
## 3294 0 160.0 133 27.20 215.3 98
## 3295 0 51.1 106 8.69 208.6 137
## 3296 0 227.7 88 38.71 170.0 96
## 3297 0 203.8 77 34.65 205.1 111
## 3298 33 241.7 84 41.09 165.8 84
## 3299 0 78.1 70 13.28 239.3 115
## 3300 0 187.8 95 31.93 149.2 143
## 3301 21 127.1 94 21.61 228.3 116
## 3302 0 280.0 113 47.60 202.2 90
## 3303 0 153.2 78 26.04 210.8 99
## 3304 26 137.1 88 23.31 155.7 125
## 3305 0 186.1 114 31.64 198.6 140
## 3306 22 224.1 127 38.10 238.8 85
## 3307 29 83.6 131 14.21 203.9 131
## 3308 0 203.9 109 34.66 234.0 123
## 3309 0 211.3 87 35.92 165.7 97
## 3310 0 219.4 112 37.30 225.7 102
## 3311 0 190.4 91 32.37 92.0 107
## 3312 0 147.7 94 25.11 283.3 83
## 3313 0 229.9 130 39.08 144.4 93
## 3314 0 102.8 128 17.48 143.7 95
## 3315 0 178.7 81 30.38 233.7 74
## 3316 18 148.5 106 25.25 114.5 106
## 3317 29 164.1 111 27.90 219.1 96
## 3318 0 197.2 90 33.52 188.5 113
## 3319 0 124.9 131 21.23 300.5 118
## 3320 0 115.4 99 19.62 209.9 115
## 3321 0 140.0 101 23.80 196.4 77
## 3322 0 193.9 118 32.96 85.0 110
## 3323 0 321.1 105 54.59 265.5 122
## 3324 0 118.4 126 20.13 249.3 97
## 3325 0 169.8 114 28.87 197.7 105
## 3326 0 193.4 99 32.88 116.9 88
## 3327 0 106.6 128 18.12 284.8 87
## 3328 0 134.7 98 22.90 189.7 68
## 3329 36 156.2 77 26.55 215.5 126
## 3330 0 231.1 57 39.29 153.4 55
## 3331 0 180.8 109 30.74 288.8 58
## 3332 0 213.8 105 36.35 159.6 84
## 3333 25 234.4 113 39.85 265.9 82
## Eve.Charge Night.Mins Night.Calls Night.Charge Intl.Mins Intl.Calls
## 1 16.78 244.7 91 11.01 10.0 3
## 2 16.62 254.4 103 11.45 13.7 3
## 3 10.30 162.6 104 7.32 12.2 5
## 4 5.26 196.9 89 8.86 6.6 7
## 5 12.61 186.9 121 8.41 10.1 3
## 6 18.75 203.9 118 9.18 6.3 6
## 7 29.62 212.6 118 9.57 7.5 7
## 8 8.76 211.8 96 9.53 7.1 6
## 9 29.89 215.8 90 9.71 8.7 4
## 10 18.87 326.4 97 14.69 11.2 5
## 11 19.42 208.8 111 9.40 12.7 6
## 12 13.89 196.0 94 8.82 9.1 5
## 13 8.92 141.1 128 6.35 11.2 2
## 14 21.05 192.3 115 8.65 12.3 5
## 15 26.11 203.0 99 9.14 13.1 6
## 16 27.01 160.6 128 7.23 5.4 9
## 17 23.88 89.3 75 4.02 13.8 4
## 18 18.55 129.6 121 5.83 8.1 3
## 19 18.09 165.7 108 7.46 10.0 5
## 20 13.56 192.8 74 8.68 13.0 2
## 21 20.37 208.8 133 9.40 10.6 4
## 22 14.44 209.6 64 9.43 5.7 6
## 23 6.20 181.8 78 8.18 9.5 19
## 24 11.67 189.6 105 8.53 7.7 6
## 25 20.84 237.0 115 10.67 10.3 2
## 26 23.55 250.7 115 11.28 15.5 5
## 27 16.24 182.7 115 8.22 9.5 3
## 28 13.22 102.1 68 4.59 14.7 4
## 29 21.95 181.5 102 8.17 6.3 6
## 30 18.28 178.7 90 8.04 11.1 1
## 31 11.62 250.5 148 11.27 14.2 6
## 32 17.13 246.2 98 11.08 10.3 5
## 33 2.65 293.3 78 13.20 12.6 10
## 34 21.45 280.2 90 12.61 11.8 3
## 35 16.58 213.5 116 9.61 8.3 4
## 36 18.47 152.8 71 6.88 14.7 6
## 37 13.81 129.3 109 5.82 14.5 6
## 38 19.01 227.8 108 10.25 10.0 5
## 39 15.95 101.7 107 4.58 10.5 6
## 40 23.10 188.3 108 8.47 11.1 9
## 41 14.18 187.8 135 8.45 9.4 2
## 42 17.33 122.2 78 5.50 14.6 15
## 43 23.99 311.5 78 14.02 10.0 4
## 44 14.05 178.5 92 8.03 9.2 4
## 45 19.19 265.3 86 11.94 3.5 3
## 46 18.11 163.1 116 7.34 8.5 5
## 47 13.82 134.7 118 6.06 13.2 5
## 48 11.44 242.2 127 10.90 7.4 5
## 49 19.66 143.2 91 6.44 8.8 3
## 50 18.46 70.6 79 3.18 11.0 3
## 51 22.93 236.8 87 10.66 7.8 5
## 52 17.94 249.0 129 11.21 6.8 3
## 53 16.17 282.8 57 12.73 11.4 6
## 54 22.74 228.5 68 10.28 9.3 5
## 55 18.67 203.9 127 9.18 9.7 3
## 56 21.19 270.2 98 12.16 10.2 3
## 57 15.30 140.8 128 6.34 8.0 2
## 58 6.40 181.2 77 8.15 5.8 3
## 59 20.95 129.8 103 5.84 12.1 3
## 60 15.08 189.3 95 8.52 12.0 8
## 61 14.44 166.6 54 7.50 11.4 4
## 62 15.15 166.3 106 7.48 11.6 3
## 63 20.92 138.0 92 6.21 14.6 3
## 64 15.96 265.5 53 11.95 12.6 3
## 65 13.85 159.0 106 7.15 8.2 6
## 66 14.41 214.1 102 9.63 6.2 5
## 67 18.09 157.8 67 7.10 9.3 4
## 68 17.54 129.3 139 5.82 8.3 8
## 69 18.44 153.5 60 6.91 7.8 1
## 70 14.37 148.6 100 6.69 13.8 3
## 71 14.49 295.3 104 13.29 11.8 7
## 72 16.00 254.6 61 11.46 12.1 2
## 73 12.66 172.5 109 7.76 8.0 4
## 74 19.27 152.4 105 6.86 7.3 4
## 75 13.36 188.2 99 8.47 12.0 3
## 76 18.98 181.4 111 8.16 6.1 2
## 77 15.39 270.1 73 12.15 11.7 4
## 78 6.55 173.0 99 7.79 8.2 7
## 79 13.97 177.5 113 7.99 8.2 3
## 80 13.19 228.6 76 10.29 15.0 2
## 81 25.80 224.0 119 10.08 13.2 2
## 82 17.41 278.5 109 12.53 12.6 5
## 83 11.57 175.7 90 7.91 11.0 2
## 84 22.07 222.7 68 10.02 9.8 4
## 85 21.18 191.4 88 8.61 12.4 1
## 86 19.20 323.0 78 14.54 8.6 7
## 87 13.18 189.6 84 8.53 8.0 5
## 88 17.72 182.4 98 8.21 12.0 2
## 89 10.49 202.1 57 9.09 10.9 9
## 90 21.05 208.9 68 9.40 13.9 4
## 91 16.57 109.6 94 4.93 11.1 2
## 92 16.23 196.0 119 8.82 8.9 4
## 93 14.71 253.2 62 11.39 7.9 9
## 94 15.16 263.9 105 11.88 9.5 7
## 95 16.20 127.7 91 5.75 10.6 7
## 96 6.89 163.2 137 7.34 9.8 5
## 97 18.13 174.1 72 7.83 13.0 4
## 98 17.62 190.9 113 8.59 8.7 3
## 99 17.80 167.2 96 7.52 5.3 5
## 100 17.48 275.2 109 12.38 9.8 7
## 101 21.44 160.2 92 7.21 4.4 8
## 102 16.07 129.1 102 5.81 14.6 5
## 103 10.12 180.0 100 8.10 10.5 6
## 104 15.61 245.3 102 11.04 12.5 9
## 105 14.76 248.6 75 11.19 11.3 2
## 106 15.91 190.0 115 8.55 11.8 4
## 107 17.19 187.2 113 8.42 9.0 6
## 108 13.98 217.0 86 9.76 9.8 3
## 109 11.14 219.4 142 9.87 10.1 1
## 110 12.57 241.4 108 10.86 9.6 7
## 111 26.96 119.2 86 5.36 8.3 8
## 112 18.98 222.8 91 10.03 12.6 2
## 113 16.23 227.7 113 10.25 12.1 4
## 114 17.51 247.8 114 11.15 13.3 7
## 115 14.42 211.4 88 9.51 9.4 3
## 116 21.67 138.3 126 6.22 20.0 6
## 117 12.95 57.5 122 2.59 14.2 3
## 118 18.69 170.0 115 7.65 9.4 4
## 119 13.39 177.6 118 7.99 10.0 3
## 120 18.26 143.3 81 6.45 8.7 5
## 121 19.32 200.1 116 9.00 13.1 7
## 122 12.05 142.2 123 6.40 7.2 3
## 123 15.60 220.8 103 9.94 9.8 4
## 124 11.25 112.9 89 5.08 11.6 3
## 125 9.37 227.4 117 10.23 9.2 5
## 126 19.50 252.5 106 11.36 12.0 3
## 127 13.39 154.8 82 6.97 9.1 3
## 128 12.46 225.7 129 10.16 6.4 6
## 129 16.46 175.0 86 7.88 9.2 4
## 130 13.74 264.7 102 11.91 9.5 4
## 131 18.50 146.9 123 6.61 10.9 2
## 132 13.45 256.7 80 11.55 6.1 5
## 133 19.58 261.4 120 11.76 9.5 3
## 134 17.10 206.1 60 9.27 7.1 1
## 135 17.22 206.4 80 9.29 9.1 10
## 136 14.73 247.2 130 11.12 11.2 3
## 137 18.49 237.5 134 10.69 5.3 4
## 138 17.86 195.6 129 8.80 12.0 3
## 139 10.78 263.3 71 11.85 11.2 8
## 140 12.92 158.6 59 7.14 10.2 5
## 141 23.49 193.6 112 8.71 12.4 3
## 142 18.73 253.8 116 11.42 10.5 4
## 143 16.62 109.7 139 4.94 6.8 5
## 144 16.62 200.5 96 9.02 11.7 4
## 145 15.09 249.4 132 11.22 14.1 7
## 146 13.61 110.4 98 4.97 14.3 6
## 147 17.30 203.4 110 9.15 13.7 3
## 148 18.39 121.1 105 5.45 11.7 4
## 149 18.56 161.6 103 7.27 8.5 5
## 150 13.78 286.9 86 12.91 11.1 4
## 151 18.82 172.3 67 7.75 10.6 6
## 152 17.57 299.0 105 13.46 10.1 7
## 153 13.40 227.3 86 10.23 7.5 6
## 154 21.12 140.5 142 6.32 6.9 11
## 155 12.41 269.5 87 12.13 11.5 4
## 156 24.83 265.9 101 11.97 9.8 4
## 157 19.33 153.9 114 6.93 15.8 7
## 158 21.00 259.2 112 11.66 13.7 2
## 159 21.82 178.6 79 8.04 10.2 2
## 160 15.59 164.8 114 7.42 9.6 4
## 161 14.64 137.5 101 6.19 7.1 5
## 162 20.53 253.5 103 11.41 12.0 6
## 163 20.52 229.5 105 10.33 10.5 5
## 164 11.51 236.6 82 10.65 12.2 1
## 165 12.63 167.2 91 7.52 6.1 3
## 166 18.17 228.7 104 10.29 12.1 2
## 167 13.88 264.8 126 11.92 7.5 3
## 168 20.67 261.3 90 11.76 10.9 3
## 169 16.43 105.9 73 4.77 12.8 4
## 170 15.93 154.0 53 6.93 6.3 2
## 171 19.00 97.4 79 4.38 13.2 2
## 172 14.42 164.7 86 7.41 10.6 5
## 173 17.98 268.9 86 12.10 10.5 4
## 174 15.21 182.4 150 8.21 14.1 2
## 175 12.70 244.7 104 11.01 6.1 5
## 176 14.37 170.9 106 7.69 11.1 7
## 177 16.18 195.2 115 8.78 12.2 3
## 178 19.50 195.2 113 8.78 11.5 3
## 179 16.50 208.0 112 9.36 16.2 10
## 180 24.85 201.2 112 9.05 0.0 0
## 181 18.23 282.2 103 12.70 9.5 5
## 182 11.79 136.8 91 6.16 11.9 1
## 183 20.20 169.9 103 7.65 9.9 12
## 184 21.62 214.0 127 9.63 14.6 7
## 185 20.83 134.4 121 6.05 8.4 3
## 186 22.82 241.2 92 10.85 10.8 13
## 187 5.47 198.5 103 8.93 10.2 4
## 188 19.50 77.3 121 3.48 10.9 3
## 189 13.87 187.1 112 8.42 9.0 3
## 190 15.93 231.2 107 10.40 9.1 3
## 191 15.34 112.2 115 5.05 8.9 4
## 192 7.71 238.0 69 10.71 9.5 2
## 193 16.58 208.2 119 9.37 8.8 4
## 194 17.27 150.0 131 6.75 13.4 2
## 195 14.16 119.1 88 5.36 9.5 4
## 196 15.05 180.5 92 8.12 6.8 6
## 197 15.49 261.5 126 11.77 9.7 8
## 198 14.99 181.7 102 8.18 10.7 6
## 199 16.97 255.3 127 11.49 13.8 7
## 200 15.05 245.7 89 11.06 13.0 3
## 201 18.74 249.9 96 11.25 13.1 5
## 202 27.90 245.0 131 11.03 11.2 1
## 203 15.64 240.5 110 10.82 6.4 8
## 204 15.18 217.0 83 9.76 6.8 3
## 205 21.89 198.1 93 8.91 9.4 4
## 206 17.83 190.4 117 8.57 12.1 2
## 207 7.13 179.8 84 8.09 13.7 8
## 208 15.87 223.3 90 10.05 10.8 5
## 209 12.91 260.1 124 11.70 12.2 5
## 210 20.97 226.1 89 10.17 15.8 7
## 211 13.23 188.2 109 8.47 11.6 10
## 212 21.05 194.3 94 8.74 11.9 11
## 213 20.78 122.4 68 5.51 10.7 3
## 214 9.61 246.9 121 11.11 12.2 6
## 215 19.39 73.2 93 3.29 17.6 4
## 216 15.18 225.2 131 10.13 11.5 6
## 217 15.84 172.5 120 7.76 10.9 3
## 218 19.06 265.4 91 11.94 4.7 7
## 219 22.70 151.0 114 6.80 13.0 2
## 220 9.36 188.7 107 8.49 7.1 12
## 221 12.97 212.2 99 9.55 12.2 6
## 222 14.83 244.9 68 11.02 10.2 6
## 223 23.20 220.2 104 9.91 4.4 2
## 224 20.59 174.3 104 7.84 8.9 6
## 225 14.30 236.0 113 10.62 13.8 1
## 226 19.93 250.1 123 11.25 2.7 4
## 227 20.80 221.5 136 9.97 7.7 2
## 228 16.12 76.5 139 3.44 9.6 3
## 229 18.74 136.9 102 6.16 13.3 3
## 230 26.62 163.3 108 7.35 11.9 3
## 231 11.00 217.6 74 9.79 10.5 2
## 232 24.76 197.6 92 8.89 11.0 6
## 233 18.45 180.9 122 8.14 13.5 2
## 234 18.73 154.3 113 6.94 10.9 2
## 235 20.43 233.2 117 10.49 9.0 5
## 236 17.96 193.6 125 8.71 10.2 2
## 237 10.10 234.9 98 10.57 9.0 9
## 238 17.07 192.2 101 8.65 9.8 7
## 239 10.28 226.6 110 10.20 10.7 9
## 240 14.33 139.8 87 6.29 9.4 6
## 241 7.51 195.3 79 8.79 12.9 5
## 242 11.40 223.1 81 10.04 12.3 2
## 243 15.50 275.8 103 12.41 8.4 2
## 244 15.04 194.3 110 8.74 7.1 2
## 245 22.76 354.9 75 15.97 9.4 3
## 246 14.15 202.3 96 9.10 9.5 5
## 247 8.69 261.8 106 11.78 11.1 3
## 248 12.72 283.4 66 12.75 10.2 5
## 249 17.20 245.9 97 11.07 9.2 2
## 250 23.63 228.4 112 10.28 11.8 4
## 251 10.02 279.2 79 12.56 13.9 11
## 252 14.62 191.8 143 8.63 14.4 7
## 253 19.80 172.4 108 7.76 9.1 8
## 254 19.55 236.9 58 10.66 9.5 3
## 255 23.21 178.3 81 8.02 10.9 3
## 256 18.40 173.1 86 7.79 14.1 8
## 257 14.65 231.6 92 10.42 9.8 3
## 258 21.24 193.4 95 8.70 14.5 8
## 259 15.35 221.7 80 9.98 10.4 2
## 260 20.00 169.4 80 7.62 8.7 4
## 261 17.79 231.2 55 10.40 6.7 9
## 262 12.16 223.9 61 10.08 15.4 1
## 263 17.96 185.2 96 8.33 11.5 3
## 264 18.80 241.0 136 10.85 12.5 1
## 265 16.54 146.5 85 6.59 8.3 6
## 266 22.10 291.6 83 13.12 11.4 6
## 267 16.41 232.4 100 10.46 8.4 9
## 268 14.49 263.9 98 11.88 13.5 6
## 269 11.58 147.4 89 6.63 4.5 4
## 270 14.91 184.8 99 8.32 9.9 3
## 271 19.12 249.9 100 11.25 14.6 3
## 272 15.30 200.9 104 9.04 7.7 3
## 273 19.99 206.2 107 9.28 8.0 13
## 274 19.92 203.2 101 9.14 13.0 3
## 275 16.56 239.2 114 10.76 10.0 3
## 276 19.70 122.5 100 5.51 9.8 5
## 277 17.68 203.3 99 9.15 11.1 4
## 278 10.49 214.2 106 9.64 6.5 2
## 279 19.20 254.2 59 11.44 10.9 6
## 280 18.62 222.7 114 10.02 10.5 6
## 281 14.79 188.2 119 8.47 13.0 4
## 282 17.93 193.3 71 8.70 10.4 6
## 283 13.59 144.1 80 6.48 12.2 1
## 284 24.51 240.3 105 10.81 9.0 2
## 285 15.43 281.4 56 12.66 6.7 5
## 286 14.93 252.1 102 11.34 15.6 3
## 287 10.88 194.5 84 8.75 8.8 5
## 288 17.79 289.9 84 13.05 14.5 4
## 289 11.25 255.2 98 11.48 14.1 5
## 290 22.18 312.1 89 14.04 5.3 3
## 291 18.65 299.3 94 13.47 8.0 2
## 292 10.97 125.1 124 5.63 9.7 3
## 293 16.49 146.7 108 6.60 5.9 4
## 294 10.21 216.1 86 9.72 10.3 5
## 295 11.34 259.5 70 11.68 9.8 3
## 296 15.29 216.8 109 9.76 9.5 5
## 297 21.05 142.4 85 6.41 10.1 5
## 298 15.67 240.4 99 10.82 11.9 1
## 299 18.59 207.1 91 9.32 6.6 9
## 300 16.99 287.7 114 12.95 6.6 5
## 301 9.38 195.4 111 8.79 11.9 4
## 302 22.51 207.2 119 9.32 5.9 2
## 303 29.79 297.0 87 13.37 11.2 3
## 304 24.86 241.1 89 10.85 9.1 4
## 305 21.56 214.1 90 9.63 10.3 10
## 306 21.21 173.1 70 7.79 9.1 5
## 307 22.82 213.8 105 9.62 8.5 10
## 308 18.26 133.9 107 6.03 11.4 3
## 309 16.18 183.4 107 8.25 11.4 2
## 310 21.96 183.5 74 8.26 8.9 4
## 311 18.70 265.7 78 11.96 13.2 2
## 312 16.65 183.5 82 8.26 9.7 6
## 313 14.41 220.1 64 9.90 10.9 3
## 314 23.83 205.0 77 9.23 9.8 4
## 315 17.46 254.4 111 11.45 18.9 2
## 316 26.03 123.9 46 5.58 12.4 3
## 317 22.98 160.5 76 7.22 7.7 4
## 318 21.83 147.6 76 6.64 7.6 3
## 319 18.01 273.0 102 12.29 5.0 5
## 320 16.05 154.9 101 6.97 9.4 2
## 321 22.03 287.4 78 12.93 6.2 3
## 322 15.11 232.4 89 10.46 12.9 3
## 323 21.84 234.9 74 10.57 10.0 3
## 324 20.96 251.6 91 11.32 11.3 4
## 325 13.17 245.1 112 11.03 13.4 5
## 326 18.66 152.3 118 6.85 7.1 3
## 327 17.78 197.4 42 8.88 11.4 4
## 328 20.02 156.3 95 7.03 9.5 4
## 329 18.45 188.4 96 8.48 12.5 3
## 330 20.45 79.7 108 3.59 14.4 12
## 331 26.60 130.2 94 5.86 7.9 2
## 332 21.14 197.4 111 8.88 9.5 2
## 333 16.75 138.4 152 6.23 12.2 5
## 334 22.45 206.3 78 9.28 9.3 4
## 335 12.99 233.2 101 10.49 7.5 4
## 336 11.77 169.1 44 7.61 8.6 4
## 337 23.08 170.2 104 7.66 10.6 2
## 338 15.01 302.8 136 13.63 7.0 7
## 339 22.65 212.7 104 9.57 7.6 3
## 340 16.93 175.5 102 7.90 14.6 2
## 341 15.01 262.6 126 11.82 9.1 1
## 342 21.75 275.0 145 12.38 10.8 11
## 343 13.74 227.7 62 10.25 14.0 7
## 344 14.97 244.8 84 11.02 0.0 0
## 345 7.09 165.9 99 7.47 13.3 3
## 346 15.23 135.0 119 6.08 7.2 8
## 347 10.46 261.3 101 11.76 12.2 5
## 348 13.19 186.7 89 8.40 10.5 11
## 349 13.80 127.6 105 5.74 13.1 5
## 350 8.98 243.1 74 10.94 12.8 3
## 351 17.40 229.9 100 10.35 11.3 8
## 352 19.92 237.3 85 10.68 10.1 4
## 353 15.06 96.4 87 4.34 5.3 3
## 354 17.43 204.0 82 9.18 14.7 9
## 355 18.58 194.1 97 8.73 13.2 2
## 356 6.74 213.7 98 9.62 12.7 2
## 357 16.05 206.0 114 9.27 11.3 4
## 358 19.32 122.4 96 5.51 8.5 2
## 359 17.94 114.3 90 5.14 9.2 4
## 360 22.50 178.4 97 8.03 5.8 4
## 361 26.54 183.0 82 8.24 8.8 6
## 362 15.27 253.0 99 11.39 11.3 6
## 363 19.75 222.1 131 9.99 12.0 5
## 364 8.77 309.6 136 13.93 11.3 3
## 365 18.16 192.1 81 8.64 10.9 2
## 366 18.40 253.9 100 11.43 10.1 9
## 367 22.45 128.6 115 5.79 9.1 3
## 368 21.54 255.0 100 11.48 18.0 3
## 369 19.74 146.7 114 6.60 7.6 5
## 370 22.76 164.9 76 7.42 16.0 2
## 371 19.13 204.4 82 9.20 10.3 6
## 372 18.94 225.3 91 10.14 10.6 6
## 373 9.72 269.2 95 12.11 12.4 1
## 374 19.54 167.3 108 7.53 14.8 2
## 375 17.91 276.9 58 12.46 9.2 6
## 376 15.30 134.5 82 6.05 10.6 5
## 377 10.05 187.9 111 8.46 11.2 7
## 378 18.23 226.1 106 10.17 6.7 18
## 379 24.33 198.9 89 8.95 11.5 2
## 380 13.66 233.1 96 10.49 6.8 4
## 381 16.24 218.6 50 9.84 14.7 2
## 382 13.21 240.0 112 10.80 14.7 4
## 383 12.33 249.5 92 11.23 5.7 4
## 384 27.43 225.6 120 10.15 3.7 5
## 385 21.00 187.9 82 8.46 7.2 4
## 386 18.73 204.7 111 9.21 10.7 7
## 387 23.29 321.3 98 14.46 8.9 1
## 388 17.38 127.8 53 5.75 8.5 5
## 389 22.97 148.2 105 6.67 10.7 3
## 390 20.27 285.1 100 12.83 10.2 6
## 391 20.72 214.7 102 9.66 11.1 2
## 392 21.95 213.1 77 9.59 8.7 3
## 393 14.98 232.8 115 10.48 12.4 5
## 394 17.44 185.7 91 8.36 9.4 3
## 395 17.48 166.2 91 7.48 10.8 2
## 396 7.94 107.6 42 4.84 9.7 5
## 397 16.92 204.1 137 9.18 7.8 4
## 398 23.74 234.2 121 10.54 2.0 2
## 399 11.11 186.5 118 8.39 8.5 4
## 400 19.55 191.7 118 8.63 10.6 5
## 401 18.61 226.7 110 10.20 12.0 1
## 402 9.42 240.1 112 10.80 10.6 3
## 403 16.34 165.1 96 7.43 9.9 2
## 404 13.87 160.6 112 7.23 11.2 6
## 405 20.57 201.4 100 9.06 7.5 3
## 406 13.68 198.6 73 8.94 9.3 5
## 407 9.32 247.4 108 11.13 6.8 7
## 408 15.72 197.2 59 8.87 8.5 5
## 409 21.36 135.0 88 6.08 10.3 3
## 410 16.75 167.0 108 7.52 4.8 4
## 411 12.00 203.0 99 9.14 8.4 5
## 412 15.83 189.0 92 8.50 10.4 6
## 413 20.60 168.8 72 7.60 5.4 1
## 414 16.96 188.3 122 8.47 7.0 5
## 415 10.54 219.4 92 9.87 10.0 3
## 416 24.05 238.4 88 10.73 8.7 3
## 417 13.60 212.4 102 9.56 5.0 2
## 418 14.86 209.5 93 9.43 9.8 2
## 419 16.56 239.3 81 10.77 16.0 6
## 420 27.80 212.5 106 9.56 7.5 6
## 421 22.47 171.8 124 7.73 9.3 11
## 422 14.98 77.2 112 3.47 15.3 1
## 423 24.06 197.3 83 8.88 12.5 3
## 424 11.93 263.6 102 11.86 10.3 2
## 425 11.07 200.0 108 9.00 11.3 3
## 426 15.77 205.2 130 9.23 10.9 4
## 427 9.64 180.2 97 8.11 12.5 7
## 428 18.39 217.4 128 9.78 9.6 9
## 429 16.73 209.3 128 9.42 11.2 5
## 430 23.23 214.4 153 9.65 12.4 7
## 431 22.15 195.0 104 8.78 13.3 2
## 432 24.02 181.0 98 8.15 11.4 4
## 433 15.48 259.2 94 11.66 12.8 2
## 434 14.90 155.6 125 7.00 11.8 5
## 435 17.32 203.2 49 9.14 8.6 3
## 436 10.11 164.2 108 7.39 11.2 3
## 437 25.61 214.6 134 9.66 8.0 3
## 438 15.02 219.5 126 9.88 8.3 4
## 439 28.10 189.4 123 8.52 13.5 3
## 440 16.80 198.5 86 8.93 6.3 2
## 441 13.09 245.8 112 11.06 12.3 6
## 442 22.58 145.7 67 6.56 12.4 4
## 443 18.80 131.6 103 5.92 6.8 3
## 444 15.96 154.5 109 6.95 12.6 5
## 445 16.66 349.2 110 15.71 9.6 7
## 446 21.86 208.3 86 9.37 11.1 6
## 447 20.06 179.1 110 8.06 9.6 4
## 448 11.42 192.9 122 8.68 6.9 5
## 449 17.09 107.9 82 4.86 12.2 3
## 450 17.24 173.4 92 7.80 6.3 3
## 451 23.05 202.2 76 9.10 12.5 5
## 452 20.94 245.7 81 11.06 9.8 2
## 453 20.85 260.0 94 11.70 8.3 3
## 454 23.29 190.7 76 8.58 14.3 9
## 455 23.28 222.7 101 10.02 11.1 1
## 456 20.86 160.5 115 7.22 14.8 2
## 457 15.34 223.6 69 10.06 9.3 2
## 458 22.44 115.7 70 5.21 9.7 7
## 459 18.71 180.3 80 8.11 6.0 3
## 460 10.23 153.7 86 6.92 11.0 3
## 461 18.75 136.6 91 6.15 9.6 5
## 462 19.41 299.7 90 13.49 9.6 9
## 463 9.19 208.4 111 9.38 10.1 5
## 464 16.60 280.5 89 12.62 5.9 2
## 465 18.72 272.4 111 12.26 8.5 5
## 466 14.26 182.1 111 8.19 13.6 3
## 467 15.44 258.8 102 11.65 10.5 5
## 468 17.02 258.3 100 11.62 11.6 4
## 469 14.17 244.9 105 11.02 11.1 5
## 470 21.67 160.2 115 7.21 17.2 9
## 471 13.99 240.7 106 10.83 10.6 2
## 472 21.14 176.0 83 7.92 9.5 6
## 473 11.59 181.7 53 8.18 6.3 3
## 474 26.81 163.3 117 7.35 6.2 4
## 475 19.98 162.8 132 7.33 14.8 12
## 476 12.45 289.2 83 13.01 9.9 6
## 477 13.72 225.1 110 10.13 11.7 5
## 478 13.81 220.3 115 9.91 7.6 2
## 479 13.97 294.7 124 13.26 8.1 2
## 480 13.44 271.5 92 12.22 11.2 4
## 481 21.57 112.3 94 5.05 11.6 6
## 482 15.93 255.4 93 11.49 5.3 3
## 483 14.76 257.4 97 11.58 8.1 4
## 484 21.77 212.7 92 9.57 13.3 13
## 485 19.68 223.5 75 10.06 11.0 2
## 486 11.20 132.7 87 5.97 6.7 2
## 487 18.84 146.9 106 6.61 12.8 3
## 488 24.87 244.3 105 10.99 10.5 2
## 489 17.83 228.4 126 10.28 0.0 0
## 490 19.59 186.3 76 8.38 12.3 4
## 491 21.45 280.2 120 12.61 12.8 7
## 492 21.77 203.7 101 9.17 14.3 6
## 493 22.15 244.2 98 10.99 9.4 2
## 494 23.69 263.4 175 11.85 5.9 2
## 495 9.74 250.6 120 11.28 8.2 4
## 496 15.33 179.6 115 8.08 11.1 9
## 497 15.18 126.8 82 5.71 8.0 4
## 498 24.43 180.5 118 8.12 11.9 3
## 499 8.98 175.9 63 7.92 9.7 4
## 500 20.77 75.8 95 3.41 7.5 2
## 501 16.18 240.4 111 10.82 12.6 7
## 502 19.13 251.9 121 11.34 7.5 5
## 503 17.63 221.7 110 9.98 17.5 5
## 504 12.37 280.7 76 12.63 9.3 3
## 505 13.17 263.6 82 11.86 12.4 12
## 506 10.70 261.9 76 11.79 11.1 5
## 507 20.11 227.8 120 10.25 11.4 5
## 508 28.03 288.0 117 12.96 5.6 2
## 509 18.87 234.9 138 10.57 11.6 5
## 510 16.96 169.7 98 7.64 9.6 5
## 511 17.25 205.1 129 9.23 12.3 3
## 512 23.74 146.2 87 6.58 14.8 8
## 513 17.41 240.8 90 10.84 9.1 8
## 514 18.17 227.2 104 10.22 6.6 3
## 515 18.34 108.1 82 4.86 14.0 12
## 516 16.47 144.9 84 6.52 17.5 5
## 517 26.11 182.5 120 8.21 7.6 1
## 518 13.48 123.4 114 5.55 9.4 4
## 519 19.10 169.5 99 7.63 12.9 3
## 520 13.07 113.5 92 5.11 9.0 3
## 521 13.13 130.9 90 5.89 11.6 2
## 522 13.72 239.6 76 10.78 8.2 3
## 523 19.48 190.5 123 8.57 9.2 5
## 524 12.86 152.9 94 6.88 9.8 6
## 525 14.59 67.7 136 3.05 13.0 6
## 526 14.26 163.1 107 7.34 10.5 8
## 527 15.51 191.7 134 8.63 12.5 3
## 528 11.34 264.2 91 11.89 11.9 7
## 529 13.37 199.3 72 8.97 8.6 4
## 530 28.65 205.2 99 9.23 12.1 9
## 531 17.26 232.0 87 10.44 7.8 4
## 532 18.62 233.4 66 10.50 6.7 3
## 533 21.51 207.7 73 9.35 10.7 5
## 534 3.59 125.7 104 5.66 5.4 3
## 535 5.65 246.5 99 11.09 9.2 10
## 536 23.89 218.5 87 9.83 18.2 1
## 537 12.38 196.8 93 8.86 14.0 6
## 538 15.56 121.0 102 5.44 8.5 3
## 539 16.22 224.7 123 10.11 12.4 8
## 540 18.41 217.5 92 9.79 9.9 3
## 541 14.28 113.5 84 5.11 7.8 2
## 542 13.43 141.9 113 6.39 6.6 1
## 543 21.54 265.2 80 11.93 14.2 3
## 544 18.40 191.6 94 8.62 3.5 6
## 545 20.66 76.4 92 3.44 12.2 8
## 546 21.16 268.0 115 12.06 11.9 3
## 547 21.14 171.0 118 7.69 8.4 10
## 548 17.07 133.7 67 6.02 10.3 9
## 549 20.94 255.0 131 11.48 5.9 3
## 550 17.48 196.7 85 8.85 10.1 5
## 551 15.56 158.8 104 7.15 7.9 3
## 552 17.06 116.6 118 5.25 11.5 2
## 553 21.93 192.4 90 8.66 10.2 4
## 554 16.65 108.0 100 4.86 10.1 6
## 555 22.02 149.5 107 6.73 12.7 6
## 556 10.19 175.5 75 7.90 13.1 2
## 557 25.82 226.9 120 10.21 12.0 4
## 558 18.16 236.6 92 10.65 9.5 2
## 559 21.34 257.6 123 11.59 8.3 5
## 560 11.62 308.2 119 13.87 7.7 6
## 561 20.15 245.1 88 11.03 10.7 1
## 562 26.35 178.7 130 8.04 7.2 7
## 563 22.46 172.7 102 7.77 9.1 5
## 564 8.36 230.8 83 10.39 10.9 5
## 565 21.88 231.5 119 10.42 8.0 1
## 566 16.07 123.0 102 5.54 4.7 4
## 567 23.07 248.7 97 11.19 11.3 5
## 568 16.00 147.1 98 6.62 3.6 7
## 569 13.65 143.9 87 6.48 10.0 6
## 570 22.52 168.9 108 7.60 15.4 4
## 571 16.74 187.2 119 8.42 10.3 2
## 572 15.07 296.3 90 13.33 14.5 3
## 573 23.38 138.7 108 6.24 10.8 3
## 574 21.12 167.1 124 7.52 9.0 1
## 575 23.50 279.8 77 12.59 9.9 5
## 576 17.03 183.5 105 8.26 14.2 2
## 577 19.28 217.5 80 9.79 13.7 6
## 578 15.30 140.0 119 6.30 11.7 4
## 579 19.52 144.1 124 6.48 7.7 3
## 580 28.48 187.2 119 8.42 16.5 4
## 581 29.52 246.0 116 11.07 7.4 2
## 582 15.57 150.8 90 6.79 10.2 3
## 583 13.21 168.9 117 7.60 10.7 8
## 584 16.41 311.6 93 14.02 10.3 2
## 585 24.91 183.9 79 8.28 9.8 6
## 586 14.00 200.7 108 9.03 10.2 5
## 587 17.32 215.8 154 9.71 8.4 4
## 588 5.01 179.3 124 8.07 7.4 8
## 589 22.11 170.1 93 7.65 13.5 11
## 590 18.62 122.6 102 5.52 8.6 2
## 591 25.49 158.6 110 7.14 11.3 4
## 592 17.65 183.1 103 8.24 12.9 2
## 593 7.94 207.2 107 9.32 9.6 1
## 594 21.60 169.3 92 7.62 9.5 5
## 595 13.76 269.7 104 12.14 12.5 6
## 596 12.95 250.1 109 11.25 0.0 0
## 597 11.11 193.4 98 8.70 9.6 4
## 598 8.72 235.3 106 10.59 9.1 5
## 599 14.27 167.6 101 7.54 12.3 5
## 600 17.08 246.8 126 11.11 9.2 6
## 601 20.91 170.5 140 7.67 9.1 4
## 602 16.79 121.6 105 5.47 13.9 6
## 603 14.09 143.9 71 6.48 4.6 4
## 604 22.57 244.3 128 10.99 11.6 6
## 605 19.14 169.7 93 7.64 11.4 7
## 606 18.06 265.0 132 11.93 12.7 8
## 607 24.59 129.4 97 5.82 13.1 8
## 608 10.09 240.1 91 10.80 6.6 8
## 609 21.13 208.8 124 9.40 10.6 5
## 610 22.23 163.2 116 7.34 8.7 3
## 611 12.80 269.2 129 12.11 11.6 7
## 612 13.11 299.0 60 13.46 12.7 3
## 613 19.84 195.7 141 8.81 7.7 6
## 614 18.50 190.5 100 8.57 13.2 6
## 615 18.86 189.1 100 8.51 7.3 1
## 616 17.02 233.1 96 10.49 8.0 5
## 617 23.33 298.9 130 13.45 8.8 7
## 618 24.73 194.8 140 8.77 14.0 6
## 619 13.14 142.8 97 6.43 11.6 6
## 620 16.02 266.9 91 12.01 14.5 4
## 621 16.48 268.4 121 12.08 12.8 4
## 622 12.22 157.0 106 7.07 11.5 3
## 623 12.49 121.0 131 5.44 10.6 3
## 624 12.44 264.6 83 11.91 7.1 1
## 625 18.75 249.2 78 11.21 5.1 2
## 626 19.27 144.6 72 6.51 13.8 4
## 627 15.75 205.1 82 9.23 4.1 2
## 628 13.66 249.4 80 11.22 7.4 2
## 629 18.50 152.1 76 6.84 6.5 5
## 630 19.27 210.7 134 9.48 13.7 4
## 631 14.53 225.1 93 10.13 13.9 4
## 632 19.55 193.6 95 8.71 9.5 2
## 633 24.64 180.0 114 8.10 4.8 4
## 634 7.62 220.0 91 9.90 15.6 4
## 635 19.09 306.3 102 13.78 10.8 6
## 636 16.49 256.5 94 11.54 10.2 7
## 637 16.77 169.0 116 7.61 9.2 15
## 638 10.84 237.4 118 10.68 7.5 3
## 639 12.55 259.3 117 11.67 12.9 1
## 640 11.39 210.6 113 9.48 11.4 2
## 641 14.75 206.2 95 9.28 7.9 4
## 642 16.87 208.5 102 9.38 9.8 3
## 643 17.89 180.6 92 8.13 11.0 13
## 644 22.53 239.8 128 10.79 15.6 7
## 645 18.64 215.9 95 9.72 14.0 4
## 646 15.12 158.4 146 7.13 8.5 4
## 647 19.37 170.3 103 7.66 15.4 9
## 648 10.85 155.6 125 7.00 7.5 5
## 649 8.61 104.8 94 4.72 9.1 4
## 650 17.90 256.7 83 11.55 6.0 3
## 651 21.86 103.1 111 4.64 11.5 4
## 652 17.42 179.7 93 8.09 9.5 6
## 653 10.86 199.2 120 8.96 9.2 1
## 654 8.79 208.1 109 9.36 8.5 3
## 655 16.62 180.1 93 8.10 10.5 5
## 656 16.50 231.5 86 10.42 9.4 10
## 657 13.75 289.5 55 13.03 9.3 4
## 658 8.74 142.4 89 6.41 9.3 2
## 659 11.17 186.6 86 8.40 9.9 7
## 660 13.98 134.9 63 6.07 8.3 2
## 661 25.93 197.4 86 8.88 9.5 9
## 662 12.92 225.5 93 10.15 12.0 4
## 663 20.20 259.2 58 11.66 12.3 2
## 664 11.06 78.1 100 3.51 7.4 4
## 665 14.17 240.6 84 10.83 7.8 4
## 666 19.39 262.7 141 11.82 9.2 4
## 667 12.77 151.8 96 6.83 9.6 1
## 668 10.11 135.9 124 6.12 9.2 3
## 669 16.04 206.9 124 9.31 12.3 1
## 670 16.06 205.1 90 9.23 15.5 4
## 671 19.75 212.8 98 9.58 16.3 4
## 672 18.83 103.9 89 4.68 11.9 6
## 673 12.27 160.2 88 7.21 11.8 5
## 674 21.15 211.3 79 9.51 11.2 3
## 675 19.10 204.6 77 9.21 7.5 15
## 676 11.00 264.8 104 11.92 5.9 3
## 677 9.90 152.2 91 6.85 10.6 4
## 678 20.06 118.3 120 5.32 9.4 4
## 679 15.40 178.5 105 8.03 8.9 4
## 680 27.80 208.0 104 9.36 8.7 9
## 681 16.13 205.8 83 9.26 13.1 2
## 682 13.46 256.1 82 11.52 9.3 5
## 683 12.79 123.0 87 5.54 11.4 3
## 684 20.54 202.4 120 9.11 6.5 1
## 685 19.83 204.4 57 9.20 11.1 8
## 686 15.90 230.8 101 10.39 8.6 7
## 687 18.22 154.4 80 6.95 10.1 2
## 688 16.99 216.1 107 9.72 12.6 8
## 689 17.76 260.1 123 11.70 12.1 3
## 690 11.20 126.9 101 5.71 8.2 2
## 691 16.77 234.5 111 10.55 14.9 3
## 692 16.39 172.7 105 7.77 10.2 4
## 693 23.50 192.1 104 8.64 5.7 7
## 694 16.02 254.9 118 11.47 8.0 4
## 695 22.83 188.8 99 8.50 10.9 4
## 696 8.97 220.2 105 9.91 11.6 9
## 697 15.16 169.2 77 7.61 7.5 3
## 698 23.26 206.6 72 9.30 9.1 4
## 699 15.81 307.1 86 13.82 8.4 11
## 700 16.22 187.5 79 8.44 11.0 9
## 701 10.97 167.1 113 7.52 10.7 3
## 702 13.52 128.2 129 5.77 7.7 3
## 703 13.93 243.6 114 10.96 14.1 3
## 704 16.10 229.9 118 10.35 10.4 7
## 705 16.41 194.1 113 8.73 6.5 4
## 706 19.64 168.9 121 7.60 8.5 5
## 707 16.60 194.4 65 8.75 3.6 5
## 708 19.00 260.8 72 11.74 7.6 7
## 709 13.12 200.4 109 9.02 10.6 6
## 710 12.96 197.8 76 8.90 9.7 3
## 711 18.42 259.9 119 11.70 12.5 4
## 712 25.31 212.6 86 9.57 11.4 8
## 713 6.66 232.7 78 10.47 0.0 0
## 714 17.26 210.6 106 9.48 6.9 2
## 715 17.99 174.5 81 7.85 7.3 5
## 716 20.61 151.7 121 6.83 15.3 6
## 717 16.59 268.8 94 12.10 11.4 4
## 718 18.63 179.7 83 8.09 7.2 6
## 719 14.44 184.0 116 8.28 9.3 3
## 720 16.53 256.5 109 11.54 11.7 5
## 721 13.91 242.7 72 10.92 7.4 2
## 722 14.39 166.7 80 7.50 10.9 5
## 723 16.44 105.4 115 4.74 13.5 3
## 724 20.20 206.7 136 9.30 14.0 11
## 725 15.05 216.5 118 9.74 16.4 5
## 726 17.02 231.7 101 10.43 11.9 3
## 727 14.51 287.7 95 12.95 7.8 5
## 728 16.15 221.4 110 9.96 9.2 2
## 729 18.21 154.9 101 6.97 12.7 5
## 730 14.94 221.8 124 9.98 13.4 5
## 731 17.22 221.6 51 9.97 11.5 3
## 732 24.86 226.3 103 10.18 8.0 1
## 733 11.32 197.4 94 8.88 7.2 5
## 734 11.25 211.9 76 9.54 9.5 8
## 735 14.43 175.3 127 7.89 12.1 4
## 736 16.97 274.7 103 12.36 6.5 6
## 737 13.18 189.7 87 8.54 11.0 9
## 738 14.94 223.7 151 10.07 16.7 3
## 739 20.47 210.3 76 9.46 11.4 3
## 740 17.73 203.8 111 9.17 8.8 8
## 741 16.07 162.2 115 7.30 9.4 2
## 742 23.68 129.6 120 5.83 11.5 3
## 743 20.45 248.1 98 11.16 11.4 3
## 744 13.90 195.4 84 8.79 10.4 6
## 745 20.52 203.5 86 9.16 9.1 5
## 746 21.28 142.4 92 6.41 6.6 8
## 747 10.12 232.9 123 10.48 6.4 2
## 748 16.66 226.5 122 10.19 7.8 1
## 749 22.97 121.6 113 5.47 8.7 5
## 750 16.87 133.1 88 5.99 11.0 6
## 751 15.77 148.2 107 6.67 8.2 4
## 752 15.84 241.7 75 10.88 10.1 6
## 753 13.99 128.8 102 5.80 12.7 4
## 754 11.70 159.7 121 7.19 11.0 5
## 755 10.36 253.7 104 11.42 9.6 4
## 756 20.58 101.2 103 4.55 11.4 4
## 757 20.38 148.7 71 6.69 9.8 14
## 758 20.68 184.6 78 8.31 13.1 5
## 759 18.71 177.9 95 8.01 9.8 6
## 760 15.39 320.7 120 14.43 9.5 4
## 761 23.02 206.4 68 9.29 10.1 5
## 762 19.31 145.8 91 6.56 8.4 3
## 763 22.73 184.5 137 8.30 1.3 6
## 764 22.19 317.8 103 14.30 15.0 5
## 765 18.62 237.4 76 10.68 11.4 4
## 766 17.70 158.9 101 7.15 8.7 6
## 767 20.67 182.4 57 8.21 11.0 2
## 768 10.03 236.0 91 10.62 15.2 4
## 769 18.96 157.8 101 7.10 9.7 2
## 770 21.27 144.9 81 6.52 11.0 3
## 771 16.24 214.6 107 9.66 13.3 4
## 772 14.19 145.2 77 6.53 8.8 3
## 773 17.60 214.1 91 9.63 9.2 7
## 774 14.27 182.2 138 8.20 7.7 2
## 775 16.90 228.4 116 10.28 10.6 4
## 776 16.76 202.2 79 9.10 10.7 4
## 777 13.74 251.4 91 11.31 10.5 4
## 778 18.28 234.3 84 10.54 5.8 4
## 779 18.46 225.7 71 10.16 13.6 5
## 780 20.65 168.9 101 7.60 10.1 4
## 781 15.62 153.8 67 6.92 11.0 9
## 782 17.08 134.0 134 6.03 10.7 4
## 783 12.07 288.9 68 13.00 9.4 4
## 784 14.48 280.2 78 12.61 9.4 4
## 785 12.21 239.4 128 10.77 11.2 9
## 786 22.41 142.6 60 6.42 10.7 5
## 787 16.53 200.4 85 9.02 11.3 3
## 788 17.75 182.5 105 8.21 11.1 6
## 789 10.01 133.7 78 6.02 11.8 2
## 790 18.97 169.5 64 7.63 10.5 3
## 791 16.83 94.3 76 4.24 7.5 3
## 792 24.34 167.0 77 7.52 14.1 3
## 793 21.54 165.4 85 7.44 8.2 2
## 794 18.60 240.2 106 10.81 9.0 3
## 795 20.37 167.5 108 7.54 15.1 2
## 796 22.89 158.9 105 7.15 10.8 4
## 797 11.00 166.9 124 7.51 8.4 2
## 798 18.65 198.5 121 8.93 14.5 7
## 799 22.05 134.7 135 6.06 14.6 5
## 800 11.71 213.5 104 9.61 15.9 5
## 801 18.78 179.4 97 8.07 11.3 2
## 802 17.20 180.1 95 8.10 9.4 5
## 803 27.10 247.3 79 11.13 6.5 4
## 804 21.56 291.0 86 13.10 12.6 3
## 805 18.64 210.8 89 9.49 9.8 4
## 806 17.13 101.7 82 4.58 6.8 4
## 807 13.29 136.5 121 6.14 10.2 5
## 808 14.63 194.6 111 8.76 12.1 3
## 809 20.62 147.7 95 6.65 11.3 3
## 810 20.40 200.9 64 9.04 5.8 3
## 811 20.57 146.3 108 6.58 12.1 4
## 812 9.08 178.5 122 8.03 9.9 6
## 813 8.76 189.4 82 8.52 13.1 4
## 814 23.49 190.8 113 8.59 15.3 5
## 815 17.29 171.7 68 7.73 12.4 4
## 816 14.43 285.1 100 12.83 5.7 3
## 817 17.64 211.7 100 9.53 12.1 5
## 818 13.91 264.2 118 11.89 6.6 6
## 819 17.68 206.1 124 9.27 15.1 3
## 820 17.23 234.7 103 10.56 13.1 3
## 821 6.49 185.1 96 8.33 12.7 3
## 822 3.73 189.6 87 8.53 13.1 5
## 823 13.07 236.6 105 10.65 11.7 4
## 824 10.53 174.3 84 7.84 10.1 6
## 825 11.26 149.4 123 6.72 11.3 3
## 826 17.99 182.2 105 8.20 11.6 6
## 827 18.52 184.2 77 8.29 9.4 9
## 828 24.45 223.0 100 10.04 12.2 4
## 829 14.74 268.7 114 12.09 5.5 2
## 830 19.56 119.8 81 5.39 9.9 3
## 831 7.96 241.3 115 10.86 13.4 1
## 832 18.43 239.4 99 10.77 11.8 2
## 833 17.39 186.2 128 8.38 9.4 4
## 834 18.33 138.4 127 6.23 10.2 3
## 835 9.83 226.3 94 10.18 9.4 3
## 836 17.73 65.8 71 2.96 9.9 3
## 837 19.17 168.7 120 7.59 9.7 4
## 838 13.85 247.4 109 11.13 8.1 13
## 839 25.92 225.6 133 10.15 11.9 8
## 840 18.88 188.3 92 8.47 16.1 5
## 841 22.99 225.3 94 10.14 9.0 6
## 842 12.75 160.8 81 7.24 10.3 2
## 843 19.98 95.1 130 4.28 11.4 11
## 844 11.00 167.6 109 7.54 15.8 6
## 845 13.83 215.5 98 9.70 14.6 6
## 846 16.32 196.3 85 8.83 10.0 4
## 847 16.23 295.6 125 13.30 10.3 4
## 848 16.69 252.7 75 11.37 10.3 4
## 849 16.35 207.4 111 9.33 9.1 9
## 850 22.50 111.4 101 5.01 9.2 2
## 851 4.50 246.1 119 11.07 10.9 5
## 852 17.97 72.4 84 3.26 11.0 4
## 853 23.25 226.9 99 10.21 9.6 3
## 854 20.05 260.2 113 11.71 7.6 6
## 855 21.89 227.8 119 10.25 9.7 13
## 856 15.32 187.3 135 8.43 6.2 7
## 857 10.26 215.1 112 9.68 12.7 2
## 858 16.66 263.9 95 11.88 9.2 4
## 859 14.06 185.0 81 8.32 11.7 8
## 860 18.96 262.7 90 11.82 11.3 3
## 861 14.89 228.6 92 10.29 9.9 6
## 862 16.70 209.5 108 9.43 14.9 3
## 863 12.47 345.8 115 15.56 13.1 3
## 864 12.98 217.8 125 9.80 12.4 13
## 865 15.61 80.2 108 3.61 8.9 4
## 866 14.56 154.6 119 6.96 9.9 9
## 867 22.80 146.5 80 6.59 11.1 3
## 868 13.12 210.6 91 9.48 8.2 5
## 869 20.51 143.2 105 6.44 4.0 7
## 870 17.81 249.9 105 11.25 7.4 4
## 871 21.39 258.0 93 11.61 14.9 5
## 872 16.18 284.7 118 12.81 11.1 6
## 873 14.84 241.5 80 10.87 10.9 3
## 874 20.06 307.6 77 13.84 9.3 1
## 875 11.49 208.2 106 9.37 10.4 3
## 876 20.88 148.6 90 6.69 9.1 4
## 877 27.47 143.9 127 6.48 7.5 2
## 878 17.36 111.7 146 5.03 5.9 4
## 879 13.65 77.9 74 3.51 0.0 0
## 880 18.73 169.9 104 7.65 11.8 8
## 881 15.78 203.3 64 9.15 10.2 7
## 882 17.22 289.6 119 13.03 6.7 8
## 883 24.68 114.9 140 5.17 7.2 3
## 884 21.75 45.0 117 2.03 8.0 12
## 885 12.19 153.9 102 6.93 15.0 7
## 886 20.67 190.8 95 8.59 5.4 3
## 887 16.06 196.2 98 8.83 8.9 3
## 888 22.51 270.0 77 12.15 7.6 7
## 889 20.37 229.8 104 10.34 5.5 4
## 890 3.61 179.2 124 8.06 12.4 5
## 891 19.86 179.4 91 8.07 12.0 2
## 892 13.47 207.5 131 9.34 6.2 5
## 893 18.80 197.3 97 8.88 12.3 4
## 894 5.17 176.7 110 7.95 10.7 3
## 895 14.43 194.1 63 8.73 11.9 3
## 896 17.85 187.2 93 8.42 8.5 3
## 897 13.22 206.2 112 9.28 14.4 7
## 898 17.05 195.4 107 8.79 15.5 7
## 899 17.82 264.1 77 11.88 8.0 2
## 900 21.23 224.2 92 10.09 8.7 7
## 901 11.75 221.0 88 9.95 5.5 6
## 902 21.39 141.1 158 6.35 11.3 3
## 903 18.60 208.3 131 9.37 8.2 6
## 904 16.73 157.9 112 7.11 5.9 8
## 905 17.89 234.7 70 10.56 9.0 3
## 906 6.03 204.8 107 9.22 13.4 4
## 907 16.05 136.2 89 6.13 13.5 3
## 908 9.32 245.5 73 11.05 16.9 2
## 909 14.14 219.8 73 9.89 15.0 4
## 910 13.88 264.9 104 11.92 5.1 6
## 911 15.11 190.4 106 8.57 8.1 5
## 912 26.89 208.6 91 9.39 14.4 11
## 913 10.23 163.0 93 7.34 10.6 3
## 914 24.63 312.5 130 14.06 10.6 4
## 915 24.48 266.0 112 11.97 10.5 4
## 916 12.04 198.5 124 8.93 7.5 3
## 917 23.94 228.1 113 10.26 13.2 5
## 918 9.83 295.8 84 13.31 8.3 6
## 919 18.45 342.8 130 15.43 5.2 2
## 920 10.94 190.5 113 8.57 11.0 4
## 921 14.37 166.7 94 7.50 9.2 2
## 922 18.68 202.0 89 9.09 4.4 14
## 923 12.10 364.3 106 16.39 9.3 5
## 924 9.56 218.7 79 9.84 13.8 3
## 925 17.50 204.0 103 9.18 7.9 4
## 926 6.87 196.1 79 8.82 10.8 2
## 927 9.02 179.6 90 8.08 14.0 6
## 928 16.66 139.3 123 6.27 11.4 5
## 929 13.18 180.7 64 8.13 7.8 5
## 930 12.34 214.5 105 9.65 6.6 5
## 931 19.43 265.3 114 11.94 9.8 4
## 932 16.63 236.5 137 10.64 12.0 2
## 933 26.28 152.1 118 6.84 10.0 2
## 934 17.65 207.4 143 9.33 14.1 4
## 935 11.32 177.6 123 7.99 11.2 2
## 936 18.96 255.6 92 11.50 13.0 3
## 937 19.88 277.4 94 12.48 9.2 4
## 938 12.57 183.8 74 8.27 6.7 2
## 939 16.12 270.1 107 12.15 14.3 2
## 940 15.24 300.7 89 13.53 11.9 8
## 941 20.52 204.8 106 9.22 15.5 4
## 942 24.42 230.2 85 10.36 6.5 5
## 943 11.93 208.9 110 9.40 6.4 2
## 944 17.59 272.0 88 12.24 12.6 2
## 945 16.21 193.0 103 8.69 9.2 6
## 946 12.33 233.7 120 10.52 11.5 6
## 947 22.19 204.4 107 9.20 13.4 5
## 948 14.44 201.6 130 9.07 11.0 4
## 949 13.21 255.7 114 11.51 8.4 3
## 950 18.92 173.3 81 7.80 11.0 3
## 951 20.60 170.2 89 7.66 7.9 3
## 952 19.89 196.3 77 8.83 11.6 2
## 953 13.64 149.5 142 6.73 10.7 2
## 954 15.91 225.5 118 10.15 8.6 3
## 955 19.06 221.0 116 9.95 8.6 8
## 956 18.82 208.5 103 9.38 10.3 5
## 957 15.61 205.5 111 9.25 7.1 3
## 958 24.30 190.6 121 8.58 9.4 15
## 959 15.81 190.5 128 8.57 12.3 3
## 960 9.83 193.8 118 8.72 12.8 5
## 961 15.92 214.0 85 9.63 13.3 3
## 962 27.24 150.7 110 6.78 4.2 3
## 963 12.76 219.8 111 9.89 7.7 2
## 964 14.09 270.0 83 12.15 10.8 5
## 965 17.22 191.2 102 8.60 13.3 2
## 966 21.09 122.4 85 5.51 12.2 4
## 967 22.00 263.2 109 11.84 15.7 5
## 968 15.87 128.4 100 5.78 9.2 3
## 969 21.10 164.6 116 7.41 13.5 3
## 970 22.29 130.0 92 5.85 8.8 4
## 971 19.12 219.6 50 9.88 11.5 1
## 972 21.35 273.4 97 12.30 5.0 5
## 973 13.86 154.1 90 6.93 11.8 3
## 974 15.44 128.1 93 5.76 12.3 2
## 975 23.04 179.1 89 8.06 9.5 7
## 976 16.33 191.0 83 8.59 10.4 6
## 977 11.15 264.7 63 11.91 13.0 6
## 978 13.81 186.6 90 8.40 11.8 2
## 979 22.64 224.1 118 10.08 13.1 4
## 980 18.26 223.6 126 10.06 7.8 5
## 981 17.33 151.8 124 6.83 11.6 8
## 982 20.37 268.3 81 12.07 6.9 4
## 983 12.73 213.4 108 9.60 13.0 18
## 984 19.09 221.3 105 9.96 9.0 4
## 985 26.04 196.5 82 8.84 9.9 1
## 986 21.21 275.4 102 12.39 13.3 9
## 987 12.35 195.2 137 8.78 11.8 9
## 988 22.38 178.1 106 8.01 8.3 2
## 989 9.79 224.5 115 10.10 17.0 4
## 990 15.94 147.1 126 6.62 13.6 3
## 991 21.24 298.9 104 13.45 3.9 2
## 992 11.49 216.2 101 9.73 7.9 2
## 993 12.80 63.3 103 2.85 7.7 5
## 994 12.04 255.9 96 11.52 9.6 2
## 995 19.90 213.4 87 9.60 10.4 6
## 996 12.95 144.7 97 6.51 7.5 5
## 997 17.15 181.9 103 8.19 11.6 5
## 998 18.37 148.1 76 6.66 11.3 3
## 999 19.76 175.8 105 7.91 14.7 3
## 1000 14.01 54.5 91 2.45 7.9 3
## 1001 19.41 117.3 103 5.28 12.8 4
## 1002 14.25 260.6 94 11.73 8.4 4
## 1003 14.22 238.9 115 10.75 6.8 3
## 1004 19.20 172.0 86 7.74 8.2 3
## 1005 12.22 150.2 127 6.76 12.3 3
## 1006 9.90 220.0 110 9.90 9.8 4
## 1007 26.99 133.4 113 6.00 8.3 4
## 1008 16.62 223.3 95 10.05 6.0 7
## 1009 17.31 173.9 124 7.83 11.4 2
## 1010 14.25 168.5 122 7.58 11.3 3
## 1011 21.78 169.0 151 7.61 3.8 4
## 1012 24.60 194.0 100 8.73 9.7 6
## 1013 16.87 258.2 91 11.62 8.0 5
## 1014 16.41 222.7 94 10.02 13.1 5
## 1015 6.96 304.3 101 13.69 12.0 4
## 1016 17.47 213.7 91 9.62 11.9 2
## 1017 12.95 194.4 110 8.75 8.6 3
## 1018 20.75 176.3 120 7.93 9.1 4
## 1019 19.58 170.6 101 7.68 11.4 5
## 1020 12.62 216.7 96 9.75 11.3 3
## 1021 16.53 242.3 138 10.90 14.2 3
## 1022 14.25 110.3 71 4.96 8.4 12
## 1023 13.17 189.4 89 8.52 7.2 5
## 1024 16.63 122.1 117 5.49 7.8 8
## 1025 22.34 214.3 128 9.64 11.2 3
## 1026 24.17 262.8 99 11.83 12.3 1
## 1027 24.75 159.6 114 7.18 10.0 2
## 1028 21.20 254.9 129 11.47 12.9 1
## 1029 18.35 223.5 122 10.06 0.0 0
## 1030 19.68 226.1 130 10.17 16.5 5
## 1031 19.75 215.5 100 9.70 9.3 4
## 1032 14.60 167.5 66 7.54 5.3 9
## 1033 11.98 204.3 93 9.19 9.5 5
## 1034 18.18 171.2 105 7.70 10.6 6
## 1035 18.28 179.7 108 8.09 13.1 9
## 1036 18.33 161.2 111 7.25 10.0 1
## 1037 17.70 171.0 102 7.69 12.0 2
## 1038 14.03 173.1 102 7.79 10.7 5
## 1039 9.69 146.8 79 6.61 14.1 3
## 1040 17.96 261.4 91 11.76 10.7 2
## 1041 18.78 238.7 117 10.74 9.2 5
## 1042 17.15 206.1 112 9.27 16.1 6
## 1043 15.59 240.7 133 10.83 9.9 3
## 1044 17.95 179.3 104 8.07 10.2 8
## 1045 12.50 94.9 99 4.27 7.2 4
## 1046 13.50 306.6 107 13.80 9.3 3
## 1047 20.59 233.3 75 10.50 6.4 5
## 1048 22.65 217.6 59 9.79 7.1 7
## 1049 19.41 163.3 116 7.35 7.7 3
## 1050 14.08 243.2 107 10.94 8.4 9
## 1051 15.21 182.1 84 8.19 12.9 10
## 1052 15.22 214.7 112 9.66 10.3 2
## 1053 21.81 169.4 88 7.62 7.7 9
## 1054 16.35 240.6 100 10.83 10.1 3
## 1055 4.98 202.6 99 9.12 8.7 3
## 1056 12.45 137.6 78 6.19 8.5 2
## 1057 8.30 202.5 119 9.11 7.0 3
## 1058 11.38 138.2 103 6.22 13.3 4
## 1059 16.91 76.4 97 3.44 8.6 6
## 1060 16.02 105.6 116 4.75 8.8 3
## 1061 7.63 172.8 104 7.78 15.3 3
## 1062 20.88 172.8 76 7.78 10.3 9
## 1063 12.40 175.1 103 7.88 9.9 3
## 1064 12.75 241.1 116 10.85 10.7 2
## 1065 10.09 258.4 105 11.63 12.9 3
## 1066 17.32 167.8 70 7.55 9.9 6
## 1067 19.05 267.9 112 12.06 11.8 4
## 1068 15.11 233.4 97 10.50 12.2 6
## 1069 19.82 109.6 115 4.93 10.3 5
## 1070 18.54 192.9 115 8.68 12.5 4
## 1071 17.77 173.0 96 7.79 11.9 9
## 1072 20.44 179.1 107 8.06 5.0 9
## 1073 12.88 50.1 60 2.25 14.3 6
## 1074 14.43 215.8 77 9.71 7.6 4
## 1075 14.89 212.2 77 9.55 12.5 7
## 1076 21.04 155.5 99 7.00 8.9 8
## 1077 17.55 228.1 64 10.26 6.5 7
## 1078 9.55 246.4 75 11.09 15.4 4
## 1079 18.87 162.8 123 7.33 6.7 8
## 1080 18.81 210.0 93 9.45 8.2 3
## 1081 14.89 220.3 118 9.91 0.0 0
## 1082 19.27 219.1 67 9.86 7.5 2
## 1083 18.38 171.3 65 7.71 11.8 1
## 1084 18.16 175.1 86 7.88 12.4 6
## 1085 17.35 171.3 84 7.71 12.3 5
## 1086 18.79 109.9 100 4.95 12.4 4
## 1087 21.04 246.2 123 11.08 6.9 6
## 1088 17.60 268.0 106 12.06 8.2 4
## 1089 18.96 241.6 77 10.87 12.9 2
## 1090 15.69 164.3 131 7.39 13.3 4
## 1091 16.87 164.4 83 7.40 10.4 3
## 1092 20.34 123.2 108 5.54 10.0 3
## 1093 14.48 165.1 104 7.43 9.5 13
## 1094 12.71 255.1 67 11.48 6.5 8
## 1095 13.52 229.9 74 10.35 7.2 8
## 1096 16.88 160.8 62 7.24 6.0 3
## 1097 21.22 248.2 114 11.17 14.2 4
## 1098 18.96 251.7 94 11.33 13.0 2
## 1099 16.63 181.8 129 8.18 5.1 4
## 1100 14.09 151.6 79 6.82 2.2 4
## 1101 23.19 214.5 100 9.65 8.3 4
## 1102 20.74 180.1 89 8.10 9.1 4
## 1103 8.74 213.7 84 9.62 10.5 2
## 1104 17.47 213.6 124 9.61 12.2 6
## 1105 16.12 182.6 91 8.22 10.4 5
## 1106 20.95 154.8 131 6.97 12.9 4
## 1107 15.27 258.5 89 11.63 10.1 5
## 1108 16.08 164.3 76 7.39 12.8 7
## 1109 6.85 212.8 116 9.58 5.8 2
## 1110 15.90 207.9 155 9.36 7.9 1
## 1111 22.00 253.2 113 11.39 7.4 9
## 1112 10.07 248.1 87 11.16 17.1 6
## 1113 13.23 304.4 93 13.70 13.3 2
## 1114 24.89 43.7 121 1.97 10.6 4
## 1115 22.70 250.7 114 11.28 10.9 4
## 1116 17.22 172.3 94 7.75 12.5 7
## 1117 21.77 262.9 103 11.83 11.7 3
## 1118 18.25 150.9 105 6.79 11.8 7
## 1119 16.00 247.0 73 11.12 12.3 4
## 1120 20.12 179.1 120 8.06 11.3 5
## 1121 13.82 150.0 138 6.75 12.1 6
## 1122 14.31 239.9 81 10.80 11.7 4
## 1123 20.92 242.0 106 10.89 10.4 5
## 1124 19.57 283.7 87 12.77 10.0 3
## 1125 20.67 229.2 95 10.31 9.9 5
## 1126 10.44 229.5 94 10.33 12.8 9
## 1127 18.96 182.3 112 8.20 7.3 4
## 1128 16.53 225.6 101 10.15 16.9 3
## 1129 19.06 116.3 91 5.23 12.3 10
## 1130 11.77 164.8 98 7.42 9.0 2
## 1131 15.37 251.6 58 11.32 12.7 2
## 1132 12.02 189.8 109 8.54 13.0 5
## 1133 17.89 179.7 102 8.09 11.8 4
## 1134 14.02 216.0 125 9.72 12.3 2
## 1135 21.79 117.1 91 5.27 9.0 3
## 1136 16.80 209.2 97 9.41 12.2 3
## 1137 18.29 254.0 133 11.43 14.4 7
## 1138 19.06 260.9 135 11.74 11.3 1
## 1139 19.01 173.1 77 7.79 13.6 6
## 1140 16.01 172.7 113 7.77 11.7 3
## 1141 14.38 189.7 117 8.54 10.1 3
## 1142 18.14 196.8 81 8.86 7.9 6
## 1143 20.41 147.7 114 6.65 5.3 4
## 1144 23.41 246.1 105 11.07 10.0 5
## 1145 12.27 135.3 106 6.09 10.8 1
## 1146 12.99 162.9 92 7.33 5.1 2
## 1147 18.65 224.7 68 10.11 4.0 5
## 1148 14.04 194.3 57 8.74 10.6 5
## 1149 7.79 211.7 103 9.53 9.7 7
## 1150 12.53 235.8 113 10.61 9.6 8
## 1151 10.91 162.1 119 7.29 11.6 4
## 1152 11.79 139.3 85 6.27 11.3 4
## 1153 14.69 94.1 102 4.23 8.8 4
## 1154 17.61 136.0 117 6.12 5.6 5
## 1155 17.44 134.6 140 6.06 8.1 2
## 1156 17.96 168.3 97 7.57 11.1 4
## 1157 18.45 81.6 100 3.67 11.8 7
## 1158 15.01 212.6 102 9.57 7.8 5
## 1159 17.57 203.8 119 9.17 11.1 6
## 1160 20.90 161.1 95 7.25 6.4 7
## 1161 13.16 166.7 105 7.50 10.6 2
## 1162 15.22 281.9 89 12.69 8.2 9
## 1163 12.12 102.0 63 4.59 10.9 2
## 1164 20.67 322.2 114 14.50 7.1 5
## 1165 11.03 132.3 113 5.95 12.0 3
## 1166 24.60 174.9 109 7.87 8.0 3
## 1167 14.21 214.2 106 9.64 12.2 3
## 1168 17.50 233.7 75 10.52 12.9 1
## 1169 18.14 237.9 61 10.71 7.6 11
## 1170 18.11 181.7 108 8.18 5.4 5
## 1171 19.06 140.1 57 6.30 15.2 2
## 1172 15.37 132.5 102 5.96 12.8 3
## 1173 14.25 132.0 124 5.94 9.2 5
## 1174 18.57 266.0 88 11.97 10.9 5
## 1175 23.05 167.1 83 7.52 5.8 7
## 1176 8.69 174.0 83 7.83 8.6 2
## 1177 16.52 186.5 104 8.39 9.7 2
## 1178 16.09 271.8 124 12.23 14.1 4
## 1179 20.30 108.8 92 4.90 11.2 2
## 1180 13.35 129.1 100 5.81 7.3 14
## 1181 16.63 184.8 124 8.32 13.1 4
## 1182 12.60 274.0 136 12.33 7.5 6
## 1183 15.16 153.2 98 6.89 14.4 2
## 1184 14.05 205.0 74 9.23 9.0 1
## 1185 20.58 215.8 80 9.71 9.7 3
## 1186 18.45 214.8 104 9.67 9.8 7
## 1187 19.46 195.1 101 8.78 8.7 5
## 1188 20.36 254.3 109 11.44 5.9 9
## 1189 12.33 281.8 92 12.68 9.3 2
## 1190 19.00 175.4 69 7.89 11.2 5
## 1191 4.76 163.3 104 7.35 8.9 8
## 1192 17.71 177.6 98 7.99 9.2 3
## 1193 21.40 285.9 76 12.87 7.2 2
## 1194 17.81 82.3 107 3.70 8.7 5
## 1195 14.10 205.7 71 9.26 13.2 2
## 1196 20.00 174.4 126 7.85 11.0 3
## 1197 11.05 134.3 125 6.04 6.9 2
## 1198 18.16 291.8 89 13.13 11.9 3
## 1199 18.18 132.6 99 5.97 13.4 3
## 1200 19.80 206.9 121 9.31 7.6 4
## 1201 21.92 180.2 157 8.11 11.6 4
## 1202 18.77 249.5 93 11.23 8.0 5
## 1203 18.79 349.7 75 15.74 12.6 3
## 1204 17.43 263.7 90 11.87 5.1 7
## 1205 22.55 152.4 77 6.86 9.5 2
## 1206 16.60 182.7 108 8.22 8.5 3
## 1207 17.51 180.6 118 8.13 9.7 4
## 1208 14.68 104.5 128 4.70 11.3 5
## 1209 17.46 205.7 121 9.26 10.2 3
## 1210 18.67 255.8 90 11.51 12.8 3
## 1211 15.32 159.0 110 7.15 7.9 2
## 1212 20.49 207.8 94 9.35 7.9 1
## 1213 21.22 170.3 128 7.66 12.6 8
## 1214 14.34 223.5 100 10.06 11.8 4
## 1215 20.04 228.6 119 10.29 9.5 3
## 1216 13.41 192.5 89 8.66 11.3 6
## 1217 17.97 103.7 127 4.67 5.9 6
## 1218 20.26 150.7 84 6.78 10.7 4
## 1219 19.31 239.9 92 10.80 7.6 3
## 1220 18.11 198.0 119 8.91 10.9 5
## 1221 19.12 170.8 118 7.69 15.7 5
## 1222 17.20 195.9 100 8.82 12.6 5
## 1223 20.41 156.7 123 7.05 4.9 5
## 1224 18.12 207.8 104 9.35 11.4 4
## 1225 14.31 120.5 93 5.42 9.3 9
## 1226 11.92 90.9 81 4.09 11.4 3
## 1227 20.42 119.0 112 5.36 11.4 4
## 1228 15.57 127.4 106 5.73 12.3 6
## 1229 17.36 231.5 87 10.42 8.9 4
## 1230 21.89 210.5 66 9.47 7.5 5
## 1231 19.56 232.1 110 10.44 10.6 2
## 1232 19.23 178.8 60 8.05 8.8 5
## 1233 15.63 184.3 109 8.29 15.3 6
## 1234 4.09 116.3 80 5.23 8.9 3
## 1235 14.35 154.6 95 6.96 9.8 7
## 1236 18.33 152.7 84 6.87 10.6 2
## 1237 21.68 82.4 73 3.71 10.1 4
## 1238 13.75 167.7 115 7.55 11.7 5
## 1239 17.72 352.5 111 15.86 8.1 4
## 1240 16.35 166.5 98 7.49 10.1 3
## 1241 14.60 259.8 76 11.69 9.6 3
## 1242 16.62 213.3 120 9.60 16.5 7
## 1243 19.56 143.6 82 6.46 9.1 10
## 1244 18.08 193.8 103 8.72 11.0 2
## 1245 21.61 261.8 85 11.78 7.7 2
## 1246 19.67 188.1 127 8.46 11.2 5
## 1247 16.14 232.2 102 10.45 9.0 3
## 1248 18.19 239.5 94 10.78 8.8 5
## 1249 15.86 223.0 100 10.04 11.6 8
## 1250 19.67 180.9 120 8.14 7.8 4
## 1251 10.99 186.4 109 8.39 5.2 4
## 1252 14.44 244.9 106 11.02 9.9 10
## 1253 15.68 168.2 91 7.57 8.8 3
## 1254 17.99 210.1 133 9.45 8.3 4
## 1255 17.09 286.7 103 12.90 11.1 3
## 1256 24.68 236.9 89 10.66 10.8 3
## 1257 15.73 219.5 104 9.88 6.0 3
## 1258 16.93 120.2 113 5.41 18.0 5
## 1259 21.06 245.4 93 11.04 11.2 7
## 1260 10.08 250.2 102 11.26 12.5 4
## 1261 14.34 23.2 102 1.04 9.5 4
## 1262 20.46 197.1 134 8.87 7.1 4
## 1263 10.14 165.1 113 7.43 11.5 7
## 1264 11.43 120.3 104 5.41 7.5 5
## 1265 13.80 162.9 80 7.33 10.5 4
## 1266 18.14 195.6 97 8.80 10.1 5
## 1267 13.95 157.7 128 7.10 9.0 3
## 1268 21.70 228.1 97 10.26 5.4 7
## 1269 22.14 144.2 96 6.49 10.8 7
## 1270 17.71 141.6 114 6.37 11.0 5
## 1271 24.82 183.3 80 8.25 8.7 6
## 1272 22.46 271.3 120 12.21 7.9 3
## 1273 18.50 220.2 68 9.91 13.2 2
## 1274 10.69 261.6 122 11.77 8.3 2
## 1275 17.09 150.4 138 6.77 11.2 2
## 1276 20.74 281.1 93 12.65 11.4 2
## 1277 28.56 192.8 128 8.68 9.6 1
## 1278 23.62 174.7 71 7.86 14.7 7
## 1279 22.91 167.3 82 7.53 9.6 7
## 1280 22.32 245.7 69 11.06 13.1 5
## 1281 17.82 260.9 78 11.74 13.9 1
## 1282 13.09 209.7 118 9.44 11.5 4
## 1283 18.20 289.6 95 13.03 10.4 6
## 1284 10.56 95.6 75 4.30 15.0 4
## 1285 21.36 200.1 112 9.00 8.4 2
## 1286 19.86 163.9 99 7.38 9.0 3
## 1287 16.98 194.7 74 8.76 7.5 8
## 1288 11.63 154.7 87 6.96 7.7 3
## 1289 15.98 142.0 133 6.39 4.4 4
## 1290 20.46 254.8 123 11.47 10.5 4
## 1291 17.98 169.0 116 7.61 9.1 3
## 1292 19.81 297.0 93 13.37 14.5 5
## 1293 22.75 111.5 80 5.02 9.3 7
## 1294 15.11 206.1 102 9.27 12.4 9
## 1295 22.27 184.6 125 8.31 9.2 5
## 1296 13.74 175.9 97 7.92 8.4 3
## 1297 19.97 229.6 157 10.33 8.8 3
## 1298 18.76 236.3 121 10.63 12.9 4
## 1299 27.94 160.5 89 7.22 7.8 6
## 1300 17.66 205.0 98 9.23 14.0 2
## 1301 14.88 210.6 84 9.48 10.2 2
## 1302 11.71 224.0 61 10.08 7.3 4
## 1303 19.55 136.0 111 6.12 9.6 5
## 1304 13.01 227.4 80 10.23 12.9 4
## 1305 22.32 212.5 110 9.56 8.8 2
## 1306 21.17 136.0 73 6.12 10.8 2
## 1307 15.67 255.8 83 11.51 10.6 5
## 1308 15.81 153.0 92 6.89 9.8 1
## 1309 17.43 170.6 114 7.68 13.8 4
## 1310 13.71 260.7 98 11.73 11.4 3
## 1311 15.92 184.2 111 8.29 7.4 5
## 1312 13.97 249.0 98 11.21 8.9 7
## 1313 21.56 215.8 96 9.71 6.4 2
## 1314 14.96 63.6 122 2.86 7.3 1
## 1315 14.03 111.6 104 5.02 6.3 4
## 1316 6.71 153.2 69 6.89 11.8 2
## 1317 18.26 206.4 73 9.29 8.7 6
## 1318 23.36 381.9 147 17.19 7.5 5
## 1319 17.89 109.6 114 4.93 7.7 2
## 1320 14.87 207.2 86 9.32 6.1 3
## 1321 16.80 147.1 110 6.62 14.5 4
## 1322 18.79 168.6 134 7.59 8.9 5
## 1323 11.81 192.6 119 8.67 9.1 1
## 1324 19.36 214.0 101 9.63 9.3 11
## 1325 15.66 217.4 102 9.78 12.6 5
## 1326 15.80 224.3 102 10.09 10.0 1
## 1327 19.64 220.9 80 9.94 6.3 9
## 1328 12.12 210.1 115 9.45 10.9 5
## 1329 23.49 193.7 100 8.72 10.1 9
## 1330 12.51 254.7 75 11.46 8.0 7
## 1331 20.80 154.4 91 6.95 13.8 2
## 1332 19.45 172.4 85 7.76 7.6 2
## 1333 10.68 226.5 90 10.19 10.5 4
## 1334 14.09 247.0 105 11.12 10.8 12
## 1335 14.27 193.6 106 8.71 8.0 4
## 1336 5.10 189.0 129 8.50 11.3 2
## 1337 18.21 186.1 71 8.37 11.1 6
## 1338 13.40 241.0 120 10.85 7.3 2
## 1339 18.42 206.7 116 9.30 9.3 3
## 1340 18.73 134.2 97 6.04 9.2 1
## 1341 22.83 179.9 73 8.10 14.7 1
## 1342 21.29 241.6 125 10.87 11.5 2
## 1343 17.12 159.0 124 7.15 4.1 5
## 1344 7.67 153.4 60 6.90 10.6 8
## 1345 13.35 242.8 91 10.93 8.4 8
## 1346 13.57 167.1 88 7.52 6.8 1
## 1347 15.96 181.9 89 8.19 10.7 2
## 1348 16.31 229.9 97 10.35 10.3 3
## 1349 17.84 266.9 86 12.01 11.9 5
## 1350 13.86 220.0 99 9.90 5.6 3
## 1351 19.63 230.7 140 10.38 14.8 7
## 1352 22.29 159.0 115 7.15 11.9 5
## 1353 17.11 227.1 115 10.22 13.1 4
## 1354 18.41 250.6 102 11.28 11.0 3
## 1355 18.93 163.5 102 7.36 12.8 3
## 1356 20.44 193.9 103 8.73 13.6 14
## 1357 17.36 228.2 90 10.27 11.3 4
## 1358 14.10 191.9 83 8.64 12.8 6
## 1359 16.52 243.4 126 10.95 14.9 2
## 1360 18.75 277.3 89 12.48 10.3 6
## 1361 10.53 135.7 100 6.11 13.1 8
## 1362 19.75 251.6 96 11.32 13.6 2
## 1363 5.70 160.4 121 7.22 9.9 2
## 1364 20.20 263.4 104 11.85 7.7 6
## 1365 21.31 270.2 124 12.16 13.7 8
## 1366 19.04 180.5 82 8.12 11.6 3
## 1367 15.24 225.1 116 10.13 12.3 1
## 1368 16.56 170.6 93 7.68 8.6 4
## 1369 22.30 98.9 63 4.45 11.5 6
## 1370 13.23 150.2 143 6.76 7.3 9
## 1371 13.80 264.5 133 11.90 6.6 2
## 1372 21.55 197.1 93 8.87 8.9 5
## 1373 12.27 225.1 86 10.13 8.2 6
## 1374 16.46 208.9 93 9.40 4.1 4
## 1375 19.20 191.8 95 8.63 8.5 7
## 1376 16.00 333.5 117 15.01 11.3 10
## 1377 20.56 285.3 117 12.84 4.2 5
## 1378 6.04 261.7 120 11.78 13.4 10
## 1379 23.15 193.4 105 8.70 8.9 4
## 1380 19.61 202.0 127 9.09 10.2 2
## 1381 10.46 217.5 101 9.79 12.0 2
## 1382 22.13 192.2 98 8.65 11.0 1
## 1383 24.58 175.4 107 7.89 9.1 4
## 1384 22.11 135.4 118 6.09 8.2 2
## 1385 13.77 223.5 115 10.06 10.1 3
## 1386 18.75 235.7 113 10.61 8.9 3
## 1387 13.01 165.6 125 7.45 7.1 3
## 1388 12.27 302.8 102 13.63 7.6 3
## 1389 13.26 204.1 99 9.18 9.9 6
## 1390 19.31 190.4 115 8.57 15.3 4
## 1391 10.86 107.5 91 4.84 9.3 6
## 1392 16.69 226.7 109 10.20 8.4 5
## 1393 17.65 214.2 107 9.64 4.5 15
## 1394 19.39 166.4 95 7.49 9.1 8
## 1395 22.82 143.3 82 6.45 13.0 4
## 1396 9.82 191.3 103 8.61 12.2 4
## 1397 13.68 197.7 100 8.90 11.5 5
## 1398 16.33 168.8 95 7.60 7.2 4
## 1399 19.36 243.6 84 10.96 11.0 4
## 1400 18.63 215.9 94 9.72 11.7 2
## 1401 16.79 175.8 114 7.91 0.0 0
## 1402 21.07 155.1 108 6.98 11.9 4
## 1403 17.40 256.6 101 11.55 5.7 4
## 1404 8.36 201.9 93 9.09 10.6 1
## 1405 19.07 163.6 88 7.36 9.5 1
## 1406 7.49 233.2 135 10.49 8.8 7
## 1407 22.93 235.8 110 10.61 8.9 8
## 1408 21.77 229.6 98 10.33 11.8 2
## 1409 16.65 118.3 77 5.32 11.8 3
## 1410 19.77 248.3 110 11.17 8.4 2
## 1411 18.03 260.4 78 11.72 12.2 5
## 1412 16.35 167.9 115 7.56 7.7 6
## 1413 19.82 210.6 121 9.48 9.4 4
## 1414 18.33 243.3 91 10.95 9.8 6
## 1415 14.87 234.7 134 10.56 9.7 4
## 1416 17.38 203.1 114 9.14 9.1 1
## 1417 25.23 192.9 106 8.68 7.6 3
## 1418 16.20 150.5 79 6.77 10.7 7
## 1419 15.58 139.8 106 6.29 5.7 7
## 1420 12.05 180.5 105 8.12 6.6 12
## 1421 14.61 214.5 97 9.65 17.9 3
## 1422 18.40 210.7 102 9.48 10.4 7
## 1423 18.83 261.6 109 11.77 5.6 1
## 1424 13.56 152.8 132 6.88 10.4 3
## 1425 16.59 252.9 107 11.38 11.7 5
## 1426 19.70 222.3 113 10.00 4.6 2
## 1427 22.40 254.7 90 11.46 9.8 7
## 1428 14.57 148.6 85 6.69 9.6 6
## 1429 24.61 98.3 95 4.42 11.2 5
## 1430 16.71 233.0 79 10.49 7.0 7
## 1431 23.26 217.9 71 9.81 7.6 4
## 1432 10.96 249.9 110 11.25 11.3 5
## 1433 12.57 252.7 97 11.37 11.2 2
## 1434 16.34 161.0 74 7.25 12.2 2
## 1435 20.73 178.7 112 8.04 13.2 6
## 1436 22.24 123.5 116 5.56 11.1 2
## 1437 19.95 133.6 82 6.01 10.8 7
## 1438 18.67 210.8 136 9.49 9.7 6
## 1439 20.04 224.9 112 10.12 15.1 6
## 1440 20.66 188.9 110 8.50 8.6 4
## 1441 17.76 119.1 99 5.36 5.0 10
## 1442 15.86 245.0 123 11.03 8.8 2
## 1443 17.77 201.1 73 9.05 8.3 3
## 1444 16.05 139.4 97 6.27 9.2 7
## 1445 12.43 275.6 82 12.40 8.9 4
## 1446 14.58 377.5 114 16.99 9.7 2
## 1447 13.37 147.4 76 6.63 10.3 2
## 1448 14.56 220.8 131 9.94 8.3 2
## 1449 13.80 184.1 86 8.28 7.8 3
## 1450 24.24 167.4 83 7.53 12.7 6
## 1451 18.79 126.3 88 5.68 10.9 9
## 1452 15.88 184.5 113 8.30 9.5 2
## 1453 12.86 252.4 73 11.36 12.3 3
## 1454 9.95 221.1 115 9.95 8.1 3
## 1455 17.80 224.1 87 10.08 14.1 7
## 1456 28.23 258.6 108 11.64 6.6 7
## 1457 20.03 150.9 113 6.79 9.9 4
## 1458 10.29 254.7 129 11.46 5.9 4
## 1459 17.83 238.4 114 10.73 8.6 4
## 1460 16.18 211.9 104 9.54 16.1 8
## 1461 13.32 182.1 76 8.19 9.3 3
## 1462 22.47 185.8 90 8.36 10.0 6
## 1463 17.64 83.9 123 3.78 8.1 4
## 1464 18.34 223.3 77 10.05 7.6 6
## 1465 20.20 228.0 94 10.26 9.0 5
## 1466 10.34 197.7 84 8.90 8.6 2
## 1467 18.72 184.0 99 8.28 5.1 3
## 1468 18.35 216.3 106 9.73 16.9 4
## 1469 17.58 194.4 114 8.75 4.2 7
## 1470 13.89 173.8 116 7.82 15.0 1
## 1471 11.67 115.7 74 5.21 5.9 3
## 1472 25.63 158.7 104 7.14 8.1 5
## 1473 22.41 165.2 84 7.43 12.0 7
## 1474 15.47 206.5 103 9.29 10.3 4
## 1475 13.32 249.6 85 11.23 16.3 6
## 1476 6.99 169.4 110 7.62 15.8 7
## 1477 16.80 218.8 95 9.85 5.9 4
## 1478 25.33 194.7 110 8.76 9.8 5
## 1479 17.09 195.3 108 8.79 9.7 7
## 1480 19.73 305.4 98 13.74 8.9 2
## 1481 16.46 205.8 120 9.26 11.0 5
## 1482 11.29 190.1 117 8.55 14.8 9
## 1483 12.93 164.4 98 7.40 9.4 4
## 1484 13.86 282.5 100 12.71 10.0 3
## 1485 15.55 241.1 123 10.85 12.9 2
## 1486 14.14 193.5 139 8.71 15.4 3
## 1487 11.81 312.5 97 14.06 9.7 2
## 1488 19.05 244.0 76 10.98 11.1 2
## 1489 14.96 206.1 120 9.27 6.3 4
## 1490 22.70 222.5 91 10.01 11.8 2
## 1491 25.20 211.5 91 9.52 7.0 2
## 1492 14.10 227.3 106 10.23 12.8 3
## 1493 25.78 154.5 65 6.95 9.7 5
## 1494 12.87 153.8 97 6.92 12.8 4
## 1495 15.89 210.7 109 9.48 4.9 10
## 1496 22.27 191.4 101 8.61 10.8 4
## 1497 20.11 255.0 90 11.48 11.7 6
## 1498 12.55 172.7 121 7.77 10.6 5
## 1499 25.33 210.2 95 9.46 11.1 3
## 1500 17.21 230.7 86 10.38 11.5 1
## 1501 23.59 162.5 117 7.31 12.2 6
## 1502 9.17 185.5 81 8.35 12.7 2
## 1503 19.78 168.8 94 7.60 5.9 4
## 1504 13.86 236.7 117 10.65 12.2 3
## 1505 18.71 280.5 147 12.62 8.5 3
## 1506 19.30 188.3 125 8.47 8.8 5
## 1507 14.27 248.3 110 11.17 10.7 3
## 1508 14.29 239.8 145 10.79 12.0 6
## 1509 23.34 252.2 120 11.35 6.6 5
## 1510 14.95 210.3 110 9.46 9.2 3
## 1511 15.36 211.1 113 9.50 8.6 2
## 1512 25.99 171.0 105 7.69 6.7 6
## 1513 18.85 65.7 91 2.96 4.2 1
## 1514 17.67 212.7 101 9.57 12.0 2
## 1515 13.61 311.8 121 14.03 7.0 3
## 1516 12.19 225.2 107 10.13 10.0 5
## 1517 22.14 233.8 97 10.52 8.4 3
## 1518 17.01 194.2 100 8.74 12.4 2
## 1519 17.22 203.6 102 9.16 11.3 5
## 1520 19.44 194.3 113 8.74 8.9 3
## 1521 14.76 214.6 105 9.66 9.5 7
## 1522 20.77 221.6 66 9.97 9.7 2
## 1523 14.64 263.2 109 11.84 5.6 4
## 1524 16.73 212.4 98 9.56 11.4 3
## 1525 15.26 71.1 95 3.20 12.5 3
## 1526 17.95 129.1 73 5.81 13.1 6
## 1527 11.31 213.7 123 9.62 13.4 11
## 1528 20.01 221.3 108 9.96 9.0 2
## 1529 14.20 203.0 84 9.14 4.5 4
## 1530 14.58 227.3 86 10.23 10.6 2
## 1531 18.33 271.8 96 12.23 8.0 6
## 1532 15.81 167.5 95 7.54 9.6 4
## 1533 14.53 171.5 112 7.72 11.5 7
## 1534 19.22 252.0 96 11.34 13.9 5
## 1535 14.68 293.7 78 13.22 10.7 6
## 1536 15.79 237.7 81 10.70 12.0 8
## 1537 16.22 219.9 102 9.90 8.9 5
## 1538 17.78 158.7 81 7.14 11.1 3
## 1539 7.85 197.4 114 8.88 13.7 3
## 1540 8.63 152.3 116 6.85 10.7 5
## 1541 11.49 199.7 93 8.99 15.7 10
## 1542 14.25 270.0 87 12.15 7.6 4
## 1543 17.98 258.2 113 11.62 11.9 3
## 1544 13.43 235.5 105 10.60 12.7 6
## 1545 17.53 141.6 66 6.37 8.2 2
## 1546 15.34 104.1 91 4.68 11.0 1
## 1547 14.10 182.3 72 8.20 14.3 4
## 1548 23.65 170.6 93 7.68 10.5 10
## 1549 14.62 169.2 105 7.61 10.3 5
## 1550 16.09 227.2 125 10.22 14.4 3
## 1551 18.71 112.3 95 5.05 11.4 2
## 1552 23.26 210.0 93 9.45 8.7 3
## 1553 16.29 135.0 68 6.08 16.4 3
## 1554 18.25 228.7 70 10.29 11.3 7
## 1555 11.64 220.9 97 9.94 13.3 10
## 1556 11.87 205.0 103 9.23 8.6 5
## 1557 21.00 259.9 105 11.70 9.6 2
## 1558 21.01 289.4 87 13.02 13.5 5
## 1559 20.09 256.6 102 11.55 14.8 4
## 1560 15.05 217.2 118 9.77 5.9 3
## 1561 22.70 151.5 101 6.82 8.9 4
## 1562 17.92 203.7 86 9.17 10.0 2
## 1563 10.98 207.5 117 9.34 12.9 1
## 1564 9.58 205.1 121 9.23 7.3 4
## 1565 16.64 288.8 78 13.00 0.0 0
## 1566 10.00 198.4 132 8.93 10.8 5
## 1567 16.79 209.5 102 9.43 9.5 10
## 1568 19.27 279.6 110 12.58 15.6 16
## 1569 14.25 274.4 101 12.35 11.4 2
## 1570 14.96 230.1 110 10.35 11.5 3
## 1571 13.13 281.4 107 12.66 17.3 3
## 1572 13.96 191.4 72 8.61 6.1 4
## 1573 16.72 253.5 97 11.41 10.1 9
## 1574 14.44 221.6 77 9.97 11.6 1
## 1575 21.22 185.9 99 8.37 12.7 4
## 1576 12.85 191.0 131 8.59 8.5 2
## 1577 17.43 172.2 100 7.75 10.4 6
## 1578 16.71 186.7 116 8.40 10.2 10
## 1579 17.79 162.1 80 7.29 8.8 5
## 1580 9.91 109.6 105 4.93 16.5 4
## 1581 27.40 166.8 83 7.51 10.6 6
## 1582 22.30 143.9 76 6.48 5.6 11
## 1583 10.23 271.2 96 12.20 9.0 2
## 1584 25.13 211.7 73 9.53 13.2 2
## 1585 12.21 253.4 82 11.40 12.6 5
## 1586 16.80 309.1 78 13.91 11.4 7
## 1587 14.21 194.7 70 8.76 7.2 4
## 1588 13.06 227.0 74 10.22 12.7 4
## 1589 16.90 217.1 70 9.77 12.4 3
## 1590 14.71 239.1 95 10.76 5.8 6
## 1591 23.83 129.6 73 5.83 11.3 7
## 1592 18.67 152.1 120 6.84 11.1 5
## 1593 13.77 187.7 126 8.45 5.8 10
## 1594 23.68 255.3 90 11.49 10.9 7
## 1595 12.00 168.2 68 7.57 6.3 2
## 1596 14.27 178.9 65 8.05 8.6 4
## 1597 16.85 170.8 139 7.69 8.2 5
## 1598 17.33 159.0 109 7.15 15.1 4
## 1599 11.47 79.3 95 3.57 8.8 2
## 1600 17.42 221.7 93 9.98 13.4 3
## 1601 19.63 261.6 100 11.77 4.5 4
## 1602 29.83 163.1 93 7.34 11.3 3
## 1603 15.32 196.2 129 8.83 8.7 4
## 1604 17.68 150.3 83 6.76 11.3 4
## 1605 22.72 114.2 90 5.14 13.3 5
## 1606 17.92 191.4 120 8.61 11.1 4
## 1607 20.05 325.6 99 14.65 10.1 3
## 1608 17.39 154.7 78 6.96 12.9 7
## 1609 17.88 242.7 88 10.92 13.8 8
## 1610 19.95 285.4 83 12.84 11.2 4
## 1611 24.98 306.6 90 13.80 12.6 5
## 1612 14.27 200.6 79 9.03 11.2 2
## 1613 21.82 270.0 107 12.15 7.0 1
## 1614 19.79 173.4 92 7.80 3.8 2
## 1615 24.42 192.0 94 8.64 13.8 4
## 1616 18.11 280.4 77 12.62 7.6 3
## 1617 14.72 272.8 97 12.28 10.9 4
## 1618 13.75 259.3 103 11.67 11.0 4
## 1619 17.80 172.4 109 7.76 11.9 6
## 1620 14.31 204.7 119 9.21 12.2 6
## 1621 16.32 163.1 100 7.34 9.6 2
## 1622 11.98 179.7 111 8.09 7.9 1
## 1623 21.13 133.1 113 5.99 9.6 8
## 1624 17.09 161.9 123 7.29 11.3 5
## 1625 14.32 169.8 122 7.64 11.1 2
## 1626 24.99 290.0 61 13.05 9.8 6
## 1627 16.86 114.1 83 5.13 8.6 4
## 1628 14.28 132.6 98 5.97 12.7 7
## 1629 9.83 190.5 114 8.57 15.8 9
## 1630 23.23 197.8 71 8.90 8.0 3
## 1631 17.14 130.2 121 5.86 13.2 5
## 1632 12.02 238.2 108 10.72 10.0 8
## 1633 16.42 188.0 91 8.46 11.2 6
## 1634 13.69 285.7 89 12.86 9.5 3
## 1635 20.05 210.1 120 9.45 12.0 5
## 1636 16.91 151.9 100 6.84 9.5 3
## 1637 27.39 210.0 96 9.45 8.9 6
## 1638 18.28 241.8 95 10.88 9.1 2
## 1639 15.26 167.8 71 7.55 9.7 2
## 1640 11.82 174.3 99 7.84 11.7 1
## 1641 14.94 202.0 111 9.09 11.0 3
## 1642 20.44 188.9 75 8.50 10.1 3
## 1643 14.71 195.1 125 8.78 7.5 3
## 1644 14.83 311.1 79 14.00 7.3 3
## 1645 14.88 158.2 95 7.12 10.5 6
## 1646 24.33 261.7 129 11.78 11.3 3
## 1647 18.22 151.2 119 6.80 9.9 2
## 1648 8.99 214.8 78 9.67 13.5 4
## 1649 20.13 270.4 110 12.17 8.5 5
## 1650 16.43 171.5 139 7.72 10.4 4
## 1651 18.32 104.7 114 4.71 9.6 2
## 1652 9.20 139.6 132 6.28 17.3 9
## 1653 13.82 177.7 104 8.00 7.2 6
## 1654 18.67 155.7 103 7.01 11.1 2
## 1655 11.78 165.8 114 7.46 10.7 2
## 1656 21.05 207.7 75 9.35 5.0 3
## 1657 19.69 281.3 120 12.66 10.7 5
## 1658 13.43 177.5 75 7.99 6.0 11
## 1659 11.77 246.0 107 11.07 6.4 3
## 1660 13.29 131.3 92 5.91 13.7 5
## 1661 15.53 143.2 112 6.44 14.7 2
## 1662 13.57 210.0 108 9.45 8.9 1
## 1663 18.90 173.9 95 7.83 13.7 5
## 1664 20.50 210.4 83 9.47 10.9 7
## 1665 20.26 165.7 96 7.46 10.6 1
## 1666 10.49 115.6 101 5.20 12.3 4
## 1667 26.24 235.4 79 10.59 6.4 4
## 1668 14.63 129.6 119 5.83 10.2 1
## 1669 14.86 189.6 130 8.53 7.8 6
## 1670 23.00 209.9 130 9.45 8.1 10
## 1671 15.64 266.6 98 12.00 12.7 3
## 1672 23.63 305.4 74 13.74 14.0 6
## 1673 14.33 173.0 105 7.79 13.7 3
## 1674 23.87 171.7 80 7.73 10.5 8
## 1675 19.70 220.2 67 9.91 9.9 1
## 1676 18.79 227.1 71 10.22 10.2 3
## 1677 14.21 161.5 123 7.27 7.7 5
## 1678 21.20 168.2 77 7.57 9.0 10
## 1679 19.41 273.4 91 12.30 8.9 8
## 1680 17.71 267.1 102 12.02 10.6 6
## 1681 15.84 178.3 106 8.02 12.7 1
## 1682 23.18 192.8 105 8.68 7.1 4
## 1683 13.55 228.1 55 10.26 8.5 3
## 1684 20.52 226.0 118 10.17 12.9 4
## 1685 12.33 149.4 99 6.72 14.1 4
## 1686 12.05 194.0 83 8.73 10.8 5
## 1687 18.00 268.5 74 12.08 12.3 3
## 1688 13.20 175.0 111 7.88 14.2 5
## 1689 15.84 175.3 110 7.89 10.5 4
## 1690 18.62 197.4 65 8.88 11.4 5
## 1691 17.90 221.8 109 9.98 12.4 9
## 1692 19.86 179.3 61 8.07 7.3 4
## 1693 15.77 264.6 88 11.91 6.3 7
## 1694 21.17 173.2 124 7.79 12.5 5
## 1695 18.54 254.9 98 11.47 11.5 7
## 1696 16.63 291.8 120 13.13 13.3 5
## 1697 17.05 153.8 107 6.92 12.4 6
## 1698 17.80 206.1 79 9.27 11.5 2
## 1699 14.40 286.3 80 12.88 6.0 4
## 1700 13.62 161.8 84 7.28 8.4 3
## 1701 9.78 192.7 85 8.67 9.4 5
## 1702 23.16 178.2 76 8.02 11.0 10
## 1703 20.43 216.4 74 9.74 7.7 3
## 1704 17.56 178.0 105 8.01 11.1 2
## 1705 20.46 120.0 90 5.40 11.6 5
## 1706 16.22 129.0 105 5.81 7.2 2
## 1707 10.17 267.6 117 12.04 11.7 3
## 1708 13.64 206.9 88 9.31 5.6 9
## 1709 21.98 116.4 110 5.24 11.2 3
## 1710 21.29 181.2 67 8.15 10.5 3
## 1711 19.63 269.8 115 12.14 9.0 7
## 1712 14.74 145.8 99 6.56 11.7 4
## 1713 18.16 164.7 116 7.41 10.3 5
## 1714 15.09 228.9 87 10.30 7.5 3
## 1715 9.17 233.7 82 10.52 11.4 2
## 1716 22.24 228.6 109 10.29 13.3 4
## 1717 20.64 147.4 74 6.63 9.1 2
## 1718 17.74 231.4 93 10.41 14.3 3
## 1719 12.80 297.9 84 13.41 9.7 8
## 1720 12.61 179.8 88 8.09 15.2 5
## 1721 13.78 210.7 131 9.48 6.1 1
## 1722 17.06 230.1 76 10.35 8.2 3
## 1723 15.29 193.8 134 8.72 12.3 1
## 1724 23.49 241.4 75 10.86 10.9 7
## 1725 9.46 170.2 77 7.66 7.1 4
## 1726 17.33 282.6 131 12.72 14.1 4
## 1727 18.40 196.1 126 8.82 11.0 5
## 1728 13.52 259.2 53 11.66 12.2 2
## 1729 20.04 201.8 76 9.08 9.5 5
## 1730 14.50 166.0 85 7.47 13.4 4
## 1731 21.79 247.2 131 11.12 12.6 3
## 1732 25.79 255.6 104 11.50 12.9 7
## 1733 22.12 222.4 100 10.01 8.3 5
## 1734 23.01 239.5 83 10.78 3.5 6
## 1735 25.38 216.9 99 9.76 13.8 3
## 1736 17.60 157.4 93 7.08 14.8 1
## 1737 17.48 191.4 141 8.61 6.9 6
## 1738 17.48 218.5 60 9.83 8.8 6
## 1739 20.89 300.0 99 13.50 4.8 3
## 1740 25.59 167.0 140 7.52 5.8 1
## 1741 11.41 118.9 105 5.35 9.4 6
## 1742 16.54 276.6 78 12.45 3.7 5
## 1743 17.94 237.9 55 10.71 11.4 5
## 1744 21.94 131.3 123 5.91 5.8 2
## 1745 22.05 238.0 132 10.71 7.7 3
## 1746 14.31 188.7 117 8.49 10.2 1
## 1747 17.76 248.2 98 11.17 13.5 6
## 1748 16.75 154.9 132 6.97 10.0 5
## 1749 22.01 268.4 154 12.08 14.1 7
## 1750 14.26 188.8 102 8.50 8.8 3
## 1751 14.35 262.9 126 11.83 6.9 2
## 1752 20.95 218.0 103 9.81 8.8 2
## 1753 10.57 262.0 98 11.79 14.1 3
## 1754 17.71 228.9 120 10.30 7.5 2
## 1755 22.07 141.5 111 6.37 9.7 2
## 1756 14.50 141.2 82 6.35 11.9 5
## 1757 10.48 117.8 103 5.30 9.2 6
## 1758 14.84 165.3 114 7.44 12.0 6
## 1759 19.12 253.9 108 11.43 12.1 7
## 1760 22.21 209.5 108 9.43 8.9 6
## 1761 19.78 259.9 95 11.70 9.2 6
## 1762 20.13 241.2 127 10.85 7.7 2
## 1763 13.25 186.0 83 8.37 7.4 3
## 1764 23.22 171.0 106 7.69 11.5 1
## 1765 21.60 239.4 91 10.77 7.5 4
## 1766 18.79 127.9 101 5.76 12.7 2
## 1767 11.88 171.6 96 7.72 11.6 7
## 1768 7.54 229.4 120 10.32 10.5 3
## 1769 18.72 179.7 124 8.09 10.8 2
## 1770 21.25 133.3 79 6.00 9.6 2
## 1771 18.70 252.9 106 11.38 9.1 3
## 1772 18.69 229.0 99 10.31 12.7 8
## 1773 17.47 114.5 89 5.15 12.5 10
## 1774 13.35 222.4 124 10.01 11.5 3
## 1775 14.28 281.5 87 12.67 6.6 1
## 1776 24.30 256.7 106 11.55 9.5 4
## 1777 19.59 228.2 109 10.27 11.0 5
## 1778 20.86 219.6 80 9.88 10.0 3
## 1779 13.53 236.4 113 10.64 11.3 10
## 1780 22.04 170.5 120 7.67 11.3 7
## 1781 18.78 218.9 129 9.85 12.0 7
## 1782 20.32 116.1 125 5.22 15.1 3
## 1783 14.39 141.1 99 6.35 8.0 1
## 1784 11.90 165.4 148 7.44 10.9 3
## 1785 19.80 214.2 92 9.64 14.1 4
## 1786 18.91 235.6 92 10.60 7.9 6
## 1787 12.48 287.8 144 12.95 8.2 5
## 1788 20.52 169.6 77 7.63 7.8 2
## 1789 19.30 195.7 103 8.81 12.3 5
## 1790 6.22 114.3 99 5.14 4.7 7
## 1791 17.48 210.2 123 9.46 9.2 3
## 1792 17.99 179.5 91 8.08 10.8 3
## 1793 17.59 231.7 99 10.43 6.1 6
## 1794 22.03 279.8 123 12.59 7.3 4
## 1795 18.97 203.7 107 9.17 11.5 5
## 1796 22.34 123.8 131 5.57 15.2 4
## 1797 11.54 212.4 129 9.56 13.0 4
## 1798 17.67 203.6 95 9.16 10.2 11
## 1799 21.02 214.7 94 9.66 12.0 4
## 1800 14.25 87.5 90 3.94 6.2 10
## 1801 20.76 221.2 93 9.95 10.7 4
## 1802 16.97 263.9 96 11.88 8.5 6
## 1803 19.39 98.0 125 4.41 13.8 7
## 1804 22.27 210.0 93 9.45 8.5 5
## 1805 13.66 263.8 112 11.87 9.6 2
## 1806 19.63 217.1 99 9.77 10.7 9
## 1807 10.79 185.6 92 8.35 11.7 6
## 1808 16.97 135.9 71 6.12 12.9 1
## 1809 17.88 217.4 106 9.78 12.4 2
## 1810 16.69 294.8 111 13.27 13.8 2
## 1811 20.49 227.5 153 10.24 11.9 5
## 1812 19.02 240.3 96 10.81 15.4 8
## 1813 20.26 94.4 96 4.25 8.3 3
## 1814 13.91 169.7 138 7.64 6.1 3
## 1815 18.44 112.8 125 5.08 13.1 4
## 1816 13.57 181.6 100 8.17 9.5 3
## 1817 18.39 141.1 116 6.35 18.4 3
## 1818 12.07 190.7 128 8.58 7.3 4
## 1819 16.27 286.5 125 12.89 11.8 3
## 1820 14.25 262.7 87 11.82 4.4 4
## 1821 14.05 243.9 95 10.98 8.9 2
## 1822 20.83 108.9 113 4.90 15.4 7
## 1823 20.48 127.1 88 5.72 8.8 4
## 1824 11.81 277.8 104 12.50 11.8 3
## 1825 20.46 185.7 125 8.36 15.0 3
## 1826 22.09 115.9 103 5.22 7.8 2
## 1827 12.96 199.4 128 8.97 7.7 2
## 1828 14.96 250.9 113 11.29 13.4 6
## 1829 17.37 141.9 72 6.39 9.9 2
## 1830 16.78 162.1 117 7.29 10.6 10
## 1831 14.20 72.2 89 3.25 10.5 6
## 1832 22.74 266.9 130 12.01 11.3 5
## 1833 18.03 138.4 134 6.23 15.1 11
## 1834 23.42 182.5 122 8.21 8.0 3
## 1835 18.97 256.2 130 11.53 14.2 6
## 1836 15.17 218.3 107 9.82 8.0 3
## 1837 21.49 156.7 95 7.05 9.7 3
## 1838 25.77 171.8 84 7.73 8.6 2
## 1839 15.73 177.7 144 8.00 8.1 9
## 1840 6.62 247.1 105 11.12 13.2 4
## 1841 6.45 224.6 115 10.11 7.1 3
## 1842 9.03 157.4 94 7.08 5.3 3
## 1843 17.09 231.3 73 10.41 8.9 4
## 1844 14.95 243.5 55 10.96 16.2 3
## 1845 20.78 207.5 74 9.34 11.5 3
## 1846 18.97 269.0 116 12.11 13.9 3
## 1847 14.88 161.3 117 7.26 11.5 4
## 1848 17.88 129.2 117 5.81 12.5 8
## 1849 13.57 197.4 62 8.88 8.6 3
## 1850 13.54 216.8 86 9.76 13.9 1
## 1851 18.54 212.3 105 9.55 9.3 8
## 1852 16.15 144.0 116 6.48 10.9 3
## 1853 14.25 240.0 107 10.80 14.5 3
## 1854 21.51 221.6 113 9.97 5.9 6
## 1855 14.20 271.8 94 12.23 5.5 4
## 1856 12.10 91.2 86 4.10 10.9 5
## 1857 25.64 139.4 108 6.27 9.7 5
## 1858 24.31 249.4 117 11.22 12.1 4
## 1859 22.50 111.7 103 5.03 11.2 7
## 1860 23.00 230.4 109 10.37 8.0 3
## 1861 23.09 203.3 108 9.15 7.4 7
## 1862 13.61 184.0 120 8.28 7.7 2
## 1863 21.44 178.1 103 8.01 8.0 3
## 1864 23.10 110.7 78 4.98 8.7 4
## 1865 22.23 203.8 90 9.17 11.4 5
## 1866 15.90 149.8 100 6.74 7.9 4
## 1867 21.57 213.1 125 9.59 8.9 1
## 1868 12.72 227.8 60 10.25 9.8 3
## 1869 19.07 197.4 60 8.88 8.3 2
## 1870 23.21 278.2 93 12.52 13.5 8
## 1871 21.48 227.5 114 10.24 8.0 5
## 1872 18.62 243.6 107 10.96 5.5 5
## 1873 10.53 323.5 88 14.56 8.1 3
## 1874 10.14 194.3 83 8.74 12.0 1
## 1875 21.45 185.4 104 8.34 4.9 3
## 1876 19.63 181.5 86 8.17 11.4 7
## 1877 16.68 236.1 119 10.62 8.1 1
## 1878 14.06 235.4 117 10.59 9.7 4
## 1879 19.73 204.4 123 9.20 11.5 2
## 1880 14.87 201.6 135 9.07 9.4 7
## 1881 12.67 255.5 115 11.50 14.8 1
## 1882 20.09 235.5 105 10.60 7.7 2
## 1883 19.26 198.8 91 8.95 12.9 3
## 1884 14.65 184.5 94 8.30 11.1 9
## 1885 17.05 192.4 98 8.66 12.3 7
## 1886 19.71 164.7 85 7.41 12.7 6
## 1887 14.88 217.2 106 9.77 5.5 6
## 1888 9.10 167.7 95 7.55 14.7 3
## 1889 24.04 84.8 118 3.82 12.0 4
## 1890 11.99 171.5 76 7.72 10.3 15
## 1891 20.64 85.8 80 3.86 10.3 3
## 1892 11.47 310.5 83 13.97 10.3 2
## 1893 15.72 143.2 146 6.44 9.9 1
## 1894 21.63 273.2 98 12.29 8.9 6
## 1895 11.65 256.3 107 11.53 10.2 5
## 1896 14.08 208.0 120 9.36 10.1 9
## 1897 17.87 257.2 93 11.57 9.9 5
## 1898 15.90 281.1 112 12.65 12.9 3
## 1899 16.11 223.9 93 10.08 7.4 5
## 1900 7.53 290.0 96 13.05 10.8 6
## 1901 21.76 211.0 87 9.49 9.9 1
## 1902 17.95 196.2 122 8.83 10.2 6
## 1903 16.64 221.6 82 9.97 11.2 7
## 1904 10.17 193.2 125 8.69 14.0 7
## 1905 17.45 130.0 132 5.85 14.5 4
## 1906 12.94 221.0 93 9.95 7.0 3
## 1907 5.54 144.4 92 6.50 10.9 4
## 1908 20.17 211.6 116 9.52 9.8 1
## 1909 13.03 309.2 123 13.91 12.8 3
## 1910 19.13 201.7 89 9.08 12.1 2
## 1911 19.58 256.7 96 11.55 6.5 4
## 1912 18.48 220.1 100 9.90 8.2 7
## 1913 14.37 221.2 104 9.95 10.4 8
## 1914 11.86 187.4 102 8.43 5.5 4
## 1915 9.62 134.1 118 6.03 9.9 3
## 1916 16.89 301.7 136 13.58 6.5 9
## 1917 11.25 242.9 96 10.93 11.8 3
## 1918 17.01 266.7 105 12.00 11.0 3
## 1919 14.99 225.9 112 10.17 14.2 2
## 1920 18.33 230.8 125 10.39 9.5 1
## 1921 16.21 214.5 106 9.65 8.6 6
## 1922 17.24 136.2 119 6.13 9.4 6
## 1923 10.78 182.4 87 8.21 9.7 8
## 1924 13.00 318.3 115 14.32 11.8 6
## 1925 24.17 305.5 101 13.75 11.3 2
## 1926 16.80 247.5 102 11.14 9.8 6
## 1927 17.36 196.2 92 8.83 9.8 4
## 1928 7.69 150.3 64 6.76 15.3 3
## 1929 23.38 141.1 92 6.35 11.2 5
## 1930 13.56 260.6 96 11.73 11.6 4
## 1931 17.77 214.0 96 9.63 10.9 1
## 1932 15.97 120.3 131 5.41 7.8 5
## 1933 18.21 315.0 106 14.18 8.6 5
## 1934 21.80 229.1 89 10.31 10.0 2
## 1935 25.63 202.8 109 9.13 8.7 3
## 1936 14.20 244.7 80 11.01 13.6 5
## 1937 9.63 188.6 105 8.49 11.4 3
## 1938 13.18 99.0 117 4.46 12.1 4
## 1939 16.01 254.4 85 11.45 6.8 6
## 1940 19.30 178.1 135 8.01 9.2 4
## 1941 13.82 250.3 101 11.26 8.7 4
## 1942 10.71 289.2 135 13.01 7.6 3
## 1943 17.04 279.2 91 12.56 8.8 3
## 1944 14.93 243.3 92 10.95 10.9 7
## 1945 17.45 218.2 90 9.82 6.7 3
## 1946 21.88 107.3 88 4.83 8.5 3
## 1947 17.24 146.4 73 6.59 5.1 5
## 1948 17.99 230.6 100 10.38 8.0 4
## 1949 20.66 255.2 114 11.48 6.8 2
## 1950 22.85 181.5 91 8.17 10.0 8
## 1951 11.34 176.1 84 7.92 7.0 4
## 1952 15.00 154.5 102 6.95 9.6 7
## 1953 15.47 218.2 127 9.82 6.1 6
## 1954 19.15 221.6 130 9.97 11.1 5
## 1955 23.67 193.1 134 8.69 11.8 10
## 1956 17.59 193.9 70 8.73 5.6 4
## 1957 17.60 159.8 76 7.19 12.6 4
## 1958 17.35 156.2 113 7.03 10.2 2
## 1959 10.20 130.3 64 5.86 12.4 2
## 1960 22.76 200.5 62 9.02 12.8 3
## 1961 4.18 163.3 93 7.35 13.9 11
## 1962 21.22 162.2 84 7.30 11.1 4
## 1963 20.56 252.1 92 11.34 10.4 3
## 1964 16.95 142.7 105 6.42 10.1 5
## 1965 16.01 188.3 98 8.47 11.0 6
## 1966 14.44 212.3 118 9.55 11.1 2
## 1967 15.72 234.3 89 10.54 2.0 7
## 1968 20.93 172.1 124 7.74 9.4 10
## 1969 15.70 174.1 94 7.83 8.0 6
## 1970 15.65 272.9 107 12.28 13.5 2
## 1971 18.10 208.2 73 9.37 13.0 3
## 1972 26.40 234.7 92 10.56 9.0 4
## 1973 21.75 136.7 62 6.15 12.5 4
## 1974 20.37 149.5 80 6.73 6.3 1
## 1975 13.73 271.5 100 12.22 8.7 2
## 1976 12.67 171.4 72 7.71 7.0 2
## 1977 16.67 215.4 108 9.69 10.4 2
## 1978 17.76 167.8 86 7.55 15.6 6
## 1979 14.32 164.0 102 7.38 13.3 3
## 1980 15.18 202.7 90 9.12 7.4 3
## 1981 12.12 314.1 144 14.13 12.7 2
## 1982 21.09 214.4 122 9.65 5.3 5
## 1983 21.73 192.9 95 8.68 15.7 4
## 1984 19.58 223.7 85 10.07 9.4 3
## 1985 19.22 159.1 94 7.16 16.4 5
## 1986 19.41 180.1 111 8.10 8.2 5
## 1987 11.59 156.6 89 7.05 12.1 1
## 1988 14.21 138.6 106 6.24 10.2 4
## 1989 15.78 212.5 128 9.56 12.1 2
## 1990 22.30 226.5 82 10.19 12.0 7
## 1991 17.93 229.9 125 10.35 12.4 4
## 1992 18.43 179.4 107 8.07 12.6 3
## 1993 12.62 183.9 100 8.28 7.6 3
## 1994 22.64 214.0 110 9.63 4.5 3
## 1995 13.40 98.2 70 4.42 10.6 7
## 1996 21.94 215.5 130 9.70 11.7 1
## 1997 25.48 185.3 120 8.34 7.6 3
## 1998 11.06 165.8 63 7.46 13.1 6
## 1999 16.47 171.7 88 7.73 9.7 3
## 2000 16.54 159.0 54 7.15 10.9 9
## 2001 13.74 192.4 112 8.66 10.1 3
## 2002 15.15 214.2 152 9.64 10.7 14
## 2003 15.86 258.2 105 11.62 12.9 5
## 2004 13.74 189.9 136 8.55 13.0 6
## 2005 17.43 245.2 100 11.03 17.8 3
## 2006 17.39 196.9 103 8.86 11.1 7
## 2007 11.56 210.5 82 9.47 6.6 2
## 2008 19.82 188.5 121 8.48 6.2 6
## 2009 17.86 95.0 98 4.27 11.9 4
## 2010 15.75 178.7 105 8.04 8.3 4
## 2011 16.12 170.9 67 7.69 12.7 7
## 2012 16.47 192.0 123 8.64 9.3 7
## 2013 10.50 160.7 105 7.23 6.1 2
## 2014 16.15 163.2 99 7.34 10.8 2
## 2015 14.62 183.4 96 8.25 13.7 3
## 2016 12.59 145.2 74 6.53 13.8 4
## 2017 22.12 177.4 112 7.98 9.2 5
## 2018 14.68 192.6 113 8.67 9.5 4
## 2019 20.98 203.9 117 9.18 7.5 11
## 2020 16.41 149.4 93 6.72 11.1 4
## 2021 19.58 217.0 83 9.76 5.2 1
## 2022 15.15 199.3 104 8.97 11.1 4
## 2023 15.55 172.9 92 7.78 10.6 7
## 2024 8.46 189.5 75 8.53 13.4 3
## 2025 18.44 161.3 91 7.26 12.6 3
## 2026 16.46 180.9 145 8.14 13.4 3
## 2027 16.49 256.1 114 11.52 14.1 6
## 2028 15.79 227.6 97 10.24 10.8 3
## 2029 12.89 303.5 114 13.66 8.7 3
## 2030 17.70 180.9 106 8.14 14.4 10
## 2031 23.81 154.2 110 6.94 11.8 1
## 2032 20.91 207.2 121 9.32 11.4 9
## 2033 23.66 194.8 61 8.77 13.2 10
## 2034 23.72 250.7 65 11.28 10.4 4
## 2035 17.77 328.5 112 14.78 14.6 2
## 2036 24.62 212.9 71 9.58 8.7 3
## 2037 15.33 133.4 122 6.00 8.0 6
## 2038 20.42 158.6 108 7.14 6.7 8
## 2039 19.45 257.5 106 11.59 10.1 8
## 2040 17.82 192.5 129 8.66 10.6 2
## 2041 14.95 269.9 85 12.15 9.7 1
## 2042 16.72 151.1 103 6.80 9.9 4
## 2043 22.39 181.1 91 8.15 11.2 8
## 2044 16.39 162.9 84 7.33 6.4 5
## 2045 14.24 212.8 114 9.58 10.0 10
## 2046 23.55 101.8 94 4.58 13.6 4
## 2047 16.46 248.9 119 11.20 11.1 5
## 2048 15.32 220.6 95 9.93 12.2 4
## 2049 14.35 244.1 127 10.98 9.6 9
## 2050 17.80 212.9 67 9.58 7.0 2
## 2051 10.26 244.4 102 11.00 7.5 4
## 2052 14.59 219.0 98 9.86 8.2 6
## 2053 18.17 214.3 112 9.64 9.7 6
## 2054 20.02 102.0 146 4.59 13.0 4
## 2055 18.18 120.0 126 5.40 7.1 2
## 2056 10.85 142.1 103 6.39 13.5 3
## 2057 18.78 196.9 116 8.86 13.3 7
## 2058 15.20 228.7 96 10.29 11.5 3
## 2059 20.60 279.8 105 12.59 12.1 9
## 2060 16.47 257.6 61 11.59 8.9 2
## 2061 22.70 225.1 105 10.13 7.3 5
## 2062 18.89 117.6 102 5.29 10.3 3
## 2063 22.93 220.4 116 9.92 10.3 4
## 2064 10.85 253.1 109 11.39 10.1 5
## 2065 17.76 232.4 82 10.46 9.2 3
## 2066 20.18 148.1 83 6.66 12.2 6
## 2067 21.63 219.6 122 9.88 15.1 5
## 2068 19.63 149.9 91 6.75 9.9 3
## 2069 14.33 95.3 59 4.29 12.3 4
## 2070 21.32 176.0 112 7.92 9.8 2
## 2071 15.16 162.4 113 7.31 13.1 5
## 2072 26.72 246.7 81 11.10 4.2 9
## 2073 9.75 153.6 88 6.91 6.5 6
## 2074 20.44 233.5 121 10.51 11.3 4
## 2075 25.10 195.5 121 8.80 6.6 5
## 2076 11.82 199.1 139 8.96 8.8 1
## 2077 21.73 208.0 120 9.36 10.1 2
## 2078 11.54 277.6 123 12.49 13.1 3
## 2079 14.98 89.7 81 4.04 4.3 4
## 2080 17.02 237.4 89 10.68 13.1 9
## 2081 25.58 236.0 68 10.62 11.9 5
## 2082 8.02 287.6 95 12.94 10.1 7
## 2083 16.12 222.8 75 10.03 9.8 4
## 2084 15.44 155.6 104 7.00 8.3 6
## 2085 15.01 214.4 91 9.65 8.8 5
## 2086 13.02 215.6 103 9.70 11.1 7
## 2087 22.59 228.3 80 10.27 12.6 2
## 2088 18.06 214.7 114 9.66 11.1 8
## 2089 16.12 157.6 99 7.09 16.4 3
## 2090 27.09 224.1 108 10.08 11.1 7
## 2091 19.98 140.1 90 6.30 10.6 5
## 2092 19.73 149.2 82 6.71 7.5 2
## 2093 11.99 205.7 101 9.26 10.8 4
## 2094 20.25 176.4 107 7.94 12.9 3
## 2095 13.34 175.8 82 7.91 11.0 6
## 2096 16.10 153.6 104 6.91 13.3 4
## 2097 9.63 118.0 71 5.31 16.1 4
## 2098 16.02 189.3 87 8.52 9.8 4
## 2099 23.35 184.4 95 8.30 9.8 4
## 2100 21.58 263.3 126 11.85 10.1 5
## 2101 14.10 132.8 99 5.98 13.3 7
## 2102 16.47 206.0 106 9.27 6.9 6
## 2103 18.39 179.6 99 8.08 12.7 3
## 2104 17.11 214.7 88 9.66 9.7 4
## 2105 15.73 157.0 74 7.07 10.9 4
## 2106 19.80 154.0 86 6.93 9.6 7
## 2107 13.65 218.8 102 9.85 13.6 2
## 2108 23.28 227.0 77 10.22 10.1 6
## 2109 18.04 169.3 87 7.62 9.5 4
## 2110 20.54 160.0 112 7.20 12.6 1
## 2111 15.02 188.2 93 8.47 10.2 6
## 2112 10.80 329.3 66 14.82 14.4 1
## 2113 17.80 161.1 78 7.25 12.2 2
## 2114 21.73 242.8 76 10.93 11.7 4
## 2115 14.32 178.3 91 8.02 13.3 5
## 2116 15.00 232.4 108 10.46 15.2 1
## 2117 10.74 148.6 87 6.69 14.2 4
## 2118 13.81 184.9 120 8.32 11.9 7
## 2119 15.56 226.4 100 10.19 9.8 1
## 2120 20.60 231.8 78 10.43 11.6 4
## 2121 18.38 229.8 82 10.34 13.7 3
## 2122 23.48 146.5 111 6.59 12.7 2
## 2123 20.96 271.9 102 12.24 16.4 3
## 2124 13.40 192.5 69 8.66 8.1 3
## 2125 13.68 279.5 96 12.58 10.7 3
## 2126 18.99 257.9 73 11.61 3.8 10
## 2127 15.33 262.9 105 11.83 9.7 6
## 2128 17.50 216.6 112 9.75 11.2 5
## 2129 9.05 221.7 96 9.98 10.2 6
## 2130 20.38 293.5 135 13.21 7.4 4
## 2131 21.40 168.6 112 7.59 10.9 10
## 2132 16.41 253.4 88 11.40 11.0 4
## 2133 15.19 185.7 113 8.36 6.0 3
## 2134 19.11 197.6 91 8.89 10.3 8
## 2135 19.09 256.7 74 11.55 13.0 1
## 2136 18.81 150.4 120 6.77 11.2 2
## 2137 24.51 180.6 103 8.13 11.3 7
## 2138 17.53 163.4 93 7.35 8.9 3
## 2139 19.98 239.7 119 10.79 10.9 1
## 2140 17.60 284.6 95 12.81 12.0 5
## 2141 11.62 244.4 81 11.00 13.2 5
## 2142 18.52 248.1 108 11.16 6.6 3
## 2143 17.87 146.4 106 6.59 12.5 3
## 2144 10.39 189.1 103 8.51 11.3 5
## 2145 14.45 165.9 78 7.47 12.7 2
## 2146 15.57 293.7 72 13.22 10.8 5
## 2147 14.25 155.7 86 7.01 10.9 4
## 2148 22.26 166.8 108 7.51 12.7 4
## 2149 19.10 227.7 91 10.25 10.0 7
## 2150 13.89 146.7 88 6.60 11.6 5
## 2151 25.89 181.2 132 8.15 12.6 4
## 2152 12.20 273.7 110 12.32 9.6 6
## 2153 11.83 146.7 89 6.60 11.1 3
## 2154 15.28 145.7 120 6.56 9.5 4
## 2155 20.95 285.3 104 12.84 12.5 8
## 2156 21.81 168.5 104 7.58 12.0 5
## 2157 16.32 212.2 98 9.55 11.3 11
## 2158 10.51 229.5 99 10.33 10.2 2
## 2159 22.47 235.2 97 10.58 13.2 3
## 2160 15.49 279.8 105 12.59 13.0 2
## 2161 28.89 172.9 76 7.78 7.9 1
## 2162 13.13 196.0 57 8.82 12.1 5
## 2163 25.37 214.2 104 9.64 6.9 4
## 2164 22.69 211.0 118 9.49 7.4 10
## 2165 21.46 118.3 112 5.32 9.9 1
## 2166 20.70 178.2 92 8.02 13.0 3
## 2167 21.34 138.3 85 6.22 11.2 2
## 2168 17.35 238.4 109 10.73 6.7 8
## 2169 14.32 109.3 99 4.92 10.3 3
## 2170 16.78 238.5 86 10.73 10.6 2
## 2171 19.23 254.1 72 11.43 10.9 4
## 2172 17.98 207.4 124 9.33 6.8 1
## 2173 14.06 208.4 97 9.38 11.2 4
## 2174 15.21 152.6 96 6.87 13.3 7
## 2175 7.59 150.7 92 6.78 10.3 5
## 2176 16.09 174.9 82 7.87 8.8 5
## 2177 17.88 229.4 104 10.32 7.8 4
## 2178 12.64 282.5 105 12.71 13.1 1
## 2179 22.37 137.7 74 6.20 7.3 5
## 2180 16.41 99.3 119 4.47 11.6 3
## 2181 10.53 266.3 105 11.98 2.9 7
## 2182 17.51 192.4 117 8.66 15.0 5
## 2183 20.64 243.0 93 10.93 13.0 4
## 2184 24.18 176.0 98 7.92 14.0 6
## 2185 22.63 228.2 90 10.27 11.8 5
## 2186 12.72 191.4 87 8.61 13.0 3
## 2187 27.80 226.5 119 10.19 10.9 2
## 2188 14.73 216.5 64 9.74 12.4 4
## 2189 27.12 237.6 78 10.69 7.3 4
## 2190 15.05 162.2 127 7.30 9.7 4
## 2191 21.42 189.0 104 8.50 10.9 1
## 2192 14.50 137.4 74 6.18 5.4 9
## 2193 21.81 173.6 112 7.81 5.3 6
## 2194 17.99 189.3 104 8.52 9.4 2
## 2195 19.58 243.6 104 10.96 9.0 3
## 2196 15.68 208.3 101 9.37 6.1 10
## 2197 24.85 142.3 116 6.40 11.5 4
## 2198 18.89 192.0 95 8.64 3.1 1
## 2199 15.45 100.9 131 4.54 3.3 5
## 2200 14.82 245.3 59 11.04 8.5 4
## 2201 10.50 213.2 51 9.59 8.4 6
## 2202 15.37 193.1 94 8.69 14.0 3
## 2203 16.81 151.1 92 6.80 10.4 3
## 2204 25.02 239.8 120 10.79 11.0 2
## 2205 10.17 173.9 126 7.83 6.8 3
## 2206 11.73 233.5 112 10.51 11.2 8
## 2207 20.06 152.5 104 6.86 10.6 4
## 2208 10.29 198.0 126 8.91 9.8 5
## 2209 18.75 224.7 104 10.11 9.6 3
## 2210 12.28 157.9 106 7.11 6.8 3
## 2211 16.17 255.2 84 11.48 11.7 7
## 2212 19.23 189.8 99 8.54 11.1 3
## 2213 14.53 177.3 130 7.98 4.8 12
## 2214 25.79 197.1 71 8.87 12.4 2
## 2215 24.24 150.8 122 6.79 13.0 7
## 2216 14.49 227.6 80 10.24 11.5 3
## 2217 15.91 181.1 84 8.15 11.8 3
## 2218 15.22 179.6 126 8.08 11.4 5
## 2219 21.06 219.0 78 9.86 11.3 5
## 2220 10.86 225.6 86 10.15 9.9 4
## 2221 21.16 200.8 87 9.04 8.6 7
## 2222 17.77 169.7 70 7.64 10.2 6
## 2223 13.55 269.1 94 12.11 12.1 9
## 2224 12.16 165.8 84 7.46 11.0 4
## 2225 11.42 215.6 84 9.70 15.5 5
## 2226 16.05 253.2 88 11.39 12.1 5
## 2227 18.04 152.7 92 6.87 10.5 2
## 2228 19.00 217.4 90 9.78 10.2 6
## 2229 18.39 154.2 66 6.94 7.6 5
## 2230 21.31 249.4 86 11.22 17.6 5
## 2231 17.43 119.4 111 5.37 7.8 3
## 2232 9.32 172.7 107 7.77 7.1 9
## 2233 13.23 261.6 105 11.77 12.4 5
## 2234 16.37 255.7 125 11.51 11.0 5
## 2235 15.78 159.4 83 7.17 10.0 1
## 2236 12.98 232.8 95 10.48 9.7 3
## 2237 10.24 220.8 121 9.94 14.4 6
## 2238 15.24 242.7 131 10.92 6.8 7
## 2239 15.33 230.6 106 10.38 17.3 4
## 2240 16.88 206.6 96 9.30 9.3 3
## 2241 16.97 160.7 106 7.23 13.7 7
## 2242 12.25 226.6 101 10.20 4.9 3
## 2243 19.12 212.4 105 9.56 11.4 3
## 2244 14.54 196.1 96 8.82 8.6 4
## 2245 16.63 232.6 104 10.47 10.9 3
## 2246 13.76 128.3 91 5.77 8.8 5
## 2247 17.98 188.5 105 8.48 11.3 6
## 2248 17.84 194.1 100 8.73 12.8 3
## 2249 17.77 268.2 130 12.07 13.3 3
## 2250 15.10 159.8 72 7.19 14.4 4
## 2251 17.98 291.2 123 13.10 7.2 4
## 2252 13.98 94.0 98 4.23 6.4 6
## 2253 13.74 203.1 82 9.14 10.6 6
## 2254 17.25 259.0 58 11.66 8.9 8
## 2255 5.88 257.6 64 11.59 6.7 3
## 2256 15.42 131.4 108 5.91 11.3 4
## 2257 14.23 238.2 117 10.72 2.6 6
## 2258 19.85 221.3 92 9.96 13.5 3
## 2259 16.63 210.3 78 9.46 7.2 3
## 2260 12.55 192.7 97 8.67 10.1 7
## 2261 17.29 228.4 117 10.28 13.0 5
## 2262 27.99 127.1 78 5.72 9.4 5
## 2263 15.65 151.6 75 6.82 14.6 1
## 2264 20.13 173.3 149 7.80 9.0 9
## 2265 17.31 202.0 105 9.09 8.7 3
## 2266 21.52 223.2 114 10.04 8.7 4
## 2267 18.88 118.5 111 5.33 10.0 4
## 2268 18.39 218.4 106 9.83 12.8 4
## 2269 16.24 215.5 82 9.70 11.3 7
## 2270 14.76 162.6 96 7.32 8.2 13
## 2271 19.43 303.5 94 13.66 12.2 4
## 2272 19.65 313.4 108 14.10 8.7 10
## 2273 22.28 268.2 98 12.07 11.7 2
## 2274 13.52 139.5 101 6.28 7.6 3
## 2275 17.81 180.6 75 8.13 9.9 2
## 2276 12.33 245.3 140 11.04 7.7 7
## 2277 17.43 175.8 88 7.91 5.9 2
## 2278 21.12 269.6 78 12.13 13.3 4
## 2279 21.45 255.7 76 11.51 8.4 4
## 2280 15.77 237.3 145 10.68 9.5 5
## 2281 26.66 126.6 117 5.70 13.4 6
## 2282 17.50 286.5 80 12.89 8.3 4
## 2283 18.06 245.9 67 11.07 12.6 4
## 2284 10.24 117.0 102 5.27 4.7 4
## 2285 14.44 207.0 133 9.32 12.6 5
## 2286 15.77 226.7 96 10.20 11.8 3
## 2287 14.22 270.6 105 12.18 10.4 7
## 2288 13.18 199.5 97 8.98 6.6 4
## 2289 10.79 221.2 166 9.95 8.8 4
## 2290 24.88 184.0 90 8.28 10.8 7
## 2291 22.09 204.3 115 9.19 10.7 2
## 2292 20.13 182.3 75 8.20 11.9 1
## 2293 16.58 159.6 139 7.18 10.5 2
## 2294 16.26 226.7 79 10.20 9.1 3
## 2295 9.85 220.6 115 9.93 7.4 4
## 2296 15.12 113.3 117 5.10 6.6 4
## 2297 20.23 198.4 103 8.93 10.2 6
## 2298 18.62 212.6 80 9.57 12.9 4
## 2299 13.57 148.7 115 6.69 8.8 5
## 2300 20.07 192.7 91 8.67 8.0 4
## 2301 23.53 223.5 65 10.06 8.8 3
## 2302 15.34 226.0 94 10.17 17.0 6
## 2303 17.21 233.1 96 10.49 11.5 6
## 2304 12.81 188.2 67 8.47 10.1 4
## 2305 19.75 127.7 112 5.75 11.0 9
## 2306 7.63 326.0 91 14.67 11.1 3
## 2307 13.54 264.4 94 11.90 6.0 5
## 2308 17.06 201.7 102 9.08 10.9 3
## 2309 14.77 178.4 61 8.03 12.1 3
## 2310 25.82 206.1 82 9.27 8.9 4
## 2311 19.87 215.8 90 9.71 13.5 2
## 2312 20.59 304.2 109 13.69 10.8 2
## 2313 16.68 310.1 110 13.95 9.2 3
## 2314 15.93 119.1 81 5.36 11.5 4
## 2315 20.77 207.2 97 9.32 11.6 4
## 2316 20.97 103.8 118 4.67 7.0 4
## 2317 5.61 213.1 105 9.59 12.9 4
## 2318 15.90 128.1 71 5.76 6.3 3
## 2319 18.14 190.8 92 8.59 11.5 7
## 2320 21.51 180.8 123 8.14 8.7 6
## 2321 17.44 166.3 119 7.48 11.7 4
## 2322 22.36 367.7 89 16.55 15.5 2
## 2323 22.59 269.7 69 12.14 10.6 6
## 2324 17.31 201.7 65 9.08 8.2 1
## 2325 19.61 214.3 91 9.64 7.8 2
## 2326 20.15 239.9 122 10.80 9.8 5
## 2327 10.02 248.5 104 11.18 14.0 2
## 2328 11.20 187.4 98 8.43 9.4 1
## 2329 7.45 247.2 87 11.12 8.4 6
## 2330 21.23 192.3 99 8.65 8.9 2
## 2331 20.24 195.6 102 8.80 10.6 2
## 2332 30.75 147.5 132 6.64 7.2 2
## 2333 16.86 181.1 76 8.15 10.5 4
## 2334 14.02 231.5 75 10.42 8.2 4
## 2335 12.49 190.7 105 8.58 10.0 4
## 2336 17.27 168.7 82 7.59 10.0 2
## 2337 26.59 200.0 85 9.00 11.6 5
## 2338 28.53 149.8 64 6.74 8.3 6
## 2339 15.98 235.0 102 10.58 11.2 3
## 2340 22.16 98.6 109 4.44 8.9 4
## 2341 16.13 196.3 97 8.83 12.6 7
## 2342 20.80 276.9 123 12.46 7.1 7
## 2343 13.06 213.3 106 9.60 10.2 2
## 2344 14.45 190.6 89 8.58 13.8 2
## 2345 23.91 105.2 113 4.73 8.2 8
## 2346 11.72 206.5 88 9.29 0.0 0
## 2347 12.74 196.9 119 8.86 4.6 4
## 2348 14.59 204.0 85 9.18 13.5 9
## 2349 18.67 200.4 89 9.02 11.3 3
## 2350 17.90 238.2 88 10.72 9.6 5
## 2351 9.60 56.6 99 2.55 8.7 4
## 2352 22.36 207.1 113 9.32 3.4 4
## 2353 20.74 159.6 81 7.18 12.8 4
## 2354 18.67 210.0 74 9.45 11.7 4
## 2355 17.94 203.7 129 9.17 13.1 7
## 2356 19.20 269.0 105 12.11 12.5 8
## 2357 24.62 269.1 126 12.11 5.8 3
## 2358 23.42 176.7 126 7.95 10.1 2
## 2359 16.75 110.1 123 4.95 14.6 8
## 2360 18.48 239.9 102 10.80 13.1 4
## 2361 16.95 162.4 107 7.31 9.4 3
## 2362 8.13 181.5 94 8.17 10.5 3
## 2363 19.69 185.3 128 8.34 0.0 0
## 2364 13.37 215.5 77 9.70 13.3 3
## 2365 23.21 153.9 76 6.93 13.7 4
## 2366 20.28 289.5 69 13.03 11.5 5
## 2367 12.53 203.5 110 9.16 14.0 5
## 2368 16.91 165.9 90 7.47 6.6 5
## 2369 13.63 170.9 99 7.69 7.6 7
## 2370 11.92 215.4 89 9.69 9.0 6
## 2371 14.35 199.7 97 8.99 9.9 4
## 2372 17.08 271.9 74 12.24 18.2 3
## 2373 13.14 213.9 102 9.63 10.1 3
## 2374 12.98 224.7 92 10.11 10.2 2
## 2375 16.49 227.3 88 10.23 8.4 5
## 2376 19.57 227.5 118 10.24 10.4 4
## 2377 19.74 147.1 76 6.62 5.8 3
## 2378 14.67 280.5 127 12.62 8.8 4
## 2379 13.98 140.3 101 6.31 12.6 7
## 2380 19.86 187.3 104 8.43 11.8 1
## 2381 11.29 227.2 124 10.22 10.1 2
## 2382 11.14 230.7 67 10.38 7.6 5
## 2383 15.56 54.0 134 2.43 10.9 8
## 2384 19.85 199.5 144 8.98 9.6 2
## 2385 22.58 212.8 94 9.58 6.4 3
## 2386 21.39 240.8 88 10.84 13.9 2
## 2387 15.67 176.0 89 7.92 7.4 2
## 2388 9.32 189.7 145 8.54 9.1 6
## 2389 20.24 240.5 93 10.82 8.9 5
## 2390 16.13 170.1 105 7.65 10.6 4
## 2391 24.20 228.2 91 10.27 12.2 5
## 2392 18.12 205.3 114 9.24 10.8 6
## 2393 22.87 238.6 103 10.74 11.0 7
## 2394 6.85 163.7 83 7.37 8.3 8
## 2395 14.87 221.9 117 9.99 11.2 5
## 2396 16.56 298.2 82 13.42 14.3 2
## 2397 9.22 232.0 72 10.44 10.6 3
## 2398 16.39 148.1 87 6.66 13.2 5
## 2399 13.20 179.4 86 8.07 11.5 3
## 2400 12.16 116.3 113 5.23 11.2 5
## 2401 24.96 174.1 91 7.83 8.4 4
## 2402 23.94 183.5 113 8.26 11.4 1
## 2403 18.04 104.9 120 4.72 15.3 4
## 2404 16.86 171.7 125 7.73 13.0 7
## 2405 15.01 149.7 56 6.74 15.5 4
## 2406 17.31 129.9 113 5.85 6.4 6
## 2407 24.47 181.7 121 8.18 9.2 4
## 2408 17.03 214.0 112 9.63 13.4 6
## 2409 13.03 214.6 107 9.66 10.5 2
## 2410 24.24 180.4 133 8.12 8.7 2
## 2411 18.77 104.0 133 4.68 10.9 6
## 2412 23.47 175.9 94 7.92 9.3 5
## 2413 14.03 162.9 97 7.33 7.5 1
## 2414 16.87 304.3 110 13.69 14.8 9
## 2415 12.52 190.5 73 8.57 6.4 7
## 2416 13.69 275.9 106 12.42 9.0 3
## 2417 21.83 175.3 123 7.89 11.9 5
## 2418 15.87 146.7 96 6.60 9.3 4
## 2419 13.01 262.2 79 11.80 11.0 5
## 2420 22.24 207.1 88 9.32 8.9 4
## 2421 15.29 154.4 102 6.95 11.6 2
## 2422 11.38 177.3 94 7.98 10.9 3
## 2423 14.13 184.7 79 8.31 15.2 6
## 2424 20.08 73.2 81 3.29 3.7 2
## 2425 16.69 157.4 113 7.08 6.4 3
## 2426 16.78 187.5 91 8.44 8.6 6
## 2427 20.17 253.5 110 11.41 13.1 6
## 2428 17.20 229.0 73 10.31 9.5 3
## 2429 17.87 212.0 64 9.54 11.3 3
## 2430 17.82 233.0 95 10.49 10.0 5
## 2431 21.05 199.7 121 8.99 15.6 3
## 2432 16.46 196.5 85 8.84 10.2 4
## 2433 22.04 182.1 119 8.19 13.3 3
## 2434 17.65 168.4 137 7.58 12.1 3
## 2435 20.63 176.3 134 7.93 11.3 4
## 2436 26.80 193.9 101 8.73 10.3 6
## 2437 19.47 162.6 131 7.32 13.3 2
## 2438 21.19 321.2 101 14.45 8.3 4
## 2439 20.60 192.0 76 8.64 11.0 5
## 2440 14.33 198.9 110 8.95 14.6 4
## 2441 15.71 176.1 115 7.92 7.0 6
## 2442 9.49 227.4 94 10.23 12.1 4
## 2443 13.02 286.7 77 12.90 4.7 3
## 2444 12.69 188.1 114 8.46 11.0 5
## 2445 23.74 127.1 143 5.72 9.7 4
## 2446 17.09 151.2 111 6.80 11.6 5
## 2447 13.26 210.8 106 9.49 11.6 6
## 2448 10.98 220.6 98 9.93 12.9 4
## 2449 7.75 142.2 87 6.40 13.8 3
## 2450 19.13 198.5 111 8.93 7.6 6
## 2451 19.59 255.8 103 11.51 11.9 6
## 2452 17.27 174.2 101 7.84 10.7 4
## 2453 18.87 64.2 94 2.89 13.7 6
## 2454 17.99 165.0 79 7.43 10.0 8
## 2455 20.98 229.7 92 10.34 9.7 4
## 2456 21.17 157.6 107 7.09 7.1 6
## 2457 15.45 203.1 86 9.14 10.4 6
## 2458 18.49 220.3 67 9.91 12.2 2
## 2459 19.85 293.9 104 13.23 8.8 4
## 2460 15.02 221.5 96 9.97 14.7 7
## 2461 13.01 240.0 102 10.80 9.8 5
## 2462 15.29 188.2 109 8.47 11.5 5
## 2463 13.98 171.0 110 7.69 10.9 4
## 2464 14.76 231.5 89 10.42 10.1 4
## 2465 12.39 174.4 82 7.85 9.4 2
## 2466 14.49 193.8 88 8.72 8.3 5
## 2467 11.93 253.6 79 11.41 10.5 2
## 2468 20.82 180.8 103 8.14 7.7 6
## 2469 24.28 213.6 80 9.61 4.3 2
## 2470 13.76 197.9 109 8.91 8.3 2
## 2471 14.41 201.1 91 9.05 5.6 4
## 2472 17.20 191.1 122 8.60 7.4 3
## 2473 19.19 145.2 95 6.53 10.2 6
## 2474 22.81 241.3 68 10.86 8.5 7
## 2475 12.78 176.2 75 7.93 9.3 1
## 2476 12.89 230.5 109 10.37 5.3 3
## 2477 14.59 234.5 69 10.55 9.9 3
## 2478 24.43 204.8 91 9.22 9.1 7
## 2479 13.30 280.0 81 12.60 13.2 7
## 2480 23.74 192.7 131 8.67 11.7 2
## 2481 24.97 250.7 65 11.28 10.3 7
## 2482 17.59 163.6 109 7.36 11.3 4
## 2483 13.01 249.0 72 11.21 10.2 6
## 2484 24.37 164.3 113 7.39 12.9 3
## 2485 23.50 289.9 125 13.05 12.3 2
## 2486 22.40 259.6 107 11.68 12.0 4
## 2487 11.15 170.9 104 7.69 5.4 3
## 2488 11.66 185.9 97 8.37 9.8 3
## 2489 15.50 180.6 103 8.13 6.7 2
## 2490 17.94 153.5 109 6.91 10.5 6
## 2491 21.31 289.3 74 13.02 9.8 9
## 2492 22.69 214.6 104 9.66 9.8 10
## 2493 12.06 200.7 71 9.03 8.5 6
## 2494 13.76 285.0 78 12.83 11.3 3
## 2495 12.71 140.5 109 6.32 8.1 4
## 2496 13.24 254.3 103 11.44 8.5 3
## 2497 14.22 178.1 130 8.01 7.8 3
## 2498 17.12 146.8 121 6.61 4.2 4
## 2499 13.26 197.5 112 8.89 10.2 5
## 2500 19.22 155.6 83 7.00 13.8 3
## 2501 20.55 147.0 108 6.61 9.6 3
## 2502 21.86 193.2 115 8.69 13.4 4
## 2503 23.04 245.9 94 11.07 16.4 5
## 2504 15.23 292.8 100 13.18 9.9 5
## 2505 11.82 138.4 87 6.23 13.0 1
## 2506 17.00 234.9 65 10.57 12.5 9
## 2507 18.02 174.9 119 7.87 13.2 4
## 2508 13.87 229.8 106 10.34 12.6 3
## 2509 11.57 159.4 147 7.17 8.7 3
## 2510 12.19 170.2 98 7.66 10.9 3
## 2511 19.85 270.9 104 12.19 10.0 1
## 2512 13.76 142.1 103 6.39 7.2 6
## 2513 15.66 231.4 70 10.41 10.2 3
## 2514 17.94 174.6 107 7.86 0.0 0
## 2515 17.44 164.6 84 7.41 10.7 5
## 2516 18.18 184.9 88 8.32 12.0 2
## 2517 13.67 265.0 63 11.93 12.2 3
## 2518 17.81 281.9 126 12.69 12.4 4
## 2519 19.86 208.7 95 9.39 7.9 5
## 2520 12.96 224.8 83 10.12 8.4 5
## 2521 21.28 216.4 128 9.74 7.8 8
## 2522 12.36 186.9 129 8.41 12.1 4
## 2523 19.41 197.9 61 8.91 8.4 9
## 2524 13.29 214.7 90 9.66 7.8 10
## 2525 18.75 236.3 91 10.63 11.8 4
## 2526 23.89 197.2 94 8.87 9.7 2
## 2527 10.40 245.0 75 11.03 6.4 1
## 2528 15.17 229.1 111 10.31 13.1 8
## 2529 19.90 329.2 74 14.81 9.9 9
## 2530 12.74 204.6 131 9.21 9.2 5
## 2531 15.19 174.7 90 7.86 10.7 9
## 2532 15.34 184.2 87 8.29 10.1 4
## 2533 21.48 220.6 97 9.93 7.2 9
## 2534 22.27 239.5 120 10.78 12.3 6
## 2535 19.10 152.5 98 6.86 18.0 2
## 2536 14.38 156.6 61 7.05 9.2 5
## 2537 19.76 195.0 64 8.78 9.0 1
## 2538 14.26 207.0 67 9.32 6.4 8
## 2539 17.74 202.1 103 9.09 14.0 7
## 2540 26.56 178.0 118 8.01 10.7 2
## 2541 15.44 186.9 111 8.41 12.9 1
## 2542 21.52 175.1 86 7.88 14.2 2
## 2543 22.92 175.3 130 7.89 9.5 3
## 2544 24.24 192.1 78 8.64 6.9 3
## 2545 22.79 255.3 62 11.49 13.2 4
## 2546 14.44 238.8 112 10.75 8.2 5
## 2547 19.89 210.0 86 9.45 12.2 5
## 2548 19.01 240.8 93 10.84 12.7 4
## 2549 22.38 135.0 85 6.08 11.9 7
## 2550 27.14 239.9 124 10.80 8.4 4
## 2551 16.35 200.0 96 9.00 6.6 4
## 2552 30.11 145.5 93 6.55 10.9 3
## 2553 18.78 146.8 114 6.61 8.9 2
## 2554 17.70 207.9 115 9.36 10.0 2
## 2555 13.93 185.9 100 8.37 6.7 5
## 2556 18.05 233.0 123 10.49 9.3 4
## 2557 12.76 204.3 115 9.19 10.8 4
## 2558 19.98 256.4 78 11.54 16.9 6
## 2559 14.03 137.9 71 6.21 9.6 5
## 2560 16.18 201.2 87 9.05 11.5 2
## 2561 22.48 210.5 116 9.47 9.0 6
## 2562 15.84 210.0 111 9.45 7.7 6
## 2563 8.08 178.5 129 8.03 8.0 11
## 2564 15.11 255.7 98 11.51 12.1 4
## 2565 19.52 148.2 94 6.67 10.7 8
## 2566 15.61 176.6 109 7.95 13.5 2
## 2567 15.95 216.5 95 9.74 14.4 8
## 2568 25.81 105.4 94 4.74 9.3 2
## 2569 20.68 147.8 66 6.65 12.0 8
## 2570 18.85 243.9 114 10.98 12.8 4
## 2571 12.25 158.1 91 7.11 8.5 6
## 2572 19.26 230.1 96 10.35 7.8 3
## 2573 13.00 123.4 63 5.55 10.4 7
## 2574 15.30 168.6 94 7.59 12.8 4
## 2575 17.26 151.8 120 6.83 13.3 2
## 2576 15.24 251.2 129 11.30 15.5 3
## 2577 19.69 226.2 90 10.18 11.1 11
## 2578 18.11 196.1 85 8.82 8.5 5
## 2579 14.37 225.2 122 10.13 11.8 4
## 2580 16.70 230.1 106 10.35 7.8 2
## 2581 25.87 183.3 103 8.25 8.6 4
## 2582 16.15 170.3 95 7.66 12.9 5
## 2583 11.98 272.6 96 12.27 7.5 4
## 2584 20.47 237.7 121 10.70 12.8 6
## 2585 17.94 179.8 116 8.09 11.4 5
## 2586 18.57 212.4 89 9.56 9.8 1
## 2587 17.51 194.7 124 8.76 11.4 2
## 2588 19.26 193.6 114 8.71 8.9 7
## 2589 16.55 236.7 112 10.65 12.0 9
## 2590 18.46 185.4 52 8.34 13.9 4
## 2591 18.00 240.2 108 10.81 9.3 7
## 2592 22.76 240.3 100 10.81 8.8 5
## 2593 15.18 203.8 116 9.17 12.8 3
## 2594 17.06 181.2 107 8.15 14.3 9
## 2595 17.29 217.5 107 9.79 11.8 8
## 2596 23.90 166.1 80 7.47 8.4 4
## 2597 11.76 224.2 128 10.09 5.8 5
## 2598 22.98 231.5 90 10.42 14.0 2
## 2599 17.55 221.6 96 9.97 10.3 8
## 2600 23.76 233.8 103 10.52 8.8 4
## 2601 14.82 310.7 105 13.98 11.2 4
## 2602 21.01 158.7 104 7.14 11.5 5
## 2603 14.20 128.9 118 5.80 11.4 2
## 2604 15.15 244.2 129 10.99 6.4 5
## 2605 14.40 102.0 90 4.59 15.9 4
## 2606 23.27 282.9 91 12.73 14.1 8
## 2607 26.77 182.9 121 8.23 16.1 3
## 2608 20.34 89.7 89 4.04 9.9 3
## 2609 23.03 222.5 98 10.01 6.7 2
## 2610 12.93 344.3 82 15.49 10.7 6
## 2611 12.10 143.7 117 6.47 5.9 4
## 2612 17.32 158.7 59 7.14 11.8 3
## 2613 16.63 253.4 71 11.40 8.4 8
## 2614 11.99 128.9 137 5.80 7.1 9
## 2615 22.99 107.3 84 4.83 12.2 2
## 2616 20.07 134.3 93 6.04 10.9 4
## 2617 18.13 267.6 115 12.04 16.0 3
## 2618 15.32 179.0 89 8.06 10.7 2
## 2619 17.90 294.8 121 13.27 6.9 5
## 2620 16.12 227.0 76 10.22 11.1 2
## 2621 14.99 297.1 119 13.37 11.0 7
## 2622 17.09 164.5 107 7.40 7.5 16
## 2623 17.53 255.4 117 11.49 11.6 2
## 2624 11.01 193.6 106 8.71 10.9 7
## 2625 15.49 203.9 107 9.18 11.6 2
## 2626 14.55 257.0 106 11.57 12.0 5
## 2627 20.10 123.2 111 5.54 12.6 6
## 2628 25.15 247.2 104 11.12 12.5 1
## 2629 17.38 118.0 98 5.31 6.8 3
## 2630 24.07 209.5 111 9.43 6.7 3
## 2631 22.28 225.5 99 10.15 9.8 3
## 2632 11.81 146.2 109 6.58 12.4 2
## 2633 16.72 127.4 74 5.73 11.8 3
## 2634 19.55 232.5 73 10.46 10.6 3
## 2635 15.47 244.6 75 11.01 12.6 7
## 2636 21.88 170.8 114 7.69 10.0 4
## 2637 10.09 236.6 65 10.65 6.0 6
## 2638 24.45 208.4 80 9.38 5.9 9
## 2639 22.23 241.6 104 10.87 11.4 9
## 2640 26.57 264.0 55 11.88 12.2 4
## 2641 16.45 299.6 109 13.48 10.8 3
## 2642 20.54 302.0 72 13.59 11.3 5
## 2643 12.56 210.4 114 9.47 10.0 4
## 2644 11.31 160.3 85 7.21 10.6 7
## 2645 18.95 188.2 113 8.47 12.4 2
## 2646 15.47 157.6 106 7.09 12.1 2
## 2647 15.84 153.3 122 6.90 11.5 6
## 2648 21.74 233.4 99 10.50 13.4 4
## 2649 20.12 294.5 100 13.25 12.7 1
## 2650 16.79 217.8 104 9.80 9.8 3
## 2651 18.31 164.3 98 7.39 4.9 4
## 2652 20.29 253.6 90 11.41 9.2 5
## 2653 13.44 266.2 123 11.98 9.7 9
## 2654 21.68 225.9 96 10.17 12.4 5
## 2655 16.72 261.7 83 11.78 6.8 3
## 2656 14.20 161.4 119 7.26 10.0 5
## 2657 21.99 169.7 87 7.64 8.9 1
## 2658 20.41 158.7 89 7.14 8.9 5
## 2659 15.71 108.9 109 4.90 13.5 7
## 2660 18.36 235.1 33 10.58 16.1 5
## 2661 21.90 132.9 118 5.98 13.4 2
## 2662 18.61 182.9 109 8.23 9.5 3
## 2663 26.24 161.2 62 7.25 13.7 6
## 2664 15.56 395.0 72 17.77 12.7 7
## 2665 14.16 198.5 118 8.93 14.4 3
## 2666 19.52 204.2 109 9.19 10.1 3
## 2667 11.98 308.9 130 13.90 12.1 2
## 2668 18.79 145.7 110 6.56 10.0 4
## 2669 18.18 88.2 111 3.97 8.6 4
## 2670 15.76 204.7 106 9.21 1.1 2
## 2671 12.84 179.0 80 8.06 9.0 6
## 2672 15.88 227.0 89 10.22 9.5 5
## 2673 13.24 256.9 71 11.56 9.2 10
## 2674 21.25 216.1 73 9.72 6.7 5
## 2675 18.48 188.4 141 8.48 12.8 6
## 2676 10.50 291.6 115 13.12 5.7 9
## 2677 21.85 209.0 63 9.40 12.1 8
## 2678 12.82 198.7 66 8.94 7.3 3
## 2679 17.77 219.7 82 9.89 14.4 6
## 2680 11.74 250.8 109 11.29 3.3 3
## 2681 19.88 170.1 84 7.65 7.7 3
## 2682 17.05 208.8 81 9.40 13.3 9
## 2683 10.50 96.4 92 4.34 12.9 3
## 2684 14.11 210.2 72 9.46 13.2 4
## 2685 18.06 182.1 95 8.19 9.8 7
## 2686 14.16 122.0 78 5.49 14.1 3
## 2687 23.37 162.4 121 7.31 10.0 1
## 2688 13.91 271.7 117 12.23 17.0 6
## 2689 26.95 160.4 121 7.22 10.0 2
## 2690 14.22 223.7 142 10.07 15.2 8
## 2691 16.73 259.7 110 11.69 7.0 7
## 2692 14.76 250.9 131 11.29 9.7 4
## 2693 14.82 193.5 96 8.71 11.6 4
## 2694 21.23 132.6 100 5.97 7.3 3
## 2695 22.90 187.1 74 8.42 10.1 3
## 2696 12.73 168.2 79 7.57 9.8 7
## 2697 18.90 259.0 121 11.66 12.3 5
## 2698 27.60 160.1 112 7.20 11.9 5
## 2699 23.32 226.6 69 10.20 12.4 4
## 2700 17.64 135.0 107 6.08 11.6 5
## 2701 19.60 218.0 69 9.81 8.5 5
## 2702 14.73 264.7 107 11.91 8.3 3
## 2703 8.21 170.7 145 7.68 7.9 5
## 2704 12.23 203.0 97 9.14 12.1 13
## 2705 11.47 227.5 97 10.24 11.2 3
## 2706 20.22 154.3 85 6.94 9.7 7
## 2707 16.84 135.9 116 6.12 13.2 3
## 2708 14.65 145.1 89 6.53 9.0 2
## 2709 19.91 191.7 87 8.63 8.9 3
## 2710 10.60 155.5 108 7.00 11.7 3
## 2711 20.83 202.1 94 9.09 14.7 4
## 2712 22.23 182.3 111 8.20 10.0 3
## 2713 21.72 228.6 68 10.29 11.6 2
## 2714 17.32 166.9 89 7.51 6.0 3
## 2715 16.62 170.1 108 7.65 15.4 6
## 2716 15.76 312.8 78 14.08 6.1 8
## 2717 15.13 215.6 100 9.70 12.1 4
## 2718 11.56 249.1 127 11.21 4.3 6
## 2719 15.55 213.7 121 9.62 13.8 2
## 2720 18.09 226.3 123 10.18 10.0 6
## 2721 7.57 302.2 82 13.60 10.3 3
## 2722 10.83 166.8 105 7.51 9.6 6
## 2723 13.29 158.8 83 7.15 10.1 5
## 2724 13.73 176.3 90 7.93 13.0 9
## 2725 15.34 217.5 104 9.79 9.5 11
## 2726 11.86 197.0 87 8.87 12.0 3
## 2727 11.73 148.7 102 6.69 9.9 1
## 2728 12.13 181.2 101 8.15 11.7 3
## 2729 24.23 166.4 155 7.49 6.2 3
## 2730 19.03 211.9 122 9.54 8.7 4
## 2731 16.99 244.2 112 10.99 14.8 8
## 2732 18.46 243.1 128 10.94 13.9 6
## 2733 30.91 126.7 123 5.70 16.9 2
## 2734 21.81 235.3 104 10.59 0.0 0
## 2735 13.03 233.6 85 10.51 11.1 3
## 2736 16.05 213.3 76 9.60 13.3 3
## 2737 21.59 242.7 156 10.92 9.2 5
## 2738 17.99 243.0 116 10.93 9.9 2
## 2739 12.88 143.0 100 6.44 7.5 3
## 2740 17.85 139.1 65 6.26 10.8 9
## 2741 14.76 257.1 84 11.57 10.3 1
## 2742 18.40 214.7 111 9.66 12.4 2
## 2743 19.13 234.7 109 10.56 10.7 1
## 2744 22.66 243.3 80 10.95 8.0 7
## 2745 16.61 102.4 86 4.61 7.1 7
## 2746 15.35 174.1 115 7.83 10.2 2
## 2747 13.80 155.0 102 6.98 13.4 1
## 2748 19.70 283.6 83 12.76 6.2 1
## 2749 15.44 177.3 67 7.98 7.7 10
## 2750 17.20 171.4 105 7.71 14.2 6
## 2751 15.95 146.4 85 6.59 8.7 6
## 2752 22.98 191.0 88 8.59 7.9 4
## 2753 15.16 246.5 104 11.09 8.1 1
## 2754 14.57 186.5 80 8.39 12.9 2
## 2755 12.53 350.2 108 15.76 11.3 7
## 2756 22.30 149.3 69 6.72 10.7 3
## 2757 13.06 50.1 87 2.25 12.5 1
## 2758 24.08 285.4 83 12.84 5.8 7
## 2759 20.43 237.3 133 10.68 12.0 3
## 2760 14.26 141.8 124 6.38 12.6 9
## 2761 15.02 263.4 81 11.85 14.2 4
## 2762 15.90 220.3 96 9.91 10.5 7
## 2763 13.94 169.4 80 7.62 9.5 4
## 2764 15.76 192.7 116 8.67 8.2 2
## 2765 22.53 239.7 108 10.79 14.9 3
## 2766 13.86 201.1 116 9.05 10.7 3
## 2767 26.64 215.7 82 9.71 10.5 6
## 2768 27.61 79.9 86 3.60 8.2 4
## 2769 12.76 246.8 98 11.11 12.0 2
## 2770 11.31 253.1 77 11.39 9.1 2
## 2771 19.18 188.6 61 8.49 5.7 3
## 2772 16.93 219.8 99 9.89 13.2 6
## 2773 15.11 172.9 90 7.78 5.9 2
## 2774 19.17 186.3 76 8.38 6.1 5
## 2775 20.12 192.2 137 8.65 13.2 3
## 2776 19.97 166.4 128 7.49 9.0 13
## 2777 21.21 157.8 103 7.10 7.4 7
## 2778 21.54 273.1 105 12.29 12.3 6
## 2779 18.00 198.1 101 8.91 10.3 3
## 2780 18.09 178.1 98 8.01 8.5 4
## 2781 18.02 282.3 81 12.70 11.3 4
## 2782 14.42 264.3 94 11.89 9.0 3
## 2783 14.51 237.4 113 10.68 11.6 3
## 2784 20.71 211.9 114 9.54 9.1 2
## 2785 20.70 230.9 92 10.39 10.9 3
## 2786 18.00 137.9 109 6.21 9.2 3
## 2787 22.40 224.7 128 10.11 9.0 6
## 2788 18.26 201.3 147 9.06 10.8 6
## 2789 20.99 200.0 133 9.00 7.2 2
## 2790 10.82 284.4 95 12.80 7.7 4
## 2791 8.78 164.2 73 7.39 9.1 3
## 2792 24.88 224.6 82 10.11 5.5 3
## 2793 21.77 176.6 135 7.95 11.1 4
## 2794 19.05 241.3 63 10.86 14.4 7
## 2795 20.95 173.2 100 7.79 10.9 3
## 2796 17.99 194.9 76 8.77 9.3 2
## 2797 9.85 185.4 136 8.34 16.2 2
## 2798 19.67 131.2 67 5.90 10.0 4
## 2799 15.24 247.2 101 11.12 10.2 8
## 2800 11.14 216.9 104 9.76 9.4 3
## 2801 16.71 192.0 53 8.64 11.0 2
## 2802 21.31 286.2 87 12.88 6.1 3
## 2803 17.74 203.4 98 9.15 14.4 2
## 2804 11.24 177.7 91 8.00 10.6 8
## 2805 17.34 224.2 122 10.09 9.1 4
## 2806 21.56 128.5 72 5.78 11.4 5
## 2807 17.95 259.3 112 11.67 13.6 8
## 2808 12.95 134.3 109 6.04 11.8 4
## 2809 24.65 177.1 110 7.97 11.6 5
## 2810 13.00 215.9 86 9.72 3.5 3
## 2811 22.38 214.4 97 9.65 11.1 4
## 2812 8.82 180.6 106 8.13 10.8 5
## 2813 20.02 268.1 70 12.06 11.0 6
## 2814 12.13 258.3 89 11.62 12.3 4
## 2815 18.16 218.4 72 9.83 10.7 6
## 2816 21.65 250.5 117 11.27 7.2 5
## 2817 15.85 195.3 99 8.79 18.3 6
## 2818 16.52 143.1 80 6.44 11.4 9
## 2819 14.00 111.0 87 5.00 10.1 4
## 2820 12.22 140.1 111 6.30 10.3 3
## 2821 16.60 276.7 86 12.45 13.2 2
## 2822 14.47 209.2 64 9.41 5.7 5
## 2823 24.79 96.4 111 4.34 11.2 3
## 2824 15.90 133.5 96 6.01 16.6 4
## 2825 20.09 187.6 78 8.44 13.1 5
## 2826 18.30 143.7 140 6.47 14.3 9
## 2827 17.04 202.6 125 9.12 10.2 11
## 2828 18.20 214.9 100 9.67 10.3 4
## 2829 10.96 251.9 129 11.34 6.3 6
## 2830 19.07 204.0 118 9.18 12.6 4
## 2831 12.44 169.4 95 7.62 10.5 6
## 2832 18.44 243.7 146 10.97 9.9 3
## 2833 14.74 256.3 109 11.53 7.5 5
## 2834 13.26 136.3 108 6.13 11.6 9
## 2835 12.18 130.6 69 5.88 11.7 7
## 2836 17.12 177.4 84 7.98 10.4 15
## 2837 18.22 179.5 112 8.08 10.3 5
## 2838 19.46 222.2 118 10.00 14.3 3
## 2839 16.15 138.7 94 6.24 10.5 3
## 2840 18.24 306.2 100 13.78 14.2 2
## 2841 11.57 183.4 103 8.25 10.8 7
## 2842 19.18 150.4 106 6.77 14.0 8
## 2843 18.28 238.5 107 10.73 9.4 2
## 2844 16.64 210.1 87 9.45 10.0 6
## 2845 18.16 141.5 69 6.37 11.5 4
## 2846 17.60 182.2 95 8.20 4.5 4
## 2847 13.84 272.1 85 12.24 10.1 4
## 2848 17.80 231.1 91 10.40 12.2 4
## 2849 12.22 198.9 105 8.95 8.0 2
## 2850 15.43 185.7 151 8.36 7.7 4
## 2851 18.45 182.1 86 8.19 10.0 5
## 2852 14.97 189.6 88 8.53 8.2 3
## 2853 10.73 274.2 71 12.34 4.6 4
## 2854 16.77 267.4 93 12.03 8.7 3
## 2855 16.03 278.4 98 12.53 10.6 4
## 2856 22.16 201.0 120 9.05 8.1 2
## 2857 11.69 226.0 100 10.17 10.0 4
## 2858 17.62 228.6 117 10.29 5.6 2
## 2859 21.06 152.9 103 6.88 7.4 3
## 2860 5.74 185.9 136 8.37 11.5 3
## 2861 20.08 240.2 84 10.81 11.8 6
## 2862 20.55 215.7 102 9.71 13.1 3
## 2863 25.97 158.9 73 7.15 12.1 6
## 2864 14.20 280.2 115 12.61 9.7 3
## 2865 13.66 203.1 109 9.14 12.5 2
## 2866 23.49 185.2 107 8.33 8.6 6
## 2867 9.03 197.7 104 8.90 11.1 4
## 2868 13.09 237.0 105 10.67 11.2 6
## 2869 19.52 332.7 94 14.97 13.6 3
## 2870 21.79 334.7 104 15.06 8.9 2
## 2871 22.08 148.0 79 6.66 9.1 9
## 2872 18.31 186.8 73 8.41 11.3 2
## 2873 10.25 152.8 81 6.88 9.2 2
## 2874 11.08 229.8 80 10.34 6.9 5
## 2875 19.24 246.8 98 11.11 12.3 10
## 2876 21.38 208.7 85 9.39 6.6 2
## 2877 15.24 285.5 117 12.85 10.4 6
## 2878 15.94 196.8 88 8.86 6.5 3
## 2879 21.90 190.4 107 8.57 9.6 6
## 2880 14.69 173.8 113 7.82 10.0 2
## 2881 8.70 129.7 148 5.84 9.8 5
## 2882 23.58 137.7 100 6.20 6.2 3
## 2883 12.00 268.2 113 12.07 11.4 2
## 2884 20.18 239.2 98 10.76 9.8 11
## 2885 14.24 260.0 97 11.70 8.7 4
## 2886 13.72 231.9 100 10.44 8.4 2
## 2887 22.49 185.4 94 8.34 9.9 3
## 2888 11.30 136.7 107 6.15 11.1 4
## 2889 17.60 255.7 115 11.51 10.9 2
## 2890 20.18 145.4 103 6.54 8.4 6
## 2891 12.28 125.7 98 5.66 11.6 1
## 2892 16.37 259.0 108 11.66 12.2 5
## 2893 12.07 183.8 77 8.27 11.8 7
## 2894 13.18 251.5 111 11.32 7.2 6
## 2895 21.11 236.2 113 10.63 14.7 2
## 2896 13.01 123.8 104 5.57 6.4 4
## 2897 16.38 141.7 83 6.38 9.1 4
## 2898 16.99 170.8 117 7.69 16.6 3
## 2899 17.64 169.4 96 7.62 5.6 5
## 2900 21.81 214.9 145 9.67 3.8 4
## 2901 17.84 222.6 117 10.02 7.9 5
## 2902 19.82 165.7 116 7.46 9.3 7
## 2903 15.96 259.6 137 11.68 10.0 3
## 2904 22.87 203.5 38 9.16 6.7 4
## 2905 12.06 200.4 122 9.02 10.4 9
## 2906 11.55 184.6 82 8.31 3.8 9
## 2907 15.89 249.7 78 11.24 0.0 0
## 2908 23.27 150.2 88 6.76 12.8 1
## 2909 17.14 280.8 99 12.64 7.9 2
## 2910 8.42 211.6 126 9.52 7.7 2
## 2911 15.69 156.9 92 7.06 9.1 2
## 2912 18.88 156.7 122 7.05 13.0 3
## 2913 15.94 119.5 100 5.38 4.3 3
## 2914 21.27 158.1 79 7.11 10.8 4
## 2915 12.08 214.6 87 9.66 12.5 4
## 2916 21.16 158.6 88 7.14 14.4 2
## 2917 13.48 187.7 87 8.45 10.5 6
## 2918 13.86 268.1 151 12.06 8.3 3
## 2919 22.59 182.4 87 8.21 0.0 0
## 2920 13.96 201.4 68 9.06 9.4 5
## 2921 21.51 195.7 120 8.81 10.7 4
## 2922 15.44 197.3 63 8.88 15.9 2
## 2923 20.57 246.9 96 11.11 10.2 2
## 2924 23.38 212.1 94 9.54 16.7 3
## 2925 20.99 254.4 107 11.45 10.3 3
## 2926 20.41 164.0 147 7.38 11.6 2
## 2927 20.00 292.1 114 13.14 5.0 3
## 2928 19.36 158.5 100 7.13 10.2 3
## 2929 17.42 224.3 133 10.09 9.8 3
## 2930 19.76 191.1 82 8.60 14.9 4
## 2931 12.26 120.4 97 5.42 12.9 12
## 2932 21.39 191.6 100 8.62 10.9 6
## 2933 0.00 175.4 94 7.89 11.8 6
## 2934 26.06 144.2 93 6.49 2.1 4
## 2935 11.14 238.6 69 10.74 8.6 3
## 2936 17.75 224.0 119 10.08 9.8 2
## 2937 14.95 215.4 106 9.69 9.5 2
## 2938 17.54 126.3 118 5.68 13.4 4
## 2939 22.13 88.7 100 3.99 7.0 5
## 2940 22.19 262.7 85 11.82 13.3 5
## 2941 7.65 205.1 116 9.23 7.3 5
## 2942 21.83 249.7 87 11.24 11.5 1
## 2943 22.07 153.2 86 6.89 10.0 3
## 2944 20.51 211.4 109 9.51 7.8 2
## 2945 18.66 73.7 92 3.32 9.8 5
## 2946 22.07 230.0 117 10.35 14.0 2
## 2947 20.94 199.0 114 8.96 4.1 4
## 2948 24.37 240.7 115 10.83 9.0 13
## 2949 18.33 236.7 67 10.65 10.5 5
## 2950 12.96 148.1 104 6.66 10.0 5
## 2951 16.93 244.1 119 10.98 11.8 4
## 2952 16.12 256.2 108 11.53 12.9 7
## 2953 19.22 268.6 121 12.09 8.2 3
## 2954 21.19 249.7 90 11.24 9.8 4
## 2955 17.68 208.1 81 9.36 8.4 4
## 2956 14.41 193.6 97 8.71 10.3 5
## 2957 22.79 140.8 75 6.34 8.6 18
## 2958 16.97 216.5 110 9.74 7.3 1
## 2959 18.38 255.3 96 11.49 6.3 2
## 2960 17.83 210.6 109 9.48 9.1 4
## 2961 11.47 152.3 75 6.85 10.0 3
## 2962 13.87 172.7 120 7.77 8.0 2
## 2963 14.88 184.4 112 8.30 5.4 5
## 2964 15.59 235.0 52 10.58 11.6 7
## 2965 18.23 233.7 75 10.52 7.9 1
## 2966 8.30 181.7 134 8.18 8.4 3
## 2967 13.75 217.0 106 9.76 8.0 5
## 2968 23.53 149.9 110 6.75 10.2 6
## 2969 23.02 219.3 101 9.87 13.9 2
## 2970 18.14 186.2 116 8.38 7.9 2
## 2971 19.69 222.2 108 10.00 6.4 12
## 2972 15.95 122.3 97 5.50 9.6 2
## 2973 11.99 212.1 90 9.54 10.1 4
## 2974 17.18 210.5 97 9.47 10.4 5
## 2975 19.14 195.1 99 8.78 7.0 6
## 2976 11.19 235.3 131 10.59 11.8 4
## 2977 18.59 236.0 97 10.62 11.5 5
## 2978 12.65 224.5 117 10.10 6.7 2
## 2979 18.26 247.9 108 11.16 13.0 5
## 2980 17.71 209.0 95 9.40 8.8 3
## 2981 23.43 201.4 108 9.06 14.3 3
## 2982 14.21 194.8 98 8.77 9.7 6
## 2983 19.08 273.4 152 12.30 8.9 5
## 2984 16.35 242.6 99 10.92 7.9 4
## 2985 14.21 100.3 61 4.51 10.8 6
## 2986 23.89 158.5 77 7.13 11.0 5
## 2987 12.86 201.9 132 9.09 10.5 3
## 2988 10.10 147.9 95 6.66 13.7 3
## 2989 14.89 222.4 36 10.01 12.0 5
## 2990 17.96 136.1 85 6.12 13.8 3
## 2991 11.70 203.8 109 9.17 8.3 6
## 2992 11.08 207.3 109 9.33 7.3 5
## 2993 12.19 191.0 98 8.59 11.6 3
## 2994 14.47 194.3 79 8.74 12.5 3
## 2995 25.72 191.5 82 8.62 5.5 7
## 2996 16.29 153.0 129 6.89 13.2 2
## 2997 11.41 168.4 118 7.58 13.3 3
## 2998 18.34 154.8 88 6.97 7.8 2
## 2999 21.48 225.8 104 10.16 12.3 3
## 3000 19.13 240.3 85 10.81 9.6 5
## 3001 10.84 289.3 83 13.02 14.5 4
## 3002 15.94 189.3 97 8.52 11.5 3
## 3003 19.14 224.7 58 10.11 8.9 8
## 3004 12.95 236.5 80 10.64 9.4 3
## 3005 21.86 91.6 92 4.12 16.2 3
## 3006 21.62 197.3 138 8.88 10.5 2
## 3007 12.49 217.1 102 9.77 9.9 7
## 3008 13.16 191.4 77 8.61 14.1 5
## 3009 15.60 206.8 111 9.31 13.0 2
## 3010 21.57 128.7 85 5.79 6.7 3
## 3011 24.54 111.2 110 5.00 12.1 3
## 3012 20.56 244.7 110 11.01 10.6 3
## 3013 16.12 206.7 85 9.30 11.1 3
## 3014 15.77 250.0 132 11.25 5.2 6
## 3015 12.20 210.7 130 9.48 11.8 4
## 3016 22.94 229.1 87 10.31 7.1 7
## 3017 12.83 245.5 131 11.05 14.6 9
## 3018 19.90 211.5 104 9.52 6.0 3
## 3019 11.92 227.4 111 10.23 12.2 2
## 3020 13.45 287.7 111 12.95 13.8 3
## 3021 18.37 156.9 82 7.06 9.8 4
## 3022 16.48 231.5 93 10.42 10.1 2
## 3023 9.76 220.4 99 9.92 2.9 7
## 3024 17.71 87.4 77 3.93 13.9 2
## 3025 16.97 53.3 61 2.40 11.5 5
## 3026 6.80 120.8 82 5.44 15.6 12
## 3027 16.34 246.1 92 11.07 10.8 4
## 3028 24.29 203.0 111 9.14 9.4 6
## 3029 19.75 261.2 123 11.75 12.5 6
## 3030 17.65 205.7 114 9.26 9.2 4
## 3031 14.23 216.5 112 9.74 14.0 5
## 3032 12.61 238.6 69 10.74 12.5 3
## 3033 8.61 167.3 106 7.53 7.8 7
## 3034 21.23 211.4 82 9.51 13.6 3
## 3035 14.52 104.5 91 4.70 11.2 8
## 3036 18.84 190.6 75 8.58 11.6 3
## 3037 17.82 164.4 97 7.40 9.4 5
## 3038 20.64 247.8 97 11.15 6.5 4
## 3039 12.03 237.3 87 10.68 6.4 3
## 3040 15.61 151.8 75 6.83 10.5 2
## 3041 16.75 294.5 83 13.25 10.5 4
## 3042 16.97 206.2 104 9.28 6.5 4
## 3043 15.96 138.1 108 6.21 8.3 2
## 3044 13.15 164.4 79 7.40 9.0 2
## 3045 19.13 230.1 117 10.35 8.5 2
## 3046 19.12 178.2 104 8.02 10.5 3
## 3047 21.96 109.6 74 4.93 14.8 4
## 3048 16.44 89.6 107 4.03 12.8 5
## 3049 13.35 181.5 120 8.17 14.0 6
## 3050 17.69 204.6 72 9.21 15.6 3
## 3051 15.98 219.7 125 9.89 13.5 4
## 3052 20.08 205.6 92 9.25 15.6 2
## 3053 17.24 233.0 126 10.49 12.9 2
## 3054 16.44 254.4 117 11.45 7.0 10
## 3055 19.81 152.2 106 6.85 9.1 7
## 3056 16.78 188.2 102 8.47 9.7 2
## 3057 12.91 218.5 101 9.83 10.7 2
## 3058 22.45 203.7 79 9.17 7.3 3
## 3059 18.62 168.0 116 7.56 7.1 8
## 3060 14.21 205.7 102 9.26 11.8 2
## 3061 16.10 352.2 95 15.85 8.4 5
## 3062 15.90 282.3 124 12.70 12.4 6
## 3063 15.34 151.3 101 6.81 13.0 4
## 3064 9.91 141.5 110 6.37 12.2 2
## 3065 20.16 210.1 91 9.45 8.7 2
## 3066 22.80 168.0 95 7.56 8.4 6
## 3067 18.22 196.8 110 8.86 7.2 5
## 3068 14.75 218.0 122 9.81 10.1 4
## 3069 18.96 124.0 92 5.58 9.5 1
## 3070 13.64 218.3 88 9.82 9.9 3
## 3071 18.21 178.0 105 8.01 12.0 2
## 3072 10.99 136.3 102 6.13 6.3 12
## 3073 15.98 235.4 116 10.59 8.5 5
## 3074 13.06 260.4 87 11.72 7.4 5
## 3075 17.34 117.9 118 5.31 6.6 3
## 3076 29.01 165.7 97 7.46 6.3 3
## 3077 11.45 170.7 97 7.68 10.0 3
## 3078 26.72 280.2 110 12.61 14.3 2
## 3079 9.19 204.3 87 9.19 13.2 3
## 3080 14.86 184.2 83 8.29 7.9 2
## 3081 20.15 118.3 91 5.32 17.5 4
## 3082 21.60 176.4 96 7.94 5.9 3
## 3083 16.30 132.5 125 5.96 12.1 4
## 3084 12.10 316.7 131 14.25 12.5 5
## 3085 21.84 185.5 126 8.35 12.1 2
## 3086 18.96 243.2 81 10.94 10.0 7
## 3087 12.99 160.3 98 7.21 11.2 8
## 3088 24.09 262.1 108 11.79 8.6 9
## 3089 14.95 207.2 100 9.32 8.9 3
## 3090 14.45 127.9 68 5.76 9.4 4
## 3091 16.85 248.5 94 11.18 12.1 4
## 3092 19.38 240.0 111 10.80 10.6 3
## 3093 12.55 213.5 85 9.61 10.1 2
## 3094 23.32 242.7 119 10.92 8.2 3
## 3095 13.50 189.6 92 8.53 10.5 2
## 3096 21.17 215.7 82 9.71 10.6 4
## 3097 14.08 189.2 63 8.51 9.8 5
## 3098 16.27 144.0 78 6.48 10.0 11
## 3099 16.31 165.5 125 7.45 12.0 4
## 3100 17.67 190.4 120 8.57 10.1 10
## 3101 16.18 290.0 66 13.05 10.4 2
## 3102 18.01 167.6 138 7.54 8.2 5
## 3103 19.63 192.0 106 8.64 12.6 9
## 3104 19.30 313.2 113 14.09 13.2 1
## 3105 15.40 174.0 68 7.83 10.3 2
## 3106 20.12 252.3 137 11.35 9.5 1
## 3107 14.73 203.5 108 9.16 11.6 5
## 3108 16.86 364.9 106 16.42 9.1 4
## 3109 15.50 183.8 88 8.27 11.0 8
## 3110 16.40 168.3 96 7.57 11.2 13
## 3111 20.46 245.5 80 11.05 10.6 7
## 3112 13.18 234.8 96 10.57 11.4 5
## 3113 16.35 151.0 75 6.80 9.3 3
## 3114 18.79 229.2 110 10.31 14.0 9
## 3115 11.30 272.0 120 12.24 12.1 1
## 3116 16.93 163.2 88 7.34 10.0 1
## 3117 17.12 264.2 79 11.89 8.8 1
## 3118 17.86 175.1 86 7.88 13.1 7
## 3119 16.49 253.4 124 11.40 5.2 5
## 3120 13.63 235.3 150 10.59 11.4 10
## 3121 21.79 158.6 72 7.14 10.8 6
## 3122 11.76 142.6 105 6.42 8.5 7
## 3123 17.31 170.5 89 7.67 14.1 3
## 3124 17.09 219.7 97 9.89 11.3 5
## 3125 15.47 270.9 106 12.19 9.4 2
## 3126 12.02 253.0 115 11.39 10.5 3
## 3127 18.99 251.4 104 11.31 10.6 6
## 3128 16.82 284.5 93 12.80 11.7 2
## 3129 19.56 148.8 78 6.70 10.2 11
## 3130 15.78 161.5 113 7.27 5.6 4
## 3131 9.34 165.7 99 7.46 8.7 1
## 3132 13.27 244.0 91 10.98 8.3 3
## 3133 19.58 241.5 104 10.87 7.8 5
## 3134 27.28 157.2 126 7.07 10.4 4
## 3135 9.72 114.5 97 5.15 11.4 5
## 3136 17.54 283.2 93 12.74 10.8 3
## 3137 15.27 166.3 121 7.48 10.3 2
## 3138 14.25 205.9 106 9.27 14.7 5
## 3139 14.89 136.3 80 6.13 13.3 3
## 3140 20.37 221.7 123 9.98 7.1 5
## 3141 15.25 150.6 77 6.78 15.2 6
## 3142 18.11 192.7 87 8.67 10.7 4
## 3143 15.44 143.4 113 6.45 12.8 4
## 3144 15.90 216.6 100 9.75 10.0 4
## 3145 13.45 215.7 118 9.71 10.3 2
## 3146 17.65 195.0 98 8.78 8.8 4
## 3147 24.73 228.4 91 10.28 13.9 5
## 3148 10.45 228.4 102 10.28 8.5 4
## 3149 23.58 202.0 139 9.09 11.0 2
## 3150 18.20 193.0 105 8.69 11.9 4
## 3151 21.14 199.8 120 8.99 10.7 5
## 3152 23.65 288.1 85 12.96 7.1 5
## 3153 20.96 304.2 107 13.69 9.5 4
## 3154 13.28 187.9 89 8.46 10.5 4
## 3155 17.34 174.6 94 7.86 6.3 3
## 3156 12.75 268.6 119 12.09 9.6 4
## 3157 16.35 214.9 89 9.67 10.4 1
## 3158 15.26 171.8 122 7.73 6.2 4
## 3159 17.32 237.4 100 10.68 9.3 5
## 3160 21.08 61.4 109 2.76 7.8 6
## 3161 17.91 231.9 75 10.44 2.1 5
## 3162 15.78 300.0 143 13.50 10.0 5
## 3163 19.56 140.5 123 6.32 13.3 3
## 3164 24.45 177.1 85 7.97 6.9 3
## 3165 23.22 179.6 118 8.08 11.0 5
## 3166 14.71 242.1 95 10.89 9.1 3
## 3167 19.16 244.3 132 10.99 10.2 2
## 3168 11.59 197.3 107 8.88 9.0 2
## 3169 25.42 251.3 81 11.31 11.2 4
## 3170 10.02 201.0 94 9.05 12.0 3
## 3171 21.44 208.9 91 9.40 7.5 6
## 3172 12.61 277.8 97 12.50 9.7 6
## 3173 20.81 223.8 156 10.07 12.3 5
## 3174 15.64 275.5 132 12.40 12.9 4
## 3175 10.97 325.9 105 14.67 8.6 6
## 3176 17.31 246.2 88 11.08 8.3 3
## 3177 12.44 123.0 75 5.54 8.1 4
## 3178 11.96 217.7 101 9.80 12.8 5
## 3179 17.47 130.7 63 5.88 13.8 5
## 3180 15.21 214.6 74 9.66 9.4 4
## 3181 8.81 156.3 86 7.03 12.2 4
## 3182 16.40 144.0 103 6.48 10.1 4
## 3183 19.47 139.4 105 6.27 7.8 8
## 3184 16.79 128.2 111 5.77 8.4 4
## 3185 13.48 269.3 118 12.12 6.8 3
## 3186 13.81 231.9 136 10.44 11.9 3
## 3187 13.15 174.8 98 7.87 9.4 6
## 3188 23.32 210.5 139 9.47 5.4 4
## 3189 13.23 277.4 62 12.48 8.2 5
## 3190 17.54 208.4 123 9.38 13.2 5
## 3191 12.58 168.2 109 7.57 15.8 3
## 3192 11.40 189.1 84 8.51 9.3 2
## 3193 15.10 228.0 136 10.26 5.0 3
## 3194 14.03 141.5 142 6.37 10.8 3
## 3195 13.65 155.3 108 6.99 13.4 1
## 3196 19.00 148.4 106 6.68 9.7 9
## 3197 15.18 242.3 82 10.90 12.2 3
## 3198 14.95 287.4 90 12.93 11.3 2
## 3199 19.33 178.9 105 8.05 12.8 2
## 3200 13.91 153.2 121 6.89 11.8 5
## 3201 7.38 156.2 117 7.03 9.7 4
## 3202 17.25 213.5 95 9.61 8.8 5
## 3203 24.30 182.5 85 8.21 6.9 4
## 3204 21.83 263.9 92 11.88 6.4 3
## 3205 21.54 154.0 101 6.93 10.5 9
## 3206 25.04 260.1 121 11.70 10.8 3
## 3207 19.03 180.4 85 8.12 10.2 13
## 3208 16.12 240.3 107 10.81 11.7 2
## 3209 15.84 126.9 112 5.71 10.4 5
## 3210 23.45 214.5 108 9.65 14.2 6
## 3211 23.46 196.2 48 8.83 11.4 3
## 3212 11.43 168.8 164 7.60 12.0 6
## 3213 10.35 221.5 122 9.97 3.7 4
## 3214 18.32 262.4 111 11.81 12.0 7
## 3215 16.57 197.8 109 8.90 8.8 9
## 3216 13.73 294.6 107 13.26 9.4 6
## 3217 19.05 205.7 103 9.26 2.4 3
## 3218 19.55 206.3 66 9.28 13.2 8
## 3219 18.16 193.0 108 8.69 13.4 9
## 3220 28.29 213.8 105 9.62 8.8 2
## 3221 21.56 149.3 93 6.72 10.2 5
## 3222 21.39 182.2 99 8.20 8.5 6
## 3223 14.59 250.9 114 11.29 11.7 6
## 3224 17.20 256.0 96 11.52 16.7 2
## 3225 23.53 213.4 82 9.60 12.3 4
## 3226 16.54 211.2 87 9.50 8.4 3
## 3227 16.49 262.7 111 11.82 7.5 4
## 3228 16.03 200.8 95 9.04 10.7 2
## 3229 17.92 165.4 87 7.44 15.0 6
## 3230 18.05 176.9 98 7.96 7.8 10
## 3231 15.52 143.1 90 6.44 4.2 14
## 3232 15.35 245.0 83 11.03 6.6 5
## 3233 14.30 197.3 120 8.88 9.9 3
## 3234 6.34 247.9 74 11.16 6.3 7
## 3235 13.95 169.6 153 7.63 2.5 5
## 3236 18.02 175.2 138 7.88 4.9 2
## 3237 18.44 112.4 125 5.06 7.5 8
## 3238 19.43 152.9 88 6.88 10.9 7
## 3239 22.69 197.7 118 8.90 8.8 3
## 3240 20.00 215.3 95 9.69 10.2 7
## 3241 23.83 292.4 105 13.16 5.0 3
## 3242 14.65 191.9 87 8.64 11.3 2
## 3243 20.12 264.0 118 11.88 8.4 2
## 3244 11.19 169.5 106 7.63 10.3 9
## 3245 19.10 214.6 69 9.66 7.2 7
## 3246 10.38 180.8 85 8.14 12.6 2
## 3247 20.09 203.5 101 9.16 11.9 2
## 3248 13.51 47.4 73 2.13 3.9 9
## 3249 18.41 233.0 82 10.49 11.5 3
## 3250 20.49 227.8 102 10.25 11.7 6
## 3251 23.77 180.0 74 8.10 13.5 4
## 3252 13.69 194.4 123 8.75 9.2 4
## 3253 19.15 194.3 93 8.74 11.7 3
## 3254 15.06 207.6 102 9.34 9.0 4
## 3255 24.07 228.1 77 10.26 14.7 5
## 3256 15.91 146.2 114 6.58 11.0 4
## 3257 13.06 232.3 65 10.45 17.0 1
## 3258 16.84 292.7 131 13.17 13.3 5
## 3259 16.30 117.8 93 5.30 13.4 5
## 3260 18.83 113.8 118 5.12 15.0 2
## 3261 18.42 130.6 122 5.88 13.9 2
## 3262 14.61 131.1 94 5.90 7.3 6
## 3263 22.30 139.2 99 6.26 10.1 5
## 3264 17.03 202.5 103 9.11 6.0 1
## 3265 17.61 214.5 126 9.65 5.9 2
## 3266 19.52 251.7 99 11.33 11.0 6
## 3267 22.81 186.4 71 8.39 9.7 4
## 3268 20.82 190.9 96 8.59 8.8 3
## 3269 19.87 223.5 148 10.06 12.7 2
## 3270 21.21 162.8 115 7.33 10.5 5
## 3271 17.68 181.2 101 8.15 12.8 6
## 3272 20.29 238.4 79 10.73 12.5 1
## 3273 19.01 229.4 109 10.32 12.9 4
## 3274 14.23 322.2 109 14.50 14.7 8
## 3275 18.49 125.6 111 5.65 8.0 5
## 3276 13.91 242.9 121 10.93 0.0 0
## 3277 12.41 241.4 98 10.86 8.8 2
## 3278 10.75 238.5 125 10.73 10.0 9
## 3279 13.98 282.5 132 12.71 10.6 6
## 3280 18.90 148.0 105 6.66 8.3 5
## 3281 20.25 271.8 116 12.23 10.0 3
## 3282 15.51 274.9 92 12.37 5.1 8
## 3283 17.29 234.0 115 10.53 7.7 4
## 3284 20.95 198.4 117 8.93 12.4 4
## 3285 19.10 174.3 122 7.84 13.2 2
## 3286 9.79 182.4 92 8.21 11.8 7
## 3287 18.89 158.4 96 7.13 13.1 8
## 3288 11.48 184.6 49 8.31 10.9 3
## 3289 24.32 247.6 113 11.14 4.9 9
## 3290 9.75 104.7 83 4.71 13.2 5
## 3291 15.90 218.5 95 9.83 0.0 0
## 3292 19.01 150.0 94 6.75 13.9 20
## 3293 7.46 166.2 122 7.48 11.7 4
## 3294 18.30 188.9 87 8.50 9.1 4
## 3295 17.73 198.0 92 8.91 12.3 3
## 3296 14.45 128.7 57 5.79 11.7 5
## 3297 17.43 154.9 109 6.97 9.0 2
## 3298 14.09 160.6 80 7.23 11.3 3
## 3299 20.34 144.4 112 6.50 12.3 4
## 3300 12.68 201.4 113 9.06 11.0 4
## 3301 19.41 166.7 108 7.50 7.1 3
## 3302 17.19 156.8 103 7.06 10.4 4
## 3303 17.92 153.5 100 6.91 7.8 3
## 3304 13.23 247.6 94 11.14 11.5 7
## 3305 16.88 206.5 80 9.29 13.8 5
## 3306 20.30 174.2 86 7.84 11.5 7
## 3307 17.33 229.5 73 10.33 8.1 3
## 3308 19.89 160.7 65 7.23 17.8 4
## 3309 14.08 265.9 72 11.97 13.3 6
## 3310 19.18 255.3 95 11.49 12.0 4
## 3311 7.82 224.8 108 10.12 13.6 17
## 3312 24.08 188.3 124 8.47 6.9 5
## 3313 12.27 262.4 110 11.81 14.2 4
## 3314 12.21 191.4 97 8.61 10.0 5
## 3315 19.86 131.9 120 5.94 9.1 4
## 3316 9.73 178.3 98 8.02 6.5 4
## 3317 18.62 220.3 108 9.91 12.3 9
## 3318 16.02 211.1 94 9.50 7.8 8
## 3319 25.54 192.5 106 8.66 11.6 4
## 3320 17.84 280.9 112 12.64 15.9 6
## 3321 16.69 120.1 133 5.40 9.7 4
## 3322 7.23 210.1 134 9.45 13.2 8
## 3323 22.57 180.5 72 8.12 11.5 2
## 3324 21.19 227.0 56 10.22 13.6 3
## 3325 16.80 193.7 82 8.72 11.6 4
## 3326 9.94 243.3 109 10.95 9.3 4
## 3327 24.21 178.9 92 8.05 14.9 7
## 3328 16.12 221.4 128 9.96 11.8 5
## 3329 18.32 279.1 83 12.56 9.9 6
## 3330 13.04 191.3 123 8.61 9.6 4
## 3331 24.55 191.9 91 8.64 14.1 6
## 3332 13.57 139.2 137 6.26 5.0 10
## 3333 22.60 241.4 77 10.86 13.7 4
## Intl.Charge CustServ.Calls Churn
## 1 2.70 1 FALSE
## 2 3.70 1 FALSE
## 3 3.29 0 FALSE
## 4 1.78 2 FALSE
## 5 2.73 3 FALSE
## 6 1.70 0 FALSE
## 7 2.03 3 FALSE
## 8 1.92 0 FALSE
## 9 2.35 1 FALSE
## 10 3.02 0 FALSE
## 11 3.43 4 TRUE
## 12 2.46 0 FALSE
## 13 3.02 1 FALSE
## 14 3.32 3 FALSE
## 15 3.54 4 FALSE
## 16 1.46 4 TRUE
## 17 3.73 1 FALSE
## 18 2.19 3 FALSE
## 19 2.70 1 FALSE
## 20 3.51 1 FALSE
## 21 2.86 0 FALSE
## 22 1.54 5 TRUE
## 23 2.57 0 FALSE
## 24 2.08 2 FALSE
## 25 2.78 0 FALSE
## 26 4.19 3 FALSE
## 27 2.57 0 FALSE
## 28 3.97 3 FALSE
## 29 1.70 0 FALSE
## 30 3.00 1 FALSE
## 31 3.83 2 FALSE
## 32 2.78 1 FALSE
## 33 3.40 3 FALSE
## 34 3.19 1 TRUE
## 35 2.24 0 FALSE
## 36 3.97 3 FALSE
## 37 3.92 0 FALSE
## 38 2.70 1 FALSE
## 39 2.84 3 FALSE
## 40 3.00 1 FALSE
## 41 2.54 3 FALSE
## 42 3.94 0 TRUE
## 43 2.70 2 FALSE
## 44 2.48 3 FALSE
## 45 0.95 1 FALSE
## 46 2.30 2 FALSE
## 47 3.56 3 FALSE
## 48 2.00 2 FALSE
## 49 2.38 5 TRUE
## 50 2.97 1 FALSE
## 51 2.11 3 FALSE
## 52 1.84 1 FALSE
## 53 3.08 2 FALSE
## 54 2.51 2 FALSE
## 55 2.62 5 TRUE
## 56 2.75 1 FALSE
## 57 2.16 1 FALSE
## 58 1.57 3 TRUE
## 59 3.27 3 FALSE
## 60 3.24 1 FALSE
## 61 3.08 1 FALSE
## 62 3.13 2 FALSE
## 63 3.94 2 FALSE
## 64 3.40 3 FALSE
## 65 2.21 2 FALSE
## 66 1.67 2 FALSE
## 67 2.51 0 FALSE
## 68 2.24 0 FALSE
## 69 2.11 1 FALSE
## 70 3.73 4 TRUE
## 71 3.19 3 FALSE
## 72 3.27 0 FALSE
## 73 2.16 3 FALSE
## 74 1.97 1 FALSE
## 75 3.24 0 FALSE
## 76 1.65 1 FALSE
## 77 3.16 0 TRUE
## 78 2.21 4 TRUE
## 79 2.21 2 FALSE
## 80 4.05 1 FALSE
## 81 3.56 1 FALSE
## 82 3.40 3 FALSE
## 83 2.97 3 FALSE
## 84 2.65 1 FALSE
## 85 3.35 2 TRUE
## 86 2.32 0 FALSE
## 87 2.16 4 TRUE
## 88 3.24 1 FALSE
## 89 2.94 2 FALSE
## 90 3.75 1 TRUE
## 91 3.00 1 FALSE
## 92 2.40 0 TRUE
## 93 2.13 1 FALSE
## 94 2.57 3 FALSE
## 95 2.86 3 FALSE
## 96 2.65 1 FALSE
## 97 3.51 0 FALSE
## 98 2.35 4 FALSE
## 99 1.43 1 TRUE
## 100 2.65 2 TRUE
## 101 1.19 4 FALSE
## 102 3.94 0 FALSE
## 103 2.84 0 FALSE
## 104 3.38 1 FALSE
## 105 3.05 1 FALSE
## 106 3.19 4 FALSE
## 107 2.43 2 FALSE
## 108 2.65 1 FALSE
## 109 2.73 1 FALSE
## 110 2.59 3 FALSE
## 111 2.24 1 FALSE
## 112 3.40 2 FALSE
## 113 3.27 4 FALSE
## 114 3.59 1 FALSE
## 115 2.54 1 FALSE
## 116 5.40 0 TRUE
## 117 3.83 1 FALSE
## 118 2.54 1 TRUE
## 119 2.70 2 FALSE
## 120 2.35 2 FALSE
## 121 3.54 1 FALSE
## 122 1.94 0 FALSE
## 123 2.65 3 FALSE
## 124 3.13 1 FALSE
## 125 2.48 2 FALSE
## 126 3.24 1 FALSE
## 127 2.46 4 TRUE
## 128 1.73 4 TRUE
## 129 2.48 2 FALSE
## 130 2.57 3 FALSE
## 131 2.94 3 FALSE
## 132 1.65 1 FALSE
## 133 2.57 1 FALSE
## 134 1.92 4 FALSE
## 135 2.46 1 FALSE
## 136 3.02 3 FALSE
## 137 1.43 5 FALSE
## 138 3.24 3 FALSE
## 139 3.02 1 FALSE
## 140 2.75 2 FALSE
## 141 3.35 1 FALSE
## 142 2.84 0 FALSE
## 143 1.84 3 FALSE
## 144 3.16 1 FALSE
## 145 3.81 2 TRUE
## 146 3.86 3 FALSE
## 147 3.70 1 FALSE
## 148 3.16 1 FALSE
## 149 2.30 1 FALSE
## 150 3.00 2 FALSE
## 151 2.86 1 FALSE
## 152 2.73 1 FALSE
## 153 2.03 1 FALSE
## 154 1.86 1 FALSE
## 155 3.11 5 FALSE
## 156 2.65 0 FALSE
## 157 4.27 0 TRUE
## 158 3.70 0 FALSE
## 159 2.75 1 FALSE
## 160 2.59 1 FALSE
## 161 1.92 0 FALSE
## 162 3.24 0 FALSE
## 163 2.84 3 FALSE
## 164 3.29 1 FALSE
## 165 1.65 1 FALSE
## 166 3.27 2 FALSE
## 167 2.03 1 FALSE
## 168 2.94 1 FALSE
## 169 3.46 1 FALSE
## 170 1.70 0 FALSE
## 171 3.56 1 FALSE
## 172 2.86 2 FALSE
## 173 2.84 3 FALSE
## 174 3.81 1 FALSE
## 175 1.65 0 FALSE
## 176 3.00 2 FALSE
## 177 3.29 0 FALSE
## 178 3.11 2 FALSE
## 179 4.37 3 FALSE
## 180 0.00 3 FALSE
## 181 2.57 4 FALSE
## 182 3.21 5 TRUE
## 183 2.67 2 FALSE
## 184 3.94 2 FALSE
## 185 2.27 3 FALSE
## 186 2.92 1 FALSE
## 187 2.75 1 FALSE
## 188 2.94 2 FALSE
## 189 2.43 1 FALSE
## 190 2.46 1 FALSE
## 191 2.40 0 FALSE
## 192 2.57 1 FALSE
## 193 2.38 2 FALSE
## 194 3.62 0 FALSE
## 195 2.57 1 FALSE
## 196 1.84 1 FALSE
## 197 2.62 0 FALSE
## 198 2.89 2 TRUE
## 199 3.73 4 TRUE
## 200 3.51 0 FALSE
## 201 3.54 3 FALSE
## 202 3.02 2 FALSE
## 203 1.73 3 FALSE
## 204 1.84 2 FALSE
## 205 2.54 1 FALSE
## 206 3.27 1 FALSE
## 207 3.70 2 FALSE
## 208 2.92 3 FALSE
## 209 3.29 3 FALSE
## 210 4.27 3 FALSE
## 211 3.13 1 FALSE
## 212 3.21 0 FALSE
## 213 2.89 1 FALSE
## 214 3.29 1 FALSE
## 215 4.75 2 TRUE
## 216 3.11 3 FALSE
## 217 2.94 0 FALSE
## 218 1.27 3 FALSE
## 219 3.51 1 TRUE
## 220 1.92 0 FALSE
## 221 3.29 3 FALSE
## 222 2.75 1 FALSE
## 223 1.19 1 FALSE
## 224 2.40 2 FALSE
## 225 3.73 2 FALSE
## 226 0.73 1 FALSE
## 227 2.08 3 FALSE
## 228 2.59 2 FALSE
## 229 3.59 4 FALSE
## 230 3.21 0 FALSE
## 231 2.84 0 TRUE
## 232 2.97 1 FALSE
## 233 3.65 3 FALSE
## 234 2.94 0 FALSE
## 235 2.43 1 FALSE
## 236 2.75 5 TRUE
## 237 2.43 2 FALSE
## 238 2.65 3 FALSE
## 239 2.89 0 FALSE
## 240 2.54 1 FALSE
## 241 3.48 0 FALSE
## 242 3.32 2 TRUE
## 243 2.27 1 FALSE
## 244 1.92 3 FALSE
## 245 2.54 0 TRUE
## 246 2.57 0 FALSE
## 247 3.00 0 FALSE
## 248 2.75 0 FALSE
## 249 2.48 4 FALSE
## 250 3.19 2 FALSE
## 251 3.75 4 TRUE
## 252 3.89 4 FALSE
## 253 2.46 3 FALSE
## 254 2.57 0 FALSE
## 255 2.94 0 FALSE
## 256 3.81 4 FALSE
## 257 2.65 1 FALSE
## 258 3.92 1 FALSE
## 259 2.81 1 TRUE
## 260 2.35 1 FALSE
## 261 1.81 1 FALSE
## 262 4.16 1 FALSE
## 263 3.11 1 FALSE
## 264 3.38 1 FALSE
## 265 2.24 2 FALSE
## 266 3.08 1 FALSE
## 267 2.27 4 FALSE
## 268 3.65 3 FALSE
## 269 1.22 0 FALSE
## 270 2.67 2 FALSE
## 271 3.94 0 FALSE
## 272 2.08 1 FALSE
## 273 2.16 3 FALSE
## 274 3.51 3 FALSE
## 275 2.70 1 FALSE
## 276 2.65 3 FALSE
## 277 3.00 0 FALSE
## 278 1.76 2 TRUE
## 279 2.94 2 FALSE
## 280 2.84 3 FALSE
## 281 3.51 2 FALSE
## 282 2.81 2 FALSE
## 283 3.29 1 FALSE
## 284 2.43 1 FALSE
## 285 1.81 3 FALSE
## 286 4.21 2 FALSE
## 287 2.38 2 FALSE
## 288 3.92 2 FALSE
## 289 3.81 0 FALSE
## 290 1.43 1 TRUE
## 291 2.16 0 FALSE
## 292 2.62 0 FALSE
## 293 1.59 1 FALSE
## 294 2.78 5 TRUE
## 295 2.65 1 FALSE
## 296 2.57 1 FALSE
## 297 2.73 2 FALSE
## 298 3.21 0 FALSE
## 299 1.78 4 FALSE
## 300 1.78 1 FALSE
## 301 3.21 2 FALSE
## 302 1.59 1 TRUE
## 303 3.02 0 TRUE
## 304 2.46 1 FALSE
## 305 2.78 1 FALSE
## 306 2.46 2 FALSE
## 307 2.30 1 TRUE
## 308 3.08 4 TRUE
## 309 3.08 0 FALSE
## 310 2.40 3 FALSE
## 311 3.56 1 TRUE
## 312 2.62 1 FALSE
## 313 2.94 0 FALSE
## 314 2.65 0 FALSE
## 315 5.10 0 FALSE
## 316 3.35 1 FALSE
## 317 2.08 2 FALSE
## 318 2.05 3 FALSE
## 319 1.35 3 FALSE
## 320 2.54 2 TRUE
## 321 1.67 0 FALSE
## 322 3.48 1 FALSE
## 323 2.70 0 FALSE
## 324 3.05 1 FALSE
## 325 3.62 3 FALSE
## 326 1.92 0 FALSE
## 327 3.08 1 FALSE
## 328 2.57 1 FALSE
## 329 3.38 0 FALSE
## 330 3.89 0 FALSE
## 331 2.13 3 FALSE
## 332 2.57 1 TRUE
## 333 3.29 7 TRUE
## 334 2.51 0 FALSE
## 335 2.03 1 FALSE
## 336 2.32 1 FALSE
## 337 2.86 0 FALSE
## 338 1.89 2 FALSE
## 339 2.05 2 FALSE
## 340 3.94 0 FALSE
## 341 2.46 1 TRUE
## 342 2.92 1 FALSE
## 343 3.78 0 FALSE
## 344 0.00 2 FALSE
## 345 3.59 1 FALSE
## 346 1.94 3 FALSE
## 347 3.29 1 FALSE
## 348 2.84 1 FALSE
## 349 3.54 3 FALSE
## 350 3.46 4 TRUE
## 351 3.05 4 FALSE
## 352 2.73 4 FALSE
## 353 1.43 1 FALSE
## 354 3.97 2 FALSE
## 355 3.56 2 TRUE
## 356 3.43 1 FALSE
## 357 3.05 1 FALSE
## 358 2.30 2 FALSE
## 359 2.48 1 FALSE
## 360 1.57 1 FALSE
## 361 2.38 1 TRUE
## 362 3.05 0 FALSE
## 363 3.24 1 FALSE
## 364 3.05 2 FALSE
## 365 2.94 0 FALSE
## 366 2.73 1 TRUE
## 367 2.46 4 FALSE
## 368 4.86 1 FALSE
## 369 2.05 1 FALSE
## 370 4.32 0 FALSE
## 371 2.78 1 FALSE
## 372 2.86 2 FALSE
## 373 3.35 0 TRUE
## 374 4.00 2 FALSE
## 375 2.48 2 FALSE
## 376 2.86 0 FALSE
## 377 3.02 2 FALSE
## 378 1.81 1 FALSE
## 379 3.11 1 TRUE
## 380 1.84 2 FALSE
## 381 3.97 3 FALSE
## 382 3.97 1 FALSE
## 383 1.54 0 FALSE
## 384 1.00 1 FALSE
## 385 1.94 2 FALSE
## 386 2.89 4 FALSE
## 387 2.40 3 FALSE
## 388 2.30 1 FALSE
## 389 2.89 1 FALSE
## 390 2.75 3 FALSE
## 391 3.00 1 FALSE
## 392 2.35 0 FALSE
## 393 3.35 5 FALSE
## 394 2.54 2 FALSE
## 395 2.92 0 TRUE
## 396 2.62 0 FALSE
## 397 2.11 0 FALSE
## 398 0.54 1 TRUE
## 399 2.30 1 FALSE
## 400 2.86 1 TRUE
## 401 3.24 1 FALSE
## 402 2.86 0 FALSE
## 403 2.67 1 FALSE
## 404 3.02 1 FALSE
## 405 2.03 4 FALSE
## 406 2.51 0 FALSE
## 407 1.84 0 FALSE
## 408 2.30 4 TRUE
## 409 2.78 1 FALSE
## 410 1.30 2 FALSE
## 411 2.27 2 FALSE
## 412 2.81 2 FALSE
## 413 1.46 0 FALSE
## 414 1.89 3 FALSE
## 415 2.70 0 FALSE
## 416 2.35 2 TRUE
## 417 1.35 1 TRUE
## 418 2.65 0 FALSE
## 419 4.32 1 FALSE
## 420 2.03 2 FALSE
## 421 2.51 2 FALSE
## 422 4.13 1 FALSE
## 423 3.38 0 FALSE
## 424 2.78 3 FALSE
## 425 3.05 1 FALSE
## 426 2.94 1 FALSE
## 427 3.38 1 FALSE
## 428 2.59 1 FALSE
## 429 3.02 3 FALSE
## 430 3.35 2 FALSE
## 431 3.59 2 TRUE
## 432 3.08 1 FALSE
## 433 3.46 1 FALSE
## 434 3.19 2 FALSE
## 435 2.32 0 FALSE
## 436 3.02 1 FALSE
## 437 2.16 1 FALSE
## 438 2.24 0 TRUE
## 439 3.65 1 FALSE
## 440 1.70 2 FALSE
## 441 3.32 1 FALSE
## 442 3.35 0 FALSE
## 443 1.84 1 FALSE
## 444 3.40 1 FALSE
## 445 2.59 2 FALSE
## 446 3.00 0 FALSE
## 447 2.59 3 FALSE
## 448 1.86 2 FALSE
## 449 3.29 1 FALSE
## 450 1.70 4 FALSE
## 451 3.38 0 FALSE
## 452 2.65 0 FALSE
## 453 2.24 0 FALSE
## 454 3.86 1 FALSE
## 455 3.00 1 TRUE
## 456 4.00 1 TRUE
## 457 2.51 2 FALSE
## 458 2.62 2 FALSE
## 459 1.62 3 FALSE
## 460 2.97 0 FALSE
## 461 2.59 1 FALSE
## 462 2.59 3 FALSE
## 463 2.73 1 FALSE
## 464 1.59 0 FALSE
## 465 2.30 0 FALSE
## 466 3.67 3 TRUE
## 467 2.84 3 TRUE
## 468 3.13 1 FALSE
## 469 3.00 3 FALSE
## 470 4.64 2 FALSE
## 471 2.86 1 FALSE
## 472 2.57 3 FALSE
## 473 1.70 1 FALSE
## 474 1.67 4 TRUE
## 475 4.00 0 FALSE
## 476 2.67 3 FALSE
## 477 3.16 1 FALSE
## 478 2.05 3 FALSE
## 479 2.19 1 FALSE
## 480 3.02 2 FALSE
## 481 3.13 1 FALSE
## 482 1.43 1 FALSE
## 483 2.19 0 FALSE
## 484 3.59 2 FALSE
## 485 2.97 3 FALSE
## 486 1.81 0 FALSE
## 487 3.46 0 FALSE
## 488 2.84 0 FALSE
## 489 0.00 1 FALSE
## 490 3.32 1 FALSE
## 491 3.46 0 FALSE
## 492 3.86 1 TRUE
## 493 2.54 2 TRUE
## 494 1.59 2 FALSE
## 495 2.21 1 FALSE
## 496 3.00 2 FALSE
## 497 2.16 2 FALSE
## 498 3.21 2 FALSE
## 499 2.62 4 TRUE
## 500 2.03 1 FALSE
## 501 3.40 3 FALSE
## 502 2.03 1 FALSE
## 503 4.73 1 TRUE
## 504 2.51 0 FALSE
## 505 3.35 0 FALSE
## 506 3.00 1 FALSE
## 507 3.08 2 FALSE
## 508 1.51 3 TRUE
## 509 3.13 1 FALSE
## 510 2.59 5 TRUE
## 511 3.32 1 FALSE
## 512 4.00 3 FALSE
## 513 2.46 2 FALSE
## 514 1.78 0 FALSE
## 515 3.78 0 TRUE
## 516 4.73 1 FALSE
## 517 2.05 2 FALSE
## 518 2.54 2 FALSE
## 519 3.48 1 FALSE
## 520 2.43 3 FALSE
## 521 3.13 1 FALSE
## 522 2.21 4 TRUE
## 523 2.48 7 FALSE
## 524 2.65 2 FALSE
## 525 3.51 1 FALSE
## 526 2.84 2 FALSE
## 527 3.38 0 FALSE
## 528 3.21 0 FALSE
## 529 2.32 2 FALSE
## 530 3.27 0 FALSE
## 531 2.11 2 FALSE
## 532 1.81 2 FALSE
## 533 2.89 2 FALSE
## 534 1.46 1 FALSE
## 535 2.48 4 FALSE
## 536 4.91 1 FALSE
## 537 3.78 1 FALSE
## 538 2.30 0 FALSE
## 539 3.35 0 FALSE
## 540 2.67 2 FALSE
## 541 2.11 1 FALSE
## 542 1.78 0 FALSE
## 543 3.83 9 TRUE
## 544 0.95 3 FALSE
## 545 3.29 3 FALSE
## 546 3.21 1 FALSE
## 547 2.27 2 TRUE
## 548 2.78 5 TRUE
## 549 1.59 0 FALSE
## 550 2.73 4 FALSE
## 551 2.13 4 TRUE
## 552 3.11 2 FALSE
## 553 2.75 3 TRUE
## 554 2.73 2 FALSE
## 555 3.43 2 FALSE
## 556 3.54 2 FALSE
## 557 3.24 0 FALSE
## 558 2.57 1 FALSE
## 559 2.24 2 TRUE
## 560 2.08 2 FALSE
## 561 2.89 1 FALSE
## 562 1.94 0 FALSE
## 563 2.46 1 FALSE
## 564 2.94 1 FALSE
## 565 2.16 2 FALSE
## 566 1.27 3 FALSE
## 567 3.05 2 FALSE
## 568 0.97 2 FALSE
## 569 2.70 2 FALSE
## 570 4.16 2 TRUE
## 571 2.78 1 FALSE
## 572 3.92 2 FALSE
## 573 2.92 1 FALSE
## 574 2.43 3 FALSE
## 575 2.67 2 TRUE
## 576 3.83 1 FALSE
## 577 3.70 3 FALSE
## 578 3.16 2 FALSE
## 579 2.08 1 FALSE
## 580 4.46 1 FALSE
## 581 2.00 1 TRUE
## 582 2.75 3 FALSE
## 583 2.89 1 FALSE
## 584 2.78 1 FALSE
## 585 2.65 0 TRUE
## 586 2.75 1 FALSE
## 587 2.27 1 FALSE
## 588 2.00 1 FALSE
## 589 3.65 5 TRUE
## 590 2.32 1 FALSE
## 591 3.05 2 FALSE
## 592 3.48 1 FALSE
## 593 2.59 2 FALSE
## 594 2.57 2 FALSE
## 595 3.38 2 FALSE
## 596 0.00 1 FALSE
## 597 2.59 3 FALSE
## 598 2.46 2 FALSE
## 599 3.32 1 FALSE
## 600 2.48 0 FALSE
## 601 2.46 2 FALSE
## 602 3.75 0 TRUE
## 603 1.24 1 FALSE
## 604 3.13 3 FALSE
## 605 3.08 1 FALSE
## 606 3.43 2 TRUE
## 607 3.54 0 FALSE
## 608 1.78 1 FALSE
## 609 2.86 0 FALSE
## 610 2.35 3 FALSE
## 611 3.13 3 FALSE
## 612 3.43 1 FALSE
## 613 2.08 4 FALSE
## 614 3.56 1 TRUE
## 615 1.97 2 FALSE
## 616 2.16 1 FALSE
## 617 2.38 2 FALSE
## 618 3.78 3 FALSE
## 619 3.13 1 FALSE
## 620 3.92 0 TRUE
## 621 3.46 1 FALSE
## 622 3.11 1 FALSE
## 623 2.86 2 FALSE
## 624 1.92 3 FALSE
## 625 1.38 0 FALSE
## 626 3.73 3 FALSE
## 627 1.11 0 TRUE
## 628 2.00 4 FALSE
## 629 1.76 1 FALSE
## 630 3.70 0 TRUE
## 631 3.75 0 FALSE
## 632 2.57 0 FALSE
## 633 1.30 3 FALSE
## 634 4.21 2 FALSE
## 635 2.92 2 FALSE
## 636 2.75 5 FALSE
## 637 2.48 1 FALSE
## 638 2.03 0 FALSE
## 639 3.48 1 FALSE
## 640 3.08 0 FALSE
## 641 2.13 2 FALSE
## 642 2.65 1 FALSE
## 643 2.97 0 FALSE
## 644 4.21 0 FALSE
## 645 3.78 1 FALSE
## 646 2.30 3 FALSE
## 647 4.16 0 FALSE
## 648 2.03 1 FALSE
## 649 2.46 0 FALSE
## 650 1.62 3 TRUE
## 651 3.11 2 FALSE
## 652 2.57 1 FALSE
## 653 2.48 3 FALSE
## 654 2.30 3 FALSE
## 655 2.84 1 FALSE
## 656 2.54 5 TRUE
## 657 2.51 0 FALSE
## 658 2.51 2 FALSE
## 659 2.67 0 FALSE
## 660 2.24 1 FALSE
## 661 2.57 1 TRUE
## 662 3.24 1 FALSE
## 663 3.32 0 FALSE
## 664 2.00 3 FALSE
## 665 2.11 1 FALSE
## 666 2.48 2 FALSE
## 667 2.59 2 FALSE
## 668 2.48 0 FALSE
## 669 3.32 1 FALSE
## 670 4.19 0 FALSE
## 671 4.40 1 FALSE
## 672 3.21 2 FALSE
## 673 3.19 0 FALSE
## 674 3.02 3 FALSE
## 675 2.03 1 FALSE
## 676 1.59 1 FALSE
## 677 2.86 0 FALSE
## 678 2.54 1 FALSE
## 679 2.40 0 FALSE
## 680 2.35 1 TRUE
## 681 3.54 1 FALSE
## 682 2.51 0 FALSE
## 683 3.08 3 FALSE
## 684 1.76 1 FALSE
## 685 3.00 3 FALSE
## 686 2.32 1 FALSE
## 687 2.73 3 FALSE
## 688 3.40 1 FALSE
## 689 3.27 3 FALSE
## 690 2.21 1 FALSE
## 691 4.02 2 FALSE
## 692 2.75 1 FALSE
## 693 1.54 4 FALSE
## 694 2.16 3 FALSE
## 695 2.94 6 FALSE
## 696 3.13 1 FALSE
## 697 2.03 1 FALSE
## 698 2.46 0 FALSE
## 699 2.27 0 FALSE
## 700 2.97 0 FALSE
## 701 2.89 0 FALSE
## 702 2.08 0 FALSE
## 703 3.81 1 FALSE
## 704 2.81 1 FALSE
## 705 1.76 3 FALSE
## 706 2.30 1 FALSE
## 707 0.97 1 FALSE
## 708 2.05 3 FALSE
## 709 2.86 2 FALSE
## 710 2.62 2 FALSE
## 711 3.38 3 FALSE
## 712 3.08 4 FALSE
## 713 0.00 2 FALSE
## 714 1.86 2 FALSE
## 715 1.97 2 FALSE
## 716 4.13 1 TRUE
## 717 3.08 2 FALSE
## 718 1.94 1 FALSE
## 719 2.51 1 FALSE
## 720 3.16 2 FALSE
## 721 2.00 0 FALSE
## 722 2.94 6 TRUE
## 723 3.65 1 FALSE
## 724 3.78 3 FALSE
## 725 4.43 1 FALSE
## 726 3.21 2 FALSE
## 727 2.11 1 FALSE
## 728 2.48 1 FALSE
## 729 3.43 2 FALSE
## 730 3.62 0 FALSE
## 731 3.11 3 TRUE
## 732 2.16 2 FALSE
## 733 1.94 2 FALSE
## 734 2.57 2 FALSE
## 735 3.27 1 FALSE
## 736 1.76 3 FALSE
## 737 2.97 5 TRUE
## 738 4.51 2 TRUE
## 739 3.08 1 FALSE
## 740 2.38 1 FALSE
## 741 2.54 1 FALSE
## 742 3.11 0 FALSE
## 743 3.08 5 FALSE
## 744 2.81 1 FALSE
## 745 2.46 1 FALSE
## 746 1.78 1 FALSE
## 747 1.73 1 FALSE
## 748 2.11 1 FALSE
## 749 2.35 1 FALSE
## 750 2.97 1 FALSE
## 751 2.21 3 FALSE
## 752 2.73 0 FALSE
## 753 3.43 3 FALSE
## 754 2.97 2 FALSE
## 755 2.59 1 FALSE
## 756 3.08 2 FALSE
## 757 2.65 2 FALSE
## 758 3.54 1 FALSE
## 759 2.65 2 FALSE
## 760 2.57 2 FALSE
## 761 2.73 1 FALSE
## 762 2.27 2 FALSE
## 763 0.35 1 FALSE
## 764 4.05 0 FALSE
## 765 3.08 0 FALSE
## 766 2.35 2 FALSE
## 767 2.97 0 TRUE
## 768 4.10 2 FALSE
## 769 2.62 3 FALSE
## 770 2.97 1 FALSE
## 771 3.59 1 FALSE
## 772 2.38 5 TRUE
## 773 2.48 0 FALSE
## 774 2.08 1 TRUE
## 775 2.86 1 FALSE
## 776 2.89 1 FALSE
## 777 2.84 0 FALSE
## 778 1.57 2 FALSE
## 779 3.67 6 FALSE
## 780 2.73 2 FALSE
## 781 2.97 2 FALSE
## 782 2.89 1 FALSE
## 783 2.54 1 FALSE
## 784 2.54 3 FALSE
## 785 3.02 1 FALSE
## 786 2.89 3 FALSE
## 787 3.05 0 FALSE
## 788 3.00 2 TRUE
## 789 3.19 2 FALSE
## 790 2.84 3 FALSE
## 791 2.03 0 FALSE
## 792 3.81 2 FALSE
## 793 2.21 1 TRUE
## 794 2.43 2 FALSE
## 795 4.08 1 FALSE
## 796 2.92 1 FALSE
## 797 2.27 1 FALSE
## 798 3.92 1 TRUE
## 799 3.94 2 FALSE
## 800 4.29 1 FALSE
## 801 3.05 1 FALSE
## 802 2.54 1 FALSE
## 803 1.76 0 FALSE
## 804 3.40 1 FALSE
## 805 2.65 0 FALSE
## 806 1.84 0 FALSE
## 807 2.75 0 FALSE
## 808 3.27 1 FALSE
## 809 3.05 0 FALSE
## 810 1.57 1 FALSE
## 811 3.27 1 FALSE
## 812 2.67 0 FALSE
## 813 3.54 1 FALSE
## 814 4.13 0 FALSE
## 815 3.35 1 FALSE
## 816 1.54 2 TRUE
## 817 3.27 1 FALSE
## 818 1.78 2 FALSE
## 819 4.08 1 FALSE
## 820 3.54 1 FALSE
## 821 3.43 2 FALSE
## 822 3.54 0 FALSE
## 823 3.16 1 FALSE
## 824 2.73 1 FALSE
## 825 3.05 2 FALSE
## 826 3.13 1 FALSE
## 827 2.54 1 FALSE
## 828 3.29 0 FALSE
## 829 1.49 2 FALSE
## 830 2.67 2 FALSE
## 831 3.62 3 TRUE
## 832 3.19 2 FALSE
## 833 2.54 2 TRUE
## 834 2.75 0 FALSE
## 835 2.54 3 FALSE
## 836 2.67 1 FALSE
## 837 2.62 0 FALSE
## 838 2.19 0 FALSE
## 839 3.21 1 FALSE
## 840 4.35 1 FALSE
## 841 2.43 3 FALSE
## 842 2.78 5 FALSE
## 843 3.08 2 FALSE
## 844 4.27 1 FALSE
## 845 3.94 1 FALSE
## 846 2.70 1 FALSE
## 847 2.78 1 TRUE
## 848 2.78 1 FALSE
## 849 2.46 0 FALSE
## 850 2.48 2 FALSE
## 851 2.94 0 FALSE
## 852 2.97 3 TRUE
## 853 2.59 3 FALSE
## 854 2.05 3 FALSE
## 855 2.62 2 FALSE
## 856 1.67 2 FALSE
## 857 3.43 1 FALSE
## 858 2.48 1 FALSE
## 859 3.16 1 FALSE
## 860 3.05 3 TRUE
## 861 2.67 2 FALSE
## 862 4.02 1 FALSE
## 863 3.54 3 FALSE
## 864 3.35 1 FALSE
## 865 2.40 3 FALSE
## 866 2.67 4 FALSE
## 867 3.00 0 FALSE
## 868 2.21 1 FALSE
## 869 1.08 0 FALSE
## 870 2.00 2 FALSE
## 871 4.02 0 FALSE
## 872 3.00 4 TRUE
## 873 2.94 1 FALSE
## 874 2.51 1 FALSE
## 875 2.81 5 FALSE
## 876 2.46 1 FALSE
## 877 2.03 1 FALSE
## 878 1.59 1 FALSE
## 879 0.00 1 FALSE
## 880 3.19 4 FALSE
## 881 2.75 1 FALSE
## 882 1.81 3 FALSE
## 883 1.94 1 FALSE
## 884 2.16 1 FALSE
## 885 4.05 2 FALSE
## 886 1.46 2 FALSE
## 887 2.40 0 FALSE
## 888 2.05 1 FALSE
## 889 1.49 2 FALSE
## 890 3.35 0 FALSE
## 891 3.24 0 FALSE
## 892 1.67 1 FALSE
## 893 3.32 1 TRUE
## 894 2.89 2 FALSE
## 895 3.21 4 TRUE
## 896 2.30 2 FALSE
## 897 3.89 2 FALSE
## 898 4.19 0 FALSE
## 899 2.16 1 FALSE
## 900 2.35 1 FALSE
## 901 1.49 0 FALSE
## 902 3.05 2 TRUE
## 903 2.21 7 FALSE
## 904 1.59 0 FALSE
## 905 2.43 1 TRUE
## 906 3.62 4 TRUE
## 907 3.65 0 FALSE
## 908 4.56 1 FALSE
## 909 4.05 6 FALSE
## 910 1.38 0 FALSE
## 911 2.19 0 FALSE
## 912 3.89 5 TRUE
## 913 2.86 2 FALSE
## 914 2.86 1 FALSE
## 915 2.84 0 TRUE
## 916 2.03 2 FALSE
## 917 3.56 2 FALSE
## 918 2.24 0 FALSE
## 919 1.40 1 FALSE
## 920 2.97 1 FALSE
## 921 2.48 1 FALSE
## 922 1.19 1 FALSE
## 923 2.51 1 FALSE
## 924 3.73 1 FALSE
## 925 2.13 1 FALSE
## 926 2.92 1 FALSE
## 927 3.78 0 FALSE
## 928 3.08 0 FALSE
## 929 2.11 2 FALSE
## 930 1.78 1 FALSE
## 931 2.65 0 FALSE
## 932 3.24 1 FALSE
## 933 2.70 1 FALSE
## 934 3.81 1 TRUE
## 935 3.02 1 FALSE
## 936 3.51 4 FALSE
## 937 2.48 0 FALSE
## 938 1.81 2 FALSE
## 939 3.86 1 FALSE
## 940 3.21 2 FALSE
## 941 4.19 0 FALSE
## 942 1.76 2 FALSE
## 943 1.73 0 FALSE
## 944 3.40 1 FALSE
## 945 2.48 4 TRUE
## 946 3.11 2 FALSE
## 947 3.62 2 TRUE
## 948 2.97 1 FALSE
## 949 2.27 1 FALSE
## 950 2.97 1 FALSE
## 951 2.13 1 FALSE
## 952 3.13 4 FALSE
## 953 2.89 3 FALSE
## 954 2.32 2 FALSE
## 955 2.32 2 FALSE
## 956 2.78 0 FALSE
## 957 1.92 2 FALSE
## 958 2.54 0 FALSE
## 959 3.32 3 FALSE
## 960 3.46 2 FALSE
## 961 3.59 3 FALSE
## 962 1.13 0 FALSE
## 963 2.08 3 FALSE
## 964 2.92 1 FALSE
## 965 3.59 1 FALSE
## 966 3.29 0 FALSE
## 967 4.24 2 TRUE
## 968 2.48 0 FALSE
## 969 3.65 1 TRUE
## 970 2.38 0 FALSE
## 971 3.11 1 FALSE
## 972 1.35 3 FALSE
## 973 3.19 1 FALSE
## 974 3.32 0 FALSE
## 975 2.57 6 FALSE
## 976 2.81 0 TRUE
## 977 3.51 0 FALSE
## 978 3.19 4 TRUE
## 979 3.54 4 TRUE
## 980 2.11 0 FALSE
## 981 3.13 3 FALSE
## 982 1.86 1 FALSE
## 983 3.51 1 FALSE
## 984 2.43 1 FALSE
## 985 2.67 1 FALSE
## 986 3.59 1 TRUE
## 987 3.19 1 FALSE
## 988 2.24 1 TRUE
## 989 4.59 3 FALSE
## 990 3.67 1 FALSE
## 991 1.05 0 FALSE
## 992 2.13 2 FALSE
## 993 2.08 1 FALSE
## 994 2.59 0 FALSE
## 995 2.81 3 FALSE
## 996 2.03 1 FALSE
## 997 3.13 0 FALSE
## 998 3.05 2 FALSE
## 999 3.97 0 FALSE
## 1000 2.13 0 FALSE
## 1001 3.46 2 TRUE
## 1002 2.27 1 FALSE
## 1003 1.84 2 FALSE
## 1004 2.21 0 FALSE
## 1005 3.32 1 FALSE
## 1006 2.65 2 FALSE
## 1007 2.24 2 FALSE
## 1008 1.62 1 FALSE
## 1009 3.08 2 FALSE
## 1010 3.05 3 FALSE
## 1011 1.03 0 FALSE
## 1012 2.62 2 FALSE
## 1013 2.16 2 FALSE
## 1014 3.54 1 FALSE
## 1015 3.24 0 FALSE
## 1016 3.21 0 FALSE
## 1017 2.32 1 FALSE
## 1018 2.46 2 FALSE
## 1019 3.08 1 TRUE
## 1020 3.05 1 FALSE
## 1021 3.83 2 FALSE
## 1022 2.27 1 FALSE
## 1023 1.94 0 FALSE
## 1024 2.11 2 FALSE
## 1025 3.02 1 FALSE
## 1026 3.32 1 FALSE
## 1027 2.70 2 FALSE
## 1028 3.48 1 TRUE
## 1029 0.00 1 FALSE
## 1030 4.46 0 FALSE
## 1031 2.51 2 TRUE
## 1032 1.43 1 FALSE
## 1033 2.57 1 FALSE
## 1034 2.86 2 FALSE
## 1035 3.54 2 FALSE
## 1036 2.70 2 FALSE
## 1037 3.24 3 FALSE
## 1038 2.89 0 FALSE
## 1039 3.81 5 TRUE
## 1040 2.89 2 FALSE
## 1041 2.48 4 FALSE
## 1042 4.35 0 FALSE
## 1043 2.67 0 FALSE
## 1044 2.75 3 FALSE
## 1045 1.94 4 FALSE
## 1046 2.51 4 FALSE
## 1047 1.73 0 FALSE
## 1048 1.92 0 FALSE
## 1049 2.08 0 FALSE
## 1050 2.27 1 FALSE
## 1051 3.48 2 FALSE
## 1052 2.78 0 FALSE
## 1053 2.08 1 FALSE
## 1054 2.73 2 FALSE
## 1055 2.35 1 FALSE
## 1056 2.30 1 FALSE
## 1057 1.89 0 FALSE
## 1058 3.59 1 FALSE
## 1059 2.32 0 FALSE
## 1060 2.38 1 FALSE
## 1061 4.13 1 FALSE
## 1062 2.78 1 FALSE
## 1063 2.67 1 FALSE
## 1064 2.89 1 FALSE
## 1065 3.48 2 FALSE
## 1066 2.67 0 FALSE
## 1067 3.19 0 FALSE
## 1068 3.29 1 FALSE
## 1069 2.78 0 FALSE
## 1070 3.38 1 FALSE
## 1071 3.21 1 FALSE
## 1072 1.35 1 FALSE
## 1073 3.86 1 FALSE
## 1074 2.05 1 FALSE
## 1075 3.38 2 FALSE
## 1076 2.40 0 FALSE
## 1077 1.76 1 FALSE
## 1078 4.16 4 TRUE
## 1079 1.81 0 TRUE
## 1080 2.21 1 FALSE
## 1081 0.00 0 FALSE
## 1082 2.03 1 FALSE
## 1083 3.19 3 FALSE
## 1084 3.35 3 FALSE
## 1085 3.32 3 FALSE
## 1086 3.35 2 FALSE
## 1087 1.86 3 FALSE
## 1088 2.21 1 FALSE
## 1089 3.48 0 FALSE
## 1090 3.59 2 FALSE
## 1091 2.81 0 FALSE
## 1092 2.70 2 FALSE
## 1093 2.57 1 FALSE
## 1094 1.76 2 FALSE
## 1095 1.94 0 FALSE
## 1096 1.62 1 FALSE
## 1097 3.83 1 FALSE
## 1098 3.51 1 FALSE
## 1099 1.38 1 FALSE
## 1100 0.59 3 FALSE
## 1101 2.24 1 FALSE
## 1102 2.46 2 FALSE
## 1103 2.84 4 TRUE
## 1104 3.29 0 FALSE
## 1105 2.81 4 FALSE
## 1106 3.48 2 TRUE
## 1107 2.73 3 FALSE
## 1108 3.46 3 FALSE
## 1109 1.57 3 FALSE
## 1110 2.13 0 FALSE
## 1111 2.00 2 FALSE
## 1112 4.62 0 FALSE
## 1113 3.59 0 FALSE
## 1114 2.86 1 FALSE
## 1115 2.94 1 FALSE
## 1116 3.38 1 TRUE
## 1117 3.16 3 FALSE
## 1118 3.19 1 FALSE
## 1119 3.32 3 FALSE
## 1120 3.05 3 FALSE
## 1121 3.27 1 FALSE
## 1122 3.16 5 TRUE
## 1123 2.81 1 TRUE
## 1124 2.70 2 FALSE
## 1125 2.67 1 FALSE
## 1126 3.46 2 FALSE
## 1127 1.97 2 FALSE
## 1128 4.56 0 FALSE
## 1129 3.32 2 FALSE
## 1130 2.43 2 FALSE
## 1131 3.43 1 FALSE
## 1132 3.51 1 FALSE
## 1133 3.19 1 FALSE
## 1134 3.32 5 TRUE
## 1135 2.43 1 FALSE
## 1136 3.29 2 FALSE
## 1137 3.89 1 TRUE
## 1138 3.05 1 FALSE
## 1139 3.67 1 FALSE
## 1140 3.16 2 FALSE
## 1141 2.73 1 FALSE
## 1142 2.13 1 FALSE
## 1143 1.43 6 TRUE
## 1144 2.70 0 FALSE
## 1145 2.92 2 FALSE
## 1146 1.38 0 FALSE
## 1147 1.08 1 FALSE
## 1148 2.86 0 FALSE
## 1149 2.62 3 FALSE
## 1150 2.59 2 FALSE
## 1151 3.13 5 TRUE
## 1152 3.05 0 FALSE
## 1153 2.38 1 FALSE
## 1154 1.51 1 FALSE
## 1155 2.19 1 FALSE
## 1156 3.00 4 TRUE
## 1157 3.19 1 FALSE
## 1158 2.11 1 FALSE
## 1159 3.00 1 FALSE
## 1160 1.73 0 FALSE
## 1161 2.86 0 FALSE
## 1162 2.21 3 FALSE
## 1163 2.94 0 FALSE
## 1164 1.92 1 FALSE
## 1165 3.24 2 FALSE
## 1166 2.16 0 FALSE
## 1167 3.29 3 FALSE
## 1168 3.48 1 FALSE
## 1169 2.05 1 FALSE
## 1170 1.46 1 FALSE
## 1171 4.10 0 FALSE
## 1172 3.46 1 FALSE
## 1173 2.48 2 FALSE
## 1174 2.94 1 FALSE
## 1175 1.57 1 FALSE
## 1176 2.32 0 FALSE
## 1177 2.62 4 FALSE
## 1178 3.81 3 FALSE
## 1179 3.02 3 FALSE
## 1180 1.97 1 FALSE
## 1181 3.54 0 FALSE
## 1182 2.03 1 FALSE
## 1183 3.89 3 TRUE
## 1184 2.43 2 FALSE
## 1185 2.62 2 FALSE
## 1186 2.65 3 FALSE
## 1187 2.35 0 FALSE
## 1188 1.59 2 FALSE
## 1189 2.51 1 FALSE
## 1190 3.02 0 FALSE
## 1191 2.40 0 FALSE
## 1192 2.48 2 FALSE
## 1193 1.94 4 TRUE
## 1194 2.35 5 TRUE
## 1195 3.56 1 FALSE
## 1196 2.97 1 FALSE
## 1197 1.86 1 FALSE
## 1198 3.21 4 FALSE
## 1199 3.62 2 FALSE
## 1200 2.05 1 FALSE
## 1201 3.13 1 FALSE
## 1202 2.16 2 FALSE
## 1203 3.40 0 FALSE
## 1204 1.38 1 FALSE
## 1205 2.57 1 TRUE
## 1206 2.30 1 FALSE
## 1207 2.62 0 FALSE
## 1208 3.05 2 FALSE
## 1209 2.75 3 FALSE
## 1210 3.46 0 FALSE
## 1211 2.13 1 FALSE
## 1212 2.13 1 FALSE
## 1213 3.40 1 FALSE
## 1214 3.19 1 FALSE
## 1215 2.57 2 FALSE
## 1216 3.05 1 FALSE
## 1217 1.59 3 FALSE
## 1218 2.89 4 FALSE
## 1219 2.05 3 FALSE
## 1220 2.94 1 FALSE
## 1221 4.24 2 FALSE
## 1222 3.40 2 FALSE
## 1223 1.32 3 FALSE
## 1224 3.08 1 FALSE
## 1225 2.51 1 FALSE
## 1226 3.08 1 FALSE
## 1227 3.08 2 FALSE
## 1228 3.32 0 FALSE
## 1229 2.40 1 FALSE
## 1230 2.03 2 FALSE
## 1231 2.86 1 FALSE
## 1232 2.38 0 TRUE
## 1233 4.13 0 TRUE
## 1234 2.40 0 FALSE
## 1235 2.65 2 FALSE
## 1236 2.86 4 FALSE
## 1237 2.73 0 FALSE
## 1238 3.16 3 FALSE
## 1239 2.19 3 FALSE
## 1240 2.73 2 FALSE
## 1241 2.59 4 TRUE
## 1242 4.46 5 FALSE
## 1243 2.46 3 FALSE
## 1244 2.97 1 FALSE
## 1245 2.08 1 FALSE
## 1246 3.02 2 FALSE
## 1247 2.43 5 FALSE
## 1248 2.38 1 FALSE
## 1249 3.13 0 FALSE
## 1250 2.11 2 FALSE
## 1251 1.40 1 FALSE
## 1252 2.67 3 FALSE
## 1253 2.38 2 FALSE
## 1254 2.24 4 FALSE
## 1255 3.00 2 TRUE
## 1256 2.92 0 FALSE
## 1257 1.62 2 FALSE
## 1258 4.86 1 FALSE
## 1259 3.02 2 FALSE
## 1260 3.38 2 FALSE
## 1261 2.57 3 FALSE
## 1262 1.92 3 FALSE
## 1263 3.11 4 FALSE
## 1264 2.03 1 TRUE
## 1265 2.84 1 FALSE
## 1266 2.73 1 FALSE
## 1267 2.43 0 FALSE
## 1268 1.46 1 FALSE
## 1269 2.92 0 FALSE
## 1270 2.97 4 TRUE
## 1271 2.35 0 FALSE
## 1272 2.13 1 FALSE
## 1273 3.56 4 FALSE
## 1274 2.24 6 TRUE
## 1275 3.02 0 FALSE
## 1276 3.08 2 FALSE
## 1277 2.59 1 TRUE
## 1278 3.97 1 FALSE
## 1279 2.59 0 TRUE
## 1280 3.54 2 FALSE
## 1281 3.75 0 TRUE
## 1282 3.11 0 FALSE
## 1283 2.81 4 FALSE
## 1284 4.05 2 FALSE
## 1285 2.27 5 TRUE
## 1286 2.43 4 FALSE
## 1287 2.03 1 FALSE
## 1288 2.08 2 FALSE
## 1289 1.19 1 FALSE
## 1290 2.84 0 FALSE
## 1291 2.46 0 FALSE
## 1292 3.92 1 FALSE
## 1293 2.51 0 FALSE
## 1294 3.35 1 FALSE
## 1295 2.48 1 FALSE
## 1296 2.27 0 FALSE
## 1297 2.38 2 FALSE
## 1298 3.48 2 FALSE
## 1299 2.11 1 FALSE
## 1300 3.78 2 TRUE
## 1301 2.75 3 FALSE
## 1302 1.97 3 FALSE
## 1303 2.59 1 TRUE
## 1304 3.48 1 FALSE
## 1305 2.38 3 FALSE
## 1306 2.92 2 FALSE
## 1307 2.86 3 TRUE
## 1308 2.65 3 FALSE
## 1309 3.73 0 FALSE
## 1310 3.08 2 FALSE
## 1311 2.00 1 TRUE
## 1312 2.40 1 FALSE
## 1313 1.73 1 FALSE
## 1314 1.97 2 FALSE
## 1315 1.70 3 FALSE
## 1316 3.19 2 FALSE
## 1317 2.35 2 FALSE
## 1318 2.03 2 FALSE
## 1319 2.08 2 FALSE
## 1320 1.65 3 FALSE
## 1321 3.92 2 FALSE
## 1322 2.40 1 FALSE
## 1323 2.46 2 TRUE
## 1324 2.51 0 FALSE
## 1325 3.40 2 FALSE
## 1326 2.70 6 TRUE
## 1327 1.70 2 FALSE
## 1328 2.94 2 TRUE
## 1329 2.73 1 FALSE
## 1330 2.16 2 FALSE
## 1331 3.73 2 FALSE
## 1332 2.05 3 FALSE
## 1333 2.84 3 FALSE
## 1334 2.92 1 FALSE
## 1335 2.16 1 TRUE
## 1336 3.05 0 FALSE
## 1337 3.00 3 FALSE
## 1338 1.97 0 TRUE
## 1339 2.51 2 FALSE
## 1340 2.48 4 TRUE
## 1341 3.97 1 FALSE
## 1342 3.11 1 FALSE
## 1343 1.11 2 FALSE
## 1344 2.86 0 FALSE
## 1345 2.27 0 TRUE
## 1346 1.84 4 TRUE
## 1347 2.89 1 TRUE
## 1348 2.78 0 FALSE
## 1349 3.21 1 FALSE
## 1350 1.51 2 FALSE
## 1351 4.00 0 TRUE
## 1352 3.21 1 FALSE
## 1353 3.54 0 FALSE
## 1354 2.97 0 FALSE
## 1355 3.46 2 FALSE
## 1356 3.67 3 FALSE
## 1357 3.05 1 FALSE
## 1358 3.46 3 FALSE
## 1359 4.02 0 FALSE
## 1360 2.78 1 TRUE
## 1361 3.54 2 FALSE
## 1362 3.67 1 FALSE
## 1363 2.67 3 FALSE
## 1364 2.08 3 FALSE
## 1365 3.70 1 TRUE
## 1366 3.13 1 FALSE
## 1367 3.32 3 FALSE
## 1368 2.32 1 FALSE
## 1369 3.11 4 FALSE
## 1370 1.97 1 FALSE
## 1371 1.78 1 FALSE
## 1372 2.40 1 FALSE
## 1373 2.21 1 FALSE
## 1374 1.11 4 TRUE
## 1375 2.30 0 FALSE
## 1376 3.05 0 FALSE
## 1377 1.13 4 TRUE
## 1378 3.62 1 FALSE
## 1379 2.40 1 FALSE
## 1380 2.75 3 FALSE
## 1381 3.24 1 FALSE
## 1382 2.97 1 FALSE
## 1383 2.46 2 FALSE
## 1384 2.21 2 FALSE
## 1385 2.73 3 FALSE
## 1386 2.40 0 FALSE
## 1387 1.92 0 FALSE
## 1388 2.05 1 FALSE
## 1389 2.67 4 FALSE
## 1390 4.13 1 FALSE
## 1391 2.51 1 FALSE
## 1392 2.27 3 FALSE
## 1393 1.22 3 TRUE
## 1394 2.46 0 FALSE
## 1395 3.51 1 FALSE
## 1396 3.29 0 FALSE
## 1397 3.11 4 FALSE
## 1398 1.94 1 FALSE
## 1399 2.97 1 FALSE
## 1400 3.16 4 FALSE
## 1401 0.00 3 FALSE
## 1402 3.21 0 FALSE
## 1403 1.54 1 FALSE
## 1404 2.86 0 FALSE
## 1405 2.57 3 FALSE
## 1406 2.38 4 TRUE
## 1407 2.40 1 FALSE
## 1408 3.19 6 TRUE
## 1409 3.19 1 FALSE
## 1410 2.27 0 FALSE
## 1411 3.29 1 FALSE
## 1412 2.08 1 FALSE
## 1413 2.54 1 FALSE
## 1414 2.65 0 FALSE
## 1415 2.62 1 FALSE
## 1416 2.46 0 FALSE
## 1417 2.05 3 FALSE
## 1418 2.89 1 FALSE
## 1419 1.54 2 FALSE
## 1420 1.78 2 FALSE
## 1421 4.83 3 TRUE
## 1422 2.81 0 FALSE
## 1423 1.51 1 FALSE
## 1424 2.81 1 FALSE
## 1425 3.16 0 FALSE
## 1426 1.24 2 FALSE
## 1427 2.65 2 FALSE
## 1428 2.59 2 FALSE
## 1429 3.02 2 FALSE
## 1430 1.89 1 FALSE
## 1431 2.05 1 FALSE
## 1432 3.05 1 FALSE
## 1433 3.02 0 FALSE
## 1434 3.29 1 FALSE
## 1435 3.56 2 FALSE
## 1436 3.00 0 TRUE
## 1437 2.92 1 FALSE
## 1438 2.62 4 FALSE
## 1439 4.08 2 FALSE
## 1440 2.32 0 FALSE
## 1441 1.35 1 FALSE
## 1442 2.38 1 FALSE
## 1443 2.24 1 TRUE
## 1444 2.48 1 FALSE
## 1445 2.40 3 FALSE
## 1446 2.62 1 FALSE
## 1447 2.78 2 FALSE
## 1448 2.24 0 FALSE
## 1449 2.11 4 FALSE
## 1450 3.43 4 FALSE
## 1451 2.94 0 FALSE
## 1452 2.57 2 FALSE
## 1453 3.32 2 FALSE
## 1454 2.19 2 FALSE
## 1455 3.81 2 TRUE
## 1456 1.78 1 FALSE
## 1457 2.67 1 FALSE
## 1458 1.59 1 FALSE
## 1459 2.32 1 FALSE
## 1460 4.35 0 FALSE
## 1461 2.51 3 FALSE
## 1462 2.70 0 FALSE
## 1463 2.19 2 FALSE
## 1464 2.05 1 FALSE
## 1465 2.43 3 FALSE
## 1466 2.32 1 FALSE
## 1467 1.38 0 FALSE
## 1468 4.56 0 TRUE
## 1469 1.13 3 FALSE
## 1470 4.05 0 FALSE
## 1471 1.59 1 FALSE
## 1472 2.19 0 FALSE
## 1473 3.24 1 TRUE
## 1474 2.78 1 FALSE
## 1475 4.40 0 FALSE
## 1476 4.27 3 FALSE
## 1477 1.59 0 FALSE
## 1478 2.65 1 FALSE
## 1479 2.62 2 FALSE
## 1480 2.40 1 FALSE
## 1481 2.97 0 FALSE
## 1482 4.00 2 FALSE
## 1483 2.54 3 FALSE
## 1484 2.70 1 FALSE
## 1485 3.48 3 TRUE
## 1486 4.16 1 FALSE
## 1487 2.62 0 FALSE
## 1488 3.00 0 FALSE
## 1489 1.70 2 FALSE
## 1490 3.19 2 FALSE
## 1491 1.89 1 FALSE
## 1492 3.46 1 FALSE
## 1493 2.62 1 FALSE
## 1494 3.46 4 TRUE
## 1495 1.32 2 FALSE
## 1496 2.92 0 FALSE
## 1497 3.16 3 FALSE
## 1498 2.86 1 FALSE
## 1499 3.00 0 FALSE
## 1500 3.11 3 FALSE
## 1501 3.29 1 FALSE
## 1502 3.43 0 FALSE
## 1503 1.59 8 FALSE
## 1504 3.29 2 FALSE
## 1505 2.30 2 FALSE
## 1506 2.38 1 FALSE
## 1507 2.89 2 FALSE
## 1508 3.24 1 FALSE
## 1509 1.78 3 FALSE
## 1510 2.48 3 FALSE
## 1511 2.32 1 FALSE
## 1512 1.81 1 FALSE
## 1513 1.13 1 FALSE
## 1514 3.24 2 FALSE
## 1515 1.89 1 FALSE
## 1516 2.70 2 FALSE
## 1517 2.27 1 TRUE
## 1518 3.35 1 FALSE
## 1519 3.05 2 FALSE
## 1520 2.40 2 FALSE
## 1521 2.57 2 FALSE
## 1522 2.62 3 FALSE
## 1523 1.51 1 FALSE
## 1524 3.08 2 FALSE
## 1525 3.38 2 FALSE
## 1526 3.54 1 FALSE
## 1527 3.62 2 FALSE
## 1528 2.43 0 FALSE
## 1529 1.22 0 TRUE
## 1530 2.86 3 FALSE
## 1531 2.16 1 TRUE
## 1532 2.59 4 TRUE
## 1533 3.11 0 TRUE
## 1534 3.75 2 TRUE
## 1535 2.89 1 TRUE
## 1536 3.24 2 FALSE
## 1537 2.40 0 FALSE
## 1538 3.00 4 TRUE
## 1539 3.70 5 TRUE
## 1540 2.89 0 FALSE
## 1541 4.24 3 FALSE
## 1542 2.05 3 FALSE
## 1543 3.21 0 FALSE
## 1544 3.43 1 FALSE
## 1545 2.21 1 FALSE
## 1546 2.97 2 FALSE
## 1547 3.86 1 FALSE
## 1548 2.84 1 FALSE
## 1549 2.78 1 FALSE
## 1550 3.89 1 FALSE
## 1551 3.08 2 FALSE
## 1552 2.35 0 TRUE
## 1553 4.43 2 FALSE
## 1554 3.05 0 FALSE
## 1555 3.59 1 FALSE
## 1556 2.32 2 FALSE
## 1557 2.59 0 FALSE
## 1558 3.65 2 FALSE
## 1559 4.00 2 FALSE
## 1560 1.59 2 FALSE
## 1561 2.40 0 FALSE
## 1562 2.70 2 FALSE
## 1563 3.48 0 FALSE
## 1564 1.97 1 FALSE
## 1565 0.00 1 FALSE
## 1566 2.92 0 FALSE
## 1567 2.57 2 FALSE
## 1568 4.21 0 FALSE
## 1569 3.08 1 FALSE
## 1570 3.11 0 FALSE
## 1571 4.67 2 FALSE
## 1572 1.65 1 FALSE
## 1573 2.73 1 FALSE
## 1574 3.13 1 FALSE
## 1575 3.43 1 FALSE
## 1576 2.30 1 FALSE
## 1577 2.81 3 FALSE
## 1578 2.75 1 FALSE
## 1579 2.38 2 FALSE
## 1580 4.46 2 FALSE
## 1581 2.86 0 FALSE
## 1582 1.51 1 FALSE
## 1583 2.43 1 FALSE
## 1584 3.56 0 FALSE
## 1585 3.40 1 FALSE
## 1586 3.08 2 TRUE
## 1587 1.94 1 FALSE
## 1588 3.43 1 FALSE
## 1589 3.35 1 FALSE
## 1590 1.57 1 FALSE
## 1591 3.05 1 FALSE
## 1592 3.00 2 FALSE
## 1593 1.57 3 FALSE
## 1594 2.94 1 TRUE
## 1595 1.70 3 FALSE
## 1596 2.32 3 FALSE
## 1597 2.21 0 FALSE
## 1598 4.08 2 FALSE
## 1599 2.38 2 FALSE
## 1600 3.62 1 FALSE
## 1601 1.22 0 FALSE
## 1602 3.05 0 TRUE
## 1603 2.35 3 FALSE
## 1604 3.05 2 FALSE
## 1605 3.59 3 FALSE
## 1606 3.00 1 FALSE
## 1607 2.73 0 FALSE
## 1608 3.48 3 FALSE
## 1609 3.73 2 FALSE
## 1610 3.02 0 FALSE
## 1611 3.40 4 FALSE
## 1612 3.02 0 FALSE
## 1613 1.89 2 FALSE
## 1614 1.03 3 FALSE
## 1615 3.73 1 TRUE
## 1616 2.05 2 FALSE
## 1617 2.94 0 FALSE
## 1618 2.97 0 FALSE
## 1619 3.21 1 FALSE
## 1620 3.29 4 TRUE
## 1621 2.59 0 FALSE
## 1622 2.13 0 FALSE
## 1623 2.59 1 FALSE
## 1624 3.05 1 FALSE
## 1625 3.00 2 FALSE
## 1626 2.65 0 FALSE
## 1627 2.32 1 FALSE
## 1628 3.43 2 FALSE
## 1629 4.27 1 FALSE
## 1630 2.16 2 FALSE
## 1631 3.56 2 FALSE
## 1632 2.70 2 FALSE
## 1633 3.02 0 FALSE
## 1634 2.57 0 FALSE
## 1635 3.24 2 FALSE
## 1636 2.57 4 TRUE
## 1637 2.40 1 FALSE
## 1638 2.46 2 FALSE
## 1639 2.62 6 TRUE
## 1640 3.16 2 FALSE
## 1641 2.97 3 FALSE
## 1642 2.73 1 FALSE
## 1643 2.03 1 FALSE
## 1644 1.97 3 FALSE
## 1645 2.84 1 FALSE
## 1646 3.05 3 FALSE
## 1647 2.67 0 TRUE
## 1648 3.65 1 FALSE
## 1649 2.30 0 FALSE
## 1650 2.81 0 FALSE
## 1651 2.59 1 FALSE
## 1652 4.67 1 TRUE
## 1653 1.94 1 FALSE
## 1654 3.00 1 TRUE
## 1655 2.89 1 FALSE
## 1656 1.35 3 FALSE
## 1657 2.89 1 FALSE
## 1658 1.62 2 FALSE
## 1659 1.73 2 FALSE
## 1660 3.70 0 FALSE
## 1661 3.97 3 FALSE
## 1662 2.40 1 FALSE
## 1663 3.70 5 TRUE
## 1664 2.94 1 FALSE
## 1665 2.86 2 FALSE
## 1666 3.32 3 FALSE
## 1667 1.73 2 FALSE
## 1668 2.75 0 FALSE
## 1669 2.11 1 FALSE
## 1670 2.19 1 FALSE
## 1671 3.43 1 FALSE
## 1672 3.78 2 FALSE
## 1673 3.70 2 FALSE
## 1674 2.84 5 FALSE
## 1675 2.67 1 TRUE
## 1676 2.75 0 FALSE
## 1677 2.08 2 FALSE
## 1678 2.43 1 FALSE
## 1679 2.40 1 FALSE
## 1680 2.86 0 TRUE
## 1681 3.43 2 FALSE
## 1682 1.92 1 FALSE
## 1683 2.30 1 FALSE
## 1684 3.48 2 FALSE
## 1685 3.81 2 FALSE
## 1686 2.92 3 FALSE
## 1687 3.32 2 FALSE
## 1688 3.83 3 FALSE
## 1689 2.84 3 FALSE
## 1690 3.08 1 FALSE
## 1691 3.35 1 FALSE
## 1692 1.97 2 TRUE
## 1693 1.70 1 TRUE
## 1694 3.38 1 FALSE
## 1695 3.11 7 TRUE
## 1696 3.59 2 FALSE
## 1697 3.35 1 FALSE
## 1698 3.11 1 FALSE
## 1699 1.62 0 FALSE
## 1700 2.27 4 FALSE
## 1701 2.54 2 FALSE
## 1702 2.97 2 TRUE
## 1703 2.08 4 TRUE
## 1704 3.00 2 FALSE
## 1705 3.13 1 TRUE
## 1706 1.94 3 FALSE
## 1707 3.16 1 FALSE
## 1708 1.51 5 TRUE
## 1709 3.02 4 FALSE
## 1710 2.84 3 FALSE
## 1711 2.43 2 FALSE
## 1712 3.16 0 FALSE
## 1713 2.78 4 FALSE
## 1714 2.03 5 TRUE
## 1715 3.08 3 FALSE
## 1716 3.59 0 FALSE
## 1717 2.46 1 FALSE
## 1718 3.86 1 FALSE
## 1719 2.62 2 TRUE
## 1720 4.10 2 FALSE
## 1721 1.65 1 FALSE
## 1722 2.21 1 FALSE
## 1723 3.32 1 FALSE
## 1724 2.94 2 FALSE
## 1725 1.92 1 FALSE
## 1726 3.81 2 FALSE
## 1727 2.97 1 FALSE
## 1728 3.29 1 FALSE
## 1729 2.57 4 FALSE
## 1730 3.62 2 FALSE
## 1731 3.40 2 FALSE
## 1732 3.48 0 TRUE
## 1733 2.24 3 FALSE
## 1734 0.95 0 FALSE
## 1735 3.73 1 FALSE
## 1736 4.00 0 FALSE
## 1737 1.86 1 TRUE
## 1738 2.38 0 FALSE
## 1739 1.30 0 FALSE
## 1740 1.57 2 TRUE
## 1741 2.54 0 FALSE
## 1742 1.00 3 FALSE
## 1743 3.08 1 FALSE
## 1744 1.57 1 FALSE
## 1745 2.08 0 FALSE
## 1746 2.75 0 FALSE
## 1747 3.65 1 TRUE
## 1748 2.70 1 FALSE
## 1749 3.81 1 FALSE
## 1750 2.38 3 FALSE
## 1751 1.86 1 TRUE
## 1752 2.38 1 FALSE
## 1753 3.81 0 TRUE
## 1754 2.03 2 FALSE
## 1755 2.62 2 TRUE
## 1756 3.21 1 FALSE
## 1757 2.48 1 FALSE
## 1758 3.24 2 FALSE
## 1759 3.27 0 FALSE
## 1760 2.40 0 FALSE
## 1761 2.48 2 FALSE
## 1762 2.08 1 FALSE
## 1763 2.00 0 FALSE
## 1764 3.11 1 FALSE
## 1765 2.03 0 TRUE
## 1766 3.43 4 TRUE
## 1767 3.13 2 FALSE
## 1768 2.84 2 FALSE
## 1769 2.92 2 TRUE
## 1770 2.59 2 FALSE
## 1771 2.46 0 FALSE
## 1772 3.43 2 FALSE
## 1773 3.38 1 FALSE
## 1774 3.11 1 FALSE
## 1775 1.78 1 FALSE
## 1776 2.57 0 FALSE
## 1777 2.97 0 FALSE
## 1778 2.70 3 TRUE
## 1779 3.05 2 FALSE
## 1780 3.05 1 FALSE
## 1781 3.24 1 FALSE
## 1782 4.08 1 FALSE
## 1783 2.16 1 FALSE
## 1784 2.94 1 FALSE
## 1785 3.81 0 TRUE
## 1786 2.13 2 FALSE
## 1787 2.21 0 FALSE
## 1788 2.11 1 FALSE
## 1789 3.32 1 FALSE
## 1790 1.27 0 FALSE
## 1791 2.48 2 FALSE
## 1792 2.92 1 FALSE
## 1793 1.65 0 FALSE
## 1794 1.97 1 FALSE
## 1795 3.11 1 TRUE
## 1796 4.10 1 FALSE
## 1797 3.51 1 FALSE
## 1798 2.75 0 FALSE
## 1799 3.24 1 FALSE
## 1800 1.67 1 FALSE
## 1801 2.89 0 FALSE
## 1802 2.30 2 FALSE
## 1803 3.73 5 FALSE
## 1804 2.30 1 FALSE
## 1805 2.59 0 TRUE
## 1806 2.89 3 FALSE
## 1807 3.16 0 FALSE
## 1808 3.48 3 FALSE
## 1809 3.35 3 FALSE
## 1810 3.73 1 FALSE
## 1811 3.21 0 FALSE
## 1812 4.16 3 FALSE
## 1813 2.24 1 FALSE
## 1814 1.65 0 FALSE
## 1815 3.54 0 FALSE
## 1816 2.57 0 FALSE
## 1817 4.97 2 FALSE
## 1818 1.97 2 FALSE
## 1819 3.19 3 FALSE
## 1820 1.19 0 FALSE
## 1821 2.40 1 FALSE
## 1822 4.16 1 FALSE
## 1823 2.38 2 FALSE
## 1824 3.19 2 FALSE
## 1825 4.05 1 FALSE
## 1826 2.11 3 FALSE
## 1827 2.08 3 FALSE
## 1828 3.62 2 FALSE
## 1829 2.67 2 FALSE
## 1830 2.86 1 FALSE
## 1831 2.84 1 FALSE
## 1832 3.05 7 FALSE
## 1833 4.08 1 FALSE
## 1834 2.16 2 FALSE
## 1835 3.83 0 FALSE
## 1836 2.16 4 FALSE
## 1837 2.62 0 FALSE
## 1838 2.32 1 TRUE
## 1839 2.19 1 FALSE
## 1840 3.56 1 FALSE
## 1841 1.92 2 FALSE
## 1842 1.43 2 FALSE
## 1843 2.40 0 TRUE
## 1844 4.37 2 FALSE
## 1845 3.11 4 TRUE
## 1846 3.75 2 TRUE
## 1847 3.11 1 FALSE
## 1848 3.38 2 FALSE
## 1849 2.32 2 FALSE
## 1850 3.75 2 TRUE
## 1851 2.51 1 TRUE
## 1852 2.94 5 TRUE
## 1853 3.92 1 FALSE
## 1854 1.59 0 FALSE
## 1855 1.49 1 FALSE
## 1856 2.94 2 FALSE
## 1857 2.62 1 FALSE
## 1858 3.27 1 TRUE
## 1859 3.02 0 FALSE
## 1860 2.16 0 FALSE
## 1861 2.00 0 FALSE
## 1862 2.08 0 TRUE
## 1863 2.16 0 TRUE
## 1864 2.35 1 FALSE
## 1865 3.08 0 FALSE
## 1866 2.13 7 TRUE
## 1867 2.40 2 TRUE
## 1868 2.65 0 FALSE
## 1869 2.24 3 FALSE
## 1870 3.65 1 TRUE
## 1871 2.16 0 FALSE
## 1872 1.49 0 FALSE
## 1873 2.19 2 FALSE
## 1874 3.24 1 FALSE
## 1875 1.32 2 FALSE
## 1876 3.08 1 FALSE
## 1877 2.19 1 FALSE
## 1878 2.62 1 FALSE
## 1879 3.11 1 TRUE
## 1880 2.54 2 FALSE
## 1881 4.00 4 TRUE
## 1882 2.08 0 TRUE
## 1883 3.48 2 FALSE
## 1884 3.00 1 FALSE
## 1885 3.32 2 FALSE
## 1886 3.43 1 FALSE
## 1887 1.49 3 FALSE
## 1888 3.97 0 TRUE
## 1889 3.24 2 FALSE
## 1890 2.78 1 TRUE
## 1891 2.78 4 FALSE
## 1892 2.78 3 FALSE
## 1893 2.67 0 TRUE
## 1894 2.40 2 TRUE
## 1895 2.75 3 FALSE
## 1896 2.73 0 FALSE
## 1897 2.67 1 FALSE
## 1898 3.48 1 FALSE
## 1899 2.00 2 TRUE
## 1900 2.92 1 FALSE
## 1901 2.67 1 FALSE
## 1902 2.75 1 FALSE
## 1903 3.02 1 FALSE
## 1904 3.78 1 TRUE
## 1905 3.92 4 TRUE
## 1906 1.89 2 FALSE
## 1907 2.94 1 FALSE
## 1908 2.65 2 FALSE
## 1909 3.46 2 FALSE
## 1910 3.27 0 FALSE
## 1911 1.76 0 FALSE
## 1912 2.21 4 FALSE
## 1913 2.81 8 TRUE
## 1914 1.49 2 FALSE
## 1915 2.67 3 FALSE
## 1916 1.76 1 FALSE
## 1917 3.19 1 FALSE
## 1918 2.97 2 FALSE
## 1919 3.83 1 FALSE
## 1920 2.57 6 TRUE
## 1921 2.32 1 FALSE
## 1922 2.54 3 FALSE
## 1923 2.62 4 FALSE
## 1924 3.19 1 FALSE
## 1925 3.05 1 FALSE
## 1926 2.65 2 FALSE
## 1927 2.65 2 FALSE
## 1928 4.13 3 FALSE
## 1929 3.02 1 FALSE
## 1930 3.13 0 FALSE
## 1931 2.94 1 FALSE
## 1932 2.11 1 FALSE
## 1933 2.32 1 FALSE
## 1934 2.70 1 TRUE
## 1935 2.35 0 TRUE
## 1936 3.67 3 TRUE
## 1937 3.08 2 FALSE
## 1938 3.27 1 FALSE
## 1939 1.84 1 FALSE
## 1940 2.48 2 TRUE
## 1941 2.35 1 FALSE
## 1942 2.05 1 FALSE
## 1943 2.38 2 FALSE
## 1944 2.94 0 FALSE
## 1945 1.81 1 FALSE
## 1946 2.30 1 FALSE
## 1947 1.38 1 FALSE
## 1948 2.16 0 FALSE
## 1949 1.84 1 FALSE
## 1950 2.70 0 FALSE
## 1951 1.89 4 TRUE
## 1952 2.59 1 FALSE
## 1953 1.65 1 FALSE
## 1954 3.00 0 FALSE
## 1955 3.19 0 TRUE
## 1956 1.51 0 FALSE
## 1957 3.40 3 FALSE
## 1958 2.75 1 FALSE
## 1959 3.35 3 FALSE
## 1960 3.46 2 FALSE
## 1961 3.75 0 FALSE
## 1962 3.00 3 FALSE
## 1963 2.81 3 FALSE
## 1964 2.73 0 FALSE
## 1965 2.97 1 FALSE
## 1966 3.00 1 TRUE
## 1967 0.54 1 FALSE
## 1968 2.54 3 FALSE
## 1969 2.16 1 FALSE
## 1970 3.65 1 FALSE
## 1971 3.51 5 FALSE
## 1972 2.43 1 FALSE
## 1973 3.38 2 FALSE
## 1974 1.70 5 FALSE
## 1975 2.35 5 TRUE
## 1976 1.89 2 FALSE
## 1977 2.81 1 FALSE
## 1978 4.21 2 TRUE
## 1979 3.59 3 TRUE
## 1980 2.00 1 FALSE
## 1981 3.43 4 FALSE
## 1982 1.43 1 FALSE
## 1983 4.24 0 FALSE
## 1984 2.54 3 FALSE
## 1985 4.43 3 TRUE
## 1986 2.21 2 FALSE
## 1987 3.27 0 FALSE
## 1988 2.75 0 FALSE
## 1989 3.27 1 FALSE
## 1990 3.24 2 FALSE
## 1991 3.35 2 FALSE
## 1992 3.40 1 FALSE
## 1993 2.05 2 FALSE
## 1994 1.22 0 FALSE
## 1995 2.86 0 FALSE
## 1996 3.16 1 FALSE
## 1997 2.05 1 FALSE
## 1998 3.54 3 FALSE
## 1999 2.62 2 FALSE
## 2000 2.94 0 FALSE
## 2001 2.73 3 FALSE
## 2002 2.89 1 TRUE
## 2003 3.48 3 FALSE
## 2004 3.51 1 FALSE
## 2005 4.81 4 FALSE
## 2006 3.00 1 FALSE
## 2007 1.78 3 FALSE
## 2008 1.67 3 FALSE
## 2009 3.21 3 FALSE
## 2010 2.24 0 FALSE
## 2011 3.43 0 FALSE
## 2012 2.51 3 FALSE
## 2013 1.65 1 FALSE
## 2014 2.92 2 FALSE
## 2015 3.70 3 FALSE
## 2016 3.73 0 FALSE
## 2017 2.48 3 FALSE
## 2018 2.57 3 FALSE
## 2019 2.03 1 FALSE
## 2020 3.00 1 FALSE
## 2021 1.40 2 FALSE
## 2022 3.00 1 FALSE
## 2023 2.86 1 FALSE
## 2024 3.62 1 FALSE
## 2025 3.40 2 FALSE
## 2026 3.62 2 FALSE
## 2027 3.81 1 FALSE
## 2028 2.92 1 FALSE
## 2029 2.35 1 TRUE
## 2030 3.89 0 TRUE
## 2031 3.19 1 FALSE
## 2032 3.08 5 FALSE
## 2033 3.56 2 FALSE
## 2034 2.81 2 TRUE
## 2035 3.94 1 FALSE
## 2036 2.35 3 FALSE
## 2037 2.16 3 FALSE
## 2038 1.81 1 FALSE
## 2039 2.73 1 TRUE
## 2040 2.86 1 FALSE
## 2041 2.62 2 FALSE
## 2042 2.67 2 FALSE
## 2043 3.02 1 FALSE
## 2044 1.73 3 FALSE
## 2045 2.70 0 FALSE
## 2046 3.67 4 FALSE
## 2047 3.00 1 FALSE
## 2048 3.29 3 FALSE
## 2049 2.59 3 FALSE
## 2050 1.89 2 FALSE
## 2051 2.03 1 FALSE
## 2052 2.21 1 FALSE
## 2053 2.62 2 FALSE
## 2054 3.51 0 FALSE
## 2055 1.92 1 FALSE
## 2056 3.65 1 FALSE
## 2057 3.59 3 FALSE
## 2058 3.11 2 FALSE
## 2059 3.27 0 FALSE
## 2060 2.40 3 TRUE
## 2061 1.97 0 FALSE
## 2062 2.78 0 FALSE
## 2063 2.78 1 FALSE
## 2064 2.73 2 FALSE
## 2065 2.48 2 FALSE
## 2066 3.29 1 FALSE
## 2067 4.08 0 FALSE
## 2068 2.67 4 FALSE
## 2069 3.32 1 FALSE
## 2070 2.65 0 TRUE
## 2071 3.54 1 FALSE
## 2072 1.13 2 FALSE
## 2073 1.76 3 FALSE
## 2074 3.05 1 FALSE
## 2075 1.78 2 FALSE
## 2076 2.38 2 FALSE
## 2077 2.73 4 TRUE
## 2078 3.54 0 FALSE
## 2079 1.16 1 FALSE
## 2080 3.54 2 FALSE
## 2081 3.21 0 FALSE
## 2082 2.73 1 FALSE
## 2083 2.65 0 FALSE
## 2084 2.24 3 FALSE
## 2085 2.38 2 FALSE
## 2086 3.00 1 FALSE
## 2087 3.40 1 FALSE
## 2088 3.00 4 FALSE
## 2089 4.43 2 FALSE
## 2090 3.00 1 FALSE
## 2091 2.86 2 FALSE
## 2092 2.03 2 FALSE
## 2093 2.92 2 FALSE
## 2094 3.48 0 FALSE
## 2095 2.97 0 FALSE
## 2096 3.59 0 FALSE
## 2097 4.35 0 FALSE
## 2098 2.65 2 FALSE
## 2099 2.65 1 FALSE
## 2100 2.73 3 TRUE
## 2101 3.59 0 FALSE
## 2102 1.86 0 FALSE
## 2103 3.43 2 FALSE
## 2104 2.62 2 TRUE
## 2105 2.94 2 FALSE
## 2106 2.59 0 FALSE
## 2107 3.67 0 TRUE
## 2108 2.73 2 TRUE
## 2109 2.57 0 FALSE
## 2110 3.40 3 FALSE
## 2111 2.75 2 FALSE
## 2112 3.89 0 FALSE
## 2113 3.29 4 TRUE
## 2114 3.16 2 TRUE
## 2115 3.59 3 FALSE
## 2116 4.10 0 TRUE
## 2117 3.83 1 FALSE
## 2118 3.21 4 FALSE
## 2119 2.65 0 TRUE
## 2120 3.13 0 TRUE
## 2121 3.70 1 FALSE
## 2122 3.43 1 FALSE
## 2123 4.43 0 FALSE
## 2124 2.19 1 FALSE
## 2125 2.89 3 FALSE
## 2126 1.03 1 FALSE
## 2127 2.62 1 FALSE
## 2128 3.02 3 FALSE
## 2129 2.75 2 FALSE
## 2130 2.00 2 FALSE
## 2131 2.94 1 FALSE
## 2132 2.97 1 FALSE
## 2133 1.62 3 FALSE
## 2134 2.78 2 FALSE
## 2135 3.51 1 FALSE
## 2136 3.02 0 FALSE
## 2137 3.05 1 FALSE
## 2138 2.40 0 FALSE
## 2139 2.94 3 FALSE
## 2140 3.24 3 TRUE
## 2141 3.56 4 FALSE
## 2142 1.78 2 FALSE
## 2143 3.38 1 TRUE
## 2144 3.05 3 FALSE
## 2145 3.43 1 FALSE
## 2146 2.92 1 FALSE
## 2147 2.94 0 FALSE
## 2148 3.43 3 TRUE
## 2149 2.70 1 FALSE
## 2150 3.13 0 FALSE
## 2151 3.40 2 TRUE
## 2152 2.59 2 FALSE
## 2153 3.00 1 FALSE
## 2154 2.57 2 FALSE
## 2155 3.38 2 FALSE
## 2156 3.24 2 TRUE
## 2157 3.05 3 FALSE
## 2158 2.75 2 FALSE
## 2159 3.56 0 TRUE
## 2160 3.51 1 FALSE
## 2161 2.13 1 TRUE
## 2162 3.27 0 FALSE
## 2163 1.86 1 FALSE
## 2164 2.00 1 FALSE
## 2165 2.67 3 TRUE
## 2166 3.51 2 FALSE
## 2167 3.02 2 FALSE
## 2168 1.81 1 FALSE
## 2169 2.78 1 FALSE
## 2170 2.86 0 FALSE
## 2171 2.94 0 FALSE
## 2172 1.84 1 FALSE
## 2173 3.02 0 FALSE
## 2174 3.59 0 TRUE
## 2175 2.78 1 FALSE
## 2176 2.38 3 FALSE
## 2177 2.11 2 FALSE
## 2178 3.54 2 FALSE
## 2179 1.97 0 FALSE
## 2180 3.13 2 FALSE
## 2181 0.78 2 FALSE
## 2182 4.05 1 FALSE
## 2183 3.51 0 FALSE
## 2184 3.78 3 FALSE
## 2185 3.19 1 FALSE
## 2186 3.51 1 FALSE
## 2187 2.94 3 TRUE
## 2188 3.35 4 TRUE
## 2189 1.97 2 FALSE
## 2190 2.62 3 FALSE
## 2191 2.94 1 FALSE
## 2192 1.46 1 FALSE
## 2193 1.43 2 FALSE
## 2194 2.54 2 FALSE
## 2195 2.43 2 FALSE
## 2196 1.65 1 FALSE
## 2197 3.11 0 FALSE
## 2198 0.84 2 FALSE
## 2199 0.89 0 FALSE
## 2200 2.30 2 FALSE
## 2201 2.27 1 FALSE
## 2202 3.78 2 FALSE
## 2203 2.81 1 FALSE
## 2204 2.97 4 TRUE
## 2205 1.84 2 FALSE
## 2206 3.02 3 FALSE
## 2207 2.86 1 FALSE
## 2208 2.65 0 FALSE
## 2209 2.59 1 FALSE
## 2210 1.84 3 FALSE
## 2211 3.16 0 TRUE
## 2212 3.00 4 FALSE
## 2213 1.30 1 FALSE
## 2214 3.35 0 TRUE
## 2215 3.51 1 FALSE
## 2216 3.11 0 TRUE
## 2217 3.19 2 FALSE
## 2218 3.08 2 FALSE
## 2219 3.05 5 TRUE
## 2220 2.67 3 FALSE
## 2221 2.32 3 FALSE
## 2222 2.75 2 FALSE
## 2223 3.27 0 FALSE
## 2224 2.97 6 FALSE
## 2225 4.19 2 FALSE
## 2226 3.27 1 FALSE
## 2227 2.84 1 FALSE
## 2228 2.75 2 FALSE
## 2229 2.05 2 FALSE
## 2230 4.75 2 FALSE
## 2231 2.11 2 FALSE
## 2232 1.92 3 FALSE
## 2233 3.35 0 FALSE
## 2234 2.97 1 FALSE
## 2235 2.70 2 FALSE
## 2236 2.62 1 FALSE
## 2237 3.89 2 FALSE
## 2238 1.84 4 TRUE
## 2239 4.67 1 TRUE
## 2240 2.51 2 FALSE
## 2241 3.70 0 FALSE
## 2242 1.32 1 FALSE
## 2243 3.08 2 FALSE
## 2244 2.32 2 FALSE
## 2245 2.94 1 FALSE
## 2246 2.38 2 FALSE
## 2247 3.05 1 FALSE
## 2248 3.46 0 FALSE
## 2249 3.59 5 FALSE
## 2250 3.89 3 FALSE
## 2251 1.94 1 FALSE
## 2252 1.73 1 FALSE
## 2253 2.86 1 FALSE
## 2254 2.40 1 FALSE
## 2255 1.81 1 FALSE
## 2256 3.05 0 FALSE
## 2257 0.70 1 FALSE
## 2258 3.65 1 FALSE
## 2259 1.94 1 TRUE
## 2260 2.73 3 FALSE
## 2261 3.51 1 FALSE
## 2262 2.54 4 FALSE
## 2263 3.94 1 FALSE
## 2264 2.43 1 FALSE
## 2265 2.35 3 FALSE
## 2266 2.35 0 FALSE
## 2267 2.70 1 FALSE
## 2268 3.46 2 TRUE
## 2269 3.05 0 FALSE
## 2270 2.21 0 FALSE
## 2271 3.29 3 FALSE
## 2272 2.35 1 FALSE
## 2273 3.16 2 FALSE
## 2274 2.05 2 FALSE
## 2275 2.67 4 FALSE
## 2276 2.08 0 FALSE
## 2277 1.59 3 FALSE
## 2278 3.59 0 FALSE
## 2279 2.27 1 FALSE
## 2280 2.57 1 FALSE
## 2281 3.62 2 FALSE
## 2282 2.24 0 FALSE
## 2283 3.40 3 FALSE
## 2284 1.27 5 TRUE
## 2285 3.40 2 FALSE
## 2286 3.19 1 FALSE
## 2287 2.81 0 FALSE
## 2288 1.78 3 FALSE
## 2289 2.38 0 FALSE
## 2290 2.92 1 FALSE
## 2291 2.89 3 TRUE
## 2292 3.21 0 FALSE
## 2293 2.84 2 FALSE
## 2294 2.46 1 FALSE
## 2295 2.00 0 FALSE
## 2296 1.78 0 FALSE
## 2297 2.75 1 FALSE
## 2298 3.48 2 FALSE
## 2299 2.38 1 FALSE
## 2300 2.16 0 FALSE
## 2301 2.38 0 FALSE
## 2302 4.59 2 FALSE
## 2303 3.11 2 FALSE
## 2304 2.73 2 FALSE
## 2305 2.97 0 FALSE
## 2306 3.00 3 FALSE
## 2307 1.62 1 FALSE
## 2308 2.94 3 FALSE
## 2309 3.27 1 FALSE
## 2310 2.40 0 FALSE
## 2311 3.65 3 FALSE
## 2312 2.92 1 FALSE
## 2313 2.48 0 FALSE
## 2314 3.11 3 FALSE
## 2315 3.13 3 FALSE
## 2316 1.89 2 FALSE
## 2317 3.48 1 FALSE
## 2318 1.70 3 FALSE
## 2319 3.11 0 FALSE
## 2320 2.35 3 FALSE
## 2321 3.16 1 FALSE
## 2322 4.19 1 FALSE
## 2323 2.86 5 FALSE
## 2324 2.21 1 FALSE
## 2325 2.11 4 TRUE
## 2326 2.65 2 TRUE
## 2327 3.78 0 FALSE
## 2328 2.54 6 TRUE
## 2329 2.27 1 FALSE
## 2330 2.40 1 FALSE
## 2331 2.86 1 FALSE
## 2332 1.94 1 FALSE
## 2333 2.84 1 FALSE
## 2334 2.21 2 FALSE
## 2335 2.70 3 FALSE
## 2336 2.70 3 TRUE
## 2337 3.13 1 FALSE
## 2338 2.24 4 FALSE
## 2339 3.02 2 FALSE
## 2340 2.40 1 FALSE
## 2341 3.40 0 FALSE
## 2342 1.92 0 FALSE
## 2343 2.75 2 FALSE
## 2344 3.73 1 TRUE
## 2345 2.21 1 FALSE
## 2346 0.00 0 FALSE
## 2347 1.24 2 FALSE
## 2348 3.65 1 TRUE
## 2349 3.05 2 FALSE
## 2350 2.59 0 FALSE
## 2351 2.35 0 FALSE
## 2352 0.92 2 FALSE
## 2353 3.46 0 FALSE
## 2354 3.16 1 FALSE
## 2355 3.54 2 TRUE
## 2356 3.38 2 FALSE
## 2357 1.57 2 TRUE
## 2358 2.73 1 TRUE
## 2359 3.94 0 FALSE
## 2360 3.54 1 FALSE
## 2361 2.54 2 FALSE
## 2362 2.84 3 FALSE
## 2363 0.00 3 FALSE
## 2364 3.59 0 FALSE
## 2365 3.70 0 FALSE
## 2366 3.11 1 FALSE
## 2367 3.78 1 FALSE
## 2368 1.78 3 FALSE
## 2369 2.05 1 FALSE
## 2370 2.43 4 TRUE
## 2371 2.67 4 FALSE
## 2372 4.91 1 FALSE
## 2373 2.73 2 FALSE
## 2374 2.75 0 FALSE
## 2375 2.27 0 FALSE
## 2376 2.81 2 FALSE
## 2377 1.57 1 TRUE
## 2378 2.38 1 TRUE
## 2379 3.40 3 FALSE
## 2380 3.19 2 FALSE
## 2381 2.73 9 TRUE
## 2382 2.05 1 FALSE
## 2383 2.94 0 FALSE
## 2384 2.59 2 FALSE
## 2385 1.73 0 FALSE
## 2386 3.75 0 FALSE
## 2387 2.00 2 TRUE
## 2388 2.46 6 TRUE
## 2389 2.40 1 TRUE
## 2390 2.86 0 TRUE
## 2391 3.29 0 FALSE
## 2392 2.92 2 FALSE
## 2393 2.97 1 FALSE
## 2394 2.24 0 FALSE
## 2395 3.02 3 FALSE
## 2396 3.86 4 FALSE
## 2397 2.86 2 FALSE
## 2398 3.56 1 TRUE
## 2399 3.11 1 FALSE
## 2400 3.02 1 FALSE
## 2401 2.27 0 FALSE
## 2402 3.08 1 TRUE
## 2403 4.13 5 TRUE
## 2404 3.51 2 FALSE
## 2405 4.19 1 FALSE
## 2406 1.73 1 TRUE
## 2407 2.48 2 FALSE
## 2408 3.62 1 TRUE
## 2409 2.84 1 FALSE
## 2410 2.35 2 FALSE
## 2411 2.94 0 FALSE
## 2412 2.51 1 FALSE
## 2413 2.03 1 TRUE
## 2414 4.00 0 FALSE
## 2415 1.73 0 FALSE
## 2416 2.43 5 TRUE
## 2417 3.21 2 FALSE
## 2418 2.51 2 FALSE
## 2419 2.97 0 FALSE
## 2420 2.40 2 TRUE
## 2421 3.13 2 TRUE
## 2422 2.94 4 TRUE
## 2423 4.10 2 FALSE
## 2424 1.00 0 FALSE
## 2425 1.73 1 FALSE
## 2426 2.32 2 FALSE
## 2427 3.54 1 FALSE
## 2428 2.57 2 FALSE
## 2429 3.05 6 TRUE
## 2430 2.70 2 FALSE
## 2431 4.21 0 FALSE
## 2432 2.75 1 FALSE
## 2433 3.59 4 TRUE
## 2434 3.27 2 FALSE
## 2435 3.05 0 FALSE
## 2436 2.78 1 FALSE
## 2437 3.59 1 FALSE
## 2438 2.24 4 TRUE
## 2439 2.97 2 FALSE
## 2440 3.94 1 FALSE
## 2441 1.89 0 FALSE
## 2442 3.27 1 FALSE
## 2443 1.27 3 FALSE
## 2444 2.97 0 FALSE
## 2445 2.62 5 FALSE
## 2446 3.13 1 FALSE
## 2447 3.13 2 FALSE
## 2448 3.48 1 FALSE
## 2449 3.73 3 FALSE
## 2450 2.05 3 FALSE
## 2451 3.21 1 FALSE
## 2452 2.89 2 TRUE
## 2453 3.70 1 FALSE
## 2454 2.70 1 FALSE
## 2455 2.62 1 FALSE
## 2456 1.92 1 FALSE
## 2457 2.81 4 FALSE
## 2458 3.29 1 FALSE
## 2459 2.38 1 FALSE
## 2460 3.97 4 FALSE
## 2461 2.65 2 FALSE
## 2462 3.11 0 FALSE
## 2463 2.94 2 FALSE
## 2464 2.73 2 FALSE
## 2465 2.54 1 FALSE
## 2466 2.24 3 FALSE
## 2467 2.84 0 FALSE
## 2468 2.08 1 FALSE
## 2469 1.16 1 TRUE
## 2470 2.24 3 FALSE
## 2471 1.51 3 FALSE
## 2472 2.00 0 FALSE
## 2473 2.75 1 TRUE
## 2474 2.30 0 FALSE
## 2475 2.51 0 FALSE
## 2476 1.43 1 FALSE
## 2477 2.67 1 FALSE
## 2478 2.46 1 FALSE
## 2479 3.56 1 FALSE
## 2480 3.16 3 TRUE
## 2481 2.78 3 FALSE
## 2482 3.05 1 FALSE
## 2483 2.75 2 FALSE
## 2484 3.48 2 FALSE
## 2485 3.32 0 FALSE
## 2486 3.24 1 FALSE
## 2487 1.46 0 FALSE
## 2488 2.65 0 FALSE
## 2489 1.81 0 FALSE
## 2490 2.84 4 TRUE
## 2491 2.65 1 FALSE
## 2492 2.65 2 FALSE
## 2493 2.30 0 FALSE
## 2494 3.05 5 TRUE
## 2495 2.19 1 FALSE
## 2496 2.30 1 FALSE
## 2497 2.11 1 FALSE
## 2498 1.13 2 FALSE
## 2499 2.75 1 FALSE
## 2500 3.73 1 FALSE
## 2501 2.59 1 FALSE
## 2502 3.62 0 FALSE
## 2503 4.43 2 FALSE
## 2504 2.67 2 FALSE
## 2505 3.51 1 FALSE
## 2506 3.38 3 FALSE
## 2507 3.56 1 FALSE
## 2508 3.40 0 FALSE
## 2509 2.35 2 FALSE
## 2510 2.94 2 FALSE
## 2511 2.70 2 FALSE
## 2512 1.94 3 FALSE
## 2513 2.75 0 FALSE
## 2514 0.00 2 FALSE
## 2515 2.89 0 FALSE
## 2516 3.24 5 TRUE
## 2517 3.29 2 FALSE
## 2518 3.35 0 FALSE
## 2519 2.13 2 FALSE
## 2520 2.27 2 FALSE
## 2521 2.11 1 FALSE
## 2522 3.27 1 FALSE
## 2523 2.27 2 FALSE
## 2524 2.11 3 FALSE
## 2525 3.19 1 FALSE
## 2526 2.62 0 FALSE
## 2527 1.73 0 TRUE
## 2528 3.54 2 FALSE
## 2529 2.67 3 FALSE
## 2530 2.48 2 FALSE
## 2531 2.89 2 FALSE
## 2532 2.73 1 FALSE
## 2533 1.94 2 FALSE
## 2534 3.32 2 TRUE
## 2535 4.86 1 FALSE
## 2536 2.48 2 TRUE
## 2537 2.43 0 TRUE
## 2538 1.73 3 FALSE
## 2539 3.78 1 FALSE
## 2540 2.89 3 TRUE
## 2541 3.48 1 FALSE
## 2542 3.83 2 FALSE
## 2543 2.57 1 TRUE
## 2544 1.86 1 FALSE
## 2545 3.56 3 FALSE
## 2546 2.21 0 FALSE
## 2547 3.29 2 FALSE
## 2548 3.43 2 FALSE
## 2549 3.21 1 FALSE
## 2550 2.27 2 FALSE
## 2551 1.78 1 FALSE
## 2552 2.94 1 FALSE
## 2553 2.40 1 FALSE
## 2554 2.70 6 FALSE
## 2555 1.81 2 FALSE
## 2556 2.51 2 FALSE
## 2557 2.92 2 FALSE
## 2558 4.56 0 FALSE
## 2559 2.59 0 FALSE
## 2560 3.11 1 FALSE
## 2561 2.43 1 FALSE
## 2562 2.08 1 FALSE
## 2563 2.16 1 FALSE
## 2564 3.27 1 FALSE
## 2565 2.89 1 FALSE
## 2566 3.65 0 FALSE
## 2567 3.89 2 FALSE
## 2568 2.51 2 TRUE
## 2569 3.24 3 FALSE
## 2570 3.46 3 FALSE
## 2571 2.30 1 FALSE
## 2572 2.11 2 FALSE
## 2573 2.81 1 TRUE
## 2574 3.46 1 TRUE
## 2575 3.59 1 FALSE
## 2576 4.19 1 TRUE
## 2577 3.00 2 FALSE
## 2578 2.30 2 FALSE
## 2579 3.19 0 FALSE
## 2580 2.11 1 FALSE
## 2581 2.32 0 FALSE
## 2582 3.48 4 TRUE
## 2583 2.03 2 FALSE
## 2584 3.46 1 FALSE
## 2585 3.08 3 FALSE
## 2586 2.65 3 FALSE
## 2587 3.08 1 FALSE
## 2588 2.40 3 FALSE
## 2589 3.24 2 FALSE
## 2590 3.75 1 FALSE
## 2591 2.51 3 FALSE
## 2592 2.38 1 TRUE
## 2593 3.46 5 FALSE
## 2594 3.86 0 FALSE
## 2595 3.19 1 TRUE
## 2596 2.27 1 TRUE
## 2597 1.57 1 FALSE
## 2598 3.78 2 FALSE
## 2599 2.78 1 FALSE
## 2600 2.38 0 TRUE
## 2601 3.02 1 FALSE
## 2602 3.11 1 FALSE
## 2603 3.08 2 TRUE
## 2604 1.73 2 FALSE
## 2605 4.29 3 FALSE
## 2606 3.81 2 FALSE
## 2607 4.35 1 TRUE
## 2608 2.67 3 FALSE
## 2609 1.81 4 FALSE
## 2610 2.89 1 FALSE
## 2611 1.59 1 FALSE
## 2612 3.19 0 FALSE
## 2613 2.27 2 FALSE
## 2614 1.92 1 FALSE
## 2615 3.29 0 TRUE
## 2616 2.94 1 FALSE
## 2617 4.32 0 FALSE
## 2618 2.89 2 FALSE
## 2619 1.86 1 FALSE
## 2620 3.00 3 TRUE
## 2621 2.97 1 FALSE
## 2622 2.03 4 FALSE
## 2623 3.13 4 FALSE
## 2624 2.94 2 FALSE
## 2625 3.13 0 TRUE
## 2626 3.24 2 FALSE
## 2627 3.40 2 FALSE
## 2628 3.38 1 FALSE
## 2629 1.84 4 FALSE
## 2630 1.81 1 TRUE
## 2631 2.65 2 FALSE
## 2632 3.35 2 FALSE
## 2633 3.19 1 FALSE
## 2634 2.86 0 FALSE
## 2635 3.40 2 FALSE
## 2636 2.70 1 FALSE
## 2637 1.62 2 FALSE
## 2638 1.59 3 FALSE
## 2639 3.08 2 FALSE
## 2640 3.29 1 FALSE
## 2641 2.92 3 FALSE
## 2642 3.05 1 FALSE
## 2643 2.70 1 FALSE
## 2644 2.86 3 FALSE
## 2645 3.35 0 FALSE
## 2646 3.27 2 TRUE
## 2647 3.11 5 FALSE
## 2648 3.62 0 TRUE
## 2649 3.43 1 FALSE
## 2650 2.65 1 FALSE
## 2651 1.32 2 FALSE
## 2652 2.48 3 FALSE
## 2653 2.62 0 FALSE
## 2654 3.35 1 FALSE
## 2655 1.84 1 FALSE
## 2656 2.70 1 FALSE
## 2657 2.40 2 FALSE
## 2658 2.40 3 FALSE
## 2659 3.65 0 FALSE
## 2660 4.35 2 FALSE
## 2661 3.62 4 TRUE
## 2662 2.57 0 FALSE
## 2663 3.70 2 TRUE
## 2664 3.43 2 FALSE
## 2665 3.89 1 TRUE
## 2666 2.73 3 FALSE
## 2667 3.27 1 TRUE
## 2668 2.70 3 FALSE
## 2669 2.32 0 FALSE
## 2670 0.30 2 FALSE
## 2671 2.43 2 FALSE
## 2672 2.57 2 FALSE
## 2673 2.48 0 TRUE
## 2674 1.81 3 TRUE
## 2675 3.46 0 FALSE
## 2676 1.54 0 FALSE
## 2677 3.27 0 FALSE
## 2678 1.97 4 TRUE
## 2679 3.89 2 FALSE
## 2680 0.89 1 FALSE
## 2681 2.08 2 FALSE
## 2682 3.59 0 TRUE
## 2683 3.48 0 FALSE
## 2684 3.56 1 FALSE
## 2685 2.65 2 FALSE
## 2686 3.81 3 FALSE
## 2687 2.70 2 FALSE
## 2688 4.59 1 TRUE
## 2689 2.70 1 FALSE
## 2690 4.10 0 FALSE
## 2691 1.89 3 FALSE
## 2692 2.62 2 FALSE
## 2693 3.13 1 FALSE
## 2694 1.97 3 FALSE
## 2695 2.73 0 TRUE
## 2696 2.65 2 FALSE
## 2697 3.32 3 TRUE
## 2698 3.21 0 FALSE
## 2699 3.35 1 FALSE
## 2700 3.13 0 FALSE
## 2701 2.30 3 TRUE
## 2702 2.24 3 FALSE
## 2703 2.13 1 FALSE
## 2704 3.27 1 FALSE
## 2705 3.02 2 FALSE
## 2706 2.62 4 FALSE
## 2707 3.56 0 FALSE
## 2708 2.43 2 FALSE
## 2709 2.40 1 TRUE
## 2710 3.16 0 FALSE
## 2711 3.97 0 TRUE
## 2712 2.70 1 FALSE
## 2713 3.13 0 FALSE
## 2714 1.62 2 FALSE
## 2715 4.16 1 FALSE
## 2716 1.65 1 FALSE
## 2717 3.27 2 FALSE
## 2718 1.16 0 FALSE
## 2719 3.73 1 FALSE
## 2720 2.70 1 FALSE
## 2721 2.78 1 FALSE
## 2722 2.59 1 FALSE
## 2723 2.73 2 FALSE
## 2724 3.51 2 FALSE
## 2725 2.57 2 TRUE
## 2726 3.24 0 FALSE
## 2727 2.67 2 FALSE
## 2728 3.16 0 FALSE
## 2729 1.67 2 FALSE
## 2730 2.35 2 FALSE
## 2731 4.00 1 FALSE
## 2732 3.75 0 TRUE
## 2733 4.56 5 TRUE
## 2734 0.00 2 FALSE
## 2735 3.00 1 FALSE
## 2736 3.59 0 TRUE
## 2737 2.48 3 FALSE
## 2738 2.67 1 FALSE
## 2739 2.03 1 FALSE
## 2740 2.92 0 FALSE
## 2741 2.78 0 FALSE
## 2742 3.35 1 FALSE
## 2743 2.89 2 FALSE
## 2744 2.16 2 FALSE
## 2745 1.92 1 FALSE
## 2746 2.75 2 TRUE
## 2747 3.62 3 FALSE
## 2748 1.67 0 TRUE
## 2749 2.08 2 FALSE
## 2750 3.83 1 FALSE
## 2751 2.35 1 FALSE
## 2752 2.13 0 FALSE
## 2753 2.19 3 FALSE
## 2754 3.48 2 FALSE
## 2755 3.05 1 FALSE
## 2756 2.89 0 FALSE
## 2757 3.38 2 FALSE
## 2758 1.57 2 FALSE
## 2759 3.24 0 FALSE
## 2760 3.40 1 FALSE
## 2761 3.83 0 TRUE
## 2762 2.84 1 FALSE
## 2763 2.57 3 FALSE
## 2764 2.21 3 FALSE
## 2765 4.02 2 FALSE
## 2766 2.89 1 FALSE
## 2767 2.84 1 FALSE
## 2768 2.21 3 FALSE
## 2769 3.24 1 FALSE
## 2770 2.46 1 FALSE
## 2771 1.54 2 FALSE
## 2772 3.56 1 FALSE
## 2773 1.59 4 TRUE
## 2774 1.65 2 TRUE
## 2775 3.56 0 TRUE
## 2776 2.43 1 FALSE
## 2777 2.00 0 FALSE
## 2778 3.32 2 FALSE
## 2779 2.78 1 FALSE
## 2780 2.30 0 FALSE
## 2781 3.05 3 FALSE
## 2782 2.43 2 FALSE
## 2783 3.13 3 FALSE
## 2784 2.46 1 FALSE
## 2785 2.94 3 TRUE
## 2786 2.48 5 TRUE
## 2787 2.43 6 TRUE
## 2788 2.92 1 FALSE
## 2789 1.94 0 FALSE
## 2790 2.08 2 FALSE
## 2791 2.46 0 FALSE
## 2792 1.49 0 FALSE
## 2793 3.00 1 FALSE
## 2794 3.89 2 FALSE
## 2795 2.94 0 TRUE
## 2796 2.51 1 FALSE
## 2797 4.37 0 FALSE
## 2798 2.70 2 FALSE
## 2799 2.75 1 FALSE
## 2800 2.54 3 FALSE
## 2801 2.97 0 TRUE
## 2802 1.65 4 FALSE
## 2803 3.89 2 FALSE
## 2804 2.86 3 FALSE
## 2805 2.46 1 FALSE
## 2806 3.08 1 FALSE
## 2807 3.67 2 FALSE
## 2808 3.19 2 FALSE
## 2809 3.13 1 FALSE
## 2810 0.95 1 FALSE
## 2811 3.00 0 FALSE
## 2812 2.92 2 FALSE
## 2813 2.97 2 FALSE
## 2814 3.32 3 FALSE
## 2815 2.89 1 FALSE
## 2816 1.94 2 FALSE
## 2817 4.94 1 TRUE
## 2818 3.08 1 FALSE
## 2819 2.73 1 FALSE
## 2820 2.78 0 TRUE
## 2821 3.56 4 FALSE
## 2822 1.54 0 FALSE
## 2823 3.02 0 FALSE
## 2824 4.48 2 FALSE
## 2825 3.54 0 TRUE
## 2826 3.86 2 FALSE
## 2827 2.75 2 FALSE
## 2828 2.78 5 TRUE
## 2829 1.70 4 TRUE
## 2830 3.40 1 FALSE
## 2831 2.84 1 FALSE
## 2832 2.67 1 FALSE
## 2833 2.03 3 FALSE
## 2834 3.13 2 FALSE
## 2835 3.16 1 FALSE
## 2836 2.81 3 FALSE
## 2837 2.78 2 FALSE
## 2838 3.86 1 FALSE
## 2839 2.84 2 FALSE
## 2840 3.83 2 TRUE
## 2841 2.92 0 FALSE
## 2842 3.78 0 FALSE
## 2843 2.54 0 FALSE
## 2844 2.70 1 FALSE
## 2845 3.11 1 FALSE
## 2846 1.22 0 FALSE
## 2847 2.73 1 FALSE
## 2848 3.29 0 FALSE
## 2849 2.16 0 FALSE
## 2850 2.08 1 FALSE
## 2851 2.70 2 FALSE
## 2852 2.21 2 FALSE
## 2853 1.24 1 FALSE
## 2854 2.35 2 FALSE
## 2855 2.86 1 FALSE
## 2856 2.19 1 FALSE
## 2857 2.70 0 FALSE
## 2858 1.51 1 FALSE
## 2859 2.00 1 FALSE
## 2860 3.11 0 FALSE
## 2861 3.19 2 FALSE
## 2862 3.54 4 FALSE
## 2863 3.27 0 FALSE
## 2864 2.62 3 FALSE
## 2865 3.38 0 FALSE
## 2866 2.32 2 TRUE
## 2867 3.00 2 FALSE
## 2868 3.02 1 FALSE
## 2869 3.67 0 TRUE
## 2870 2.40 1 FALSE
## 2871 2.46 2 FALSE
## 2872 3.05 2 FALSE
## 2873 2.48 2 FALSE
## 2874 1.86 2 FALSE
## 2875 3.32 0 TRUE
## 2876 1.78 3 FALSE
## 2877 2.81 3 FALSE
## 2878 1.76 2 FALSE
## 2879 2.59 0 FALSE
## 2880 2.70 1 FALSE
## 2881 2.65 1 FALSE
## 2882 1.67 1 FALSE
## 2883 3.08 2 TRUE
## 2884 2.65 1 FALSE
## 2885 2.35 1 TRUE
## 2886 2.27 1 FALSE
## 2887 2.67 1 FALSE
## 2888 3.00 2 FALSE
## 2889 2.94 1 FALSE
## 2890 2.27 1 TRUE
## 2891 3.13 0 FALSE
## 2892 3.29 0 FALSE
## 2893 3.19 1 FALSE
## 2894 1.94 0 FALSE
## 2895 3.97 3 FALSE
## 2896 1.73 0 FALSE
## 2897 2.46 1 FALSE
## 2898 4.48 0 FALSE
## 2899 1.51 2 FALSE
## 2900 1.03 1 FALSE
## 2901 2.13 1 TRUE
## 2902 2.51 4 TRUE
## 2903 2.70 2 FALSE
## 2904 1.81 5 FALSE
## 2905 2.81 2 FALSE
## 2906 1.03 3 FALSE
## 2907 0.00 1 FALSE
## 2908 3.46 0 FALSE
## 2909 2.13 2 TRUE
## 2910 2.08 2 FALSE
## 2911 2.46 2 FALSE
## 2912 3.51 1 FALSE
## 2913 1.16 0 FALSE
## 2914 2.92 1 FALSE
## 2915 3.38 4 FALSE
## 2916 3.89 4 FALSE
## 2917 2.84 2 FALSE
## 2918 2.24 0 FALSE
## 2919 0.00 4 FALSE
## 2920 2.54 0 FALSE
## 2921 2.89 1 FALSE
## 2922 4.29 2 FALSE
## 2923 2.75 2 FALSE
## 2924 4.51 2 FALSE
## 2925 2.78 1 TRUE
## 2926 3.13 2 TRUE
## 2927 1.35 4 TRUE
## 2928 2.75 1 FALSE
## 2929 2.65 2 FALSE
## 2930 4.02 3 FALSE
## 2931 3.48 1 FALSE
## 2932 2.94 2 FALSE
## 2933 3.19 1 FALSE
## 2934 0.57 1 FALSE
## 2935 2.32 2 TRUE
## 2936 2.65 0 FALSE
## 2937 2.57 0 TRUE
## 2938 3.62 0 FALSE
## 2939 1.89 1 FALSE
## 2940 3.59 0 FALSE
## 2941 1.97 1 FALSE
## 2942 3.11 4 FALSE
## 2943 2.70 1 TRUE
## 2944 2.11 0 FALSE
## 2945 2.65 0 FALSE
## 2946 3.78 0 FALSE
## 2947 1.11 1 FALSE
## 2948 2.43 1 TRUE
## 2949 2.84 1 FALSE
## 2950 2.70 2 FALSE
## 2951 3.19 0 TRUE
## 2952 3.48 2 FALSE
## 2953 2.21 5 TRUE
## 2954 2.65 7 FALSE
## 2955 2.27 3 FALSE
## 2956 2.78 1 FALSE
## 2957 2.32 1 FALSE
## 2958 1.97 1 FALSE
## 2959 1.70 6 TRUE
## 2960 2.46 1 FALSE
## 2961 2.70 5 TRUE
## 2962 2.16 6 TRUE
## 2963 1.46 1 FALSE
## 2964 3.13 0 FALSE
## 2965 2.13 3 TRUE
## 2966 2.27 1 FALSE
## 2967 2.16 1 FALSE
## 2968 2.75 0 FALSE
## 2969 3.75 1 TRUE
## 2970 2.13 2 FALSE
## 2971 1.73 1 FALSE
## 2972 2.59 0 TRUE
## 2973 2.73 2 TRUE
## 2974 2.81 0 FALSE
## 2975 1.89 1 FALSE
## 2976 3.19 0 FALSE
## 2977 3.11 1 FALSE
## 2978 1.81 0 FALSE
## 2979 3.51 1 FALSE
## 2980 2.38 7 TRUE
## 2981 3.86 3 TRUE
## 2982 2.62 1 FALSE
## 2983 2.40 2 FALSE
## 2984 2.13 1 FALSE
## 2985 2.92 1 FALSE
## 2986 2.97 3 FALSE
## 2987 2.84 2 FALSE
## 2988 3.70 3 TRUE
## 2989 3.24 3 FALSE
## 2990 3.73 2 TRUE
## 2991 2.24 1 FALSE
## 2992 1.97 1 FALSE
## 2993 3.13 1 FALSE
## 2994 3.38 1 FALSE
## 2995 1.49 1 TRUE
## 2996 3.56 2 FALSE
## 2997 3.59 1 FALSE
## 2998 2.11 0 FALSE
## 2999 3.32 0 FALSE
## 3000 2.59 1 FALSE
## 3001 3.92 3 FALSE
## 3002 3.11 1 FALSE
## 3003 2.40 3 TRUE
## 3004 2.54 1 FALSE
## 3005 4.37 1 FALSE
## 3006 2.84 2 FALSE
## 3007 2.67 1 FALSE
## 3008 3.81 3 FALSE
## 3009 3.51 0 FALSE
## 3010 1.81 5 FALSE
## 3011 3.27 2 FALSE
## 3012 2.86 1 FALSE
## 3013 3.00 1 FALSE
## 3014 1.40 2 FALSE
## 3015 3.19 0 FALSE
## 3016 1.92 2 FALSE
## 3017 3.94 1 FALSE
## 3018 1.62 5 FALSE
## 3019 3.29 2 FALSE
## 3020 3.73 3 TRUE
## 3021 2.65 1 FALSE
## 3022 2.73 0 FALSE
## 3023 0.78 0 FALSE
## 3024 3.75 4 TRUE
## 3025 3.11 1 FALSE
## 3026 4.21 2 FALSE
## 3027 2.92 6 FALSE
## 3028 2.54 4 FALSE
## 3029 3.38 1 FALSE
## 3030 2.48 0 FALSE
## 3031 3.78 3 FALSE
## 3032 3.38 3 FALSE
## 3033 2.11 1 FALSE
## 3034 3.67 1 FALSE
## 3035 3.02 1 FALSE
## 3036 3.13 4 TRUE
## 3037 2.54 3 FALSE
## 3038 1.76 0 FALSE
## 3039 1.73 2 FALSE
## 3040 2.84 1 FALSE
## 3041 2.84 0 FALSE
## 3042 1.76 0 FALSE
## 3043 2.24 0 FALSE
## 3044 2.43 1 FALSE
## 3045 2.30 1 FALSE
## 3046 2.84 2 TRUE
## 3047 4.00 1 FALSE
## 3048 3.46 2 FALSE
## 3049 3.78 0 FALSE
## 3050 4.21 3 FALSE
## 3051 3.65 4 TRUE
## 3052 4.21 1 FALSE
## 3053 3.48 2 FALSE
## 3054 1.89 0 FALSE
## 3055 2.46 0 FALSE
## 3056 2.62 2 FALSE
## 3057 2.89 2 FALSE
## 3058 1.97 1 FALSE
## 3059 1.92 3 FALSE
## 3060 3.19 2 FALSE
## 3061 2.27 3 FALSE
## 3062 3.35 2 FALSE
## 3063 3.51 0 FALSE
## 3064 3.29 1 FALSE
## 3065 2.35 4 TRUE
## 3066 2.27 3 FALSE
## 3067 1.94 3 FALSE
## 3068 2.73 0 FALSE
## 3069 2.57 2 FALSE
## 3070 2.67 1 FALSE
## 3071 3.24 3 TRUE
## 3072 1.70 1 FALSE
## 3073 2.30 0 TRUE
## 3074 2.00 2 FALSE
## 3075 1.78 1 FALSE
## 3076 1.70 2 FALSE
## 3077 2.70 2 FALSE
## 3078 3.86 0 FALSE
## 3079 3.56 1 FALSE
## 3080 2.13 5 TRUE
## 3081 4.73 0 FALSE
## 3082 1.59 6 FALSE
## 3083 3.27 3 FALSE
## 3084 3.38 0 FALSE
## 3085 3.27 2 FALSE
## 3086 2.70 3 FALSE
## 3087 3.02 3 FALSE
## 3088 2.32 0 FALSE
## 3089 2.40 1 FALSE
## 3090 2.54 3 FALSE
## 3091 3.27 1 FALSE
## 3092 2.86 1 FALSE
## 3093 2.73 0 FALSE
## 3094 2.21 2 TRUE
## 3095 2.84 1 FALSE
## 3096 2.86 1 FALSE
## 3097 2.65 3 FALSE
## 3098 2.70 2 FALSE
## 3099 3.24 0 FALSE
## 3100 2.73 0 FALSE
## 3101 2.81 0 FALSE
## 3102 2.21 1 FALSE
## 3103 3.40 3 FALSE
## 3104 3.56 2 FALSE
## 3105 2.78 0 FALSE
## 3106 2.57 0 FALSE
## 3107 3.13 1 FALSE
## 3108 2.46 1 FALSE
## 3109 2.97 2 FALSE
## 3110 3.02 0 FALSE
## 3111 2.86 1 FALSE
## 3112 3.08 1 FALSE
## 3113 2.51 7 TRUE
## 3114 3.78 2 TRUE
## 3115 3.27 0 FALSE
## 3116 2.70 4 FALSE
## 3117 2.38 1 FALSE
## 3118 3.54 2 FALSE
## 3119 1.40 1 FALSE
## 3120 3.08 0 FALSE
## 3121 2.92 2 FALSE
## 3122 2.30 1 FALSE
## 3123 3.81 3 FALSE
## 3124 3.05 0 FALSE
## 3125 2.54 3 FALSE
## 3126 2.84 4 TRUE
## 3127 2.86 0 FALSE
## 3128 3.16 4 TRUE
## 3129 2.75 3 FALSE
## 3130 1.51 2 FALSE
## 3131 2.35 3 FALSE
## 3132 2.24 5 FALSE
## 3133 2.11 2 TRUE
## 3134 2.81 2 FALSE
## 3135 3.08 3 FALSE
## 3136 2.92 1 FALSE
## 3137 2.78 1 FALSE
## 3138 3.97 3 FALSE
## 3139 3.59 2 FALSE
## 3140 1.92 2 FALSE
## 3141 4.10 5 FALSE
## 3142 2.89 1 FALSE
## 3143 3.46 2 FALSE
## 3144 2.70 3 FALSE
## 3145 2.78 5 TRUE
## 3146 2.38 3 FALSE
## 3147 3.75 1 FALSE
## 3148 2.30 4 FALSE
## 3149 2.97 0 TRUE
## 3150 3.21 1 FALSE
## 3151 2.89 2 FALSE
## 3152 1.92 0 TRUE
## 3153 2.57 1 FALSE
## 3154 2.84 2 FALSE
## 3155 1.70 2 FALSE
## 3156 2.59 2 FALSE
## 3157 2.81 3 FALSE
## 3158 1.67 4 TRUE
## 3159 2.51 3 FALSE
## 3160 2.11 1 FALSE
## 3161 0.57 0 FALSE
## 3162 2.70 2 FALSE
## 3163 3.59 0 FALSE
## 3164 1.86 2 FALSE
## 3165 2.97 1 FALSE
## 3166 2.46 1 FALSE
## 3167 2.75 2 TRUE
## 3168 2.43 1 FALSE
## 3169 3.02 1 TRUE
## 3170 3.24 4 TRUE
## 3171 2.03 0 FALSE
## 3172 2.62 1 FALSE
## 3173 3.32 3 FALSE
## 3174 3.48 3 FALSE
## 3175 2.32 2 FALSE
## 3176 2.24 0 FALSE
## 3177 2.19 0 FALSE
## 3178 3.46 1 FALSE
## 3179 3.73 0 FALSE
## 3180 2.54 1 FALSE
## 3181 3.29 1 FALSE
## 3182 2.73 5 FALSE
## 3183 2.11 3 FALSE
## 3184 2.27 2 FALSE
## 3185 1.84 0 FALSE
## 3186 3.21 0 FALSE
## 3187 2.54 3 FALSE
## 3188 1.46 1 FALSE
## 3189 2.21 1 FALSE
## 3190 3.56 0 TRUE
## 3191 4.27 6 TRUE
## 3192 2.51 0 TRUE
## 3193 1.35 2 FALSE
## 3194 2.92 1 FALSE
## 3195 3.62 0 FALSE
## 3196 2.62 2 FALSE
## 3197 3.29 1 FALSE
## 3198 3.05 0 FALSE
## 3199 3.46 2 FALSE
## 3200 3.19 1 FALSE
## 3201 2.62 1 FALSE
## 3202 2.38 1 FALSE
## 3203 1.86 3 FALSE
## 3204 1.73 1 FALSE
## 3205 2.84 1 FALSE
## 3206 2.92 1 TRUE
## 3207 2.75 1 FALSE
## 3208 3.16 0 FALSE
## 3209 2.81 2 FALSE
## 3210 3.83 3 TRUE
## 3211 3.08 1 FALSE
## 3212 3.24 2 FALSE
## 3213 1.00 0 FALSE
## 3214 3.24 1 FALSE
## 3215 2.38 3 FALSE
## 3216 2.54 1 FALSE
## 3217 0.65 0 FALSE
## 3218 3.56 1 FALSE
## 3219 3.62 2 FALSE
## 3220 2.38 2 FALSE
## 3221 2.75 0 FALSE
## 3222 2.30 1 FALSE
## 3223 3.16 3 FALSE
## 3224 4.51 2 FALSE
## 3225 3.32 3 TRUE
## 3226 2.27 2 FALSE
## 3227 2.03 2 TRUE
## 3228 2.89 0 FALSE
## 3229 4.05 5 FALSE
## 3230 2.11 1 FALSE
## 3231 1.13 1 FALSE
## 3232 1.78 1 FALSE
## 3233 2.67 1 FALSE
## 3234 1.70 0 FALSE
## 3235 0.68 1 FALSE
## 3236 1.32 3 FALSE
## 3237 2.03 0 FALSE
## 3238 2.94 1 FALSE
## 3239 2.38 3 TRUE
## 3240 2.75 2 FALSE
## 3241 1.35 1 FALSE
## 3242 3.05 1 TRUE
## 3243 2.27 0 FALSE
## 3244 2.78 5 TRUE
## 3245 1.94 1 FALSE
## 3246 3.40 3 FALSE
## 3247 3.21 0 TRUE
## 3248 1.05 4 TRUE
## 3249 3.11 0 FALSE
## 3250 3.16 0 FALSE
## 3251 3.65 0 FALSE
## 3252 2.48 2 FALSE
## 3253 3.16 0 FALSE
## 3254 2.43 1 FALSE
## 3255 3.97 1 FALSE
## 3256 2.97 2 TRUE
## 3257 4.59 3 FALSE
## 3258 3.59 2 FALSE
## 3259 3.62 2 FALSE
## 3260 4.05 1 FALSE
## 3261 3.75 1 FALSE
## 3262 1.97 1 FALSE
## 3263 2.73 1 FALSE
## 3264 1.62 2 FALSE
## 3265 1.59 0 FALSE
## 3266 2.97 3 TRUE
## 3267 2.62 3 FALSE
## 3268 2.38 1 FALSE
## 3269 3.43 2 TRUE
## 3270 2.84 1 FALSE
## 3271 3.46 2 FALSE
## 3272 3.38 2 FALSE
## 3273 3.48 2 TRUE
## 3274 3.97 3 FALSE
## 3275 2.16 1 FALSE
## 3276 0.00 1 FALSE
## 3277 2.38 1 FALSE
## 3278 2.70 2 FALSE
## 3279 2.86 2 FALSE
## 3280 2.24 2 FALSE
## 3281 2.70 4 TRUE
## 3282 1.38 1 FALSE
## 3283 2.08 3 FALSE
## 3284 3.35 3 FALSE
## 3285 3.56 1 FALSE
## 3286 3.19 0 FALSE
## 3287 3.54 0 FALSE
## 3288 2.94 4 TRUE
## 3289 1.32 1 FALSE
## 3290 3.56 1 FALSE
## 3291 0.00 0 FALSE
## 3292 3.75 1 TRUE
## 3293 3.16 1 FALSE
## 3294 2.46 0 FALSE
## 3295 3.32 1 FALSE
## 3296 3.16 1 FALSE
## 3297 2.43 1 FALSE
## 3298 3.05 1 FALSE
## 3299 3.32 1 FALSE
## 3300 2.97 2 FALSE
## 3301 1.92 1 FALSE
## 3302 2.81 0 TRUE
## 3303 2.11 1 FALSE
## 3304 3.11 2 FALSE
## 3305 3.73 4 TRUE
## 3306 3.11 2 FALSE
## 3307 2.19 1 FALSE
## 3308 4.81 4 FALSE
## 3309 3.59 1 FALSE
## 3310 3.24 4 FALSE
## 3311 3.67 2 FALSE
## 3312 1.86 2 FALSE
## 3313 3.83 2 FALSE
## 3314 2.70 1 FALSE
## 3315 2.46 1 FALSE
## 3316 1.76 0 FALSE
## 3317 3.32 0 FALSE
## 3318 2.11 1 FALSE
## 3319 3.13 2 FALSE
## 3320 4.29 3 FALSE
## 3321 2.62 4 TRUE
## 3322 3.56 3 FALSE
## 3323 3.11 4 TRUE
## 3324 3.67 5 TRUE
## 3325 3.13 1 FALSE
## 3326 2.51 2 FALSE
## 3327 4.02 1 FALSE
## 3328 3.19 2 FALSE
## 3329 2.67 2 FALSE
## 3330 2.59 3 FALSE
## 3331 3.81 2 FALSE
## 3332 1.35 2 FALSE
## 3333 3.70 0 FALSE
data
## State Account.Length Area.Code Phone Int.l.Plan VMail.Plan
## 1 KS 128 415 382-4657 no yes
## 2 OH 107 415 371-7191 no yes
## 3 NJ 137 415 358-1921 no no
## 4 OH 84 408 375-9999 yes no
## 5 OK 75 415 330-6626 yes no
## 6 AL 118 510 391-8027 yes no
## 7 MA 121 510 355-9993 no yes
## 8 MO 147 415 329-9001 yes no
## 9 LA 117 408 335-4719 no no
## 10 WV 141 415 330-8173 yes yes
## 11 IN 65 415 329-6603 no no
## 12 RI 74 415 344-9403 no no
## 13 IA 168 408 363-1107 no no
## 14 MT 95 510 394-8006 no no
## 15 IA 62 415 366-9238 no no
## 16 NY 161 415 351-7269 no no
## 17 ID 85 408 350-8884 no yes
## 18 VT 93 510 386-2923 no no
## 19 VA 76 510 356-2992 no yes
## 20 TX 73 415 373-2782 no no
## 21 FL 147 415 396-5800 no no
## 22 CO 77 408 393-7984 no no
## 23 AZ 130 415 358-1958 no no
## 24 SC 111 415 350-2565 no no
## 25 VA 132 510 343-4696 no no
## 26 NE 174 415 331-3698 no no
## 27 WY 57 408 357-3817 no yes
## 28 MT 54 408 418-6412 no no
## 29 MO 20 415 353-2630 no no
## 30 HI 49 510 410-7789 no no
## 31 IL 142 415 416-8428 no no
## 32 NH 75 510 370-3359 no no
## 33 LA 172 408 383-1121 no no
## 34 AZ 12 408 360-1596 no no
## 35 OK 57 408 395-2854 no yes
## 36 GA 72 415 362-1407 no yes
## 37 AK 36 408 341-9764 no yes
## 38 MA 78 415 353-3305 no no
## 39 AK 136 415 402-1381 yes yes
## 40 NJ 149 408 332-9891 no no
## 41 GA 98 408 372-9976 no no
## 42 MD 135 408 383-6029 yes yes
## 43 AR 34 510 353-7289 no no
## 44 ID 160 415 390-7274 no no
## 45 WI 64 510 352-1237 no no
## 46 OR 59 408 353-3061 no yes
## 47 MI 65 415 363-5450 no no
## 48 DE 142 408 364-1995 no no
## 49 ID 119 415 398-1294 no no
## 50 WY 97 415 405-7146 no yes
## 51 IA 52 408 413-4957 no no
## 52 IN 60 408 420-5645 no no
## 53 VA 10 408 349-4396 no no
## 54 UT 96 415 404-3211 no no
## 55 WY 87 415 353-3759 no no
## 56 IN 81 408 363-5947 no no
## 57 CO 141 415 340-5121 no no
## 58 CO 121 408 370-7574 no yes
## 59 WI 68 415 403-9733 no no
## 60 OK 125 408 355-7251 no no
## 61 ID 174 408 359-5893 no no
## 62 CA 116 415 405-3371 no yes
## 63 MN 74 510 344-5117 no yes
## 64 SD 149 408 332-8160 no yes
## 65 NC 38 408 359-4081 no no
## 66 WA 40 415 352-8305 no yes
## 67 WY 43 415 329-9847 yes no
## 68 MN 113 408 365-9011 yes no
## 69 UT 126 408 338-9472 no no
## 70 TX 150 510 374-8042 no no
## 71 NJ 138 408 359-1231 no no
## 72 MN 162 510 413-7170 no yes
## 73 NM 147 510 415-2935 no no
## 74 NV 90 415 399-4246 no no
## 75 HI 85 415 362-5889 no no
## 76 MN 50 415 350-8921 no no
## 77 DC 82 415 374-5353 no no
## 78 NY 144 408 360-1171 no no
## 79 MN 46 415 355-8887 no no
## 80 MD 70 408 333-1967 no no
## 81 WV 144 415 354-4577 no no
## 82 OR 116 415 331-7425 yes no
## 83 CO 55 408 419-2637 no yes
## 84 GA 70 415 411-1530 no yes
## 85 TX 106 510 395-3026 no no
## 86 VT 128 510 388-6441 no yes
## 87 IN 94 408 402-1251 no no
## 88 WV 111 510 412-9997 no no
## 89 KY 74 415 346-7302 no yes
## 90 NJ 128 415 358-9095 no no
## 91 DC 82 510 400-9770 no no
## 92 LA 155 415 334-1275 no no
## 93 AR 80 415 340-4953 no no
## 94 ME 78 415 400-9510 no no
## 95 AZ 90 415 387-6103 no no
## 96 AK 104 408 366-4467 no no
## 97 MT 73 415 370-3450 no no
## 98 AZ 99 415 327-3954 no no
## 99 MS 120 408 355-6291 no no
## 100 ID 77 415 362-9748 no no
## 101 IA 98 510 379-6506 no yes
## 102 MA 108 415 347-7741 no no
## 103 VT 135 415 354-3783 no no
## 104 KY 95 408 401-7594 no no
## 105 IN 122 408 397-4976 no no
## 106 AZ 95 408 334-2577 no no
## 107 MI 36 510 400-3637 no yes
## 108 NM 93 510 383-4361 no yes
## 109 CO 141 415 371-4306 no yes
## 110 UT 157 408 403-4298 no no
## 111 MI 120 408 409-3786 no no
## 112 MA 103 415 337-4697 no no
## 113 AL 98 408 383-1509 no no
## 114 DE 125 408 359-9794 no no
## 115 AZ 63 415 407-7035 no no
## 116 ME 36 510 363-1069 yes yes
## 117 NJ 64 510 391-4652 no no
## 118 NV 74 415 355-6837 no no
## 119 MO 112 510 409-1244 no yes
## 120 ID 97 408 328-3266 no no
## 121 NE 46 408 352-7072 no no
## 122 TX 41 408 370-7550 no yes
## 123 MD 121 510 369-5526 no no
## 124 MS 193 415 329-4391 no no
## 125 NV 130 510 408-4195 no no
## 126 AZ 85 408 354-4445 no no
## 127 MS 162 415 335-4858 no no
## 128 MS 61 510 414-8718 no yes
## 129 TX 92 408 409-5939 no no
## 130 NE 131 408 331-4902 no yes
## 131 NE 90 415 353-6870 no no
## 132 CA 75 408 355-2909 no no
## 133 NJ 78 415 390-6101 no no
## 134 TX 82 408 400-3446 no no
## 135 AR 163 408 411-5859 no no
## 136 AL 91 510 387-2919 yes no
## 137 NY 75 415 374-8525 no yes
## 138 FL 91 510 379-5592 no no
## 139 AK 127 510 345-8237 no yes
## 140 NV 113 415 422-6690 no yes
## 141 DE 110 510 346-2359 no no
## 142 MD 120 415 374-3534 no yes
## 143 MI 157 415 381-4756 no yes
## 144 VT 103 510 390-2805 no no
## 145 VT 117 408 390-2390 yes no
## 146 MI 140 415 419-9097 no no
## 147 WA 127 408 386-7281 no no
## 148 UT 83 408 380-3561 yes no
## 149 LA 121 408 390-8760 no no
## 150 RI 145 408 366-6730 no yes
## 151 IA 113 408 395-5285 no no
## 152 NE 117 415 354-3436 no no
## 153 OH 65 408 336-7600 no no
## 154 RI 56 415 383-6293 no no
## 155 OK 96 415 362-4596 no no
## 156 LA 151 408 401-3926 no no
## 157 OH 83 415 370-9116 no no
## 158 VA 139 510 328-6289 no yes
## 159 MO 6 510 350-9994 no no
## 160 FL 115 510 351-4616 no yes
## 161 SC 87 415 360-5779 no no
## 162 VA 141 415 417-4885 no no
## 163 IA 141 510 406-4710 no yes
## 164 MI 62 415 409-8743 no no
## 165 OK 146 415 335-4584 no no
## 166 DE 92 415 361-9845 no yes
## 167 GA 185 510 366-5699 no yes
## 168 DC 148 415 329-9364 no no
## 169 AZ 94 408 390-7434 no yes
## 170 AL 32 510 404-9680 no no
## 171 CO 68 408 338-9398 no no
## 172 NH 64 408 394-2445 no yes
## 173 NM 25 415 381-2709 no no
## 174 OR 65 415 397-5060 no no
## 175 LA 179 408 415-2393 no no
## 176 NE 94 415 377-1765 no no
## 177 MN 62 415 409-2111 no no
## 178 MI 127 415 401-3170 no no
## 179 AR 116 408 405-5681 no no
## 180 KS 70 408 411-4582 no no
## 181 WV 94 510 355-5009 yes yes
## 182 AK 126 415 372-3750 no no
## 183 NY 67 408 405-2888 no yes
## 184 NH 19 408 361-3337 no no
## 185 VA 170 510 350-1639 yes no
## 186 NM 73 415 333-3221 no no
## 187 NY 106 408 422-1471 no no
## 188 AZ 93 415 399-7865 no no
## 189 WY 164 510 373-4819 no no
## 190 WA 51 408 338-6981 no no
## 191 CO 107 415 418-4365 no no
## 192 TX 130 415 359-5461 no no
## 193 KY 80 408 375-3586 no no
## 194 MT 94 415 407-8376 no no
## 195 OK 118 408 408-6496 no yes
## 196 MD 117 415 385-7688 no yes
## 197 TN 78 415 332-6934 no no
## 198 TX 208 510 378-3625 no no
## 199 ME 131 510 353-7292 yes yes
## 200 DC 63 408 399-6786 no no
## 201 MN 53 415 358-3261 no yes
## 202 DE 62 408 377-9932 no no
## 203 MD 97 415 397-4030 no no
## 204 MI 105 510 367-1062 no no
## 205 WA 157 415 341-8467 no no
## 206 MO 66 415 339-9453 no yes
## 207 IN 122 415 344-3388 no no
## 208 OR 38 415 375-8013 no no
## 209 MD 106 510 408-4142 no no
## 210 RI 99 510 386-3671 no no
## 211 LA 99 415 411-2284 no no
## 212 AZ 144 510 346-7795 yes no
## 213 PA 82 415 333-5609 no yes
## 214 AZ 86 408 405-1842 no yes
## 215 FL 70 510 366-6345 yes no
## 216 LA 93 415 337-9345 no no
## 217 FL 93 415 328-6770 no no
## 218 FL 120 415 380-7321 no no
## 219 MD 136 415 375-1476 no no
## 220 AL 106 415 356-1567 no no
## 221 WA 81 415 422-6685 no no
## 222 TN 127 408 336-1090 no yes
## 223 MS 65 415 343-2095 no no
## 224 ME 35 408 345-3934 no no
## 225 OK 88 408 338-8050 no no
## 226 IN 65 415 388-9568 no no
## 227 MO 123 415 402-6591 no no
## 228 IA 126 408 403-6419 no yes
## 229 VA 104 415 386-9790 no yes
## 230 KY 45 415 378-5692 no yes
## 231 MD 93 408 360-3324 yes no
## 232 OH 63 415 410-3719 yes yes
## 233 OK 100 415 352-4221 no no
## 234 NV 53 415 327-6179 no no
## 235 ID 92 415 359-6196 yes no
## 236 MN 139 510 374-9107 no no
## 237 SD 110 408 357-4078 no yes
## 238 IL 110 408 366-5780 no no
## 239 WY 215 510 393-9619 no no
## 240 AL 73 415 355-9295 no no
## 241 NJ 138 510 400-5751 no no
## 242 NV 137 415 338-1027 yes no
## 243 IN 36 415 405-8867 no no
## 244 WV 85 408 336-5616 no no
## 245 VA 108 408 335-1697 no no
## 246 SC 22 408 331-5138 no no
## 247 RI 107 415 385-8240 no yes
## 248 IN 51 510 348-1359 no no
## 249 AZ 94 408 354-7339 no no
## 250 NM 119 510 349-1687 no yes
## 251 OR 33 415 380-2558 no yes
## 252 NJ 106 415 365-2153 no no
## 253 MS 82 408 345-6043 no no
## 254 MI 86 510 349-2808 no yes
## 255 TX 97 415 411-1715 yes no
## 256 FL 106 408 385-2488 no yes
## 257 DC 108 510 377-7177 no no
## 258 TX 114 415 342-1099 no no
## 259 KS 92 408 386-4170 yes no
## 260 UT 59 510 413-1269 no no
## 261 MN 24 510 396-4460 no yes
## 262 IL 151 408 334-2730 no no
## 263 NM 117 415 340-3182 no no
## 264 SC 78 510 377-8608 no no
## 265 NC 155 408 417-3676 no no
## 266 WV 114 510 417-6774 no yes
## 267 RI 114 510 411-9554 no yes
## 268 NH 119 408 420-3192 no no
## 269 MO 64 510 389-1475 no yes
## 270 MA 118 408 343-7734 yes no
## 271 PA 101 415 410-3390 no no
## 272 OK 117 415 344-6495 no no
## 273 AL 49 415 331-6229 no yes
## 274 WY 139 415 337-7501 no no
## 275 PA 92 408 339-9631 no yes
## 276 WA 83 415 369-4384 no no
## 277 HI 148 510 416-3915 yes no
## 278 SD 144 408 339-3049 no yes
## 279 AL 131 415 361-7998 no yes
## 280 VT 146 510 355-4842 yes no
## 281 MT 143 415 387-6440 no no
## 282 MN 81 415 369-2625 no no
## 283 AK 48 415 389-7073 no yes
## 284 MI 86 415 370-8463 no yes
## 285 DE 71 415 362-7318 no no
## 286 SD 145 408 412-1194 no yes
## 287 MI 137 510 355-9508 no no
## 288 KS 137 408 352-8202 no no
## 289 AL 167 510 335-5882 no no
## 290 OK 89 510 352-6976 no no
## 291 CT 199 415 393-6733 no yes
## 292 NE 132 510 335-1838 no no
## 293 WI 94 510 355-6930 no no
## 294 CT 96 415 387-5860 no yes
## 295 WI 96 510 343-2605 no yes
## 296 IN 166 510 350-6759 no no
## 297 DC 74 415 371-1514 no no
## 298 AR 36 415 346-9317 no no
## 299 ME 113 415 398-4313 no no
## 300 MN 94 415 412-4399 no no
## 301 MD 67 415 330-1835 no no
## 302 FL 127 415 416-1676 no no
## 303 RI 121 408 329-7347 no no
## 304 IA 158 415 360-6868 no no
## 305 AZ 136 510 405-6641 no no
## 306 MO 196 415 393-2373 no no
## 307 VT 113 415 419-1714 no no
## 308 IN 122 408 336-3819 no no
## 309 RI 112 510 341-3464 no no
## 310 SD 209 415 413-5310 no no
## 311 MN 62 415 366-7912 no no
## 312 TX 110 415 399-8845 no yes
## 313 VA 16 510 368-2583 no no
## 314 MA 73 408 360-6309 no no
## 315 ID 128 408 359-5890 no no
## 316 MA 39 408 332-2462 no no
## 317 GA 103 415 381-9196 no yes
## 318 RI 119 415 329-3222 no yes
## 319 ID 173 510 363-5819 no yes
## 320 SD 128 510 413-9269 yes yes
## 321 MA 86 510 330-7483 no no
## 322 WY 114 415 403-7775 no yes
## 323 VA 104 408 360-2479 no no
## 324 OR 148 415 394-3791 no no
## 325 VA 129 408 384-2632 no no
## 326 ME 100 510 359-8466 no yes
## 327 AL 121 408 331-8909 no yes
## 328 GA 143 408 359-5160 no yes
## 329 IA 76 510 330-9833 no no
## 330 AZ 158 510 362-2314 no no
## 331 FL 116 510 338-8478 no no
## 332 MT 54 415 387-5453 no no
## 333 AL 86 415 380-3437 no no
## 334 DE 108 510 365-8779 no no
## 335 MT 66 510 407-2750 no no
## 336 KY 151 408 396-8265 no yes
## 337 SC 99 510 397-4304 no no
## 338 WA 55 415 333-2611 no no
## 339 OR 77 510 409-8814 no no
## 340 AK 78 408 336-5406 no no
## 341 GA 89 415 343-6940 no no
## 342 MN 101 415 361-9923 no no
## 343 IL 44 415 350-6639 no yes
## 344 IN 98 408 376-4300 no yes
## 345 SC 64 510 349-6567 no yes
## 346 VA 141 415 333-7749 no no
## 347 WI 81 415 408-6089 no yes
## 348 VT 162 510 375-2165 no no
## 349 AZ 83 415 400-6999 no yes
## 350 FL 100 510 420-7823 no no
## 351 AK 59 510 366-5241 no no
## 352 AR 179 415 413-3412 yes yes
## 353 AR 79 408 406-2752 no no
## 354 AK 117 415 337-8078 no no
## 355 MS 64 408 402-1942 yes no
## 356 ME 31 415 371-7917 no no
## 357 CA 124 408 343-6374 yes no
## 358 NM 122 408 385-8730 no yes
## 359 NE 37 408 393-7892 yes yes
## 360 SC 90 408 407-6748 no yes
## 361 CO 159 408 341-4463 yes no
## 362 DE 148 415 351-2587 no no
## 363 OH 39 415 421-9752 no yes
## 364 MS 77 408 356-4001 no no
## 365 OK 194 408 328-9869 no no
## 366 CO 154 415 343-5709 no no
## 367 NC 112 415 334-1872 no no
## 368 MD 45 415 350-1040 no no
## 369 KS 132 415 369-3214 no no
## 370 MA 128 415 385-6778 no no
## 371 NC 135 415 383-7689 no no
## 372 NM 56 408 385-5722 no no
## 373 CA 151 415 357-1909 yes no
## 374 NY 32 415 364-3567 no no
## 375 AZ 90 415 422-4241 no no
## 376 SD 87 415 370-2957 no yes
## 377 DC 138 415 329-6562 no no
## 378 ND 79 408 363-3515 no no
## 379 MO 95 415 374-7787 yes no
## 380 KS 127 415 345-2931 no no
## 381 SD 137 510 373-5732 no no
## 382 OK 97 415 348-7437 no no
## 383 OR 149 415 332-9460 yes no
## 384 IN 117 415 355-6531 yes yes
## 385 OH 84 408 336-9390 no no
## 386 KS 137 415 346-8581 no no
## 387 CT 99 415 363-8824 no no
## 388 NH 54 510 353-3351 no no
## 389 WI 85 415 360-4320 no no
## 390 MS 150 510 417-6252 no no
## 391 WV 43 415 393-4949 no no
## 392 MA 35 415 401-3156 no no
## 393 MD 98 415 338-6283 no no
## 394 PA 112 510 352-9017 no no
## 395 WI 16 510 405-5305 no no
## 396 TN 98 415 376-9249 no yes
## 397 TX 84 408 339-7139 no no
## 398 OR 94 415 328-6011 no no
## 399 IL 84 510 378-1303 no no
## 400 DC 66 415 402-5155 no no
## 401 GA 98 415 333-5430 no yes
## 402 ID 74 415 365-9696 no no
## 403 UT 96 408 410-4023 no yes
## 404 KY 119 510 411-7649 no no
## 405 OH 73 415 338-4065 no no
## 406 WI 92 415 421-9401 yes no
## 407 IL 21 415 343-9658 no no
## 408 DE 122 510 332-5521 no no
## 409 RI 133 510 349-4369 yes no
## 410 TX 145 415 351-4288 no no
## 411 OR 25 408 422-5874 no no
## 412 NV 64 415 396-2324 no no
## 413 NE 85 415 416-5662 no no
## 414 MS 126 415 363-9663 no no
## 415 OR 76 415 410-9477 no no
## 416 DE 113 415 352-4418 no no
## 417 DE 224 510 361-6563 yes no
## 418 AZ 117 408 417-4404 no no
## 419 SD 128 408 372-8048 no yes
## 420 NV 115 415 356-3646 no no
## 421 NM 141 415 351-9604 no yes
## 422 MN 51 510 355-9581 no no
## 423 NJ 100 415 396-5189 no no
## 424 IN 96 415 356-9187 no yes
## 425 DC 112 415 394-5537 no yes
## 426 MA 129 510 408-2712 yes no
## 427 ME 163 415 404-4486 no no
## 428 NH 67 415 355-1113 no yes
## 429 AZ 140 408 411-4674 no no
## 430 OR 49 510 376-4519 no no
## 431 KS 46 510 365-5979 no no
## 432 NE 148 415 382-2879 no no
## 433 MI 112 510 420-1383 no no
## 434 SC 78 415 411-7390 no no
## 435 PA 61 408 383-8848 no yes
## 436 MT 58 510 387-9301 no yes
## 437 NM 155 415 399-3164 no no
## 438 OH 100 510 385-8997 no no
## 439 WY 113 510 352-6573 no no
## 440 MI 81 415 408-3384 no no
## 441 AR 135 510 419-6033 no yes
## 442 FL 99 408 336-2090 no no
## 443 AR 59 510 343-7242 no yes
## 444 MO 135 510 376-1713 no no
## 445 WI 85 408 381-5878 yes no
## 446 TX 70 510 390-5470 no no
## 447 TX 88 510 414-4803 no no
## 448 NM 55 510 382-5478 no no
## 449 GA 75 415 333-7637 no no
## 450 ID 79 510 341-1647 no yes
## 451 AL 85 408 411-4232 no no
## 452 KS 86 408 339-2616 no yes
## 453 SD 91 510 327-3850 no no
## 454 LA 149 415 328-7209 no yes
## 455 OH 97 408 405-6189 no no
## 456 MA 88 415 418-6737 no no
## 457 AZ 60 415 366-2212 no no
## 458 KY 54 408 356-1420 no no
## 459 DC 11 415 343-1323 no yes
## 460 WA 109 415 361-8239 no no
## 461 UT 90 415 384-1621 no no
## 462 RI 115 408 360-3525 no no
## 463 OH 144 415 392-3813 no yes
## 464 NV 91 408 337-6898 no no
## 465 ND 105 415 366-8036 no yes
## 466 NV 71 415 352-8327 yes no
## 467 FL 132 510 334-9505 no yes
## 468 MD 112 415 336-5702 no no
## 469 AZ 86 415 392-2381 no yes
## 470 AL 41 510 369-6880 no yes
## 471 NE 44 415 416-8697 no no
## 472 NV 78 408 345-3451 no no
## 473 IL 149 408 379-2514 no no
## 474 WV 72 510 418-6651 no yes
## 475 MI 139 415 421-3528 no yes
## 476 AR 74 510 329-9046 no no
## 477 UT 50 510 406-3890 no no
## 478 GA 141 510 403-8904 no yes
## 479 AZ 140 408 393-4086 no no
## 480 ID 99 408 400-1367 no no
## 481 HI 166 408 377-9473 no no
## 482 NV 124 408 396-3068 no no
## 483 MD 74 415 331-9293 no no
## 484 GA 117 510 347-1914 no no
## 485 GA 85 510 395-1962 no no
## 486 UT 36 415 401-5485 no yes
## 487 MA 102 510 355-6560 yes no
## 488 IN 76 415 363-3911 no no
## 489 VT 165 510 345-1998 no no
## 490 IA 130 415 361-5277 no no
## 491 IN 78 415 376-7145 no no
## 492 AL 55 415 375-2975 yes no
## 493 ME 92 415 376-8573 yes no
## 494 RI 129 415 366-7360 no yes
## 495 MD 18 408 347-7898 no no
## 496 FL 161 415 390-7328 yes no
## 497 CA 93 415 356-5491 no yes
## 498 AL 144 415 373-3251 no no
## 499 ME 75 408 343-1965 yes no
## 500 WV 95 415 378-8019 no no
## 501 SD 126 415 386-1548 no yes
## 502 FL 124 415 397-1649 no yes
## 503 MI 93 415 366-7247 yes no
## 504 MI 109 415 402-9691 yes yes
## 505 NM 80 510 334-9806 no no
## 506 AK 41 415 378-7733 no no
## 507 OH 136 415 407-2248 no yes
## 508 MO 92 415 405-3916 no no
## 509 KS 143 408 407-2081 no yes
## 510 MS 118 415 397-9148 no yes
## 511 VT 193 408 415-4857 no yes
## 512 NE 73 415 354-7314 no no
## 513 VA 62 408 346-5611 no no
## 514 DE 30 415 349-4703 no yes
## 515 AL 60 408 411-7778 yes yes
## 516 ID 148 510 421-1469 no yes
## 517 MS 96 510 420-5990 no no
## 518 OK 52 408 389-4780 no no
## 519 NM 87 415 357-2735 no no
## 520 WI 41 408 409-4791 no no
## 521 WV 112 415 380-5286 no no
## 522 SC 88 510 394-8402 no no
## 523 KY 122 408 392-1616 no yes
## 524 MO 61 408 364-1969 no no
## 525 IL 87 510 390-4152 no no
## 526 OK 176 408 367-7039 no no
## 527 MI 30 510 391-6607 no no
## 528 NJ 95 415 379-6652 no yes
## 529 ID 46 415 384-1833 no no
## 530 DC 100 510 403-2455 yes no
## 531 NY 47 415 391-1348 no yes
## 532 AL 77 415 408-4174 no no
## 533 OR 98 415 366-4334 no yes
## 534 OK 125 415 406-5059 no yes
## 535 LA 67 510 373-6784 no no
## 536 NE 194 408 408-3532 no no
## 537 TX 128 415 350-8680 no yes
## 538 UT 190 415 398-9870 no yes
## 539 OR 165 415 343-3356 no no
## 540 NY 59 408 415-4609 no no
## 541 AL 47 408 404-5387 no yes
## 542 RI 150 415 415-8151 no yes
## 543 MN 152 415 416-2778 yes yes
## 544 NC 26 415 393-3300 no no
## 545 MD 79 510 391-7661 no yes
## 546 RI 95 510 339-4317 no yes
## 547 WI 69 510 418-6455 yes no
## 548 VT 95 510 378-3508 yes yes
## 549 CT 31 415 390-9359 no yes
## 550 OK 121 408 364-2495 no yes
## 551 AK 111 415 364-7719 no no
## 552 NY 157 415 421-1189 no no
## 553 GA 44 510 419-8987 no no
## 554 UT 61 510 402-9980 yes no
## 555 NM 65 415 376-5908 no no
## 556 NE 74 415 400-3150 no yes
## 557 NJ 123 408 336-1749 no no
## 558 TX 58 408 420-1259 no yes
## 559 MT 74 408 339-7541 no no
## 560 CO 125 415 378-9029 no no
## 561 VT 80 415 342-7514 no no
## 562 RI 53 408 422-4956 no yes
## 563 WY 99 408 389-8606 no yes
## 564 ID 99 415 406-7261 no no
## 565 CT 66 415 417-7973 no yes
## 566 ME 97 510 390-2891 no no
## 567 AZ 75 510 385-7387 no yes
## 568 MD 85 510 362-2776 yes no
## 569 IN 108 510 329-1955 no no
## 570 NC 133 408 344-3160 yes yes
## 571 DE 51 510 406-2454 no no
## 572 MN 186 415 335-3913 no yes
## 573 WI 44 415 355-7705 yes no
## 574 FL 64 408 410-7108 no yes
## 575 WV 44 510 419-1674 no no
## 576 SD 114 415 351-7369 no yes
## 577 FL 92 415 349-9566 no no
## 578 OR 110 408 333-3421 no no
## 579 CO 90 408 393-8199 no yes
## 580 CT 72 408 388-4879 no yes
## 581 IN 113 415 353-6007 no no
## 582 PA 171 415 416-1557 no yes
## 583 NM 104 415 356-7217 no no
## 584 ME 165 408 350-2012 no no
## 585 SD 104 510 420-9838 no no
## 586 AR 110 408 373-6379 no no
## 587 TX 90 408 355-7293 yes no
## 588 NH 114 415 406-4588 no no
## 589 OK 101 408 345-1524 no no
## 590 WI 117 408 375-8493 no yes
## 591 AL 109 408 361-2924 no no
## 592 PA 82 408 359-6163 no no
## 593 OK 92 510 411-8140 no no
## 594 ME 82 510 381-9049 no yes
## 595 WV 90 415 344-4478 no no
## 596 HI 87 408 360-2690 no yes
## 597 MN 124 510 410-7383 no no
## 598 NY 39 408 356-1889 no no
## 599 AZ 84 415 341-2360 no no
## 600 OH 75 510 370-3021 no yes
## 601 MI 102 510 336-4656 no no
## 602 MA 62 415 386-2810 yes no
## 603 WV 143 510 350-1354 no no
## 604 MI 53 415 346-5707 no no
## 605 NM 30 415 405-8370 no no
## 606 MO 112 415 373-2053 no no
## 607 RI 129 415 369-5222 no no
## 608 NC 63 415 347-7420 no yes
## 609 WY 28 415 392-6856 no no
## 610 WY 111 415 371-5556 no no
## 611 PA 91 510 334-5337 no no
## 612 KY 90 415 334-8817 no no
## 613 OR 151 510 339-1405 no no
## 614 NV 105 415 380-7742 yes yes
## 615 DC 41 408 329-6191 no yes
## 616 UT 48 510 340-3075 no yes
## 617 WA 166 408 416-5849 yes yes
## 618 FL 79 510 334-7443 no no
## 619 VA 153 510 394-9121 no no
## 620 KS 110 415 383-1657 yes no
## 621 KS 163 415 347-4112 no no
## 622 DC 126 510 362-8280 no no
## 623 ME 105 408 402-9982 no yes
## 624 LA 172 415 392-8905 no no
## 625 DC 126 415 392-5512 no no
## 626 TX 97 510 351-6384 no no
## 627 NJ 95 408 348-8015 yes yes
## 628 DE 87 510 374-6966 no no
## 629 VT 97 415 328-2236 no no
## 630 GA 76 415 372-6497 no no
## 631 TX 140 408 417-8617 no no
## 632 MT 169 415 361-9621 no no
## 633 ND 68 408 421-2723 no yes
## 634 NJ 122 415 327-9341 no yes
## 635 MO 36 408 383-5474 no no
## 636 CO 120 510 328-8147 no yes
## 637 KS 121 408 373-5438 no no
## 638 NC 64 408 333-9253 no yes
## 639 MT 13 415 347-9421 no yes
## 640 DE 106 415 419-3167 no no
## 641 ND 88 415 414-4162 no no
## 642 VA 74 408 416-5341 no no
## 643 IL 83 415 368-8600 no no
## 644 OK 49 415 336-6085 no no
## 645 CO 111 510 377-1479 no yes
## 646 MT 50 415 360-2107 no yes
## 647 WV 153 408 405-9384 no yes
## 648 ME 88 415 420-5179 no no
## 649 WI 131 415 331-3174 no yes
## 650 MO 79 408 411-5958 no no
## 651 NY 140 415 333-8180 no no
## 652 CT 105 408 357-2679 no no
## 653 AR 54 415 396-2867 no yes
## 654 WY 87 415 341-9443 no yes
## 655 CA 96 510 341-4103 no yes
## 656 CA 79 510 416-8701 no no
## 657 MN 55 415 397-6109 no no
## 658 AK 130 415 392-5587 no no
## 659 VA 34 415 392-9342 no no
## 660 CO 139 415 368-2845 no no
## 661 MT 109 408 405-4920 no no
## 662 SD 65 408 348-7484 no yes
## 663 NE 63 415 338-5207 no no
## 664 VT 152 415 418-7846 no no
## 665 ND 147 408 358-8729 no no
## 666 GA 112 415 349-1943 no yes
## 667 OR 120 415 368-8283 no no
## 668 MT 27 510 345-1419 no no
## 669 WY 171 415 358-8025 no no
## 670 GA 101 415 383-8695 no yes
## 671 WV 32 408 370-7565 no yes
## 672 CT 3 415 401-6162 no yes
## 673 IL 151 408 386-5303 no no
## 674 CO 60 408 351-6552 no no
## 675 DE 119 415 345-5338 no no
## 676 LA 43 415 330-2849 no no
## 677 MA 42 408 364-6801 no no
## 678 IN 84 408 375-3003 no no
## 679 NY 65 510 383-8878 no no
## 680 TX 75 415 384-2372 yes no
## 681 KS 116 510 377-7107 no no
## 682 WV 107 415 361-1581 no no
## 683 NE 189 415 417-7888 no yes
## 684 ND 123 408 383-8364 no no
## 685 AK 110 408 396-2335 no no
## 686 CO 63 415 408-4530 no yes
## 687 ME 176 415 408-6621 no no
## 688 SC 108 510 393-7522 no no
## 689 MN 13 510 338-7120 no yes
## 690 CO 71 415 357-4265 no no
## 691 KS 88 415 398-8801 no no
## 692 MS 137 510 346-2347 no no
## 693 NE 82 408 343-2741 no no
## 694 NJ 92 510 420-8242 no yes
## 695 WI 165 510 402-7746 no no
## 696 MT 96 415 332-1494 no no
## 697 AR 156 415 388-6223 no no
## 698 WA 63 408 404-9539 no no
## 699 NH 37 415 341-7332 no no
## 700 IA 98 415 338-7886 no no
## 701 WV 121 415 332-5596 no no
## 702 RI 94 415 348-9945 no no
## 703 KS 99 415 407-1896 no no
## 704 MT 163 510 398-9408 no yes
## 705 MO 161 510 369-8005 no no
## 706 HI 99 415 346-2530 no no
## 707 CO 108 415 400-5984 no no
## 708 CT 84 510 351-1007 no yes
## 709 ID 83 415 345-5980 yes yes
## 710 DC 139 510 368-8964 no no
## 711 TN 69 510 358-1912 no no
## 712 WY 129 510 379-3132 no no
## 713 MO 106 415 340-9910 no no
## 714 VA 158 415 396-2719 no no
## 715 SD 168 415 369-6204 no yes
## 716 WV 115 510 420-9971 yes no
## 717 GA 57 408 410-3782 yes yes
## 718 AZ 67 415 404-4481 no no
## 719 AK 127 408 383-9255 no no
## 720 AK 78 510 418-9385 no no
## 721 CT 100 415 360-9676 no yes
## 722 UT 103 510 327-3587 no yes
## 723 KY 113 415 385-4715 no no
## 724 MI 78 510 414-2695 no no
## 725 OR 129 510 331-5999 no yes
## 726 TN 57 510 337-7739 no no
## 727 WV 82 408 388-6658 no no
## 728 NJ 64 415 405-6943 no no
## 729 MS 86 510 382-4084 no yes
## 730 ME 151 415 352-8249 no yes
## 731 WY 94 510 353-8363 no no
## 732 WY 90 415 416-2825 no no
## 733 IN 48 510 342-6696 no no
## 734 NM 85 408 338-9210 no yes
## 735 NJ 93 415 328-1768 yes yes
## 736 DC 169 415 406-5870 yes no
## 737 UT 68 415 398-3834 no no
## 738 KY 91 415 330-7754 yes no
## 739 KS 68 510 414-9054 no no
## 740 MI 101 510 350-2832 no no
## 741 UT 67 510 414-9027 no yes
## 742 NE 66 415 337-1225 no no
## 743 FL 116 415 394-6577 no yes
## 744 LA 158 408 359-6995 no no
## 745 MT 78 415 377-7561 no no
## 746 WA 119 415 380-6631 no yes
## 747 MI 120 415 390-8876 no no
## 748 KY 155 510 413-2201 no no
## 749 LA 106 408 374-2073 no no
## 750 NM 87 510 417-1272 yes no
## 751 AL 146 415 358-1129 no yes
## 752 MO 101 415 394-1211 no yes
## 753 CO 22 510 327-1319 no yes
## 754 TX 90 415 399-4413 no no
## 755 NY 41 415 393-9985 no no
## 756 OR 69 415 401-8377 no no
## 757 WY 33 415 331-3202 no no
## 758 UT 112 415 358-5953 no no
## 759 LA 108 510 380-7624 no yes
## 760 NV 136 415 416-5261 no yes
## 761 NC 128 510 417-5067 no no
## 762 NC 27 408 345-6515 no no
## 763 WY 161 415 406-1349 yes no
## 764 TN 33 415 360-9038 no yes
## 765 FL 120 415 348-3444 no yes
## 766 CA 113 415 370-2892 no no
## 767 PA 122 415 383-4061 yes no
## 768 WV 148 415 391-7937 no yes
## 769 NJ 74 415 389-4083 no no
## 770 MT 106 415 410-9633 no no
## 771 MN 179 415 418-9502 no no
## 772 WI 149 415 339-6637 yes yes
## 773 ID 77 510 356-3403 no no
## 774 MA 127 408 371-9457 yes no
## 775 OR 80 415 391-8087 no no
## 776 MT 106 510 392-6420 no no
## 777 AL 61 415 399-4094 no yes
## 778 ND 135 510 378-4013 yes yes
## 779 LA 115 415 386-6306 no yes
## 780 ND 167 408 359-3618 yes no
## 781 MS 107 510 340-8875 yes no
## 782 WV 112 415 330-2693 yes no
## 783 WI 35 510 403-7627 no yes
## 784 KS 103 408 342-3678 yes no
## 785 MO 107 415 344-9943 no yes
## 786 PA 69 415 390-5686 no no
## 787 SD 85 408 358-5826 no no
## 788 NJ 24 408 393-7826 no no
## 789 AL 90 415 335-9786 no no
## 790 ME 137 510 368-9860 no no
## 791 AZ 92 415 416-9522 yes yes
## 792 VT 38 415 416-7307 no no
## 793 NV 69 510 397-6789 yes yes
## 794 WI 45 408 335-9501 no no
## 795 HI 73 408 388-1250 no no
## 796 DE 92 415 386-1374 no no
## 797 AZ 113 415 346-8112 no yes
## 798 VA 68 408 364-9040 yes no
## 799 GA 135 415 366-3944 no yes
## 800 AZ 100 415 331-9861 no yes
## 801 MN 96 415 330-2881 no yes
## 802 ME 108 510 402-9558 no no
## 803 FL 84 510 341-3180 no no
## 804 WA 134 408 371-8598 no no
## 805 MT 72 415 398-8385 no no
## 806 AL 83 408 333-4154 no no
## 807 WV 137 408 330-3589 no no
## 808 GA 56 415 417-1477 no yes
## 809 OH 61 510 327-5525 yes yes
## 810 DE 171 510 363-8244 no yes
## 811 NE 123 510 419-9104 no no
## 812 FL 58 510 363-1560 no no
## 813 AK 156 510 341-4075 no no
## 814 WI 166 510 366-9074 no no
## 815 WA 75 510 367-1424 no yes
## 816 KY 75 415 341-1191 no no
## 817 OH 83 510 342-9480 no no
## 818 UT 243 510 355-9360 no no
## 819 NM 153 408 343-1538 no no
## 820 MN 150 415 335-2331 no no
## 821 WV 92 510 335-7257 no yes
## 822 MN 80 415 332-2137 no no
## 823 AL 134 415 352-2998 no no
## 824 PA 77 510 346-6941 no yes
## 825 DE 147 510 400-2203 no no
## 826 MO 74 415 421-2955 no no
## 827 IL 138 510 331-6629 yes no
## 828 FL 143 415 343-6314 no no
## 829 HI 64 415 414-6638 no no
## 830 ME 120 510 350-5883 no no
## 831 CO 121 408 409-4447 yes no
## 832 NH 88 415 376-4856 no no
## 833 SC 87 408 335-1874 no no
## 834 IN 100 510 397-6255 no no
## 835 FL 104 415 381-5047 no no
## 836 GA 27 510 403-6850 no no
## 837 IL 81 415 375-3658 no yes
## 838 NC 64 510 341-2603 yes yes
## 839 VT 107 510 342-5062 no yes
## 840 DC 88 415 354-1558 no yes
## 841 VT 111 408 351-9537 no no
## 842 NV 77 415 401-1252 no no
## 843 OR 67 415 366-9538 yes no
## 844 AL 102 408 364-7622 no no
## 845 ND 146 408 393-9918 no yes
## 846 FL 144 415 376-4484 no yes
## 847 NE 96 415 410-6791 no no
## 848 ND 70 415 343-2392 no yes
## 849 ME 149 408 408-4323 no no
## 850 IL 129 415 395-1718 no no
## 851 WA 166 408 354-9492 no no
## 852 MA 136 408 367-8168 yes no
## 853 KS 149 510 340-3500 no no
## 854 RI 70 415 369-4962 no no
## 855 MO 120 415 334-8967 no yes
## 856 IA 66 510 402-2377 no no
## 857 WY 104 408 366-3917 no no
## 858 NV 160 415 333-3531 no no
## 859 WI 129 415 333-8954 no yes
## 860 AL 93 408 374-9203 no no
## 861 HI 169 415 334-3289 no no
## 862 MO 58 415 353-7822 no no
## 863 CA 75 510 350-1422 no yes
## 864 MO 45 408 385-8406 no no
## 865 CT 155 510 380-7277 no no
## 866 MD 52 415 352-1798 no no
## 867 OH 119 415 385-7922 no yes
## 868 NV 86 510 353-7730 no no
## 869 MD 42 408 337-7163 no no
## 870 NE 127 510 348-5567 yes no
## 871 OH 123 408 420-9575 no no
## 872 MA 98 510 366-3358 no no
## 873 OK 149 510 359-9972 no yes
## 874 MA 160 408 387-3332 no no
## 875 WA 103 415 354-6960 no no
## 876 HI 132 415 405-3335 no yes
## 877 CO 137 415 379-4257 no no
## 878 FL 129 415 355-4992 yes no
## 879 WI 62 415 383-6373 no no
## 880 ID 122 510 382-7993 no yes
## 881 WY 32 408 422-5865 no no
## 882 GA 86 510 410-9961 no no
## 883 FL 130 415 343-9946 no no
## 884 WY 42 408 357-7060 no no
## 885 DE 73 415 355-9541 no no
## 886 ME 66 408 378-4145 no yes
## 887 DC 103 510 386-2317 no yes
## 888 IA 128 408 335-8146 no no
## 889 CO 104 415 377-2235 no no
## 890 MN 103 415 386-9141 no no
## 891 VT 124 415 416-5623 no no
## 892 AZ 87 510 327-3053 no no
## 893 LA 109 415 395-6195 no yes
## 894 MO 167 415 397-8772 yes no
## 895 ME 97 510 346-7656 no no
## 896 MD 106 415 343-2350 no no
## 897 VT 125 415 372-4722 no no
## 898 DC 108 408 399-8615 no yes
## 899 WY 125 415 379-8248 no no
## 900 VA 89 415 414-6219 no yes
## 901 VA 72 510 387-1343 yes yes
## 902 CT 23 510 370-5527 no no
## 903 HI 149 510 393-8736 no no
## 904 WI 73 415 402-7626 no no
## 905 MD 61 415 370-2688 no no
## 906 WV 161 415 418-9036 no no
## 907 VT 73 408 417-2035 no no
## 908 UT 118 415 355-3602 no yes
## 909 CO 23 408 393-4027 no no
## 910 NC 127 415 418-5141 no yes
## 911 NJ 42 415 406-1247 no yes
## 912 AR 118 415 402-3892 no no
## 913 IA 45 510 332-2965 no no
## 914 GA 50 408 377-1218 no yes
## 915 MO 179 510 355-2464 no no
## 916 MO 152 408 404-4611 no no
## 917 WY 105 415 373-2339 no no
## 918 HI 72 415 410-3503 no no
## 919 PA 52 408 410-4739 no no
## 920 TX 125 415 365-3562 no no
## 921 VA 143 510 387-7641 no no
## 922 RI 65 415 385-9744 no no
## 923 WI 80 415 398-5006 no no
## 924 MS 1 415 408-3977 no no
## 925 KY 60 408 334-2729 no no
## 926 NC 43 415 334-7685 no no
## 927 NV 143 415 350-9228 no no
## 928 UT 81 415 407-5774 no yes
## 929 ME 205 510 413-4039 no yes
## 930 HI 24 415 343-2077 no no
## 931 OH 74 415 336-5661 no no
## 932 WV 77 510 355-4143 no no
## 933 OK 74 415 366-5918 no no
## 934 KY 74 510 368-7555 yes no
## 935 AL 200 408 408-2119 no no
## 936 MD 86 408 329-2789 no no
## 937 NE 91 510 334-1508 no yes
## 938 DC 76 415 337-1506 no no
## 939 TX 130 415 396-8400 no no
## 940 OH 56 408 349-2654 no no
## 941 DE 117 415 417-2716 no no
## 942 IA 63 510 402-1725 no no
## 943 VT 126 415 403-3229 no no
## 944 OR 132 510 353-6056 no no
## 945 NV 81 415 399-9802 no yes
## 946 NC 122 415 366-7069 no no
## 947 NJ 46 408 332-5949 no no
## 948 MN 150 415 393-6376 no yes
## 949 ID 99 408 354-7025 no no
## 950 AL 87 408 351-6585 no no
## 951 AK 108 415 330-5462 no no
## 952 VT 101 415 407-2292 no no
## 953 PA 53 415 340-3011 no no
## 954 AK 132 415 345-9153 no yes
## 955 CA 158 510 379-5503 no no
## 956 MS 114 415 389-6790 no yes
## 957 AR 77 415 408-3610 no yes
## 958 NV 144 415 375-8238 yes no
## 959 AL 91 510 378-5633 no yes
## 960 GA 58 408 389-9120 no no
## 961 AR 5 415 380-2758 no no
## 962 MA 97 408 402-2728 no no
## 963 NJ 107 415 354-9062 no no
## 964 MO 142 415 417-2054 no yes
## 965 NY 9 408 353-1941 no yes
## 966 AZ 73 415 328-1522 no no
## 967 NJ 48 510 408-4529 no yes
## 968 WV 43 408 417-5320 no no
## 969 NM 122 408 370-9755 no yes
## 970 SC 93 415 372-4835 no no
## 971 VT 85 415 334-6605 no no
## 972 TN 59 415 399-5564 no no
## 973 LA 87 415 392-2887 no no
## 974 OH 137 408 328-2110 no no
## 975 OR 21 510 383-5976 no yes
## 976 DE 129 510 332-6181 no no
## 977 KY 104 415 330-5255 no no
## 978 GA 93 408 413-5190 no yes
## 979 VT 63 415 394-7447 no no
## 980 OR 161 415 353-7096 no no
## 981 TX 50 510 395-6002 no no
## 982 MO 103 408 372-9816 no yes
## 983 ND 84 415 400-7253 no yes
## 984 MN 92 510 344-7470 no no
## 985 NV 77 415 378-8572 no no
## 986 NY 64 415 345-9140 yes no
## 987 FL 159 415 340-5460 no yes
## 988 KS 110 415 369-8024 yes yes
## 989 NV 138 510 395-8595 no no
## 990 NV 178 408 359-4587 no no
## 991 SC 38 415 375-5439 no yes
## 992 MI 50 415 361-3779 no yes
## 993 MI 45 510 375-8934 no yes
## 994 TN 70 510 395-4757 no no
## 995 NY 147 510 421-7205 no yes
## 996 NV 94 510 379-8805 no no
## 997 IL 179 510 348-2150 no no
## 998 MS 116 415 417-9128 no no
## 999 ND 59 510 351-4226 no no
## 1000 NC 165 415 330-6630 no no
## 1001 MI 133 408 387-9137 no no
## 1002 TN 140 415 372-3987 no no
## 1003 VT 93 408 408-5183 no yes
## 1004 OK 52 510 412-9357 no yes
## 1005 DE 64 415 402-3599 no yes
## 1006 ND 12 510 379-5211 yes no
## 1007 OR 48 415 405-9217 no no
## 1008 NY 181 408 340-9200 no no
## 1009 MO 168 415 339-9026 no yes
## 1010 FL 155 415 343-4772 no no
## 1011 ND 105 510 345-2108 no no
## 1012 NY 11 415 401-4650 no no
## 1013 ND 182 415 400-3945 no no
## 1014 NY 104 415 338-3781 no no
## 1015 OH 102 415 342-6316 no no
## 1016 AL 122 415 336-5920 no no
## 1017 SC 41 415 332-1060 no no
## 1018 GA 132 415 418-3426 no no
## 1019 WY 76 415 408-6326 no no
## 1020 WV 13 415 334-6142 no no
## 1021 HI 115 415 336-6128 no yes
## 1022 WV 67 408 406-6708 no no
## 1023 LA 154 510 388-8670 no no
## 1024 AR 100 510 363-5853 no no
## 1025 AK 146 510 383-6544 yes no
## 1026 DC 148 415 378-2940 no yes
## 1027 AL 67 415 338-7683 no yes
## 1028 UT 161 510 329-2786 yes no
## 1029 KS 70 415 369-9465 no no
## 1030 MN 116 510 337-3769 no no
## 1031 VA 99 415 400-6257 no yes
## 1032 UT 87 415 411-6663 no no
## 1033 IN 87 510 384-3101 no no
## 1034 CT 70 408 339-5329 no no
## 1035 DE 131 408 388-9944 no no
## 1036 VT 119 510 403-1769 no no
## 1037 MO 119 408 390-1612 no yes
## 1038 RI 87 510 421-7214 yes no
## 1039 CA 112 415 338-6962 no no
## 1040 RI 75 415 333-9826 no no
## 1041 CT 150 510 411-8549 no no
## 1042 IN 161 510 381-9234 no yes
## 1043 FL 91 510 387-9855 yes yes
## 1044 KS 124 415 371-6990 no no
## 1045 NY 94 510 417-3046 yes no
## 1046 TX 217 408 385-7082 no no
## 1047 RI 158 510 365-5886 no no
## 1048 NV 102 415 373-5196 no no
## 1049 UT 85 510 327-6194 no no
## 1050 OK 79 510 381-4565 no no
## 1051 MN 139 510 357-9832 no yes
## 1052 NC 103 415 396-4845 no no
## 1053 OR 98 415 378-6772 yes no
## 1054 NH 78 408 353-4296 no no
## 1055 AK 50 408 362-8331 no no
## 1056 OR 161 415 362-4685 no no
## 1057 KS 67 408 383-1431 no no
## 1058 WV 86 415 332-2258 no yes
## 1059 GA 92 510 375-8304 no no
## 1060 NM 174 415 340-5580 no no
## 1061 OH 124 510 362-1490 no no
## 1062 ND 132 415 336-4281 no yes
## 1063 RI 190 415 361-1315 no yes
## 1064 HI 101 510 342-5906 no no
## 1065 WY 185 415 405-7904 yes yes
## 1066 NY 68 415 349-4762 no yes
## 1067 KS 117 510 385-3263 no yes
## 1068 LA 118 408 405-9496 no no
## 1069 PA 124 415 396-6775 no no
## 1070 NV 22 510 393-6475 no no
## 1071 MN 75 415 379-7779 no no
## 1072 PA 134 408 408-8650 no no
## 1073 MO 164 408 400-3497 no yes
## 1074 NY 44 510 407-9244 no no
## 1075 ME 177 415 406-8809 no no
## 1076 NH 110 408 358-1778 no no
## 1077 WY 53 415 337-4339 no yes
## 1078 NY 108 415 344-7197 no no
## 1079 ME 80 408 333-7631 no no
## 1080 MN 158 408 372-6623 no no
## 1081 OH 114 415 363-2602 no no
## 1082 NC 64 408 387-7757 no yes
## 1083 SD 88 415 397-5381 no no
## 1084 UT 82 510 406-4604 yes no
## 1085 KY 111 415 376-9513 no no
## 1086 MT 60 408 360-1852 no no
## 1087 NJ 113 408 421-7270 no no
## 1088 FL 109 408 371-9482 no no
## 1089 IN 105 510 337-4101 no yes
## 1090 DE 85 510 420-2796 no no
## 1091 AL 131 510 366-4225 no no
## 1092 ME 59 510 398-4567 no no
## 1093 SD 148 408 388-4571 no no
## 1094 VA 210 408 360-8666 no no
## 1095 AK 115 415 333-3704 no no
## 1096 ID 106 510 383-2566 no no
## 1097 RI 93 415 406-5584 no no
## 1098 KY 57 415 344-4691 no yes
## 1099 ND 98 510 347-9737 no no
## 1100 HI 157 415 333-7961 no no
## 1101 WI 116 415 364-2439 no yes
## 1102 WV 30 510 411-8043 no no
## 1103 NJ 111 510 332-5084 no no
## 1104 KS 52 415 413-4831 no no
## 1105 AL 72 415 343-4806 no no
## 1106 NJ 135 510 401-8735 no yes
## 1107 NC 86 510 391-8626 no no
## 1108 DE 98 415 327-5817 no yes
## 1109 WY 151 510 381-4712 no no
## 1110 ID 118 415 335-3320 no no
## 1111 NY 117 415 415-8780 no no
## 1112 MO 55 510 362-1146 no no
## 1113 ID 82 408 352-7413 no no
## 1114 IA 152 415 387-6716 no no
## 1115 TN 108 408 352-1127 no yes
## 1116 OH 98 408 368-1288 no no
## 1117 IL 130 415 403-5279 no no
## 1118 FL 136 408 397-9333 yes no
## 1119 MA 47 415 411-7353 no no
## 1120 OK 189 415 383-2537 no no
## 1121 KY 107 415 330-4419 no no
## 1122 MI 91 415 390-7930 no no
## 1123 NE 159 415 362-5111 no no
## 1124 VA 11 408 358-6796 no yes
## 1125 NY 167 415 409-7494 no no
## 1126 MT 111 408 400-1636 no no
## 1127 VT 99 408 389-2747 no yes
## 1128 KS 159 415 415-2176 no yes
## 1129 VA 114 415 377-8067 yes yes
## 1130 AL 71 415 362-7835 no no
## 1131 PA 122 415 361-5225 no no
## 1132 AL 100 408 333-3447 no yes
## 1133 WV 83 415 341-3044 no yes
## 1134 NV 64 408 350-7306 no no
## 1135 TN 105 408 353-8849 no no
## 1136 ID 144 415 402-3476 no yes
## 1137 WY 106 415 338-6018 yes yes
## 1138 TX 19 510 409-3520 no yes
## 1139 MA 46 408 357-1085 no no
## 1140 IL 127 510 353-3285 no no
## 1141 LA 9 415 409-9885 no yes
## 1142 CO 157 415 388-7701 no no
## 1143 UT 105 415 385-8184 no no
## 1144 MI 105 415 345-2863 no yes
## 1145 NH 155 408 353-6300 no no
## 1146 ID 31 415 389-5649 no no
## 1147 WA 161 415 378-8137 no no
## 1148 MN 95 408 340-4627 no yes
## 1149 NY 122 415 352-6833 no no
## 1150 MD 37 415 420-2000 yes no
## 1151 GA 132 415 368-5437 no no
## 1152 HI 119 408 418-8170 no yes
## 1153 AL 16 408 403-9417 no no
## 1154 CT 99 408 330-6165 no no
## 1155 CO 76 408 412-4185 no yes
## 1156 KS 167 415 409-4734 no no
## 1157 NJ 129 415 348-9828 no no
## 1158 FL 116 408 418-8850 no no
## 1159 CA 60 415 330-8351 yes no
## 1160 KS 128 415 347-7773 no no
## 1161 TX 47 408 392-6841 no yes
## 1162 MN 40 510 354-2189 yes no
## 1163 AK 173 510 349-9060 no no
## 1164 OR 157 510 334-1311 no yes
## 1165 MS 66 408 415-3120 no yes
## 1166 VT 50 415 387-5891 yes yes
## 1167 UT 72 415 368-8026 no no
## 1168 KS 130 510 332-9446 no no
## 1169 NV 143 408 393-5284 no no
## 1170 DE 89 510 376-1677 yes no
## 1171 IN 108 415 392-2268 no no
## 1172 TX 32 408 396-4311 no no
## 1173 MA 166 415 363-4005 no no
## 1174 VT 109 408 344-9966 no no
## 1175 CA 72 408 337-7377 no yes
## 1176 IA 134 415 373-7037 no yes
## 1177 NH 13 415 356-7580 no no
## 1178 GA 90 415 390-3401 no no
## 1179 WI 111 415 350-9313 no yes
## 1180 CO 101 408 420-9009 no yes
## 1181 SC 72 415 415-2641 no no
## 1182 MI 67 510 392-4929 no yes
## 1183 MD 172 408 346-5068 no no
## 1184 IN 154 510 389-2631 no yes
## 1185 ME 69 510 368-3808 no no
## 1186 DC 123 415 406-8599 no no
## 1187 TN 130 415 386-7456 no yes
## 1188 FL 142 415 357-4936 no yes
## 1189 WA 29 415 397-7411 no no
## 1190 HI 87 408 353-6218 no yes
## 1191 NE 149 415 369-5942 no no
## 1192 TN 146 408 416-8543 yes no
## 1193 MD 88 415 358-4576 yes no
## 1194 NM 119 415 352-5118 yes yes
## 1195 VT 48 510 408-2621 no no
## 1196 OR 135 415 353-3994 no no
## 1197 IN 100 510 367-4277 no no
## 1198 MO 98 415 354-3237 no no
## 1199 FL 75 510 394-8504 no yes
## 1200 DC 180 415 370-4139 no yes
## 1201 VT 100 415 382-6135 no yes
## 1202 OH 119 415 359-5718 no yes
## 1203 MO 86 415 385-3111 no no
## 1204 LA 155 408 353-4880 no yes
## 1205 IL 78 415 343-7019 yes no
## 1206 NJ 153 415 419-6133 no no
## 1207 IA 92 510 350-7344 no yes
## 1208 WA 13 510 397-6064 no yes
## 1209 NE 154 415 363-6896 no no
## 1210 CT 144 510 416-9021 yes yes
## 1211 WV 48 408 408-3269 no no
## 1212 ND 94 408 408-9463 no no
## 1213 UT 139 415 340-7062 no no
## 1214 MS 126 415 417-4309 no no
## 1215 MN 122 415 421-2659 no no
## 1216 NH 139 510 383-2017 no no
## 1217 LA 95 415 411-6294 no no
## 1218 ME 80 408 332-9525 no yes
## 1219 KS 131 415 401-5012 no yes
## 1220 KS 36 510 368-8835 no no
## 1221 NV 180 510 351-1382 no no
## 1222 MT 25 415 359-7694 no no
## 1223 MT 113 415 419-5505 no no
## 1224 ID 88 415 341-4570 no yes
## 1225 AK 120 415 366-6991 no no
## 1226 UT 74 415 377-7399 no no
## 1227 AR 109 510 377-9092 no no
## 1228 LA 162 510 373-6681 no yes
## 1229 KS 124 510 417-7736 no yes
## 1230 OR 177 408 393-2812 no no
## 1231 WI 91 510 398-3176 no no
## 1232 CO 105 408 334-8694 no no
## 1233 KS 24 510 369-5449 no no
## 1234 IL 48 510 380-5246 no no
## 1235 IA 86 408 390-3873 no no
## 1236 AZ 163 510 354-4568 no no
## 1237 NE 91 510 339-6968 no no
## 1238 ID 56 510 379-5933 no no
## 1239 OH 147 415 365-5682 yes yes
## 1240 TX 64 415 382-8518 no no
## 1241 TN 108 510 356-8449 no yes
## 1242 OK 159 510 333-3460 no no
## 1243 ND 136 510 375-8596 yes no
## 1244 MT 116 415 384-5907 no yes
## 1245 NC 45 408 373-2903 no yes
## 1246 MN 122 415 361-7702 no no
## 1247 MN 138 415 388-5850 no no
## 1248 MA 132 415 405-6298 no no
## 1249 PA 101 415 368-2074 yes no
## 1250 GA 58 510 328-5050 no no
## 1251 NV 81 415 395-5783 no no
## 1252 TX 87 415 420-7301 no no
## 1253 ME 116 510 328-2478 no no
## 1254 RI 85 415 381-2460 yes no
## 1255 MN 62 510 390-9811 no yes
## 1256 NH 90 415 373-5670 no no
## 1257 TN 98 415 351-7016 no no
## 1258 UT 73 415 394-9934 no no
## 1259 RI 107 510 422-8268 yes no
## 1260 NH 55 408 373-7690 no yes
## 1261 AK 76 415 366-9781 no yes
## 1262 NC 30 510 404-5427 no no
## 1263 AZ 157 415 389-9783 no no
## 1264 MA 40 408 351-7005 no yes
## 1265 TN 72 408 348-2009 no no
## 1266 WY 95 415 340-4236 no yes
## 1267 IA 42 415 348-1528 no no
## 1268 IN 86 415 365-5039 no no
## 1269 NJ 131 415 411-1810 no no
## 1270 FL 55 510 364-7644 no yes
## 1271 MT 74 415 335-9066 no no
## 1272 ND 81 408 362-7581 yes yes
## 1273 MI 81 408 346-1095 no no
## 1274 MT 28 415 357-9136 no no
## 1275 AL 111 510 390-7863 no no
## 1276 NV 3 510 344-2416 no yes
## 1277 MI 51 415 373-1448 no no
## 1278 FL 68 415 360-7076 no yes
## 1279 NY 163 408 413-2241 no no
## 1280 KS 87 510 343-3961 no no
## 1281 NC 58 510 375-4107 no no
## 1282 MN 109 408 414-7410 no no
## 1283 RI 111 415 351-2535 no no
## 1284 UT 144 415 416-9615 no no
## 1285 OR 135 415 377-1293 no no
## 1286 SC 109 415 388-6479 no yes
## 1287 IL 107 415 390-2755 no yes
## 1288 OH 149 408 340-5930 no no
## 1289 MA 56 510 401-3622 no no
## 1290 OR 129 408 382-1104 no no
## 1291 CA 92 408 355-9324 no no
## 1292 WV 67 415 393-4843 no yes
## 1293 VT 120 415 401-4052 no no
## 1294 ID 166 415 385-1830 no no
## 1295 OR 66 408 348-7409 no no
## 1296 GA 76 408 361-4910 no no
## 1297 ME 79 415 415-6578 no no
## 1298 HI 98 415 395-5015 no yes
## 1299 AZ 141 510 369-6012 no yes
## 1300 UT 49 415 394-4520 no no
## 1301 IA 46 510 380-5873 no no
## 1302 CT 137 415 372-5384 no no
## 1303 WA 171 408 419-1863 no no
## 1304 VA 10 415 352-5697 no no
## 1305 CO 88 510 373-4274 no no
## 1306 LA 89 415 382-4024 no no
## 1307 TX 82 415 395-9215 no no
## 1308 SD 139 510 331-9149 no no
## 1309 VA 87 415 347-3958 no no
## 1310 NY 137 415 389-2540 yes no
## 1311 WA 45 510 399-3083 no no
## 1312 WI 90 415 420-8308 no no
## 1313 TN 103 415 384-7724 no no
## 1314 CT 100 415 389-2114 no no
## 1315 WA 110 510 335-4414 no no
## 1316 NH 124 415 370-5361 no no
## 1317 MT 10 510 374-5965 no no
## 1318 NE 89 415 420-6414 no yes
## 1319 WA 121 408 392-2708 no no
## 1320 WI 101 415 352-7234 no no
## 1321 AR 103 415 337-9878 no yes
## 1322 WI 51 408 350-7288 no no
## 1323 DE 2 415 415-8448 yes no
## 1324 NH 111 510 392-6331 no no
## 1325 VA 118 415 392-3315 no no
## 1326 TN 17 510 382-5401 no yes
## 1327 VA 130 408 389-7012 no no
## 1328 ID 193 415 411-4714 no no
## 1329 TN 114 510 343-3846 no no
## 1330 AZ 137 415 370-4395 no no
## 1331 MT 185 408 422-4394 no yes
## 1332 OK 101 408 405-1780 no no
## 1333 ID 95 415 393-2220 no yes
## 1334 NV 7 408 355-8299 no yes
## 1335 KS 126 408 379-8681 no no
## 1336 WY 71 415 409-7034 no no
## 1337 MS 124 415 358-1922 no no
## 1338 WY 97 510 346-1629 yes no
## 1339 TX 28 415 347-1870 no no
## 1340 WA 90 415 374-9576 yes no
## 1341 HI 190 408 380-1096 no no
## 1342 IL 31 415 396-5790 no yes
## 1343 AK 52 415 356-5244 no yes
## 1344 MD 73 510 341-1412 no no
## 1345 MA 111 415 387-7371 no no
## 1346 SD 98 415 392-2555 no no
## 1347 PA 106 408 403-9167 yes no
## 1348 NC 111 408 338-6550 no no
## 1349 VT 59 408 357-5801 no no
## 1350 KY 71 510 403-1953 no yes
## 1351 WA 55 408 357-6039 no no
## 1352 LA 13 415 388-9653 no no
## 1353 WA 136 415 359-2915 no yes
## 1354 ME 123 408 381-4562 no no
## 1355 WI 105 408 406-2213 no no
## 1356 TX 50 408 330-6436 no yes
## 1357 IA 118 415 332-4289 no no
## 1358 AZ 97 408 386-3596 no no
## 1359 ND 51 510 337-3740 no no
## 1360 VT 73 415 414-1496 no no
## 1361 HI 35 415 349-7291 no no
## 1362 WY 64 415 385-1985 no no
## 1363 WV 63 510 329-7102 no no
## 1364 OK 117 415 394-2553 no yes
## 1365 CT 115 415 339-1330 no no
## 1366 UT 162 408 398-1959 no no
## 1367 NY 89 415 408-7015 no no
## 1368 VA 94 415 384-9254 yes no
## 1369 VT 129 408 355-9475 no no
## 1370 SD 86 415 334-1337 no no
## 1371 PA 96 510 359-1441 no no
## 1372 ND 190 415 391-5442 no no
## 1373 CT 80 408 374-1551 no no
## 1374 SC 108 415 399-6233 no no
## 1375 MI 97 408 337-4749 no yes
## 1376 VT 84 415 403-5552 no yes
## 1377 OH 65 415 405-3097 no no
## 1378 VT 131 415 364-9240 no yes
## 1379 IL 58 415 404-9348 yes yes
## 1380 MO 36 415 336-1462 no no
## 1381 WI 54 415 364-8981 no no
## 1382 NJ 45 510 412-7606 no no
## 1383 GA 125 415 380-6342 no yes
## 1384 VT 72 415 418-3017 no yes
## 1385 CT 141 408 367-3648 no no
## 1386 AZ 113 510 341-5892 no no
## 1387 SD 20 415 334-4678 no yes
## 1388 CT 212 415 366-6751 no no
## 1389 IN 99 415 397-8512 yes no
## 1390 OH 94 510 367-9495 no no
## 1391 NY 40 510 379-2991 no no
## 1392 NE 86 510 356-4832 no yes
## 1393 OK 101 415 413-4040 no no
## 1394 NC 170 415 366-4444 no no
## 1395 HI 105 510 394-3806 no no
## 1396 UT 103 415 368-5647 no no
## 1397 MD 140 415 412-1076 yes yes
## 1398 VT 101 510 413-7655 no no
## 1399 TX 98 408 371-2316 no yes
## 1400 AZ 104 408 420-3346 no no
## 1401 VA 115 415 367-3971 no no
## 1402 WI 112 408 417-5813 no no
## 1403 NE 70 415 421-8535 no no
## 1404 KY 126 510 375-1721 no no
## 1405 NV 87 510 331-8484 no yes
## 1406 MT 125 510 366-5829 no no
## 1407 MO 86 415 367-7906 no no
## 1408 MS 73 415 412-2520 no yes
## 1409 NM 232 408 386-9177 no no
## 1410 NJ 1 415 420-6780 no yes
## 1411 NH 133 408 401-1454 no no
## 1412 NC 103 510 379-2508 no no
## 1413 MT 131 415 353-3492 no yes
## 1414 SD 95 408 406-4840 no yes
## 1415 VA 182 415 391-7982 no no
## 1416 LA 99 510 379-9821 no no
## 1417 NV 27 510 398-7414 no no
## 1418 AK 141 408 338-8566 no no
## 1419 OH 29 415 397-3058 yes yes
## 1420 NM 65 415 389-8096 no no
## 1421 MI 81 415 393-6840 yes no
## 1422 MN 37 415 360-7404 no yes
## 1423 WY 107 510 411-5740 no yes
## 1424 WY 127 415 412-3726 yes yes
## 1425 WA 78 408 372-7326 no no
## 1426 NM 55 510 338-9873 no no
## 1427 VA 86 415 383-4322 no yes
## 1428 RI 176 415 401-7654 no no
## 1429 AL 96 415 410-5455 yes no
## 1430 WV 11 510 419-4310 no yes
## 1431 WV 48 415 367-2056 no yes
## 1432 NJ 127 510 363-6695 no no
## 1433 TN 63 415 374-6217 no no
## 1434 MI 79 510 337-9569 no no
## 1435 UT 47 408 350-9720 no yes
## 1436 IL 89 415 380-4080 yes yes
## 1437 MI 83 510 333-7460 no yes
## 1438 WI 126 415 378-3722 yes yes
## 1439 ND 60 510 353-9339 no no
## 1440 VT 122 415 386-6535 no no
## 1441 WA 136 408 403-5575 no no
## 1442 NC 172 408 331-5962 no yes
## 1443 ME 102 510 390-9627 no no
## 1444 SD 113 415 406-4560 yes no
## 1445 WV 79 415 359-6931 no no
## 1446 ID 55 510 331-7342 no yes
## 1447 LA 111 415 367-2227 no yes
## 1448 GA 160 415 335-8836 no no
## 1449 FL 110 415 398-6703 no no
## 1450 CO 192 415 370-8379 no no
## 1451 NV 93 408 335-3880 no no
## 1452 IN 101 415 375-8761 no yes
## 1453 VA 77 510 367-1398 no no
## 1454 UT 105 415 395-7857 no yes
## 1455 UT 133 408 398-8745 no yes
## 1456 MO 131 408 386-3717 no no
## 1457 CT 106 510 330-1175 no yes
## 1458 HI 118 415 418-6752 no no
## 1459 MD 125 408 349-6464 no no
## 1460 VA 95 415 366-7331 no no
## 1461 MT 80 415 361-8288 no no
## 1462 SC 145 408 377-6635 no no
## 1463 CO 37 408 408-1513 no no
## 1464 ID 87 415 370-7546 no no
## 1465 AL 69 415 389-4278 no no
## 1466 CO 83 510 379-3012 no no
## 1467 UT 195 415 355-3620 no no
## 1468 DE 67 415 413-7743 yes yes
## 1469 OH 75 510 372-2296 no yes
## 1470 RI 123 415 333-9728 no yes
## 1471 FL 41 415 415-6110 no yes
## 1472 OH 75 415 340-9803 no no
## 1473 MD 76 415 400-7002 yes no
## 1474 IL 86 415 395-7435 yes no
## 1475 PA 140 408 336-7143 no no
## 1476 AZ 70 415 352-2175 no no
## 1477 NH 121 510 346-6352 no yes
## 1478 RI 112 415 405-7467 no no
## 1479 HI 118 415 379-8526 no no
## 1480 NJ 66 415 410-5713 no yes
## 1481 WI 78 408 408-5916 no no
## 1482 MD 129 415 370-5626 no yes
## 1483 OR 6 408 408-1331 no no
## 1484 NV 107 510 419-9688 yes no
## 1485 AR 107 415 343-5219 yes no
## 1486 MT 138 415 401-5586 no no
## 1487 CT 103 510 377-9178 no no
## 1488 UT 116 415 345-5639 no yes
## 1489 GA 189 408 336-3488 no no
## 1490 NV 161 415 414-6426 no no
## 1491 TN 1 415 335-5591 no no
## 1492 DE 89 408 421-9144 no no
## 1493 NY 64 408 422-7728 no no
## 1494 MT 126 415 344-3466 no yes
## 1495 IA 129 415 398-7978 no no
## 1496 VT 128 510 346-8368 no yes
## 1497 LA 81 415 392-2722 no yes
## 1498 MT 114 510 393-3274 no no
## 1499 NH 50 408 339-4636 no no
## 1500 WV 86 415 349-7138 no no
## 1501 ID 96 408 363-3295 no no
## 1502 AZ 72 510 407-9830 no no
## 1503 SC 64 510 333-8822 no yes
## 1504 WV 57 415 419-6418 yes yes
## 1505 OH 65 510 351-8955 no no
## 1506 MD 163 408 338-1840 no no
## 1507 MD 136 415 336-6997 no no
## 1508 MN 116 408 408-6266 no no
## 1509 NE 93 408 332-4291 no no
## 1510 MN 142 510 355-7895 no yes
## 1511 NY 92 408 348-2916 no no
## 1512 HI 70 415 339-8132 no no
## 1513 MO 22 408 374-1684 no yes
## 1514 NV 37 415 362-7604 no no
## 1515 MA 51 415 389-3206 no no
## 1516 NH 174 408 336-2829 no no
## 1517 UT 68 415 403-8916 no no
## 1518 FL 130 415 384-1135 no no
## 1519 WA 104 415 390-2320 no no
## 1520 CT 134 408 398-8578 no no
## 1521 KY 108 415 393-9424 no yes
## 1522 NM 103 415 417-6330 no no
## 1523 ND 62 510 340-6339 no no
## 1524 NV 162 415 380-6571 no no
## 1525 CA 93 510 368-6488 no yes
## 1526 ID 42 415 363-2193 no no
## 1527 OK 155 415 328-1206 no yes
## 1528 IA 36 510 385-3540 no no
## 1529 OH 143 415 337-7167 no no
## 1530 NJ 197 510 372-8405 no no
## 1531 IA 81 510 377-1273 no no
## 1532 DE 138 510 380-7816 yes no
## 1533 CA 103 415 402-6744 no yes
## 1534 WY 127 510 400-2181 yes no
## 1535 OR 136 510 366-1613 no no
## 1536 ME 99 415 347-8205 no no
## 1537 AR 95 415 328-2982 no no
## 1538 ME 118 408 384-8723 yes yes
## 1539 WV 113 415 341-7686 no no
## 1540 PA 128 408 353-6038 yes no
## 1541 HI 117 408 416-8827 no no
## 1542 MT 48 415 418-8450 no yes
## 1543 DC 81 510 385-7861 yes no
## 1544 AR 57 510 393-3507 no no
## 1545 MS 140 408 372-5262 no no
## 1546 OH 107 510 411-3095 no yes
## 1547 MO 56 415 331-5919 no no
## 1548 TX 159 415 402-1556 no no
## 1549 MD 102 415 349-7362 no no
## 1550 CT 107 408 339-2734 no no
## 1551 SC 106 408 330-4914 no no
## 1552 MI 225 415 371-2500 no no
## 1553 SD 75 408 335-3681 no no
## 1554 CO 86 415 405-1132 no no
## 1555 ID 169 415 399-9239 no no
## 1556 AZ 122 510 350-7227 no yes
## 1557 FL 106 408 384-6654 no no
## 1558 MN 52 415 376-4271 no yes
## 1559 DE 79 415 391-8124 no yes
## 1560 MI 135 415 393-2524 no no
## 1561 MS 70 408 384-4385 no no
## 1562 MA 80 408 377-8266 no no
## 1563 CA 37 415 345-1243 no no
## 1564 MN 161 415 394-8086 no yes
## 1565 VT 137 510 348-9145 no no
## 1566 CT 123 415 376-5201 no no
## 1567 WV 80 415 356-2093 no yes
## 1568 WV 94 415 353-2080 no no
## 1569 NE 105 415 397-7500 no yes
## 1570 NC 73 415 414-5786 no yes
## 1571 NE 112 415 388-4282 no no
## 1572 IL 179 408 415-5132 no no
## 1573 MA 57 510 352-4541 no no
## 1574 AZ 127 415 373-5928 no yes
## 1575 SD 122 415 406-7737 yes yes
## 1576 MT 33 510 332-7607 no yes
## 1577 VT 94 408 359-7788 no no
## 1578 UT 100 408 384-1549 no no
## 1579 HI 106 415 352-8508 no no
## 1580 DC 148 415 404-1002 no yes
## 1581 WI 120 415 414-2905 no yes
## 1582 UT 91 415 380-9849 no yes
## 1583 WA 86 510 387-6498 no no
## 1584 SD 78 415 360-6024 no yes
## 1585 MT 94 510 352-5815 no no
## 1586 NJ 85 415 366-2273 no no
## 1587 CT 89 415 414-9119 no no
## 1588 VA 128 415 409-8796 no no
## 1589 NC 115 415 337-2442 yes no
## 1590 AK 76 415 404-1931 no no
## 1591 MD 75 415 367-9765 no yes
## 1592 IL 90 415 378-7299 no yes
## 1593 CT 30 408 410-5192 no no
## 1594 KS 105 415 405-1108 yes no
## 1595 MA 102 415 392-1734 no yes
## 1596 NJ 83 415 395-6030 no no
## 1597 AR 63 510 330-5168 no yes
## 1598 MS 155 408 334-3142 no no
## 1599 ND 82 415 362-9983 no yes
## 1600 IN 87 510 414-2606 no no
## 1601 MI 115 415 402-4501 no yes
## 1602 AR 99 510 387-2604 yes no
## 1603 VT 121 415 400-3343 yes yes
## 1604 WV 54 510 353-2450 no yes
## 1605 ME 105 408 406-2032 no no
## 1606 IA 73 415 409-4462 no no
## 1607 CT 95 415 392-5941 no no
## 1608 NM 21 415 334-9182 no yes
## 1609 OR 163 408 346-3445 no yes
## 1610 VT 57 415 368-9507 no no
## 1611 RI 104 408 382-3966 yes no
## 1612 RI 83 415 334-5844 no yes
## 1613 NM 141 415 362-9411 no no
## 1614 AL 95 415 390-3565 no no
## 1615 MT 184 415 417-4810 no no
## 1616 CT 74 408 384-3389 no no
## 1617 TN 67 415 414-9717 no no
## 1618 ID 104 415 357-1700 yes no
## 1619 TX 71 415 376-7207 no yes
## 1620 NH 149 415 368-7706 no no
## 1621 ND 154 408 346-4216 no yes
## 1622 SC 138 510 370-9533 no yes
## 1623 KS 117 415 372-1493 no no
## 1624 ME 130 408 387-6031 no no
## 1625 RI 73 415 366-6248 no no
## 1626 WI 100 510 369-3756 no yes
## 1627 NC 149 510 363-1719 no no
## 1628 OH 29 408 402-6666 no no
## 1629 WY 131 510 408-9779 no no
## 1630 NJ 153 510 407-2441 no no
## 1631 ND 84 510 384-5027 no no
## 1632 WI 133 510 380-3161 no no
## 1633 KY 112 415 360-8135 no no
## 1634 NY 87 415 399-5426 no no
## 1635 MO 72 415 385-2564 no no
## 1636 AZ 66 510 337-8618 no no
## 1637 MN 65 510 354-8491 no yes
## 1638 CO 74 415 394-6278 no no
## 1639 MD 116 408 405-2276 no no
## 1640 AR 68 510 376-1000 no no
## 1641 TN 68 415 397-1659 no no
## 1642 DE 54 415 379-3953 yes no
## 1643 TN 99 408 418-6512 no no
## 1644 WI 107 408 392-5296 no no
## 1645 WV 124 510 355-3814 no no
## 1646 CT 95 415 375-2098 no yes
## 1647 MN 173 510 372-7990 no no
## 1648 MO 110 408 356-4558 no no
## 1649 VA 102 510 398-5788 no no
## 1650 NH 130 408 390-4003 no no
## 1651 OK 91 408 332-8103 no yes
## 1652 CT 64 415 406-9926 yes no
## 1653 TN 176 415 418-2402 no yes
## 1654 MD 93 510 384-3299 yes no
## 1655 WI 84 510 378-9090 no yes
## 1656 SD 138 510 350-6473 no no
## 1657 ND 101 415 379-4583 no yes
## 1658 VA 136 408 411-5078 no no
## 1659 UT 111 510 347-4982 no no
## 1660 MA 132 408 341-9274 no yes
## 1661 SD 128 415 353-7461 no no
## 1662 AL 92 408 371-7366 no yes
## 1663 AL 197 415 395-7923 yes no
## 1664 WV 191 408 351-8398 no no
## 1665 SC 99 415 329-2204 no yes
## 1666 FL 106 415 407-7507 no yes
## 1667 KY 88 415 405-8075 no no
## 1668 UT 78 415 390-9698 no no
## 1669 NY 98 408 403-4917 no no
## 1670 MS 17 408 391-6709 no yes
## 1671 NH 56 415 389-5988 no yes
## 1672 VA 84 415 372-1534 no no
## 1673 VT 95 510 395-6369 no no
## 1674 WY 16 415 400-3197 no no
## 1675 NV 76 510 377-4169 yes no
## 1676 WV 93 415 384-5343 no no
## 1677 WA 83 408 338-4472 no no
## 1678 KS 123 415 332-2126 no no
## 1679 VT 64 408 349-2157 no no
## 1680 OK 82 510 393-4823 no no
## 1681 GA 107 510 385-2683 no no
## 1682 CO 110 510 345-8350 no no
## 1683 AK 96 408 334-4506 no yes
## 1684 TN 47 415 332-3544 no yes
## 1685 KY 115 510 380-5102 no no
## 1686 PA 69 415 395-6149 no no
## 1687 CT 163 408 398-8122 no yes
## 1688 CT 90 415 334-4438 no no
## 1689 MN 98 415 384-7459 no no
## 1690 WY 90 408 368-3931 no yes
## 1691 PA 174 415 353-1352 no yes
## 1692 OR 95 415 348-5725 no no
## 1693 PA 79 415 365-2008 no no
## 1694 OK 123 415 393-3635 no yes
## 1695 VT 99 415 380-8727 no no
## 1696 ID 114 415 381-2376 no no
## 1697 PA 141 510 365-8114 no no
## 1698 NM 132 408 415-5008 no no
## 1699 FL 133 510 392-8318 no no
## 1700 TX 133 408 401-4007 no no
## 1701 VT 93 510 338-7709 no yes
## 1702 MA 34 415 374-1981 no no
## 1703 OR 140 415 333-5101 no no
## 1704 DE 96 415 345-3734 no yes
## 1705 FL 144 510 384-5004 no no
## 1706 ID 24 408 341-9396 no yes
## 1707 MD 54 415 408-6302 no no
## 1708 WV 50 408 348-7193 no no
## 1709 ID 92 415 417-4063 no yes
## 1710 NV 96 408 375-6911 no no
## 1711 OH 146 415 358-3604 no no
## 1712 ID 138 415 339-7485 yes yes
## 1713 SC 102 408 368-3078 no no
## 1714 MO 76 510 418-7055 no no
## 1715 NE 99 415 386-9981 no no
## 1716 NC 83 510 366-2541 no yes
## 1717 ME 36 510 335-3110 no yes
## 1718 MI 70 510 400-7809 no no
## 1719 AZ 109 415 404-3106 yes no
## 1720 AZ 100 415 333-2337 no no
## 1721 HI 104 408 353-6482 no no
## 1722 NJ 106 415 397-8162 no no
## 1723 MS 84 510 380-6722 no no
## 1724 MA 80 510 329-2918 no no
## 1725 SC 100 510 348-8022 no no
## 1726 MN 99 408 388-4459 no no
## 1727 WV 50 510 358-3114 no no
## 1728 MS 105 415 343-9654 no no
## 1729 VA 113 415 401-9909 no yes
## 1730 MS 111 415 404-9978 no yes
## 1731 NM 161 408 397-8011 no no
## 1732 TX 70 415 341-8719 no no
## 1733 HI 97 415 408-1242 no yes
## 1734 WA 130 510 406-7726 no no
## 1735 WI 92 415 351-2773 no no
## 1736 CO 119 408 368-6174 no no
## 1737 NV 115 415 334-5029 no no
## 1738 RI 134 415 413-1789 no no
## 1739 VA 127 408 414-1246 no yes
## 1740 NJ 80 415 330-4978 no no
## 1741 ND 153 415 386-1631 no yes
## 1742 MN 85 415 363-1208 no no
## 1743 HI 79 415 334-5263 no no
## 1744 ND 35 415 361-4137 no no
## 1745 WI 120 408 374-8187 no yes
## 1746 MN 68 510 370-1525 no no
## 1747 DC 60 408 355-3801 no no
## 1748 KS 120 510 392-5605 no no
## 1749 MT 71 510 363-1366 no yes
## 1750 WV 124 415 358-5274 no no
## 1751 ME 23 510 376-9607 no no
## 1752 WY 225 415 374-1213 no no
## 1753 NY 181 415 421-8537 yes no
## 1754 VT 63 415 351-5576 no no
## 1755 NC 54 415 407-7258 yes no
## 1756 MO 80 408 405-4420 yes yes
## 1757 NC 118 408 340-2855 yes yes
## 1758 NJ 42 408 342-8002 yes no
## 1759 OH 134 408 355-6826 no no
## 1760 TX 66 415 402-3886 no yes
## 1761 WA 66 415 336-5900 no no
## 1762 TN 127 415 339-7684 no yes
## 1763 HI 146 510 390-2433 no no
## 1764 WY 93 408 360-7246 no yes
## 1765 CT 77 415 335-6508 no no
## 1766 NM 111 415 348-6720 no no
## 1767 NJ 125 415 406-6400 no no
## 1768 AL 115 510 390-7370 no yes
## 1769 MN 115 510 390-5055 yes no
## 1770 NC 114 408 405-7542 no no
## 1771 OH 106 415 364-4927 no no
## 1772 ND 118 415 329-3458 no yes
## 1773 CO 59 510 331-3842 no no
## 1774 ND 87 415 343-4147 yes yes
## 1775 NY 21 415 335-2274 no no
## 1776 WI 142 408 343-3227 no yes
## 1777 WY 62 415 336-6907 no no
## 1778 OR 149 415 331-1391 no no
## 1779 CO 54 510 360-1643 no yes
## 1780 LA 112 510 410-2518 no no
## 1781 AL 68 510 344-4970 no no
## 1782 TX 201 415 408-1486 no yes
## 1783 PA 88 510 396-1648 no no
## 1784 IL 85 415 391-2022 no yes
## 1785 DE 51 415 420-6465 yes no
## 1786 MO 45 510 398-2628 no yes
## 1787 AR 116 510 409-5519 no no
## 1788 OH 146 408 391-8554 no yes
## 1789 WI 63 510 395-1693 no yes
## 1790 GA 133 510 393-3194 no no
## 1791 KY 125 408 328-3402 no no
## 1792 OH 72 510 411-4781 no no
## 1793 TN 130 408 401-2581 no no
## 1794 SD 97 415 385-1214 no no
## 1795 NY 54 415 348-6853 no no
## 1796 GA 160 415 341-8412 no yes
## 1797 TX 79 415 330-8142 no no
## 1798 WV 92 415 361-1404 no yes
## 1799 MI 59 415 375-9671 no no
## 1800 ND 132 510 372-1824 no no
## 1801 NE 21 510 408-3606 no no
## 1802 SD 93 415 333-3595 no no
## 1803 NJ 147 415 379-7009 no yes
## 1804 AK 101 510 411-4940 no no
## 1805 CT 125 415 409-7523 yes no
## 1806 CO 63 415 408-6725 no no
## 1807 MD 107 415 350-2384 no no
## 1808 ND 110 408 348-1706 no no
## 1809 NH 83 415 415-6145 no no
## 1810 MN 117 408 373-3731 no no
## 1811 KY 124 415 341-3349 no no
## 1812 NH 115 510 399-8859 no no
## 1813 CO 156 408 377-4518 yes no
## 1814 KY 89 408 341-1594 no no
## 1815 KY 72 415 418-8770 no no
## 1816 IN 101 415 332-9118 no yes
## 1817 OR 53 415 386-1418 no no
## 1818 SD 116 408 393-3535 no no
## 1819 DE 78 408 328-9006 no no
## 1820 OR 117 415 402-2482 no yes
## 1821 NE 56 510 408-4865 no no
## 1822 OH 123 408 396-6247 no yes
## 1823 OH 127 408 396-9462 no no
## 1824 AR 116 415 396-9279 no yes
## 1825 KS 138 510 363-8715 no yes
## 1826 TX 120 415 356-1358 no no
## 1827 WI 102 408 360-7839 no no
## 1828 OR 95 415 364-8774 no no
## 1829 VA 102 408 348-5038 no no
## 1830 AR 89 415 365-4728 no yes
## 1831 CT 50 408 351-9037 no no
## 1832 OH 93 415 397-9184 no yes
## 1833 WY 68 510 398-4538 no no
## 1834 IL 70 408 382-6827 no no
## 1835 MO 138 415 408-1340 no yes
## 1836 DC 141 415 333-9511 no yes
## 1837 MA 112 415 358-7379 no yes
## 1838 NH 117 510 397-1766 yes no
## 1839 IA 1 408 331-2144 no yes
## 1840 AL 70 415 345-7014 no no
## 1841 OR 87 510 395-1898 no yes
## 1842 WV 52 510 373-8920 no yes
## 1843 WA 97 408 373-8908 no no
## 1844 NV 105 408 415-1203 no no
## 1845 SC 77 510 369-7017 no yes
## 1846 NC 80 415 420-8435 yes no
## 1847 NH 120 510 395-2579 no yes
## 1848 WY 54 408 405-7850 no yes
## 1849 FL 148 510 394-7710 yes no
## 1850 PA 119 408 342-4122 no no
## 1851 NC 162 408 340-1876 no yes
## 1852 MO 85 510 383-6095 no no
## 1853 KS 101 510 413-1061 no yes
## 1854 KY 172 415 343-5347 no no
## 1855 DE 80 415 376-4861 no no
## 1856 WI 67 510 417-2265 no no
## 1857 CO 86 408 419-7415 no no
## 1858 NM 107 415 407-2259 no no
## 1859 DE 133 510 333-2906 no no
## 1860 IL 116 510 360-7477 no no
## 1861 WA 63 408 342-5243 no no
## 1862 MA 119 408 417-3999 yes yes
## 1863 OH 133 408 379-1720 yes no
## 1864 TN 94 408 368-3117 yes no
## 1865 MA 69 510 352-5000 no no
## 1866 MI 146 408 405-7676 no no
## 1867 TX 119 510 361-2349 no no
## 1868 NH 142 408 383-2901 yes yes
## 1869 MD 123 408 369-7049 no no
## 1870 MS 101 408 387-5533 no no
## 1871 AZ 43 415 362-3660 no no
## 1872 IN 69 408 357-3577 no no
## 1873 NY 15 510 394-3312 yes no
## 1874 WI 107 510 395-8330 no yes
## 1875 WV 67 510 373-8895 no no
## 1876 NY 99 415 386-4581 no no
## 1877 OK 46 415 354-8191 no no
## 1878 NC 55 408 359-7562 yes no
## 1879 KY 39 415 359-4336 no no
## 1880 TX 92 510 336-9901 no no
## 1881 CT 56 415 406-3069 no no
## 1882 NE 76 415 334-6519 no no
## 1883 HI 132 408 361-8113 yes yes
## 1884 SC 140 510 347-9769 no yes
## 1885 AK 51 510 352-9130 yes yes
## 1886 SD 27 408 378-4557 no no
## 1887 ID 224 510 360-8919 no no
## 1888 OK 105 510 405-4109 yes yes
## 1889 WA 117 408 381-2498 no no
## 1890 SD 91 415 357-5696 no no
## 1891 OH 135 415 412-2947 no no
## 1892 VA 146 415 363-3571 no no
## 1893 WI 147 415 405-5403 yes no
## 1894 IN 68 510 330-9354 no no
## 1895 NM 68 408 396-7091 no no
## 1896 HI 86 408 398-3004 no yes
## 1897 KY 131 415 400-4020 no no
## 1898 OH 86 415 356-3448 no yes
## 1899 VT 159 415 335-2019 no no
## 1900 AZ 134 415 332-6633 no yes
## 1901 VT 113 510 359-7648 no no
## 1902 MO 132 408 412-9190 no no
## 1903 AL 85 415 368-9007 no no
## 1904 NJ 93 510 384-5632 yes yes
## 1905 WA 174 408 352-6068 no yes
## 1906 NY 61 415 343-9645 no no
## 1907 DC 91 415 384-7873 no yes
## 1908 NE 88 408 396-2187 no yes
## 1909 MA 88 408 383-5109 no yes
## 1910 VT 195 415 377-7843 no yes
## 1911 NM 182 415 382-7999 no no
## 1912 CO 118 408 328-1222 no no
## 1913 NH 103 408 371-1727 no no
## 1914 IL 65 510 369-8871 no no
## 1915 UT 61 408 335-9726 no yes
## 1916 WV 172 415 357-3709 no no
## 1917 NJ 72 415 422-9964 no no
## 1918 NM 113 510 366-9211 no no
## 1919 ND 177 408 384-9033 no no
## 1920 WA 100 408 382-4932 no no
## 1921 NM 67 415 404-7518 no no
## 1922 DE 136 415 353-1954 no no
## 1923 GA 71 415 391-7166 no no
## 1924 HI 134 408 370-9000 no no
## 1925 CT 124 415 332-3642 no no
## 1926 NJ 84 415 412-3898 no no
## 1927 ME 39 408 366-5640 no no
## 1928 OK 110 510 356-2302 no no
## 1929 TN 102 510 345-9018 no no
## 1930 WY 70 415 365-6205 no no
## 1931 NY 142 415 337-1151 no no
## 1932 DE 81 510 374-4664 yes no
## 1933 RI 17 415 396-9656 no no
## 1934 PA 119 408 377-5043 no no
## 1935 HI 105 415 401-7359 no no
## 1936 MD 108 415 375-2184 yes yes
## 1937 VA 90 415 367-6005 no no
## 1938 IN 100 415 364-2166 no yes
## 1939 OR 155 408 414-4741 no yes
## 1940 AZ 113 510 403-9719 no no
## 1941 WI 123 415 371-8452 no no
## 1942 VA 145 408 392-6239 no no
## 1943 MO 42 415 410-5250 no no
## 1944 NV 125 510 336-1574 no no
## 1945 HI 131 415 406-8324 no yes
## 1946 WA 107 415 411-7110 no no
## 1947 IL 48 408 341-9907 no no
## 1948 IL 76 510 400-8952 no no
## 1949 LA 128 415 333-9266 no no
## 1950 WI 73 415 419-4894 no no
## 1951 TX 52 415 364-9904 no no
## 1952 MI 126 415 394-3048 yes yes
## 1953 NC 124 415 352-6265 no no
## 1954 WA 137 408 357-3187 no no
## 1955 ND 71 510 373-8483 no no
## 1956 NE 139 415 375-9930 no no
## 1957 MS 107 510 352-6282 no yes
## 1958 KY 147 408 396-2945 no no
## 1959 RI 116 510 412-3527 no no
## 1960 NY 60 510 328-4231 no yes
## 1961 TX 38 510 413-9055 no no
## 1962 DE 63 408 363-8755 no no
## 1963 NM 94 415 388-8891 no no
## 1964 RI 131 415 360-1776 no no
## 1965 MS 158 510 411-3578 no no
## 1966 NY 139 510 399-7268 no no
## 1967 NE 77 415 350-1532 no no
## 1968 WI 140 415 359-2197 no no
## 1969 KY 72 408 407-9290 no no
## 1970 SD 52 510 358-6672 no yes
## 1971 VA 103 510 393-4621 no no
## 1972 KS 74 415 336-7357 no yes
## 1973 ND 124 415 351-1466 no no
## 1974 CO 85 510 394-6668 no yes
## 1975 KY 113 408 403-2673 no yes
## 1976 WA 71 408 355-1735 no no
## 1977 NV 177 415 416-7679 no yes
## 1978 SC 49 415 340-4972 yes no
## 1979 RI 106 510 417-4826 yes no
## 1980 ID 60 510 408-6676 no no
## 1981 KY 43 408 417-6683 no no
## 1982 ME 66 510 331-6270 no no
## 1983 SD 125 415 404-9754 no no
## 1984 SC 114 510 364-9425 no yes
## 1985 TN 112 415 339-6477 no no
## 1986 MT 101 408 362-2787 no yes
## 1987 WI 70 415 405-9233 no no
## 1988 AK 59 408 416-1845 no no
## 1989 AZ 59 408 385-9657 no no
## 1990 MT 124 415 420-5652 no yes
## 1991 DE 99 415 415-1141 no no
## 1992 VA 150 510 334-5634 no no
## 1993 MA 81 510 403-4200 no no
## 1994 IN 86 510 357-7893 no no
## 1995 MD 84 510 369-2899 no no
## 1996 NV 118 510 381-1026 no yes
## 1997 CO 89 415 388-8722 no no
## 1998 KS 93 415 418-3135 no no
## 1999 AR 85 415 380-3974 no no
## 2000 WY 160 408 338-7232 no no
## 2001 PA 28 415 334-5223 no no
## 2002 TX 73 408 340-8323 no no
## 2003 NY 156 408 337-6851 no no
## 2004 OR 33 415 344-5973 yes no
## 2005 CA 77 510 335-2261 no no
## 2006 NY 119 415 343-1458 no no
## 2007 AR 91 510 415-4875 no yes
## 2008 MI 102 510 381-2726 no no
## 2009 OK 86 415 395-3852 no yes
## 2010 TX 82 415 358-7914 no no
## 2011 NC 89 408 332-6958 no no
## 2012 ID 86 415 355-1019 no no
## 2013 IL 134 408 382-9447 no no
## 2014 OR 92 415 386-8536 no no
## 2015 SD 87 510 363-3818 no no
## 2016 NE 64 408 360-6416 no no
## 2017 RI 80 510 332-8764 no no
## 2018 MD 165 415 398-4814 no yes
## 2019 ID 153 415 410-5963 no yes
## 2020 ME 41 415 399-6642 no yes
## 2021 SD 108 415 390-9986 no no
## 2022 NY 104 415 391-1793 no yes
## 2023 DE 115 408 352-5542 no no
## 2024 OK 87 415 386-8118 no no
## 2025 SC 159 415 394-9825 no yes
## 2026 IN 119 510 382-4952 no no
## 2027 NV 69 415 387-2698 no no
## 2028 IL 87 408 417-1360 yes yes
## 2029 SD 93 510 408-4836 no no
## 2030 OK 154 415 374-8329 yes no
## 2031 KS 57 415 363-8424 no yes
## 2032 IA 130 510 408-8910 no no
## 2033 NJ 151 415 399-3840 no no
## 2034 NJ 162 408 367-8692 no no
## 2035 MT 60 415 387-4504 no no
## 2036 IA 81 510 328-2647 no no
## 2037 WA 132 415 369-7903 no no
## 2038 NE 86 408 399-6852 no no
## 2039 TX 136 408 335-4888 no no
## 2040 MS 121 415 344-2260 no yes
## 2041 IA 105 510 349-4070 no yes
## 2042 WI 105 415 394-6505 no yes
## 2043 MT 51 415 419-3612 no yes
## 2044 GA 64 408 356-1952 no no
## 2045 MT 80 510 416-7866 yes yes
## 2046 ND 56 415 398-1759 no no
## 2047 VT 120 415 338-9950 no no
## 2048 SD 103 510 412-7278 no no
## 2049 OH 164 510 347-1263 no yes
## 2050 OH 116 415 386-5684 no yes
## 2051 MT 121 408 334-4354 no no
## 2052 IL 55 415 398-5970 yes no
## 2053 NV 183 415 330-3429 no no
## 2054 UT 104 408 418-4637 no no
## 2055 NH 90 408 393-7322 no no
## 2056 LA 82 415 353-5557 no no
## 2057 VT 101 415 411-5334 no no
## 2058 NY 9 415 398-8588 no yes
## 2059 CT 97 415 374-7285 no no
## 2060 KS 94 408 379-7215 no no
## 2061 MI 127 510 357-7875 no yes
## 2062 SD 125 510 393-9677 no yes
## 2063 ME 140 415 345-9598 no no
## 2064 MD 90 415 353-3203 no no
## 2065 VA 67 415 330-7486 no no
## 2066 NJ 113 415 397-6425 no no
## 2067 TN 121 510 338-1815 no yes
## 2068 DC 93 408 406-5023 no no
## 2069 DC 121 408 368-2458 no no
## 2070 OR 53 408 400-8375 no no
## 2071 RI 75 415 387-8201 no no
## 2072 AK 132 510 346-4360 no no
## 2073 WI 162 408 412-8811 no no
## 2074 IN 140 415 413-3990 no no
## 2075 MI 91 408 345-2448 no no
## 2076 ID 73 510 394-4512 no yes
## 2077 NH 95 408 400-8538 yes no
## 2078 MN 145 408 412-8769 no no
## 2079 AZ 100 415 390-1552 no no
## 2080 MN 122 415 389-2477 no no
## 2081 MO 109 415 389-4695 no no
## 2082 AL 82 408 406-8037 no no
## 2083 PA 65 415 382-9138 no yes
## 2084 AK 52 510 414-7942 no no
## 2085 MS 136 415 348-7071 no yes
## 2086 IA 75 415 404-2942 no no
## 2087 WY 146 408 348-3581 no no
## 2088 NE 105 408 327-6764 no no
## 2089 ND 48 415 405-2831 no no
## 2090 CT 45 415 416-4351 no no
## 2091 NC 106 415 419-3196 no yes
## 2092 CT 33 510 411-6211 no no
## 2093 ND 68 408 391-8369 no no
## 2094 WA 106 408 416-4464 no no
## 2095 NV 141 415 347-1814 no no
## 2096 CO 98 408 386-7337 no no
## 2097 KS 94 510 375-8505 no yes
## 2098 CO 65 510 407-5056 no no
## 2099 MO 85 415 367-8924 no no
## 2100 MA 71 510 419-5171 no no
## 2101 NY 112 408 396-7687 no yes
## 2102 AK 110 415 394-4548 no no
## 2103 WI 111 415 382-6438 no no
## 2104 NH 74 408 413-2194 no no
## 2105 TN 105 510 366-2622 no no
## 2106 NY 40 408 416-7591 no no
## 2107 GA 128 408 355-2634 yes yes
## 2108 MN 123 408 422-5350 no no
## 2109 MI 122 510 329-2388 no no
## 2110 ID 114 408 381-5273 no yes
## 2111 CT 102 415 421-6694 no yes
## 2112 NC 126 415 342-1702 no no
## 2113 LA 150 415 381-4029 no no
## 2114 NJ 60 408 335-2967 no no
## 2115 TX 123 408 416-6594 no no
## 2116 CA 138 510 388-6026 yes no
## 2117 MD 29 510 367-1024 no no
## 2118 WY 111 415 386-7118 no no
## 2119 TX 37 510 346-2020 yes no
## 2120 CA 111 408 329-9067 no no
## 2121 UT 81 510 329-6144 no no
## 2122 WA 46 510 332-1502 no no
## 2123 MS 69 510 342-8320 no yes
## 2124 OH 125 408 411-5748 no no
## 2125 KS 43 415 381-9367 no no
## 2126 RI 127 415 400-1280 no yes
## 2127 IN 94 510 360-5794 no no
## 2128 VT 46 408 373-3538 no no
## 2129 MT 73 408 394-9942 no yes
## 2130 CT 146 408 380-3329 no yes
## 2131 NM 93 415 334-7618 no no
## 2132 OH 52 408 327-9289 no yes
## 2133 GA 202 510 351-2589 no no
## 2134 MN 129 510 368-6892 no yes
## 2135 CT 94 415 337-9303 no no
## 2136 AL 100 415 377-5258 no no
## 2137 WV 43 415 348-5767 no no
## 2138 NH 130 415 373-3549 no no
## 2139 WY 124 415 422-8344 no no
## 2140 VA 92 510 411-2958 yes no
## 2141 VT 48 415 384-2908 no no
## 2142 OH 98 510 347-6393 no yes
## 2143 MT 100 415 385-7148 no no
## 2144 MA 79 415 419-2767 no no
## 2145 VA 164 415 375-1746 no no
## 2146 NM 105 415 362-7870 no no
## 2147 AR 89 408 410-3725 yes no
## 2148 NE 126 415 387-1535 no no
## 2149 WY 96 408 329-2045 no no
## 2150 IA 120 415 341-6743 no yes
## 2151 SC 212 415 336-8343 no no
## 2152 NC 72 415 368-5758 no no
## 2153 HI 155 415 346-8362 yes yes
## 2154 UT 89 415 345-9690 no no
## 2155 WY 126 408 339-9798 yes no
## 2156 AL 172 408 359-5731 no no
## 2157 VA 75 415 373-2091 no no
## 2158 WI 143 510 367-3439 no no
## 2159 FL 166 510 367-1681 yes no
## 2160 KS 132 415 420-9973 no no
## 2161 NV 94 408 351-4025 yes no
## 2162 NY 99 415 393-5897 no no
## 2163 VA 136 415 384-7216 no yes
## 2164 KS 119 415 384-4595 no no
## 2165 NC 115 510 329-9667 yes no
## 2166 MO 160 415 347-5063 no no
## 2167 ND 166 510 345-8433 no no
## 2168 CA 120 510 339-7602 no no
## 2169 WV 173 415 332-1109 no no
## 2170 IL 156 415 343-3296 no no
## 2171 NY 70 415 366-2536 no no
## 2172 NV 41 510 355-2293 no no
## 2173 AL 132 408 350-9318 no no
## 2174 KS 47 510 418-5300 yes no
## 2175 ND 160 510 395-2626 no no
## 2176 OK 180 415 402-7372 no no
## 2177 UT 93 415 337-9710 no no
## 2178 OH 109 415 363-4967 no no
## 2179 WY 80 510 400-5389 no no
## 2180 NM 54 415 416-9162 no yes
## 2181 AL 121 415 414-6541 no no
## 2182 DC 157 510 392-6647 no yes
## 2183 ID 170 510 343-2465 no yes
## 2184 AR 138 510 338-9171 no no
## 2185 ID 92 415 405-4606 no yes
## 2186 TX 126 415 386-9711 no no
## 2187 NM 41 415 327-8495 no no
## 2188 WA 167 415 416-5660 no no
## 2189 UT 91 510 370-3032 no no
## 2190 RI 127 510 331-8462 no no
## 2191 NC 88 408 414-4037 no yes
## 2192 RI 113 415 415-2865 no no
## 2193 NY 78 510 362-2353 no no
## 2194 TX 123 408 329-5114 no no
## 2195 DE 136 408 351-1389 yes yes
## 2196 MS 68 415 375-3668 no yes
## 2197 OH 132 415 375-5414 no yes
## 2198 LA 133 415 360-7079 no no
## 2199 FL 127 415 344-9302 no no
## 2200 WA 110 415 418-1775 no no
## 2201 WV 121 510 401-2468 no no
## 2202 NY 116 510 346-4984 no no
## 2203 NE 112 415 351-2928 yes yes
## 2204 PA 97 510 365-7774 yes no
## 2205 MS 43 510 358-3691 no no
## 2206 IN 110 415 364-9059 no no
## 2207 VA 67 408 356-7208 no no
## 2208 MN 166 408 333-5551 no no
## 2209 DE 129 408 362-6528 no no
## 2210 OR 103 510 394-2560 yes no
## 2211 UT 71 415 367-3220 no no
## 2212 CT 112 415 418-5708 no yes
## 2213 AL 8 415 421-2245 no yes
## 2214 TX 98 415 406-2242 no no
## 2215 CT 90 415 347-6994 no no
## 2216 MS 13 415 413-7468 no no
## 2217 AR 58 415 389-6082 no no
## 2218 CA 137 415 415-3689 no yes
## 2219 MI 116 408 379-2503 no no
## 2220 WV 94 415 396-1106 no yes
## 2221 DE 87 415 379-4372 no no
## 2222 FL 120 415 336-3738 no no
## 2223 AK 97 415 380-2600 no yes
## 2224 ID 134 415 345-4473 no no
## 2225 OH 68 510 380-9990 no no
## 2226 NH 93 408 411-1045 no no
## 2227 MA 120 415 413-5306 no no
## 2228 SC 41 408 417-6906 no no
## 2229 OR 80 510 331-4807 no no
## 2230 OH 83 415 376-5375 no yes
## 2231 NC 109 510 361-9839 yes no
## 2232 KY 66 510 348-8679 no yes
## 2233 ID 104 510 403-6565 no no
## 2234 WA 89 510 346-5287 no no
## 2235 WV 127 510 413-6769 no no
## 2236 RI 117 408 370-5042 no yes
## 2237 KS 128 510 397-9486 no no
## 2238 NV 88 415 364-3286 no no
## 2239 NE 61 408 420-8897 no no
## 2240 FL 22 415 378-9506 no no
## 2241 WY 78 415 399-6259 no no
## 2242 WA 56 415 335-5806 no yes
## 2243 CO 192 415 401-6392 no no
## 2244 WI 70 415 379-9859 no no
## 2245 KS 148 510 415-4051 no no
## 2246 RI 65 415 368-5612 no yes
## 2247 MT 119 510 374-5301 no no
## 2248 CO 80 415 406-5710 no no
## 2249 CT 152 408 354-7077 no yes
## 2250 FL 113 510 343-3340 no no
## 2251 VT 75 510 377-8267 no no
## 2252 OH 80 415 382-2453 no no
## 2253 NH 148 408 333-7449 no no
## 2254 RI 63 415 366-4287 yes no
## 2255 FL 97 415 415-2285 no yes
## 2256 MD 166 415 381-1328 no no
## 2257 WY 94 408 344-4022 no no
## 2258 FL 85 408 415-6601 no yes
## 2259 TN 80 415 351-7309 yes no
## 2260 NC 210 415 363-7802 no yes
## 2261 IN 88 415 408-4870 yes yes
## 2262 IA 100 408 378-9478 no no
## 2263 WV 154 408 401-4778 no yes
## 2264 UT 32 510 370-9563 no yes
## 2265 GA 18 408 394-6382 no no
## 2266 AK 126 415 333-5295 no yes
## 2267 UT 144 510 370-2451 no yes
## 2268 MS 29 510 401-6982 no no
## 2269 AR 86 408 329-8115 no yes
## 2270 AK 138 415 340-3409 no yes
## 2271 AK 146 415 397-5911 no no
## 2272 ME 175 415 415-6127 no no
## 2273 WV 74 510 392-6073 no no
## 2274 CT 48 415 419-6564 no no
## 2275 GA 74 510 340-8245 no yes
## 2276 NV 105 415 376-4540 yes no
## 2277 VT 157 510 361-5936 no no
## 2278 DC 217 415 421-9846 no no
## 2279 TN 68 415 356-1582 no no
## 2280 OR 80 415 375-4900 no no
## 2281 MS 38 415 420-8953 no yes
## 2282 NC 107 415 376-4035 no yes
## 2283 CO 140 415 344-5206 no no
## 2284 AR 98 415 328-7833 no no
## 2285 PA 114 415 417-4266 no no
## 2286 MN 46 408 351-6574 no no
## 2287 NM 118 415 372-8925 no yes
## 2288 UT 37 510 340-5678 no no
## 2289 NE 34 415 361-6814 no no
## 2290 MS 98 415 336-7155 yes yes
## 2291 NV 113 510 342-8167 no no
## 2292 OR 69 408 375-9180 no no
## 2293 VA 121 415 357-7064 no no
## 2294 NJ 59 510 347-5354 yes yes
## 2295 WV 59 510 362-9391 no no
## 2296 OR 190 415 386-8984 no no
## 2297 KY 109 415 384-6372 no no
## 2298 MO 136 415 358-1329 no no
## 2299 TX 86 510 400-7987 no no
## 2300 MN 100 415 327-8732 no yes
## 2301 FL 106 510 389-6955 no no
## 2302 PA 104 415 396-1800 no no
## 2303 WV 129 415 349-4979 no no
## 2304 IN 205 510 361-5864 no no
## 2305 OK 93 415 418-4658 no yes
## 2306 NE 123 415 330-6208 no no
## 2307 DE 99 415 416-6628 no no
## 2308 MI 61 415 349-5617 no yes
## 2309 IL 71 415 397-8051 no no
## 2310 UT 4 510 413-6346 yes no
## 2311 IL 148 408 395-9270 no yes
## 2312 WA 141 415 401-7575 no no
## 2313 NM 56 408 332-5964 no no
## 2314 MD 160 415 348-3338 no no
## 2315 VA 43 408 387-5411 no yes
## 2316 MT 42 415 378-7872 no no
## 2317 CT 135 415 389-6037 yes no
## 2318 AL 106 415 349-3732 no no
## 2319 WV 106 510 347-9738 no no
## 2320 MO 83 415 380-6074 no yes
## 2321 ND 110 415 338-4307 no no
## 2322 AR 153 408 339-3636 no no
## 2323 GA 109 510 328-9315 no yes
## 2324 FL 31 510 402-3634 no no
## 2325 LA 124 510 348-4316 no no
## 2326 UT 110 415 375-3826 no no
## 2327 AZ 124 415 360-1406 no no
## 2328 NY 82 415 356-5475 no no
## 2329 KY 122 415 363-9969 no no
## 2330 AL 137 415 350-4367 no no
## 2331 IN 69 510 348-1592 no no
## 2332 IN 46 415 368-9751 no yes
## 2333 FL 103 415 380-6413 no no
## 2334 NM 16 510 367-9259 no no
## 2335 AL 119 415 404-8765 no no
## 2336 MN 124 510 371-6284 yes no
## 2337 NY 122 415 403-9468 no yes
## 2338 MD 139 415 335-3133 no no
## 2339 KS 67 510 366-4426 no no
## 2340 WV 84 408 354-4752 no no
## 2341 ID 101 510 406-4768 no yes
## 2342 LA 40 510 367-9257 no no
## 2343 MI 61 415 342-8348 no no
## 2344 TN 120 408 410-7611 yes no
## 2345 CA 95 415 341-3270 no no
## 2346 FL 98 408 416-7452 no no
## 2347 LA 114 415 356-8982 no no
## 2348 IL 68 415 340-6908 yes yes
## 2349 AL 149 415 348-6659 no yes
## 2350 CT 22 408 345-2401 no no
## 2351 PA 176 415 422-5264 no no
## 2352 TX 152 415 422-1799 no no
## 2353 VA 118 408 404-2877 no no
## 2354 MO 101 415 417-7913 yes no
## 2355 MT 102 408 399-2457 no no
## 2356 ND 118 408 419-3427 no no
## 2357 FL 105 415 358-2490 no no
## 2358 WI 153 510 349-3112 no no
## 2359 KY 71 415 414-5422 no no
## 2360 MD 71 415 386-3766 no yes
## 2361 IN 68 415 386-9724 no no
## 2362 MA 66 415 416-7393 no no
## 2363 ND 101 415 395-1380 no no
## 2364 VT 116 415 408-4911 no no
## 2365 CT 54 415 387-4064 no yes
## 2366 VA 112 408 380-5667 no yes
## 2367 MS 122 408 402-8930 no yes
## 2368 AK 74 415 336-6533 no no
## 2369 WY 90 415 359-9992 no no
## 2370 NY 112 415 391-1737 no no
## 2371 NC 85 510 404-2871 no no
## 2372 IL 100 415 420-6121 no no
## 2373 OH 114 415 369-4012 no no
## 2374 RI 83 510 357-2294 no no
## 2375 WY 157 415 348-9938 yes no
## 2376 OR 51 510 394-3023 no no
## 2377 NV 42 415 352-5466 no no
## 2378 ND 101 415 364-5510 no yes
## 2379 OR 112 510 396-6462 no no
## 2380 ND 56 510 384-5335 no no
## 2381 NJ 53 408 416-6886 no no
## 2382 WV 64 415 357-2748 no yes
## 2383 VA 123 408 386-7976 no no
## 2384 ID 68 510 403-9199 no yes
## 2385 CT 40 510 361-1900 yes no
## 2386 NM 132 408 405-3848 no no
## 2387 CT 120 408 344-1136 yes no
## 2388 MI 108 408 378-6276 no yes
## 2389 SC 161 510 343-2592 no no
## 2390 SC 130 415 396-4410 no no
## 2391 NY 122 510 397-3943 no no
## 2392 MT 130 408 347-3821 no yes
## 2393 WY 90 510 400-8069 no no
## 2394 NE 139 415 346-5349 no yes
## 2395 IN 57 415 345-5089 no no
## 2396 CO 128 510 410-4613 no no
## 2397 WY 127 510 356-4706 yes no
## 2398 MD 107 415 347-3406 no no
## 2399 OK 177 408 333-9133 no no
## 2400 SD 121 415 392-2459 no no
## 2401 SC 99 510 401-3685 yes yes
## 2402 NY 126 415 352-7752 yes no
## 2403 NY 77 415 388-9285 no yes
## 2404 WV 21 415 332-5582 no no
## 2405 WA 56 408 376-2550 no no
## 2406 ID 92 415 333-4594 no yes
## 2407 MN 81 510 375-2522 no no
## 2408 TX 139 510 388-2240 yes yes
## 2409 AZ 68 415 420-1782 no no
## 2410 DE 183 415 384-8890 no yes
## 2411 CO 90 408 371-4788 no no
## 2412 WI 165 408 360-5636 no no
## 2413 WI 89 415 373-4264 no no
## 2414 NJ 59 510 352-9836 no no
## 2415 IL 16 415 342-2013 yes no
## 2416 DC 114 415 354-5689 no no
## 2417 IA 113 510 335-8427 no no
## 2418 GA 120 408 409-6753 no no
## 2419 AK 115 415 349-1756 no no
## 2420 CA 37 510 328-8980 no no
## 2421 MN 100 415 399-2151 yes no
## 2422 CO 132 415 379-9524 no no
## 2423 KY 38 408 352-9947 no yes
## 2424 SC 1 408 336-1043 no no
## 2425 MT 97 415 416-7013 no yes
## 2426 KY 55 415 345-4551 no yes
## 2427 WV 75 415 405-9864 no no
## 2428 ID 83 415 350-4297 no no
## 2429 MN 40 510 350-7114 no no
## 2430 MA 101 415 400-4244 no yes
## 2431 MD 120 415 417-2608 no yes
## 2432 SD 183 415 372-2990 no yes
## 2433 PA 75 510 353-9998 no no
## 2434 KY 80 415 330-3008 no no
## 2435 ID 88 415 384-8629 no no
## 2436 NY 112 415 404-9504 no yes
## 2437 NM 63 510 405-8753 no no
## 2438 CA 105 415 409-9911 no yes
## 2439 ID 92 415 394-4260 no no
## 2440 WY 177 415 380-9063 no no
## 2441 NM 118 510 395-4509 no no
## 2442 HI 111 408 401-6671 no yes
## 2443 ID 82 510 405-7204 no yes
## 2444 NC 74 415 329-5377 no no
## 2445 TX 121 415 408-9572 no yes
## 2446 GA 131 408 380-9879 no no
## 2447 AL 125 408 384-9243 no no
## 2448 ME 19 415 404-5597 no no
## 2449 VA 138 415 359-7521 no no
## 2450 ID 119 415 327-4795 no no
## 2451 NY 137 510 338-7955 no no
## 2452 NC 182 415 379-6970 no no
## 2453 OH 135 415 351-7807 no no
## 2454 HI 134 415 342-9394 no yes
## 2455 DC 45 415 384-6264 no no
## 2456 TN 129 408 352-4534 no no
## 2457 VT 142 415 378-4617 no no
## 2458 MD 130 415 364-9567 no yes
## 2459 LA 163 408 371-5875 no yes
## 2460 HI 105 415 383-6489 no no
## 2461 FL 119 415 345-7117 no no
## 2462 WY 78 408 384-3902 no no
## 2463 NE 92 415 386-2759 no no
## 2464 WY 146 415 356-1270 no yes
## 2465 OR 125 408 379-1336 no yes
## 2466 IN 88 415 354-7201 no no
## 2467 MD 83 408 404-5057 no yes
## 2468 TN 3 510 407-8012 yes no
## 2469 WV 152 510 332-6139 yes yes
## 2470 WA 48 510 328-1373 no no
## 2471 MS 189 415 411-6501 no no
## 2472 OH 95 415 329-8056 no yes
## 2473 IN 129 415 415-4564 no no
## 2474 CO 66 408 329-6192 no yes
## 2475 TX 80 510 384-3904 no yes
## 2476 AK 1 408 373-1028 no no
## 2477 WV 84 408 369-1220 no no
## 2478 MA 96 415 359-9369 no no
## 2479 TN 123 415 415-3016 no yes
## 2480 ID 116 510 414-7090 yes yes
## 2481 DE 105 415 350-2250 yes no
## 2482 VA 80 415 383-9355 no no
## 2483 MT 157 408 417-3257 no no
## 2484 ID 67 510 336-8010 no yes
## 2485 IN 141 415 354-7718 no yes
## 2486 MD 79 415 358-4412 no yes
## 2487 MS 76 408 368-8972 no no
## 2488 WA 111 510 407-9841 no no
## 2489 OH 94 415 393-5208 no no
## 2490 RI 143 408 332-2889 no no
## 2491 AR 109 510 374-5530 no no
## 2492 AZ 138 415 332-3381 no no
## 2493 SC 73 415 344-9347 no no
## 2494 KY 21 415 412-1991 no no
## 2495 AL 148 415 393-4528 no yes
## 2496 NE 103 408 347-2378 no no
## 2497 MT 143 408 385-2699 no yes
## 2498 MN 79 408 383-4319 no yes
## 2499 NV 89 415 352-7915 no no
## 2500 CA 120 415 375-5547 no no
## 2501 UT 121 415 337-2348 no yes
## 2502 IL 101 415 342-8702 no no
## 2503 DC 115 408 393-5802 no no
## 2504 IN 168 415 384-2219 no no
## 2505 NM 90 415 347-6164 no no
## 2506 MS 70 510 376-9940 no no
## 2507 VT 138 415 354-4352 no no
## 2508 VT 43 408 331-8713 no no
## 2509 UT 117 510 341-3663 no yes
## 2510 KY 108 408 376-4665 no no
## 2511 VA 118 408 421-9034 no no
## 2512 OH 169 408 401-5169 no no
## 2513 AZ 62 408 370-8262 no yes
## 2514 NY 86 510 387-2041 no no
## 2515 VA 44 408 356-4146 no no
## 2516 MD 111 510 372-8883 no no
## 2517 MA 127 510 336-1880 no yes
## 2518 IL 151 415 347-5843 yes no
## 2519 LA 53 415 370-8023 no no
## 2520 MO 15 415 417-9814 no no
## 2521 DC 123 408 387-3422 no yes
## 2522 PA 137 415 365-1664 no no
## 2523 TN 106 415 367-2436 no no
## 2524 NJ 88 510 344-6258 no no
## 2525 VA 106 415 353-8928 no no
## 2526 TN 95 510 365-7784 no no
## 2527 NJ 57 510 330-2635 yes no
## 2528 WA 184 408 344-3131 no no
## 2529 AR 109 510 378-4294 no no
## 2530 WI 127 415 343-9365 no no
## 2531 WA 82 510 362-5579 no no
## 2532 RI 180 415 366-7616 no no
## 2533 ME 174 415 397-2870 no no
## 2534 CO 92 415 408-3262 no no
## 2535 CO 81 408 372-9091 no no
## 2536 RI 125 408 410-3159 no no
## 2537 CT 119 408 344-5181 no no
## 2538 NC 122 415 396-8662 no no
## 2539 WY 34 408 339-6446 no no
## 2540 OR 138 415 384-7236 yes yes
## 2541 FL 90 415 353-5257 no yes
## 2542 KY 73 408 369-7295 no no
## 2543 SC 19 510 408-5322 no no
## 2544 WA 120 408 344-9620 no yes
## 2545 MT 160 415 329-8436 no no
## 2546 PA 141 510 414-6739 no no
## 2547 MA 90 408 406-1730 no no
## 2548 VT 72 415 336-9327 no no
## 2549 MN 117 408 378-7418 no yes
## 2550 IL 79 408 412-6019 yes no
## 2551 AR 87 408 390-4789 no no
## 2552 MD 102 415 386-9774 no no
## 2553 MT 49 408 353-8970 no no
## 2554 VT 67 408 410-5370 no no
## 2555 CO 107 415 404-4421 no no
## 2556 NC 190 408 409-3353 no no
## 2557 WA 118 510 422-2571 no no
## 2558 TN 120 415 412-3404 no no
## 2559 AR 94 408 333-2964 no no
## 2560 DC 115 510 406-6669 no yes
## 2561 MN 61 415 409-8802 no no
## 2562 IA 143 510 354-6183 no yes
## 2563 KS 110 510 354-2434 no no
## 2564 ND 104 415 389-7620 no no
## 2565 MT 16 510 338-1724 no no
## 2566 IL 183 510 399-1750 no no
## 2567 DC 147 408 354-8914 no no
## 2568 KY 58 415 409-2983 no no
## 2569 MS 102 510 329-9689 yes no
## 2570 TN 123 415 337-8950 no no
## 2571 IA 64 415 374-1836 no yes
## 2572 AK 103 510 359-9454 no no
## 2573 MN 152 415 378-9542 no no
## 2574 WV 124 415 344-1970 no no
## 2575 OR 97 415 417-2774 no no
## 2576 MS 131 415 333-9002 no no
## 2577 ME 57 415 369-8576 no yes
## 2578 MN 157 510 372-6920 no no
## 2579 GA 194 510 333-6575 no no
## 2580 DC 66 415 410-1190 no no
## 2581 GA 155 510 376-1641 no no
## 2582 NY 123 415 329-6731 no no
## 2583 OK 116 510 393-3976 no no
## 2584 OK 63 415 388-7355 no no
## 2585 GA 64 510 412-7791 no no
## 2586 NJ 96 510 368-6111 no no
## 2587 MN 53 415 401-9420 no no
## 2588 ME 105 510 352-5750 no no
## 2589 MI 53 510 417-3702 no yes
## 2590 MT 101 415 353-5714 no no
## 2591 NE 129 510 409-9494 no yes
## 2592 ND 122 408 395-1901 no no
## 2593 VA 163 415 378-8342 no no
## 2594 VT 93 408 417-6044 no no
## 2595 OH 115 510 348-1163 yes no
## 2596 AL 25 408 337-4600 no no
## 2597 DC 73 408 355-5922 no no
## 2598 ND 120 415 369-5810 no no
## 2599 TN 196 415 340-8291 no no
## 2600 DE 97 510 354-7397 no no
## 2601 NY 148 408 407-7464 no no
## 2602 AL 85 408 386-6411 no yes
## 2603 OK 86 510 397-3746 yes no
## 2604 MS 78 415 410-5236 no yes
## 2605 MD 106 415 409-2412 no no
## 2606 NE 147 415 400-7280 no yes
## 2607 AR 145 415 332-5820 no no
## 2608 IL 91 415 373-4483 no no
## 2609 IN 81 408 347-6717 no yes
## 2610 UT 116 415 380-2929 no yes
## 2611 LA 69 415 420-7692 no yes
## 2612 ID 135 510 380-6437 no no
## 2613 KY 73 510 377-8309 no no
## 2614 MI 48 415 407-2718 no no
## 2615 NH 125 415 357-1938 yes no
## 2616 WV 100 415 381-3735 no no
## 2617 OR 165 415 409-8453 no yes
## 2618 SD 64 415 395-6758 no no
## 2619 MD 116 510 399-5424 yes yes
## 2620 ND 147 408 409-4671 yes yes
## 2621 TN 115 415 374-6525 no no
## 2622 MO 84 415 406-8665 no yes
## 2623 IL 86 510 342-7716 no yes
## 2624 UT 134 415 417-2221 no no
## 2625 MI 105 415 376-5213 no no
## 2626 AR 88 408 348-7448 no no
## 2627 TX 90 408 328-8179 no yes
## 2628 AK 86 408 389-4602 no no
## 2629 TN 37 415 413-2238 no no
## 2630 NH 141 415 402-3370 no yes
## 2631 NM 148 408 348-6008 no no
## 2632 MN 163 408 371-5655 no yes
## 2633 IA 89 415 374-5224 no yes
## 2634 RI 63 415 371-1187 no no
## 2635 AL 102 415 337-1100 no no
## 2636 NC 76 510 421-8141 no no
## 2637 SD 104 408 406-2678 no no
## 2638 MT 109 510 415-9649 no no
## 2639 HI 105 510 364-8128 no no
## 2640 MT 63 415 356-7817 no yes
## 2641 KY 105 415 404-6357 no yes
## 2642 DC 68 415 398-2138 yes yes
## 2643 CO 63 408 378-8029 yes yes
## 2644 MI 74 415 386-4215 no no
## 2645 AL 76 415 367-8156 no no
## 2646 KS 91 408 382-8079 yes no
## 2647 NC 101 415 354-2985 no no
## 2648 SC 116 408 373-6922 no no
## 2649 CO 131 415 397-7125 no yes
## 2650 MN 84 415 333-6296 no no
## 2651 WY 104 415 365-6022 no no
## 2652 FL 108 510 365-1688 no no
## 2653 NY 111 415 382-4872 no no
## 2654 OK 155 408 367-6136 no yes
## 2655 ME 66 510 404-3592 no no
## 2656 NE 64 510 415-2949 no no
## 2657 OH 69 415 375-8880 no no
## 2658 CT 116 415 335-6832 no no
## 2659 DC 101 415 361-8367 no no
## 2660 OK 15 415 408-2002 no no
## 2661 NJ 88 415 347-8659 no no
## 2662 IA 197 415 376-2922 no no
## 2663 VA 50 415 382-2182 yes no
## 2664 VA 172 510 408-2089 no no
## 2665 NM 188 415 369-6890 yes yes
## 2666 FL 85 408 347-2951 yes no
## 2667 RI 103 510 420-6324 yes no
## 2668 NJ 136 408 402-7650 no yes
## 2669 NE 155 408 391-2702 no yes
## 2670 WV 145 415 383-3375 no no
## 2671 WY 116 510 392-2733 no yes
## 2672 SC 152 408 397-9933 no no
## 2673 MS 65 415 383-9306 yes no
## 2674 ND 180 415 369-1929 no no
## 2675 IL 67 415 369-4377 no no
## 2676 OR 60 415 366-9430 no no
## 2677 UT 138 510 353-7407 no no
## 2678 IA 44 415 359-7426 no no
## 2679 ME 25 510 332-7391 no no
## 2680 WY 145 408 405-6559 no no
## 2681 WI 122 510 338-8784 no yes
## 2682 SC 121 415 415-6347 no no
## 2683 DC 55 510 354-5058 yes no
## 2684 CT 77 415 342-5701 no no
## 2685 OR 12 415 378-4179 no no
## 2686 OR 64 510 407-6391 no no
## 2687 NV 92 415 404-3105 no yes
## 2688 MN 125 415 390-9735 yes yes
## 2689 OK 160 408 350-4820 no no
## 2690 KS 79 415 383-8807 no no
## 2691 RI 36 415 366-8382 no no
## 2692 DC 102 415 402-9704 no no
## 2693 IL 138 408 405-2209 yes no
## 2694 UT 164 510 397-3939 no no
## 2695 MN 125 415 343-2689 no no
## 2696 WI 72 408 383-9448 no no
## 2697 MI 74 415 359-6232 no no
## 2698 MI 134 415 369-9772 no yes
## 2699 MA 145 415 381-7003 no no
## 2700 AL 136 510 352-6732 no no
## 2701 SC 209 510 388-7540 no no
## 2702 WI 66 415 356-3333 yes no
## 2703 VT 152 510 333-9664 no yes
## 2704 CT 162 408 363-3763 no no
## 2705 OR 72 510 345-7900 no no
## 2706 HI 101 415 400-5511 no no
## 2707 WV 125 415 381-7597 no no
## 2708 RI 46 408 404-9775 no no
## 2709 MI 132 408 389-4608 no no
## 2710 ME 193 415 403-1742 no yes
## 2711 WV 63 510 328-9797 no no
## 2712 NE 124 510 359-9223 no no
## 2713 DC 144 415 336-7696 no no
## 2714 NH 116 408 369-2214 no yes
## 2715 MD 189 415 411-1325 no yes
## 2716 NH 97 408 410-7553 no yes
## 2717 WV 137 510 376-4284 no yes
## 2718 IL 142 415 334-2800 no yes
## 2719 OK 84 510 369-1904 no no
## 2720 NH 119 415 359-3833 no yes
## 2721 MI 158 415 348-5569 no no
## 2722 ND 50 415 342-1960 no no
## 2723 LA 98 408 352-9050 no no
## 2724 HI 101 415 390-5316 no yes
## 2725 NJ 182 415 418-8568 no no
## 2726 WV 51 408 401-4844 no no
## 2727 NC 117 510 376-5471 no no
## 2728 PA 92 415 409-2917 yes no
## 2729 MI 86 408 369-6308 no no
## 2730 WY 122 415 357-7385 no no
## 2731 NJ 156 408 405-7119 no yes
## 2732 NJ 127 510 405-3309 no no
## 2733 NC 130 408 384-4938 yes no
## 2734 NM 158 408 377-2725 no no
## 2735 MS 145 510 405-6398 yes yes
## 2736 TX 90 415 355-9366 yes yes
## 2737 OK 127 510 403-1128 no yes
## 2738 ID 109 415 384-9682 no no
## 2739 AL 88 415 352-5393 no no
## 2740 WY 101 510 395-1229 no yes
## 2741 HI 171 510 361-9195 no no
## 2742 VA 21 415 351-6366 no no
## 2743 WV 145 408 346-4919 no yes
## 2744 DE 90 415 354-9068 no no
## 2745 CA 33 408 369-2743 no no
## 2746 PA 61 408 343-1347 no yes
## 2747 CO 107 415 336-5495 no no
## 2748 MD 147 408 376-4292 no no
## 2749 AL 117 510 391-8677 no no
## 2750 AL 95 415 350-7273 no no
## 2751 KS 186 510 400-6454 no no
## 2752 MI 128 415 422-3052 no no
## 2753 AK 55 408 365-6756 no yes
## 2754 OH 134 415 406-4158 no no
## 2755 IN 96 415 383-4641 no yes
## 2756 SC 107 415 368-5165 no no
## 2757 KS 123 415 378-2432 no no
## 2758 OK 35 415 362-4159 no no
## 2759 WI 74 408 363-7979 no no
## 2760 IN 130 408 334-9818 no no
## 2761 IL 137 408 352-5787 yes no
## 2762 TN 88 415 332-3617 no no
## 2763 DC 80 408 327-9957 no no
## 2764 NC 116 408 338-7527 no yes
## 2765 RI 123 510 348-8711 no yes
## 2766 MS 120 415 421-3226 no no
## 2767 VA 146 415 391-4358 yes no
## 2768 KY 106 510 379-2523 no yes
## 2769 NV 121 408 419-2369 no yes
## 2770 WI 137 510 382-1227 no no
## 2771 NH 84 408 409-5749 no yes
## 2772 NE 67 510 362-7951 no yes
## 2773 WI 161 408 415-3537 no no
## 2774 NJ 134 510 373-3959 no yes
## 2775 ME 62 415 358-1346 yes yes
## 2776 WY 120 415 381-8422 no yes
## 2777 IN 130 408 360-9005 no yes
## 2778 WI 20 408 344-5967 no no
## 2779 VT 68 415 396-6390 no no
## 2780 CA 112 415 346-5036 no no
## 2781 IN 77 408 328-7252 no no
## 2782 SC 109 415 360-1745 no no
## 2783 IN 108 415 358-2046 no no
## 2784 IA 79 415 344-6935 no yes
## 2785 MD 119 408 401-9665 no no
## 2786 MN 38 510 399-5291 no no
## 2787 AR 109 415 409-6588 no yes
## 2788 MS 78 415 358-5721 no no
## 2789 MN 134 415 414-7446 no no
## 2790 WA 47 415 329-9517 no yes
## 2791 MS 59 408 415-9553 no yes
## 2792 ID 151 415 413-3177 no no
## 2793 NC 129 415 347-5113 no no
## 2794 VA 107 510 330-2662 no yes
## 2795 MT 137 408 330-5824 yes no
## 2796 MI 76 510 411-1261 no no
## 2797 HI 24 415 329-8788 no no
## 2798 NC 169 408 333-7869 no no
## 2799 MN 30 408 399-4800 no no
## 2800 WV 70 415 402-2072 no no
## 2801 SD 52 510 403-6187 yes no
## 2802 HI 3 408 355-2872 no no
## 2803 MS 38 415 386-2970 no no
## 2804 NY 104 415 389-6081 no no
## 2805 LA 27 408 348-7556 no no
## 2806 KS 166 415 334-9163 yes yes
## 2807 MA 13 408 411-4293 no no
## 2808 AK 52 408 375-5562 no no
## 2809 SD 114 415 386-3823 no yes
## 2810 CO 156 408 364-6445 no no
## 2811 NH 90 415 383-2251 no yes
## 2812 WV 62 415 351-3169 no no
## 2813 AZ 82 415 413-6380 no yes
## 2814 ME 52 510 380-9674 no no
## 2815 NH 146 510 345-2319 no no
## 2816 RI 120 415 377-5441 no yes
## 2817 ID 130 415 358-3692 no no
## 2818 WI 90 408 400-5831 no no
## 2819 NM 147 408 357-5995 yes no
## 2820 WY 159 415 391-2159 no no
## 2821 IL 74 510 398-5954 no yes
## 2822 TX 130 408 385-6175 no no
## 2823 RI 155 408 334-2961 yes no
## 2824 MI 87 415 405-4303 no no
## 2825 OR 81 415 406-4100 no no
## 2826 VA 99 510 352-4401 no no
## 2827 SD 131 510 347-1473 no no
## 2828 AL 89 510 347-2016 no no
## 2829 MS 123 415 388-8948 yes no
## 2830 MS 130 510 402-5509 no yes
## 2831 HI 99 415 367-2598 no no
## 2832 WV 36 408 370-5001 no no
## 2833 WV 87 415 332-3693 no no
## 2834 WV 139 415 403-9766 no no
## 2835 IN 189 510 363-2407 no no
## 2836 NM 96 415 395-9214 no yes
## 2837 DE 112 408 351-8894 no no
## 2838 NC 75 408 406-5003 no no
## 2839 NM 178 415 398-1332 no yes
## 2840 SC 112 415 363-8033 no no
## 2841 NJ 108 415 333-1012 no yes
## 2842 AZ 100 510 391-6260 no no
## 2843 RI 121 510 336-1353 no yes
## 2844 SD 116 415 365-5629 no no
## 2845 NH 161 415 349-4397 no no
## 2846 AL 19 415 380-3910 yes no
## 2847 WV 104 415 354-7820 no no
## 2848 ID 119 415 338-9952 yes yes
## 2849 MD 125 415 405-1821 no no
## 2850 IN 156 510 329-8669 no no
## 2851 WY 109 415 328-8808 no no
## 2852 NH 95 510 409-3018 no no
## 2853 MN 90 408 421-5994 no no
## 2854 MA 105 415 354-4448 no yes
## 2855 NH 101 510 352-5081 no no
## 2856 MN 95 415 401-7803 no no
## 2857 IA 123 415 420-6052 no no
## 2858 NY 160 408 352-6084 no no
## 2859 AL 141 510 388-8583 no yes
## 2860 WV 87 415 415-3158 no no
## 2861 NM 81 415 402-9304 no no
## 2862 CA 75 415 341-1916 no yes
## 2863 MA 126 408 381-2745 no yes
## 2864 ME 28 415 402-5014 no no
## 2865 FL 153 415 399-8846 no no
## 2866 NH 97 408 328-9267 no yes
## 2867 IN 115 408 348-7224 no no
## 2868 WI 95 408 336-2190 no no
## 2869 MA 17 415 376-4705 yes no
## 2870 NH 105 415 381-4076 no yes
## 2871 TX 121 415 348-8464 no no
## 2872 NC 125 408 412-7020 no no
## 2873 CT 124 415 386-8432 no no
## 2874 NJ 35 408 337-1802 no no
## 2875 WY 134 510 366-1084 no no
## 2876 LA 123 510 352-4182 no yes
## 2877 NV 124 415 368-5628 no no
## 2878 WV 133 510 333-8996 no no
## 2879 AR 185 415 353-2557 no yes
## 2880 SC 1 415 356-8621 no yes
## 2881 KS 107 415 354-6942 no no
## 2882 NY 91 415 377-9829 no yes
## 2883 MI 178 408 348-4660 yes no
## 2884 MA 123 415 410-5199 no no
## 2885 UT 170 415 397-6542 no no
## 2886 HI 135 415 333-4492 no no
## 2887 PA 85 408 405-9573 no no
## 2888 OR 134 415 359-7255 no yes
## 2889 TN 148 415 419-5501 no yes
## 2890 CT 93 415 404-4809 no no
## 2891 AZ 138 415 344-6334 no no
## 2892 OR 159 510 400-1899 no no
## 2893 DE 103 415 346-5053 no yes
## 2894 MA 150 408 398-2148 no yes
## 2895 CT 37 408 347-7675 no no
## 2896 AR 33 415 411-8956 yes no
## 2897 SD 55 415 390-3761 no no
## 2898 CT 134 408 377-3876 no yes
## 2899 CT 107 408 345-2476 no no
## 2900 MA 80 408 337-7879 no yes
## 2901 MS 78 408 361-7283 no no
## 2902 MT 85 408 372-4868 no yes
## 2903 AK 61 415 346-8863 no yes
## 2904 DE 97 415 390-5267 no yes
## 2905 OH 136 408 392-1547 yes no
## 2906 MN 135 408 340-8177 no no
## 2907 CA 87 415 383-4802 no yes
## 2908 OH 165 510 378-8567 no no
## 2909 NV 148 415 406-7844 no no
## 2910 SC 99 415 402-9173 no no
## 2911 WV 123 415 352-3440 no no
## 2912 NM 127 415 363-1413 yes no
## 2913 WY 151 415 394-8861 no no
## 2914 CA 185 408 358-4036 no no
## 2915 KS 65 415 392-4680 no yes
## 2916 WY 58 510 354-2762 no no
## 2917 OK 104 415 371-5811 no no
## 2918 UT 44 415 387-2014 no no
## 2919 MA 58 408 411-6598 no no
## 2920 UT 108 415 355-9356 no no
## 2921 MN 132 510 406-4720 no no
## 2922 NE 80 415 356-7239 no no
## 2923 OH 162 415 328-8747 no no
## 2924 KY 110 510 388-9464 no no
## 2925 WA 96 415 406-2866 no no
## 2926 NY 168 408 333-5729 no no
## 2927 IN 72 510 391-1499 no no
## 2928 CO 125 408 386-8690 no yes
## 2929 DC 170 510 391-2231 no no
## 2930 AK 71 510 332-2275 no no
## 2931 SC 124 415 340-4028 no no
## 2932 KS 68 415 363-3486 no no
## 2933 UT 97 415 418-3181 no no
## 2934 IL 98 510 351-3316 yes no
## 2935 DC 24 408 369-3626 no no
## 2936 DC 136 510 353-2763 no no
## 2937 OK 44 408 358-7165 no no
## 2938 KY 96 415 353-3223 no yes
## 2939 NE 31 415 338-9044 no no
## 2940 AL 72 415 341-7296 no no
## 2941 HI 24 415 398-4431 no no
## 2942 SC 112 415 408-5601 no yes
## 2943 GA 117 415 328-5188 yes no
## 2944 KS 137 415 329-4474 no yes
## 2945 PA 136 408 357-4573 no no
## 2946 UT 95 415 341-7112 no no
## 2947 OR 82 415 400-3147 no yes
## 2948 ND 145 415 378-1936 no no
## 2949 KY 56 415 347-1640 yes no
## 2950 MN 155 408 374-9531 yes no
## 2951 OH 133 408 380-4374 no no
## 2952 TX 53 415 380-9409 no no
## 2953 WY 123 415 387-1116 no no
## 2954 GA 136 415 400-7509 no no
## 2955 TX 57 415 403-6225 no no
## 2956 WV 62 408 382-8274 no no
## 2957 NM 112 415 354-5764 no no
## 2958 MI 55 415 387-6912 no yes
## 2959 NC 95 408 384-3413 no no
## 2960 NY 125 415 367-3950 no no
## 2961 TX 1 415 396-4254 no no
## 2962 KY 98 415 333-3010 no yes
## 2963 SD 105 415 393-1891 no no
## 2964 ID 113 415 336-9053 no yes
## 2965 OR 99 408 353-3372 no no
## 2966 WI 103 415 386-8943 no no
## 2967 WV 177 408 376-9716 no no
## 2968 SC 149 415 370-8676 no yes
## 2969 CT 160 415 360-2329 no no
## 2970 NV 116 408 360-1320 no no
## 2971 ND 90 415 329-8638 no yes
## 2972 MI 148 415 385-1118 yes no
## 2973 MT 147 415 408-8269 no yes
## 2974 NE 95 510 391-2334 no no
## 2975 UT 201 510 373-8900 no no
## 2976 WV 80 415 382-3512 no no
## 2977 AR 122 415 420-4089 yes no
## 2978 MT 132 408 406-8465 no no
## 2979 UT 83 510 386-6114 no no
## 2980 HI 99 408 413-9328 no no
## 2981 KS 84 415 335-7144 no no
## 2982 NY 46 415 414-5177 no no
## 2983 OH 87 510 350-5993 no no
## 2984 HI 150 415 370-1465 no no
## 2985 KS 73 408 385-2370 no no
## 2986 IN 7 415 358-9146 no no
## 2987 OR 89 415 357-8515 no yes
## 2988 NY 131 408 406-8995 yes no
## 2989 VA 105 415 344-3145 no no
## 2990 MI 108 408 341-9890 yes no
## 2991 ID 47 415 365-4387 no yes
## 2992 MO 101 415 375-3341 yes no
## 2993 AL 182 415 418-3096 no yes
## 2994 OR 161 408 378-3879 no no
## 2995 VT 128 408 344-1362 no no
## 2996 AZ 69 415 419-3937 no yes
## 2997 VA 113 408 348-4961 no yes
## 2998 PA 87 408 329-1410 no yes
## 2999 CO 71 415 332-9896 no no
## 3000 KY 76 415 407-8575 no no
## 3001 NJ 87 510 387-2799 no no
## 3002 IL 117 408 373-9108 no no
## 3003 WA 177 415 345-3947 no no
## 3004 WV 95 415 356-7511 no no
## 3005 RI 76 415 343-4516 no no
## 3006 OH 66 415 408-6305 no no
## 3007 MO 110 415 338-7305 no no
## 3008 MD 204 510 401-3077 no no
## 3009 OH 32 415 401-6977 no yes
## 3010 VA 133 408 385-1464 no yes
## 3011 FL 185 408 417-5034 no no
## 3012 CO 103 415 420-7066 no yes
## 3013 NY 91 510 394-8256 no no
## 3014 WV 131 415 362-5044 no no
## 3015 LA 153 510 350-2075 no no
## 3016 MA 132 415 343-5372 no yes
## 3017 UT 148 510 377-9520 no no
## 3018 AL 141 408 391-6773 no no
## 3019 ME 105 415 403-4442 no no
## 3020 TX 169 408 379-5885 no no
## 3021 ND 127 415 399-1021 no yes
## 3022 CO 57 415 342-4004 no no
## 3023 LA 123 415 382-7659 no yes
## 3024 MT 103 510 342-1004 no yes
## 3025 OR 101 415 398-5851 no no
## 3026 NH 123 415 396-4869 no yes
## 3027 NE 78 510 422-8333 no yes
## 3028 WV 101 415 367-9127 no yes
## 3029 NV 129 415 420-3028 no no
## 3030 MA 67 415 357-6348 no yes
## 3031 MI 37 415 386-1131 no no
## 3032 KY 64 415 349-8391 yes no
## 3033 WV 173 510 421-1484 no no
## 3034 KY 135 510 414-2663 no no
## 3035 NJ 75 415 327-6989 no yes
## 3036 ME 88 415 405-5513 no no
## 3037 TX 112 415 345-9168 no no
## 3038 MN 113 408 417-5146 no no
## 3039 VA 121 510 339-2792 no yes
## 3040 DC 70 415 345-8397 no no
## 3041 MD 90 415 344-6404 no no
## 3042 RI 39 408 417-9455 no no
## 3043 MA 142 408 343-1009 no no
## 3044 MD 176 408 365-3493 no no
## 3045 NM 105 408 376-7043 no no
## 3046 MN 57 415 348-5728 no no
## 3047 MI 110 510 357-5784 no no
## 3048 AZ 88 415 417-9844 no no
## 3049 AL 95 408 333-7225 no no
## 3050 MI 147 415 382-4943 no no
## 3051 SC 101 415 345-4589 no no
## 3052 MS 115 415 404-6337 no no
## 3053 MS 103 415 412-1470 no no
## 3054 CA 82 415 394-9220 no no
## 3055 MD 141 415 364-5362 no no
## 3056 ND 149 408 372-9852 no no
## 3057 IL 131 510 394-9984 no no
## 3058 SD 119 510 402-1668 no no
## 3059 AL 112 510 339-5659 no no
## 3060 NV 116 510 341-7279 no yes
## 3061 LA 94 415 371-3236 no no
## 3062 VA 90 408 343-5679 no no
## 3063 DE 114 415 347-4626 no yes
## 3064 CT 63 408 344-8498 no yes
## 3065 CO 130 408 349-3005 no no
## 3066 MA 122 408 371-3498 no yes
## 3067 OR 166 510 367-4853 no no
## 3068 WA 62 415 422-3454 no no
## 3069 SC 78 415 403-8915 no yes
## 3070 IN 148 415 371-2418 no yes
## 3071 MD 154 510 411-2977 no no
## 3072 NV 110 408 389-8163 no yes
## 3073 TX 75 415 417-4456 no no
## 3074 ND 84 408 351-1894 no yes
## 3075 WV 113 510 386-6408 no no
## 3076 CO 181 510 370-9592 no yes
## 3077 TX 51 415 397-9251 no no
## 3078 FL 102 408 395-6913 no yes
## 3079 AL 107 408 332-3804 no no
## 3080 WV 88 510 421-1326 no no
## 3081 MI 82 415 415-8200 no no
## 3082 NY 204 415 371-9414 no no
## 3083 MS 130 510 347-3895 no no
## 3084 MO 174 510 342-5854 no no
## 3085 AR 129 415 379-7192 no no
## 3086 MS 190 415 394-5753 yes no
## 3087 NY 54 510 390-6932 yes no
## 3088 SD 78 408 394-3171 no no
## 3089 AK 100 415 394-5202 no yes
## 3090 WV 70 510 348-3777 no yes
## 3091 SC 111 510 407-3949 no no
## 3092 VA 117 408 363-4779 no no
## 3093 MS 68 415 340-2239 no no
## 3094 SD 27 510 359-3423 no no
## 3095 MN 91 415 382-9297 no no
## 3096 AL 181 415 330-9294 no yes
## 3097 CO 118 415 362-8763 no yes
## 3098 ME 112 415 403-4816 no no
## 3099 GA 93 415 371-2155 no no
## 3100 AZ 102 408 334-1339 no no
## 3101 MA 93 415 341-7412 no no
## 3102 AZ 107 415 375-4770 no yes
## 3103 IN 100 415 406-7643 no yes
## 3104 DE 115 415 415-8164 no no
## 3105 WI 63 510 354-3545 no yes
## 3106 ME 57 415 377-3139 no no
## 3107 DC 119 408 418-7478 no yes
## 3108 GA 73 408 385-6952 no no
## 3109 HI 98 408 381-8593 no yes
## 3110 VA 139 415 365-9371 yes no
## 3111 NY 31 408 401-7335 no yes
## 3112 PA 129 510 364-5126 no yes
## 3113 AR 115 415 385-7157 no no
## 3114 HI 108 415 385-4766 no no
## 3115 DE 139 408 390-1760 no no
## 3116 WV 102 408 365-8831 no no
## 3117 OK 149 408 353-4002 no no
## 3118 OR 113 415 367-5923 no no
## 3119 ND 131 408 393-9548 no yes
## 3120 MO 83 408 362-2356 no no
## 3121 AR 96 415 365-2341 no yes
## 3122 GA 98 408 388-8797 no no
## 3123 TN 3 415 400-4713 no no
## 3124 MA 77 408 420-3042 no yes
## 3125 ND 75 408 396-4171 no yes
## 3126 IA 40 510 389-8417 no no
## 3127 NJ 108 415 339-4068 no no
## 3128 MT 100 415 341-4873 no no
## 3129 AL 16 415 336-2322 no no
## 3130 NY 115 510 402-1607 no yes
## 3131 PA 108 510 379-3037 no yes
## 3132 VT 107 510 382-1399 no no
## 3133 NC 161 415 394-5489 no no
## 3134 CT 147 415 387-6065 no no
## 3135 MO 107 415 327-6087 no no
## 3136 WV 120 510 341-8667 no no
## 3137 NJ 107 408 338-9612 no yes
## 3138 AK 58 510 364-1134 no no
## 3139 LA 91 408 413-4811 no no
## 3140 AL 13 415 354-4333 no no
## 3141 IN 104 408 382-2026 no no
## 3142 MA 93 415 368-3287 no yes
## 3143 DE 95 510 367-8298 no no
## 3144 SC 104 415 391-1783 no no
## 3145 NH 35 408 393-8762 no no
## 3146 LA 62 415 385-1423 no no
## 3147 MS 143 510 406-7670 no no
## 3148 NM 62 415 339-5423 no no
## 3149 WA 60 415 366-8939 yes no
## 3150 SC 41 510 353-2391 no no
## 3151 MT 34 415 372-4203 no yes
## 3152 ME 56 408 385-5688 no no
## 3153 NM 183 415 397-7453 no no
## 3154 AZ 94 415 366-9015 no no
## 3155 CT 73 415 356-1654 no yes
## 3156 IL 123 408 337-3932 no no
## 3157 IN 64 408 350-1126 no no
## 3158 AR 127 415 416-3649 yes no
## 3159 RI 33 415 349-1726 no no
## 3160 ND 27 415 405-1589 no no
## 3161 NH 123 408 366-7560 no no
## 3162 NV 148 510 333-9643 no no
## 3163 UT 81 415 355-6422 no no
## 3164 NC 122 510 329-5400 no yes
## 3165 MI 52 415 383-6356 no no
## 3166 WI 91 408 377-7276 no yes
## 3167 AR 54 415 337-1586 no no
## 3168 NH 152 510 336-9273 no no
## 3169 TX 201 415 415-5476 no no
## 3170 ID 78 415 332-2650 no no
## 3171 CT 67 415 418-8257 no no
## 3172 NH 100 408 407-3121 no no
## 3173 WY 41 510 381-2413 no no
## 3174 OR 133 415 378-1144 no no
## 3175 SC 36 408 359-5091 no yes
## 3176 MD 51 510 378-6986 no yes
## 3177 NY 122 415 386-6580 no no
## 3178 NM 84 408 419-9713 no yes
## 3179 LA 91 415 382-6153 no no
## 3180 UT 110 408 332-1690 no no
## 3181 AL 91 408 348-9383 yes no
## 3182 DE 121 408 420-3857 no no
## 3183 WV 109 415 405-2653 no no
## 3184 KY 95 510 417-9278 no no
## 3185 NC 72 415 352-5663 no no
## 3186 WV 73 415 370-8786 no no
## 3187 AZ 108 415 415-6333 no no
## 3188 WV 58 408 391-6558 no yes
## 3189 ND 148 415 396-4234 yes no
## 3190 WA 76 510 345-6961 yes no
## 3191 ID 103 415 346-5992 no no
## 3192 CT 87 415 402-3908 no no
## 3193 OK 35 510 350-2340 no yes
## 3194 IA 88 415 410-2015 no no
## 3195 NE 67 415 380-3311 no yes
## 3196 ID 77 510 399-7029 no yes
## 3197 OR 124 510 337-3868 no no
## 3198 SD 30 415 354-8088 no no
## 3199 DE 53 415 416-9723 no yes
## 3200 WA 152 510 337-4403 no no
## 3201 CT 100 510 416-1536 yes no
## 3202 MN 59 408 386-3796 no yes
## 3203 WA 143 510 340-4989 no no
## 3204 PA 142 510 340-6221 no yes
## 3205 ID 105 408 363-3469 no no
## 3206 MS 111 408 345-3787 no no
## 3207 WA 143 510 362-3107 no no
## 3208 DC 93 408 345-1994 no yes
## 3209 KY 79 415 377-5417 no no
## 3210 OH 68 415 369-8574 yes yes
## 3211 TN 93 510 344-6847 yes no
## 3212 ID 103 415 391-7528 no no
## 3213 WV 144 510 393-6053 no yes
## 3214 WI 93 415 392-6286 no no
## 3215 OK 149 510 365-9079 yes no
## 3216 WV 23 510 399-3089 no yes
## 3217 SD 221 510 365-2192 no yes
## 3218 KS 164 510 394-3051 no yes
## 3219 NC 104 415 357-2429 no yes
## 3220 NY 150 415 421-6268 no yes
## 3221 WI 184 408 401-5915 no yes
## 3222 SC 88 408 348-6057 no no
## 3223 UT 61 415 349-3843 yes yes
## 3224 NC 110 408 396-5561 no no
## 3225 IN 115 415 370-9622 no no
## 3226 AR 33 408 371-9602 no no
## 3227 ME 100 510 351-2815 no no
## 3228 NY 209 415 369-8703 no no
## 3229 OR 27 510 355-2840 no no
## 3230 IL 117 415 372-1115 no no
## 3231 MA 87 408 337-2986 no no
## 3232 CT 129 510 404-3238 no yes
## 3233 WI 142 510 397-4968 no no
## 3234 OK 112 415 327-1058 no no
## 3235 DE 75 510 419-9509 no yes
## 3236 AZ 97 408 349-7282 no yes
## 3237 AK 121 408 382-5743 no yes
## 3238 MI 142 415 358-2694 yes no
## 3239 WA 121 510 378-1884 no no
## 3240 SD 87 415 330-1627 no yes
## 3241 SD 34 408 392-5716 no no
## 3242 AK 177 415 384-6132 yes no
## 3243 MA 58 415 359-2740 no yes
## 3244 AR 113 415 338-6714 yes no
## 3245 KS 101 415 347-9968 no no
## 3246 OR 89 415 343-3399 no no
## 3247 NC 77 408 334-6129 yes yes
## 3248 OK 146 510 377-4975 no no
## 3249 NJ 93 415 405-3533 no no
## 3250 OH 160 415 337-9326 no no
## 3251 NM 55 415 338-6556 no no
## 3252 OH 88 408 354-3040 no no
## 3253 MI 63 510 396-1278 no no
## 3254 KS 127 415 354-6810 no yes
## 3255 IL 57 415 403-6237 no yes
## 3256 RI 138 510 411-6823 yes no
## 3257 AR 115 408 338-1400 no no
## 3258 NY 171 415 412-6245 no no
## 3259 WY 148 408 377-3417 no no
## 3260 NC 127 510 343-2597 no no
## 3261 OR 61 415 388-8282 no no
## 3262 VT 131 415 416-8394 no no
## 3263 SD 88 408 343-6643 no no
## 3264 DC 130 510 330-4364 no no
## 3265 RI 89 415 414-1537 no yes
## 3266 ID 82 415 408-1913 no no
## 3267 OK 138 510 406-5532 no yes
## 3268 MN 115 415 417-7722 no no
## 3269 WA 84 415 367-5226 no no
## 3270 WV 117 510 344-5766 yes no
## 3271 NH 60 415 405-1370 no no
## 3272 WI 62 415 368-9073 no no
## 3273 MD 133 510 373-7974 no no
## 3274 IN 131 408 371-4633 no no
## 3275 IN 65 408 336-4960 no no
## 3276 NY 120 510 405-5083 no yes
## 3277 OR 142 510 392-1105 no yes
## 3278 OK 134 415 378-2397 no no
## 3279 WI 87 415 331-4184 no no
## 3280 NJ 139 415 376-2408 no yes
## 3281 AR 76 408 345-3614 no no
## 3282 UT 100 408 370-9296 no no
## 3283 DC 99 415 402-5076 no yes
## 3284 AK 99 510 401-7334 no no
## 3285 AZ 48 415 409-3428 no yes
## 3286 KS 57 415 362-2067 no no
## 3287 OH 106 415 352-2270 no yes
## 3288 KS 170 415 404-5840 no yes
## 3289 SC 78 415 360-3126 no no
## 3290 TN 39 408 364-8731 no no
## 3291 CA 127 510 388-4331 no no
## 3292 MI 119 510 335-7324 yes yes
## 3293 IN 114 408 362-8886 no no
## 3294 RI 95 408 410-4882 no no
## 3295 MO 116 408 371-1139 no no
## 3296 TN 110 415 391-5516 no no
## 3297 CT 74 510 380-3186 no no
## 3298 ME 148 408 347-9995 no yes
## 3299 MD 83 510 340-9013 no no
## 3300 NC 73 408 362-8378 no no
## 3301 SC 111 415 418-8969 no yes
## 3302 CA 84 415 417-1488 no no
## 3303 LA 75 510 358-9898 yes no
## 3304 WI 114 415 373-7308 no yes
## 3305 IL 71 510 330-7137 yes no
## 3306 IN 58 415 406-8445 no yes
## 3307 AL 106 408 404-5283 no yes
## 3308 OK 172 408 398-3632 no no
## 3309 IA 45 415 399-5763 no no
## 3310 VT 100 408 340-9449 yes no
## 3311 NY 94 415 363-1123 no no
## 3312 LA 128 415 361-2170 no no
## 3313 SC 181 408 406-6304 no no
## 3314 ID 127 408 392-5090 no no
## 3315 MO 89 415 373-7713 no no
## 3316 ME 149 415 392-1376 no yes
## 3317 MS 103 510 390-6388 no yes
## 3318 SD 163 415 379-7290 yes no
## 3319 OK 52 415 397-9928 no no
## 3320 WY 89 415 378-6924 no no
## 3321 GA 122 510 411-5677 yes no
## 3322 VT 60 415 400-2738 no no
## 3323 MD 62 408 409-1856 no no
## 3324 IN 117 415 362-5899 no no
## 3325 WV 159 415 377-1164 no no
## 3326 OH 78 408 368-8555 no no
## 3327 OH 96 415 347-6812 no no
## 3328 SC 79 415 348-3830 no no
## 3329 AZ 192 415 414-4276 no yes
## 3330 WV 68 415 370-3271 no no
## 3331 RI 28 510 328-8230 no no
## 3332 CT 184 510 364-6381 yes no
## 3333 TN 74 415 400-4344 no yes
## EMail.Message Day.Mins Day.Calls Day.Charge Eve.Mins Eve.Calls
## 1 25 265.1 110 45.07 197.4 99
## 2 26 161.6 123 27.47 195.5 103
## 3 0 243.4 114 41.38 121.2 110
## 4 0 299.4 71 50.90 61.9 88
## 5 0 166.7 113 28.34 148.3 122
## 6 0 223.4 98 37.98 220.6 101
## 7 24 218.2 88 37.09 348.5 108
## 8 0 157.0 79 26.69 103.1 94
## 9 0 184.5 97 31.37 351.6 80
## 10 37 258.6 84 43.96 222.0 111
## 11 0 129.1 137 21.95 228.5 83
## 12 0 187.7 127 31.91 163.4 148
## 13 0 128.8 96 21.90 104.9 71
## 14 0 156.6 88 26.62 247.6 75
## 15 0 120.7 70 20.52 307.2 76
## 16 0 332.9 67 56.59 317.8 97
## 17 27 196.4 139 33.39 280.9 90
## 18 0 190.7 114 32.42 218.2 111
## 19 33 189.7 66 32.25 212.8 65
## 20 0 224.4 90 38.15 159.5 88
## 21 0 155.1 117 26.37 239.7 93
## 22 0 62.4 89 10.61 169.9 121
## 23 0 183.0 112 31.11 72.9 99
## 24 0 110.4 103 18.77 137.3 102
## 25 0 81.1 86 13.79 245.2 72
## 26 0 124.3 76 21.13 277.1 112
## 27 39 213.0 115 36.21 191.1 112
## 28 0 134.3 73 22.83 155.5 100
## 29 0 190.0 109 32.30 258.2 84
## 30 0 119.3 117 20.28 215.1 109
## 31 0 84.8 95 14.42 136.7 63
## 32 0 226.1 105 38.44 201.5 107
## 33 0 212.0 121 36.04 31.2 115
## 34 0 249.6 118 42.43 252.4 119
## 35 25 176.8 94 30.06 195.0 75
## 36 37 220.0 80 37.40 217.3 102
## 37 30 146.3 128 24.87 162.5 80
## 38 0 130.8 64 22.24 223.7 116
## 39 33 203.9 106 34.66 187.6 99
## 40 0 140.4 94 23.87 271.8 92
## 41 0 126.3 102 21.47 166.8 85
## 42 41 173.1 85 29.43 203.9 107
## 43 0 124.8 82 21.22 282.2 98
## 44 0 85.8 77 14.59 165.3 110
## 45 0 154.0 67 26.18 225.8 118
## 46 28 120.9 97 20.55 213.0 92
## 47 0 211.3 120 35.92 162.6 122
## 48 0 187.0 133 31.79 134.6 74
## 49 0 159.1 114 27.05 231.3 117
## 50 24 133.2 135 22.64 217.2 58
## 51 0 191.9 108 32.62 269.8 96
## 52 0 220.6 57 37.50 211.1 115
## 53 0 186.1 112 31.64 190.2 66
## 54 0 160.2 117 27.23 267.5 67
## 55 0 151.0 83 25.67 219.7 116
## 56 0 175.5 67 29.84 249.3 85
## 57 0 126.9 98 21.57 180.0 62
## 58 30 198.4 129 33.73 75.3 77
## 59 0 148.8 70 25.30 246.5 164
## 60 0 229.3 103 38.98 177.4 126
## 61 0 192.1 97 32.66 169.9 94
## 62 34 268.6 83 45.66 178.2 142
## 63 33 193.7 91 32.93 246.1 96
## 64 28 180.7 92 30.72 187.8 64
## 65 0 131.2 98 22.30 162.9 97
## 66 41 148.1 74 25.18 169.5 88
## 67 0 251.5 105 42.76 212.8 104
## 68 0 125.2 93 21.28 206.4 119
## 69 0 211.6 70 35.97 216.9 80
## 70 0 178.9 101 30.41 169.1 110
## 71 0 241.8 93 41.11 170.5 83
## 72 46 224.9 97 38.23 188.2 84
## 73 0 248.6 83 42.26 148.9 85
## 74 0 203.4 146 34.58 226.7 117
## 75 0 235.8 109 40.09 157.2 94
## 76 0 157.1 90 26.71 223.3 72
## 77 0 300.3 109 51.05 181.0 100
## 78 0 61.6 117 10.47 77.1 85
## 79 0 214.1 72 36.40 164.4 104
## 80 0 170.2 98 28.93 155.2 102
## 81 0 201.1 99 34.19 303.5 74
## 82 0 215.4 104 36.62 204.8 79
## 83 25 165.6 123 28.15 136.1 95
## 84 24 249.5 101 42.42 259.7 98
## 85 0 210.6 96 35.80 249.2 85
## 86 29 179.3 104 30.48 225.9 86
## 87 0 157.9 105 26.84 155.0 101
## 88 0 214.3 118 36.43 208.5 76
## 89 35 154.1 104 26.20 123.4 84
## 90 0 237.9 125 40.44 247.6 93
## 91 0 143.9 61 24.46 194.9 105
## 92 0 203.4 100 34.58 190.9 104
## 93 0 124.3 100 21.13 173.0 107
## 94 0 252.9 93 42.99 178.4 112
## 95 0 179.1 71 30.45 190.6 81
## 96 0 278.4 106 47.33 81.0 113
## 97 0 160.1 110 27.22 213.3 72
## 98 0 198.2 87 33.69 207.3 76
## 99 0 212.1 131 36.06 209.4 104
## 100 0 251.8 72 42.81 205.7 126
## 101 21 161.2 114 27.40 252.2 83
## 102 0 178.3 137 30.31 189.0 76
## 103 0 151.7 82 25.79 119.0 105
## 104 0 135.0 99 22.95 183.6 106
## 105 0 170.5 94 28.99 173.7 109
## 106 0 238.1 65 40.48 187.2 98
## 107 29 281.4 102 47.84 202.2 76
## 108 21 117.9 131 20.04 164.5 115
## 109 32 148.6 91 25.26 131.1 97
## 110 0 229.8 90 39.07 147.9 121
## 111 0 165.0 100 28.05 317.2 83
## 112 0 185.0 117 31.45 223.3 94
## 113 0 161.0 117 27.37 190.9 113
## 114 0 126.7 108 21.54 206.0 90
## 115 0 58.9 125 10.01 169.6 59
## 116 42 196.8 89 33.46 254.9 122
## 117 0 162.6 83 27.64 152.3 109
## 118 0 282.5 114 48.03 219.9 48
## 119 36 113.7 117 19.33 157.5 82
## 120 0 239.8 125 40.77 214.8 111
## 121 0 210.2 92 35.73 227.3 77
## 122 22 213.8 102 36.35 141.8 86
## 123 0 190.7 103 32.42 183.5 117
## 124 0 170.9 124 29.05 132.3 95
## 125 0 154.2 119 26.21 110.2 98
## 126 0 201.4 52 34.24 229.4 104
## 127 0 70.7 108 12.02 157.5 87
## 128 27 187.5 124 31.88 146.6 103
## 129 0 91.7 90 15.59 193.7 123
## 130 36 214.2 115 36.41 161.7 117
## 131 0 145.5 92 24.74 217.7 114
## 132 0 166.3 125 28.27 158.2 86
## 133 0 231.0 115 39.27 230.4 140
## 134 0 200.3 96 34.05 201.2 102
## 135 0 197.0 109 33.49 202.6 128
## 136 0 129.9 112 22.08 173.3 83
## 137 21 175.8 97 29.89 217.5 106
## 138 0 203.1 106 34.53 210.1 113
## 139 36 183.2 117 31.14 126.8 76
## 140 23 205.0 101 34.85 152.0 60
## 141 0 148.5 115 25.25 276.4 84
## 142 39 200.3 68 34.05 220.4 97
## 143 28 192.6 107 32.74 195.5 74
## 144 0 246.5 47 41.91 195.5 84
## 145 0 167.1 86 28.41 177.5 87
## 146 0 231.9 101 39.42 160.1 94
## 147 0 146.7 91 24.94 203.5 78
## 148 0 271.5 87 46.16 216.3 126
## 149 0 181.5 121 30.86 218.4 98
## 150 43 257.7 97 43.81 162.1 95
## 151 0 193.8 99 32.95 221.4 125
## 152 0 102.8 119 17.48 206.7 91
## 153 0 187.9 116 31.94 157.6 117
## 154 0 226.0 112 38.42 248.5 118
## 155 0 260.4 115 44.27 146.0 46
## 156 0 178.7 116 30.38 292.1 138
## 157 0 337.4 120 57.36 227.4 116
## 158 23 157.6 129 26.79 247.0 96
## 159 0 183.6 117 31.21 256.7 72
## 160 24 142.1 124 24.16 183.4 129
## 161 0 136.3 97 23.17 172.2 108
## 162 0 217.1 110 36.91 241.5 111
## 163 36 187.5 99 31.88 241.4 116
## 164 0 98.9 103 16.81 135.4 122
## 165 0 206.3 151 35.07 148.6 89
## 166 33 243.1 92 41.33 213.8 92
## 167 31 189.8 126 32.27 163.3 133
## 168 0 202.0 102 34.34 243.2 128
## 169 38 170.1 124 28.92 193.3 116
## 170 0 230.9 87 39.25 187.4 90
## 171 0 237.1 105 40.31 223.5 105
## 172 27 182.1 91 30.96 169.7 98
## 173 0 119.3 87 20.28 211.5 101
## 174 0 116.8 87 19.86 178.9 93
## 175 0 219.2 92 37.26 149.4 125
## 176 0 252.6 104 42.94 169.0 125
## 177 0 147.1 91 25.01 190.4 107
## 178 0 202.1 103 34.36 229.4 86
## 179 0 173.5 93 29.50 194.1 76
## 180 0 232.1 122 39.46 292.3 112
## 181 23 197.1 125 33.51 214.5 136
## 182 0 58.2 94 9.89 138.7 118
## 183 36 115.6 111 19.65 237.7 94
## 184 0 186.1 98 31.64 254.3 57
## 185 0 259.9 68 44.18 245.0 122
## 186 0 214.3 145 36.43 268.5 135
## 187 0 158.7 74 26.98 64.3 139
## 188 0 271.6 71 46.17 229.4 108
## 189 0 160.6 111 27.30 163.2 126
## 190 0 232.4 109 39.51 187.4 95
## 191 0 133.8 85 22.75 180.5 94
## 192 0 176.9 109 30.07 90.7 104
## 193 0 209.9 74 35.68 195.1 77
## 194 0 137.5 118 23.38 203.2 88
## 195 23 289.5 52 49.22 166.6 111
## 196 23 198.1 86 33.68 177.0 86
## 197 0 149.7 119 25.45 182.2 115
## 198 0 326.5 67 55.51 176.3 113
## 199 26 292.9 101 49.79 199.7 97
## 200 0 83.0 64 14.11 177.0 106
## 201 24 145.7 146 24.77 220.5 136
## 202 0 182.3 101 30.99 328.2 93
## 203 0 218.0 86 37.06 184.0 94
## 204 0 140.6 109 23.90 178.6 51
## 205 0 152.7 105 25.96 257.5 80
## 206 36 106.7 76 18.14 209.8 77
## 207 0 243.8 98 41.45 83.9 72
## 208 0 194.4 94 33.05 186.7 95
## 209 0 213.9 95 36.36 151.9 70
## 210 0 217.2 112 36.92 246.7 89
## 211 0 241.1 72 40.99 155.6 98
## 212 0 203.5 100 34.60 247.6 103
## 213 24 155.2 131 26.38 244.5 106
## 214 31 167.6 139 28.49 113.0 118
## 215 0 226.7 98 38.54 228.1 115
## 216 0 179.3 93 30.48 178.6 98
## 217 0 151.4 89 25.74 186.4 76
## 218 0 180.0 80 30.60 224.2 82
## 219 0 250.2 121 42.53 267.1 118
## 220 0 223.0 121 37.91 110.1 98
## 221 0 183.6 116 31.21 152.6 98
## 222 22 166.0 114 28.22 174.5 103
## 223 0 136.1 112 23.14 272.9 96
## 224 0 149.3 113 25.38 242.2 122
## 225 0 65.4 97 11.12 168.2 76
## 226 0 213.4 111 36.28 234.5 94
## 227 0 206.9 85 35.17 244.7 78
## 228 27 186.2 78 31.65 189.6 83
## 229 23 280.2 136 47.63 220.5 92
## 230 22 196.6 84 33.42 313.2 92
## 231 0 312.0 109 53.04 129.4 100
## 232 36 199.0 110 33.83 291.3 111
## 233 0 203.1 96 34.53 217.0 126
## 234 0 168.8 97 28.70 220.3 87
## 235 0 173.1 140 29.43 240.3 105
## 236 0 134.4 106 22.85 211.3 98
## 237 40 202.6 103 34.44 118.8 128
## 238 0 74.5 117 12.67 200.8 98
## 239 0 83.6 148 14.21 120.9 91
## 240 0 192.2 86 32.67 168.6 116
## 241 0 220.2 89 37.43 88.3 125
## 242 0 135.1 95 22.97 134.1 102
## 243 0 253.4 77 43.08 182.4 151
## 244 0 225.0 81 38.25 176.9 63
## 245 0 198.5 99 33.75 267.8 60
## 246 0 110.3 107 18.75 166.5 93
## 247 37 60.0 102 10.20 102.2 80
## 248 0 214.8 94 36.52 149.7 58
## 249 0 181.8 85 30.91 202.4 98
## 250 23 154.0 114 26.18 278.0 137
## 251 29 157.4 99 26.76 117.9 80
## 252 0 207.9 91 35.34 172.0 109
## 253 0 207.0 90 35.19 232.9 83
## 254 41 119.0 101 20.23 230.0 134
## 255 0 143.7 117 24.43 273.0 82
## 256 32 165.9 126 28.20 216.5 93
## 257 0 138.6 122 23.56 172.3 117
## 258 0 84.7 118 14.40 249.9 86
## 259 0 62.6 111 10.64 180.6 126
## 260 0 155.2 79 26.38 235.3 123
## 261 25 164.9 110 28.03 209.3 105
## 262 0 134.5 88 22.87 143.1 112
## 263 0 143.3 103 24.36 211.3 108
## 264 0 168.3 110 28.61 221.2 73
## 265 0 262.4 55 44.61 194.6 113
## 266 30 206.2 79 35.05 260.0 91
## 267 28 225.8 94 38.39 193.0 117
## 268 0 138.3 89 23.51 170.5 78
## 269 48 94.4 104 16.05 136.2 101
## 270 0 160.0 123 27.20 175.4 96
## 271 0 206.6 105 35.12 224.9 117
## 272 0 134.7 121 22.90 180.0 83
## 273 28 214.4 78 36.45 235.2 100
## 274 0 192.8 104 32.78 234.4 96
## 275 28 151.1 90 25.69 194.8 79
## 276 0 221.4 103 37.64 231.8 103
## 277 0 218.9 88 37.21 208.0 85
## 278 48 189.8 96 32.27 123.4 67
## 279 25 192.7 85 32.76 225.9 105
## 280 0 204.4 135 34.75 219.1 90
## 281 0 172.3 97 29.29 174.0 108
## 282 0 198.4 93 33.73 210.9 108
## 283 37 211.7 115 35.99 159.9 84
## 284 28 221.6 74 37.67 288.4 100
## 285 0 197.9 108 33.64 181.5 109
## 286 24 147.5 90 25.08 175.7 108
## 287 0 206.4 122 35.09 128.0 102
## 288 0 205.9 88 35.00 209.3 86
## 289 0 207.6 88 35.29 132.4 63
## 290 0 303.9 95 51.66 260.9 114
## 291 34 230.6 121 39.20 219.4 99
## 292 0 99.5 110 16.92 129.1 80
## 293 0 177.1 112 30.11 194.0 112
## 294 37 172.7 93 29.36 120.1 116
## 295 18 172.7 86 29.36 133.4 113
## 296 0 204.2 115 34.71 179.9 152
## 297 0 85.7 83 14.57 247.7 67
## 298 0 157.6 117 26.79 184.3 58
## 299 0 215.5 129 36.64 218.7 117
## 300 0 181.5 98 30.86 199.9 88
## 301 0 171.7 80 29.19 110.4 81
## 302 0 266.6 106 45.32 264.8 168
## 303 0 170.4 108 28.97 350.5 68
## 304 0 158.0 106 26.86 292.5 114
## 305 0 92.0 117 15.64 253.6 77
## 306 0 234.0 109 39.78 249.5 114
## 307 0 272.1 111 46.26 268.5 118
## 308 0 296.4 99 50.39 214.8 89
## 309 0 194.4 101 33.05 190.3 82
## 310 0 227.2 128 38.62 258.4 92
## 311 0 248.7 109 42.28 220.0 118
## 312 38 236.3 102 40.17 195.9 112
## 313 0 205.6 69 34.95 169.5 93
## 314 0 94.1 136 16.00 280.3 122
## 315 0 125.2 99 21.28 205.4 107
## 316 0 60.4 158 10.27 306.2 120
## 317 28 121.0 105 20.57 270.4 100
## 318 29 117.8 66 20.03 256.8 114
## 319 21 232.4 96 39.51 211.9 118
## 320 32 223.5 81 38.00 188.8 74
## 321 0 176.3 79 29.97 259.2 97
## 322 32 125.2 79 21.28 177.8 105
## 323 0 138.7 107 23.58 256.9 113
## 324 0 86.3 134 14.67 246.6 92
## 325 0 207.0 91 35.19 154.9 121
## 326 30 58.8 104 10.00 219.5 107
## 327 35 68.7 95 11.68 209.2 69
## 328 33 239.2 109 40.66 235.5 112
## 329 0 198.3 130 33.71 217.1 86
## 330 0 205.2 97 34.88 240.6 77
## 331 0 192.1 98 32.66 312.9 135
## 332 0 272.6 83 46.34 248.7 74
## 333 0 128.3 121 21.81 197.1 93
## 334 0 169.6 99 28.83 264.1 87
## 335 0 201.3 95 34.22 152.8 66
## 336 17 214.7 97 36.50 138.5 90
## 337 0 169.2 70 28.76 271.5 77
## 338 0 194.1 121 33.00 176.6 110
## 339 0 233.8 104 39.75 266.5 94
## 340 0 225.1 67 38.27 199.2 127
## 341 0 213.0 63 36.21 176.6 71
## 342 0 183.9 115 31.26 255.9 101
## 343 34 221.8 105 37.71 161.7 85
## 344 21 64.6 98 10.98 176.1 86
## 345 37 154.6 92 26.28 83.4 103
## 346 0 260.2 131 44.23 179.2 120
## 347 33 161.6 117 27.47 123.0 90
## 348 0 220.6 117 37.50 155.2 121
## 349 41 155.9 122 26.50 162.3 107
## 350 0 107.0 63 18.19 105.7 67
## 351 0 182.5 104 31.03 204.7 95
## 352 38 220.1 78 37.42 234.3 71
## 353 0 152.2 112 25.87 177.2 132
## 354 0 181.5 95 30.86 205.1 88
## 355 0 236.2 77 40.15 218.6 85
## 356 0 166.1 105 28.24 79.3 93
## 357 0 244.6 89 41.58 188.8 80
## 358 23 134.2 85 22.81 227.3 132
## 359 39 149.7 122 25.45 211.1 75
## 360 29 150.1 109 25.52 264.7 103
## 361 0 257.1 53 43.71 312.2 127
## 362 0 124.4 83 21.15 179.7 81
## 363 36 141.7 121 24.09 232.3 113
## 364 0 230.0 87 39.10 103.2 138
## 365 0 162.3 88 27.59 213.7 118
## 366 0 350.8 75 59.64 216.5 94
## 367 0 193.3 96 32.86 264.1 123
## 368 0 78.2 127 13.29 253.4 108
## 369 0 83.4 110 14.18 232.2 137
## 370 0 195.6 99 33.25 267.8 120
## 371 0 201.8 81 34.31 225.0 114
## 372 0 197.0 110 33.49 222.8 102
## 373 0 218.0 57 37.06 114.4 88
## 374 0 164.8 98 28.02 229.9 96
## 375 0 179.2 77 30.46 210.7 99
## 376 21 214.0 113 36.38 180.0 114
## 377 0 170.5 87 28.99 118.2 116
## 378 0 205.7 123 34.97 214.5 108
## 379 0 165.5 84 28.14 286.2 112
## 380 0 221.0 100 37.57 160.7 113
## 381 0 242.1 118 41.16 191.0 93
## 382 0 151.6 107 25.77 155.4 96
## 383 0 176.2 87 29.95 145.0 81
## 384 22 196.0 82 33.32 322.7 82
## 385 0 159.5 125 27.12 247.1 90
## 386 0 230.2 113 39.13 220.4 79
## 387 0 146.7 64 24.94 274.0 99
## 388 0 210.5 102 35.79 204.5 83
## 389 0 102.0 95 17.34 270.2 139
## 390 0 126.0 99 21.42 238.5 73
## 391 0 168.4 125 28.63 243.8 89
## 392 0 105.6 129 17.95 258.2 129
## 393 0 206.5 92 35.11 176.2 152
## 394 0 217.1 76 36.91 205.2 100
## 395 0 229.6 78 39.03 205.7 108
## 396 22 278.3 89 47.31 93.4 143
## 397 0 138.6 102 23.56 199.0 93
## 398 0 234.4 103 39.85 279.3 109
## 399 0 181.5 129 30.86 130.7 112
## 400 0 167.3 91 28.44 230.0 68
## 401 31 121.0 105 20.57 218.9 98
## 402 0 221.1 124 37.59 110.8 94
## 403 26 145.8 108 24.79 192.2 89
## 404 0 222.8 122 37.88 163.2 107
## 405 0 183.4 80 31.18 242.0 115
## 406 0 264.3 91 44.93 160.9 115
## 407 0 146.0 78 24.82 109.7 79
## 408 0 157.1 134 26.71 184.9 122
## 409 0 127.3 108 21.64 251.3 81
## 410 0 187.9 110 31.94 197.0 117
## 411 0 178.8 90 30.40 141.2 72
## 412 0 97.2 80 16.52 186.2 90
## 413 0 259.8 85 44.17 242.3 117
## 414 0 256.5 112 43.61 199.5 90
## 415 0 169.5 77 28.82 124.0 87
## 416 0 239.7 47 40.75 282.9 110
## 417 0 171.5 99 29.16 160.0 103
## 418 0 239.9 84 40.78 174.8 106
## 419 34 142.3 73 24.19 194.8 79
## 420 0 184.1 98 31.30 327.0 73
## 421 28 206.9 126 35.17 264.4 126
## 422 0 259.9 114 44.18 176.2 94
## 423 0 203.8 122 34.65 283.1 76
## 424 45 248.8 124 42.30 140.3 77
## 425 16 221.6 110 37.67 130.2 123
## 426 0 192.9 131 32.79 185.5 101
## 427 0 122.4 129 20.81 113.4 108
## 428 40 104.9 65 17.83 216.3 93
## 429 0 173.2 91 29.44 196.8 106
## 430 0 119.4 69 20.30 273.3 92
## 431 0 250.3 100 42.55 260.6 90
## 432 0 178.3 98 30.31 282.6 110
## 433 0 243.4 77 41.38 182.1 97
## 434 0 155.0 106 26.35 175.3 101
## 435 31 288.7 101 49.08 203.8 102
## 436 29 240.4 80 40.87 118.9 91
## 437 0 190.3 123 32.35 301.3 96
## 438 0 278.0 76 47.26 176.7 74
## 439 0 155.0 93 26.35 330.6 106
## 440 0 153.5 99 26.10 197.6 102
## 441 27 273.4 141 46.48 154.0 99
## 442 0 155.3 93 26.40 265.7 95
## 443 29 133.1 114 22.63 221.2 82
## 444 0 246.8 129 41.96 187.8 121
## 445 0 165.4 107 28.12 196.0 126
## 446 0 59.5 103 10.12 257.2 106
## 447 0 138.3 116 23.51 236.0 138
## 448 0 286.7 100 48.74 134.4 121
## 449 0 117.3 114 19.94 201.1 61
## 450 21 264.3 79 44.93 202.8 118
## 451 0 127.9 107 21.74 271.2 124
## 452 23 225.5 107 38.34 246.3 105
## 453 0 149.0 115 25.33 245.3 105
## 454 20 198.9 77 33.81 274.0 88
## 455 0 256.4 125 43.59 273.9 100
## 456 0 264.8 124 45.02 245.4 112
## 457 0 98.2 88 16.69 180.5 69
## 458 0 159.8 99 27.17 264.0 64
## 459 28 190.6 86 32.40 220.1 122
## 460 0 184.0 120 31.28 120.4 119
## 461 0 261.8 128 44.51 220.6 104
## 462 0 147.9 109 25.14 228.4 117
## 463 18 106.4 109 18.09 108.1 113
## 464 0 133.7 75 22.73 195.3 87
## 465 23 193.5 85 32.90 220.2 90
## 466 0 178.2 113 30.29 167.8 94
## 467 36 226.2 103 38.45 181.6 125
## 468 0 170.4 103 28.97 200.2 71
## 469 32 70.9 163 12.05 166.7 121
## 470 34 194.4 63 33.05 254.9 110
## 471 0 240.3 146 40.85 164.6 83
## 472 0 75.0 116 12.75 248.7 87
## 473 0 69.1 117 11.75 136.3 100
## 474 33 96.6 59 16.42 315.4 98
## 475 20 214.6 101 36.48 235.1 132
## 476 0 148.5 111 25.25 146.5 42
## 477 0 258.1 106 43.88 161.4 106
## 478 23 149.7 112 25.45 162.5 118
## 479 0 149.8 134 25.47 164.4 98
## 480 0 190.4 102 32.37 158.1 107
## 481 0 181.4 108 30.84 253.8 54
## 482 0 151.1 123 25.69 187.4 104
## 483 0 155.7 116 26.47 173.7 63
## 484 0 149.9 95 25.48 256.1 110
## 485 0 222.3 132 37.79 231.5 101
## 486 16 149.4 111 25.40 131.8 113
## 487 0 233.8 103 39.75 221.6 131
## 488 0 204.2 100 34.71 292.6 139
## 489 0 242.9 126 41.29 209.8 65
## 490 0 150.4 119 25.57 230.5 99
## 491 0 208.9 119 35.51 252.4 132
## 492 0 191.9 91 32.62 256.1 110
## 493 0 130.7 113 22.22 260.6 122
## 494 33 119.6 104 20.33 278.7 88
## 495 0 273.6 93 46.51 114.6 116
## 496 0 156.1 114 26.54 180.3 63
## 497 36 178.7 134 30.38 178.6 102
## 498 0 177.5 93 30.18 287.4 75
## 499 0 211.3 61 35.92 105.6 119
## 500 0 175.2 91 29.78 244.4 109
## 501 23 114.3 102 19.43 190.3 103
## 502 28 251.4 104 42.74 225.1 89
## 503 0 216.9 61 36.87 207.4 120
## 504 26 217.2 138 36.92 145.5 111
## 505 0 206.3 97 35.07 154.9 98
## 506 0 159.3 66 27.08 125.9 75
## 507 31 143.1 88 24.33 236.6 65
## 508 0 154.0 122 26.18 329.8 88
## 509 24 186.6 69 31.72 222.0 116
## 510 26 170.8 114 29.04 199.5 125
## 511 17 124.0 102 21.08 202.9 81
## 512 0 198.3 94 33.71 279.3 101
## 513 0 172.8 101 29.38 204.8 97
## 514 30 217.4 74 36.96 213.8 86
## 515 29 265.9 113 45.20 215.8 94
## 516 14 93.6 137 15.91 193.8 72
## 517 0 98.2 100 16.69 307.2 88
## 518 0 214.7 68 36.50 158.6 138
## 519 0 168.2 92 28.59 224.7 100
## 520 0 202.9 97 34.49 153.8 104
## 521 0 261.4 108 44.44 154.5 102
## 522 0 73.3 86 12.46 161.4 82
## 523 27 253.7 84 43.13 229.2 109
## 524 0 45.0 108 7.65 151.3 74
## 525 0 231.3 105 39.32 171.7 108
## 526 0 47.4 125 8.06 167.8 90
## 527 0 227.4 88 38.66 182.5 100
## 528 22 40.9 126 6.95 133.4 90
## 529 0 124.8 133 21.22 157.3 143
## 530 0 68.5 110 11.65 337.1 115
## 531 37 163.5 77 27.80 203.1 102
## 532 0 163.0 112 27.71 219.1 89
## 533 38 213.7 61 36.33 253.0 104
## 534 36 201.3 117 34.22 42.2 78
## 535 0 310.4 97 52.77 66.5 123
## 536 0 48.4 101 8.23 281.1 138
## 537 40 171.2 88 29.10 145.7 109
## 538 22 166.5 93 28.31 183.0 92
## 539 0 216.6 126 36.82 190.8 104
## 540 0 107.8 113 18.33 216.6 125
## 541 28 141.3 94 24.02 168.0 108
## 542 29 209.9 77 35.68 158.0 52
## 543 20 237.5 120 40.38 253.4 94
## 544 0 234.5 109 39.87 216.5 129
## 545 31 103.1 90 17.53 243.0 135
## 546 27 129.5 106 22.02 248.9 90
## 547 0 279.8 90 47.57 248.7 91
## 548 41 136.8 91 23.26 200.8 61
## 549 31 100.1 54 17.02 246.3 97
## 550 31 237.1 63 40.31 205.6 117
## 551 0 172.8 58 29.38 183.1 108
## 552 0 224.5 111 38.17 200.7 99
## 553 0 288.1 112 48.98 258.0 92
## 554 0 78.2 103 13.29 195.9 149
## 555 0 148.7 80 25.28 259.0 94
## 556 25 194.6 84 33.08 119.9 103
## 557 0 159.5 77 27.12 303.8 92
## 558 20 194.5 110 33.07 213.7 89
## 559 0 174.1 96 29.60 251.1 94
## 560 0 131.8 97 22.41 136.7 100
## 561 0 160.6 103 27.30 237.0 109
## 562 18 146.8 107 24.96 310.0 84
## 563 28 200.7 88 34.12 264.2 116
## 564 0 145.6 106 24.75 98.3 106
## 565 29 229.4 104 39.00 257.4 84
## 566 0 211.0 76 35.87 189.0 100
## 567 37 121.5 97 20.66 271.4 110
## 568 0 216.0 73 36.72 188.2 117
## 569 0 293.0 88 49.81 160.6 101
## 570 32 221.1 137 37.59 264.9 99
## 571 0 181.5 108 30.86 196.9 87
## 572 26 74.3 107 12.63 177.3 116
## 573 0 62.3 92 10.59 275.0 82
## 574 31 228.6 88 38.86 248.5 109
## 575 0 228.1 121 38.78 276.5 79
## 576 36 309.9 90 52.68 200.3 89
## 577 0 201.9 74 34.32 226.8 119
## 578 0 149.8 112 25.47 180.0 93
## 579 30 183.8 76 31.25 229.7 95
## 580 21 186.7 108 31.74 335.0 86
## 581 0 209.4 151 35.60 347.3 113
## 582 25 223.2 77 37.94 183.2 118
## 583 0 164.2 109 27.91 155.4 90
## 584 0 150.5 75 25.59 193.1 93
## 585 0 234.2 128 39.81 293.1 92
## 586 0 55.3 102 9.40 164.7 124
## 587 0 221.8 97 37.71 203.8 134
## 588 0 169.6 85 28.83 58.9 86
## 589 0 89.7 118 15.25 260.1 79
## 590 14 80.2 81 13.63 219.0 103
## 591 0 218.9 105 37.21 299.9 87
## 592 0 125.7 96 21.37 207.6 137
## 593 0 176.3 85 29.97 93.4 125
## 594 29 207.2 111 35.22 254.1 137
## 595 0 205.7 138 34.97 161.9 83
## 596 28 151.4 95 25.74 152.4 97
## 597 0 157.5 70 26.78 130.7 79
## 598 0 160.4 68 27.27 102.6 103
## 599 0 159.0 80 27.03 167.9 128
## 600 46 214.1 62 36.40 200.9 111
## 601 0 102.6 89 17.44 246.0 77
## 602 0 159.7 86 27.15 197.5 76
## 603 0 202.8 109 34.48 165.8 104
## 604 0 57.5 95 9.78 265.5 131
## 605 0 169.9 144 28.88 225.2 118
## 606 0 335.5 77 57.04 212.5 109
## 607 0 139.5 119 23.72 289.3 105
## 608 29 142.3 107 24.19 118.7 56
## 609 0 187.8 94 31.93 248.6 86
## 610 0 146.2 55 24.85 261.5 83
## 611 0 231.8 120 39.41 150.6 106
## 612 0 193.7 83 32.93 154.2 79
## 613 0 156.4 108 26.59 233.4 118
## 614 29 220.7 82 37.52 217.7 110
## 615 37 239.8 110 40.77 221.9 115
## 616 43 172.0 111 29.24 200.2 64
## 617 35 128.2 138 21.79 274.5 113
## 618 0 130.2 119 22.13 290.9 121
## 619 0 195.4 107 33.22 154.6 96
## 620 0 293.3 79 49.86 188.5 90
## 621 0 191.3 89 32.52 193.9 87
## 622 0 122.4 88 20.81 143.8 111
## 623 33 209.6 68 35.63 146.9 140
## 624 0 215.7 140 36.67 146.3 84
## 625 0 161.4 110 27.44 220.6 125
## 626 0 144.2 91 24.51 226.7 137
## 627 37 220.2 109 37.43 185.3 99
## 628 0 256.2 105 43.55 160.7 102
## 629 0 112.7 119 19.16 217.7 109
## 630 0 299.5 125 50.92 226.7 92
## 631 0 194.8 107 33.12 170.9 99
## 632 0 100.8 112 17.14 230.0 69
## 633 22 82.5 97 14.03 289.9 94
## 634 34 146.4 104 24.89 89.7 103
## 635 0 177.9 129 30.24 224.6 87
## 636 27 153.5 84 26.10 194.0 73
## 637 0 150.7 105 25.62 197.3 133
## 638 19 180.1 106 30.62 127.5 92
## 639 31 265.3 94 45.10 147.6 95
## 640 0 128.6 83 21.86 134.0 114
## 641 0 161.5 92 27.46 173.5 108
## 642 0 165.3 120 28.10 198.5 106
## 643 0 195.0 92 33.15 210.5 83
## 644 0 213.8 79 36.35 265.1 93
## 645 24 205.5 114 34.94 219.3 99
## 646 22 252.9 112 42.99 177.9 99
## 647 28 235.6 74 40.05 227.9 37
## 648 0 192.0 91 32.64 127.6 127
## 649 39 69.1 122 11.75 101.3 136
## 650 0 261.7 97 44.49 210.6 48
## 651 0 235.5 81 40.04 257.2 130
## 652 0 213.4 100 36.28 204.9 52
## 653 39 206.9 143 35.17 127.8 72
## 654 22 263.8 65 44.85 103.4 115
## 655 31 183.4 126 31.18 195.5 106
## 656 0 157.6 85 26.79 194.1 92
## 657 0 175.6 147 29.85 161.8 118
## 658 0 242.5 101 41.23 102.8 114
## 659 0 151.0 102 25.67 131.4 101
## 660 0 138.1 103 23.48 164.5 100
## 661 0 264.7 69 45.00 305.0 120
## 662 31 282.3 70 47.99 152.0 89
## 663 0 211.2 80 35.90 237.7 93
## 664 0 197.1 126 33.51 130.1 76
## 665 0 205.3 95 34.90 166.7 128
## 666 22 181.8 110 30.91 228.1 123
## 667 0 252.0 120 42.84 150.2 106
## 668 0 193.8 102 32.95 118.9 104
## 669 0 231.2 135 39.30 188.7 74
## 670 33 200.1 108 34.02 188.9 122
## 671 26 266.7 109 45.34 232.3 107
## 672 36 118.1 117 20.08 221.5 125
## 673 0 175.3 106 29.80 144.3 87
## 674 0 125.1 99 21.27 248.8 62
## 675 0 176.8 90 30.06 224.7 81
## 676 0 241.9 101 41.12 129.4 121
## 677 0 241.2 134 41.00 116.5 114
## 678 0 217.1 99 36.91 236.0 68
## 679 0 195.4 110 33.22 181.2 109
## 680 0 222.4 78 37.81 327.0 111
## 681 0 189.5 90 32.22 189.8 118
## 682 0 123.1 100 20.93 158.4 82
## 683 38 256.7 98 43.64 150.5 120
## 684 0 159.1 94 27.05 241.6 119
## 685 0 100.1 90 17.02 233.3 93
## 686 32 30.9 113 5.25 187.0 113
## 687 0 223.2 76 37.94 214.4 131
## 688 0 187.4 101 31.86 199.9 126
## 689 21 315.6 105 53.65 208.9 71
## 690 0 277.5 104 47.18 131.8 121
## 691 0 189.8 111 32.27 197.3 101
## 692 0 147.2 119 25.02 192.8 91
## 693 0 185.8 36 31.59 276.5 134
## 694 29 155.4 110 26.42 188.5 104
## 695 0 154.2 91 26.21 268.6 108
## 696 0 97.6 98 16.59 105.5 118
## 697 0 178.8 94 30.40 178.4 97
## 698 0 149.3 104 25.38 273.6 75
## 699 0 206.0 89 35.02 186.0 88
## 700 0 216.8 86 36.86 190.8 114
## 701 0 103.3 110 17.56 129.1 82
## 702 0 139.4 95 23.70 159.1 92
## 703 0 191.2 110 32.50 163.9 102
## 704 23 160.0 104 27.20 189.4 64
## 705 0 221.7 95 37.69 193.0 82
## 706 0 62.9 81 10.69 231.0 64
## 707 0 215.6 78 36.65 195.3 119
## 708 42 165.3 97 28.10 223.5 118
## 709 32 94.7 111 16.10 154.4 98
## 710 0 203.2 81 34.54 152.5 99
## 711 0 195.3 70 33.20 216.7 108
## 712 0 143.7 114 24.43 297.8 98
## 713 0 114.4 104 19.45 78.3 101
## 714 0 222.8 101 37.88 203.0 128
## 715 22 175.9 70 29.90 211.7 105
## 716 0 249.9 95 42.48 242.5 104
## 717 30 234.5 130 39.87 195.2 116
## 718 0 210.7 116 35.82 219.2 86
## 719 0 182.3 124 30.99 169.9 110
## 720 0 190.3 88 32.35 194.5 89
## 721 38 177.1 88 30.11 163.7 108
## 722 36 87.2 92 14.82 169.3 110
## 723 0 215.6 96 36.65 193.4 127
## 724 0 137.4 109 23.36 237.6 49
## 725 36 192.8 103 32.78 177.0 83
## 726 0 149.3 100 25.38 200.2 110
## 727 0 143.7 116 24.43 170.7 99
## 728 0 224.8 111 38.22 190.0 101
## 729 39 261.2 122 44.40 214.2 101
## 730 26 196.5 98 33.41 175.8 111
## 731 0 271.2 105 46.10 202.6 105
## 732 0 207.2 121 35.22 292.5 104
## 733 0 300.4 94 51.07 133.2 103
## 734 37 229.6 123 39.03 132.3 90
## 735 20 187.5 110 31.88 169.8 94
## 736 0 57.1 98 9.71 199.7 78
## 737 0 162.1 86 27.56 155.0 86
## 738 0 145.0 89 24.65 175.8 102
## 739 0 159.5 123 27.12 240.8 93
## 740 0 190.7 72 32.42 208.6 103
## 741 20 230.6 40 39.20 189.1 58
## 742 0 34.0 133 5.78 278.6 61
## 743 17 193.4 112 32.88 240.6 131
## 744 0 202.0 126 34.34 163.5 86
## 745 0 191.7 122 32.59 241.4 88
## 746 26 161.3 97 27.42 250.3 110
## 747 0 150.6 85 25.60 119.0 128
## 748 0 184.6 102 31.38 196.0 117
## 749 0 220.7 120 37.52 270.2 95
## 750 0 167.3 119 28.44 198.5 119
## 751 32 154.0 80 26.18 185.5 91
## 752 29 121.1 116 20.59 186.4 100
## 753 23 182.1 94 30.96 164.6 59
## 754 0 109.6 88 18.63 137.6 108
## 755 0 209.9 105 35.68 121.9 105
## 756 0 167.5 76 28.48 242.1 92
## 757 0 213.9 88 36.36 239.8 119
## 758 0 115.8 108 19.69 243.3 111
## 759 30 276.6 99 47.02 220.1 113
## 760 21 179.4 88 30.50 181.1 97
## 761 0 187.3 84 31.84 270.8 95
## 762 0 201.2 128 34.20 227.2 100
## 763 0 189.6 78 32.23 267.4 117
## 764 35 186.8 124 31.76 261.0 69
## 765 31 153.5 83 26.10 219.1 96
## 766 0 187.6 97 31.89 208.2 118
## 767 0 230.9 132 39.25 243.2 99
## 768 26 244.9 150 41.63 118.0 138
## 769 0 230.9 93 39.25 223.0 78
## 770 0 187.1 104 31.81 250.2 117
## 771 0 170.7 54 29.02 191.1 108
## 772 28 126.9 97 21.57 166.9 102
## 773 0 189.5 112 32.22 207.0 95
## 774 0 176.9 110 30.07 167.9 100
## 775 0 161.1 99 27.39 198.8 81
## 776 0 169.4 107 28.80 197.2 71
## 777 20 254.4 133 43.25 161.7 96
## 778 24 127.7 54 21.71 215.0 105
## 779 26 170.5 107 28.99 217.2 77
## 780 0 219.1 100 37.25 242.9 90
## 781 0 273.5 104 46.50 183.8 68
## 782 0 161.9 138 27.52 200.9 114
## 783 27 241.7 87 41.09 142.0 101
## 784 0 62.8 124 10.68 170.4 66
## 785 22 281.1 83 47.79 143.7 130
## 786 0 228.2 70 38.79 263.7 80
## 787 0 209.8 82 35.67 194.5 94
## 788 0 265.6 86 45.15 208.8 102
## 789 0 214.9 97 36.53 117.8 117
## 790 0 110.5 79 18.79 223.2 111
## 791 45 281.1 88 47.79 198.0 103
## 792 0 137.8 86 23.43 286.3 76
## 793 33 271.5 98 46.16 253.4 102
## 794 0 112.8 108 19.18 218.8 120
## 795 0 187.3 118 31.84 239.7 90
## 796 0 197.0 84 33.49 269.3 105
## 797 32 180.4 89 30.67 129.4 124
## 798 0 148.5 126 25.25 219.4 125
## 799 22 197.1 113 33.51 259.4 95
## 800 26 153.7 115 26.13 137.8 146
## 801 27 261.3 96 44.42 220.9 101
## 802 0 246.2 102 41.85 202.4 134
## 803 0 191.0 88 32.47 318.8 119
## 804 0 208.3 86 35.41 253.6 89
## 805 0 253.0 73 43.01 219.3 78
## 806 0 202.3 87 34.39 201.5 111
## 807 0 174.4 120 29.65 156.3 98
## 808 30 127.1 89 21.61 172.1 116
## 809 16 143.5 76 24.40 242.6 58
## 810 17 186.9 94 31.77 240.0 138
## 811 0 194.0 118 32.98 242.0 114
## 812 0 234.8 89 39.92 106.8 131
## 813 0 123.7 96 21.03 103.0 80
## 814 0 173.9 103 29.56 276.4 83
## 815 41 130.9 115 22.25 203.4 110
## 816 0 314.6 102 53.48 169.8 86
## 817 0 227.9 78 38.74 207.5 115
## 818 0 95.5 92 16.24 163.7 63
## 819 0 185.3 127 31.50 208.0 73
## 820 0 146.3 133 24.87 202.7 95
## 821 16 184.0 99 31.28 76.4 134
## 822 0 105.8 110 17.99 43.9 88
## 823 0 178.0 110 30.26 153.8 64
## 824 24 149.4 74 25.40 123.9 72
## 825 0 209.4 104 35.60 132.5 78
## 826 0 172.1 105 29.26 211.7 99
## 827 0 169.3 82 28.78 217.9 147
## 828 0 119.1 117 20.25 287.7 136
## 829 0 194.2 147 33.01 173.4 87
## 830 0 198.8 56 33.80 230.1 73
## 831 0 167.7 94 28.51 93.7 121
## 832 0 202.2 86 34.37 216.8 93
## 833 0 322.5 106 54.83 204.6 93
## 834 0 216.2 107 36.75 215.6 84
## 835 0 76.4 116 12.99 115.6 74
## 836 0 72.7 75 12.36 208.6 117
## 837 31 210.4 100 35.77 225.5 97
## 838 33 127.2 93 21.62 162.9 104
## 839 28 201.8 79 34.31 304.9 128
## 840 17 219.5 78 37.32 222.1 94
## 841 0 99.3 112 16.88 270.5 136
## 842 0 239.2 114 40.66 150.0 115
## 843 0 120.9 58 20.55 235.0 88
## 844 0 224.7 81 38.20 129.4 112
## 845 19 176.6 88 30.02 162.7 66
## 846 51 283.9 98 48.26 192.0 109
## 847 0 180.6 92 30.70 190.9 114
## 848 31 125.9 101 21.40 196.4 102
## 849 0 237.6 79 40.39 192.4 107
## 850 0 198.4 91 33.73 264.7 106
## 851 0 274.3 110 46.63 52.9 109
## 852 0 199.6 89 33.93 211.4 96
## 853 0 217.7 91 37.01 273.5 74
## 854 0 134.7 96 22.90 235.9 90
## 855 24 212.7 73 36.16 257.5 103
## 856 0 256.3 135 43.57 180.2 106
## 857 0 183.6 133 31.21 120.7 98
## 858 0 176.2 90 29.95 196.0 115
## 859 37 205.0 94 34.85 165.4 103
## 860 0 267.9 114 45.54 223.0 74
## 861 0 179.2 111 30.46 175.2 130
## 862 0 149.4 145 25.40 196.5 105
## 863 38 163.6 132 27.81 146.7 113
## 864 0 207.6 71 35.29 152.7 94
## 865 0 165.4 108 28.12 183.7 103
## 866 0 209.8 114 35.67 171.3 82
## 867 27 220.1 128 37.42 268.2 133
## 868 0 141.3 72 24.02 154.3 95
## 869 0 196.5 89 33.41 241.3 123
## 870 0 180.9 114 30.75 209.5 118
## 871 0 105.0 150 17.85 251.6 90
## 872 0 271.4 119 46.14 190.4 102
## 873 43 206.7 79 35.14 174.6 122
## 874 0 166.8 109 28.36 236.0 117
## 875 0 204.9 107 34.83 135.2 102
## 876 15 154.6 128 26.28 245.6 106
## 877 0 127.0 107 21.59 323.2 75
## 878 0 267.4 78 45.46 204.2 85
## 879 0 281.0 66 47.77 160.6 108
## 880 33 270.8 96 46.04 220.4 110
## 881 0 171.2 82 29.10 185.6 102
## 882 0 124.1 82 21.10 202.6 120
## 883 0 162.8 113 27.68 290.3 111
## 884 0 146.3 84 24.87 255.9 113
## 885 0 254.8 85 43.32 143.4 80
## 886 26 254.9 108 43.33 243.2 135
## 887 31 107.7 124 18.31 188.9 104
## 888 0 158.8 75 27.00 264.8 91
## 889 0 182.9 113 31.09 239.6 85
## 890 0 198.5 112 33.75 42.5 90
## 891 0 178.4 72 30.33 233.6 134
## 892 0 110.9 91 18.85 158.5 115
## 893 27 166.9 85 28.37 221.2 92
## 894 0 244.8 91 41.62 60.8 105
## 895 0 120.8 96 20.54 169.8 101
## 896 0 165.3 118 28.10 210.0 101
## 897 0 126.7 113 21.54 155.5 131
## 898 35 215.9 106 36.70 200.6 107
## 899 0 140.1 132 23.82 209.6 126
## 900 32 209.9 113 35.68 249.8 104
## 901 29 139.8 114 23.77 138.2 91
## 902 0 321.6 107 54.67 251.6 115
## 903 0 166.6 61 28.32 218.8 107
## 904 0 214.2 90 36.41 196.8 78
## 905 0 260.0 123 44.20 210.5 127
## 906 0 191.9 113 32.62 70.9 87
## 907 0 213.0 95 36.21 188.8 104
## 908 24 118.1 83 20.08 109.6 72
## 909 0 190.2 89 32.33 166.4 108
## 910 25 82.2 95 13.97 163.3 109
## 911 32 163.8 80 27.85 177.8 123
## 912 0 267.8 145 45.53 316.4 121
## 913 0 159.8 91 27.17 120.4 86
## 914 24 214.3 129 36.43 289.8 55
## 915 0 287.3 123 48.84 288.0 114
## 916 0 101.2 122 17.20 141.6 87
## 917 0 102.8 74 17.48 281.7 125
## 918 0 109.1 97 18.55 115.7 96
## 919 0 215.9 67 36.70 217.0 108
## 920 0 203.4 110 34.58 128.7 97
## 921 0 110.1 113 18.72 169.0 59
## 922 0 111.0 51 18.87 219.8 84
## 923 0 239.9 121 40.78 142.3 51
## 924 0 144.8 107 24.62 112.5 66
## 925 0 135.4 134 23.02 205.9 85
## 926 0 84.2 134 14.31 80.8 103
## 927 0 209.1 127 35.55 106.1 80
## 928 24 130.1 117 22.12 196.0 61
## 929 24 175.8 139 29.89 155.0 98
## 930 0 241.9 104 41.12 145.2 112
## 931 0 136.7 106 23.24 228.6 105
## 932 0 67.7 68 11.51 195.7 86
## 933 0 200.4 87 34.07 309.2 105
## 934 0 125.8 103 21.39 207.7 96
## 935 0 128.2 87 21.79 133.2 105
## 936 0 226.3 88 38.47 223.0 107
## 937 37 162.3 107 27.59 233.9 115
## 938 0 224.4 121 38.15 147.9 97
## 939 0 120.5 127 20.49 189.7 52
## 940 0 91.1 90 15.49 179.3 115
## 941 0 168.8 137 28.70 241.4 107
## 942 0 153.5 81 26.10 287.3 115
## 943 0 226.2 88 38.45 140.3 114
## 944 0 191.9 107 32.62 206.9 127
## 945 28 167.9 147 28.54 190.7 105
## 946 0 180.0 88 30.60 145.0 77
## 947 0 257.4 67 43.76 261.1 91
## 948 28 174.4 75 29.65 169.9 80
## 949 0 159.7 83 27.15 155.4 121
## 950 0 237.2 124 40.32 222.6 87
## 951 0 103.0 129 17.51 242.3 103
## 952 0 153.8 89 26.15 234.0 89
## 953 0 205.1 86 34.87 160.5 95
## 954 39 175.7 93 29.87 187.2 94
## 955 0 155.9 123 26.50 224.2 112
## 956 34 154.4 109 26.25 221.4 142
## 957 23 209.7 73 35.65 183.6 63
## 958 0 150.0 69 25.50 285.9 73
## 959 23 232.4 97 39.51 186.0 88
## 960 0 165.4 100 28.12 115.7 87
## 961 0 199.2 106 33.86 187.3 12
## 962 0 217.6 81 36.99 320.5 51
## 963 0 212.1 95 36.06 150.1 88
## 964 30 154.0 75 26.18 165.8 97
## 965 31 193.8 130 32.95 202.6 98
## 966 0 175.4 130 29.82 248.1 105
## 967 22 152.0 63 25.84 258.8 131
## 968 0 230.2 147 39.13 186.7 121
## 969 33 174.9 103 29.73 248.2 105
## 970 0 190.2 68 32.33 262.2 64
## 971 0 176.4 122 29.99 224.9 123
## 972 0 160.9 95 27.35 251.2 65
## 973 0 228.7 90 38.88 163.0 99
## 974 0 144.0 90 24.48 181.6 100
## 975 31 135.9 90 23.10 271.0 84
## 976 0 334.3 118 56.83 192.1 104
## 977 0 130.5 77 22.19 131.2 117
## 978 21 134.2 105 22.81 162.5 128
## 979 0 278.0 102 47.26 266.4 114
## 980 0 105.4 70 17.92 214.8 122
## 981 0 188.9 94 32.11 203.9 104
## 982 24 111.8 85 19.01 239.6 102
## 983 33 159.1 106 27.05 149.8 101
## 984 0 212.4 105 36.11 224.6 118
## 985 0 142.3 112 24.19 306.3 111
## 986 0 346.8 55 58.96 249.5 79
## 987 15 113.9 102 19.36 145.3 146
## 988 27 267.9 103 45.54 263.3 74
## 989 0 171.4 117 29.14 115.2 128
## 990 0 275.4 150 46.82 187.5 62
## 991 31 197.2 118 33.52 249.9 70
## 992 35 192.6 97 32.74 135.2 101
## 993 26 91.7 104 15.59 150.6 119
## 994 0 126.3 99 21.47 141.6 106
## 995 33 251.5 107 42.76 234.1 110
## 996 0 190.6 108 32.40 152.3 95
## 997 0 116.1 101 19.74 201.8 99
## 998 0 217.3 91 36.94 216.1 95
## 999 0 179.4 80 30.50 232.5 99
## 1000 0 207.7 109 35.31 164.8 94
## 1001 0 277.3 138 47.14 228.4 117
## 1002 0 125.3 84 21.30 167.6 121
## 1003 32 138.1 91 23.48 167.3 72
## 1004 38 169.3 88 28.78 225.9 97
## 1005 27 201.3 101 34.22 143.8 89
## 1006 0 216.7 117 36.84 116.5 126
## 1007 0 190.4 92 32.37 317.5 85
## 1008 0 143.3 91 24.36 195.5 58
## 1009 42 97.4 57 16.56 203.6 98
## 1010 0 181.4 111 30.84 167.7 92
## 1011 0 246.4 83 41.89 256.2 101
## 1012 0 143.4 130 24.38 289.4 50
## 1013 0 104.9 111 17.83 198.5 120
## 1014 0 156.2 93 26.55 193.0 54
## 1015 0 114.8 125 19.52 81.9 126
## 1016 0 232.5 96 39.53 205.5 120
## 1017 0 143.6 117 24.41 152.4 108
## 1018 0 176.7 132 30.04 244.1 80
## 1019 0 263.4 148 44.78 230.3 69
## 1020 0 146.4 74 24.89 148.5 92
## 1021 33 145.0 72 24.65 194.5 157
## 1022 0 167.8 91 28.53 167.7 69
## 1023 0 166.9 99 28.37 154.9 97
## 1024 0 142.5 87 24.23 195.7 88
## 1025 0 133.0 65 22.61 262.8 93
## 1026 11 252.9 129 42.99 284.3 88
## 1027 28 95.0 94 16.15 291.2 73
## 1028 0 194.2 106 33.01 249.4 105
## 1029 0 222.8 114 37.88 215.9 113
## 1030 0 201.8 82 34.31 231.5 95
## 1031 42 216.0 125 36.72 232.3 104
## 1032 0 146.3 108 24.87 171.8 102
## 1033 0 234.8 85 39.92 140.9 91
## 1034 0 198.6 111 33.76 213.9 115
## 1035 0 94.4 80 16.05 215.1 101
## 1036 0 190.4 74 32.37 215.6 113
## 1037 32 142.6 77 24.24 208.2 126
## 1038 0 134.2 80 22.81 165.0 71
## 1039 0 111.9 92 19.02 114.0 143
## 1040 0 122.8 89 20.88 211.3 104
## 1041 0 189.3 77 32.18 220.9 105
## 1042 38 240.4 112 40.87 201.8 102
## 1043 24 93.5 112 15.90 183.4 128
## 1044 0 158.6 104 26.96 211.2 77
## 1045 0 243.2 109 41.34 147.0 88
## 1046 0 176.4 115 29.99 158.8 128
## 1047 0 220.9 129 37.55 242.2 108
## 1048 0 144.4 87 24.55 266.5 128
## 1049 0 212.3 107 36.09 228.4 103
## 1050 0 147.0 72 24.99 165.7 102
## 1051 25 96.2 112 16.35 178.9 70
## 1052 0 263.4 118 44.78 179.1 69
## 1053 0 12.5 67 2.13 256.6 90
## 1054 0 162.3 116 27.59 192.4 86
## 1055 0 183.6 107 31.21 58.6 118
## 1056 0 178.1 109 30.28 146.5 86
## 1057 0 201.4 101 34.24 97.6 122
## 1058 38 123.0 158 20.91 133.9 119
## 1059 0 208.0 125 35.36 198.9 76
## 1060 0 239.2 72 40.66 188.5 124
## 1061 0 193.0 97 32.81 89.8 99
## 1062 31 174.5 101 29.67 245.6 105
## 1063 26 116.7 71 19.84 145.9 88
## 1064 0 93.8 127 15.95 150.0 104
## 1065 30 154.1 114 26.20 118.7 106
## 1066 29 239.5 82 40.72 203.8 105
## 1067 25 216.0 140 36.72 224.1 69
## 1068 0 187.4 97 31.86 177.8 89
## 1069 0 167.4 119 28.46 233.2 143
## 1070 0 160.4 108 27.27 218.1 88
## 1071 0 143.2 92 24.34 209.1 142
## 1072 0 205.3 122 34.90 240.5 155
## 1073 25 219.1 88 37.25 151.5 99
## 1074 0 143.2 77 24.34 169.8 114
## 1075 0 232.8 106 39.58 175.2 97
## 1076 0 162.0 81 27.54 247.5 89
## 1077 27 25.9 119 4.40 206.5 96
## 1078 0 154.2 123 26.21 112.3 86
## 1079 0 322.3 113 54.79 222.0 95
## 1080 0 209.9 112 35.68 221.3 82
## 1081 0 191.5 88 32.56 175.2 78
## 1082 19 291.1 150 49.49 226.7 123
## 1083 0 215.6 115 36.65 216.2 85
## 1084 0 208.8 101 35.50 213.7 87
## 1085 0 255.9 97 43.50 204.1 129
## 1086 0 252.7 97 42.96 221.1 121
## 1087 0 132.1 72 22.46 247.5 107
## 1088 0 217.0 115 36.89 207.0 142
## 1089 42 101.9 79 17.32 223.1 97
## 1090 0 211.5 100 35.96 184.6 88
## 1091 0 153.4 86 26.08 198.5 81
## 1092 0 166.3 95 28.27 239.3 87
## 1093 0 185.2 87 31.48 170.4 96
## 1094 0 104.6 121 17.78 149.5 71
## 1095 0 245.2 105 41.68 159.0 109
## 1096 0 274.4 120 46.65 198.6 82
## 1097 0 98.4 78 16.73 249.6 129
## 1098 29 279.9 121 47.58 223.1 109
## 1099 0 187.2 127 31.82 195.6 88
## 1100 0 276.2 95 46.95 165.8 119
## 1101 35 200.4 104 34.07 272.8 89
## 1102 0 162.3 96 27.59 244.0 122
## 1103 0 176.9 128 30.07 102.8 56
## 1104 0 165.5 78 28.14 205.5 89
## 1105 0 217.8 93 37.03 189.7 113
## 1106 28 201.4 100 34.24 246.5 117
## 1107 0 190.5 115 32.39 179.6 130
## 1108 29 179.9 97 30.58 189.2 89
## 1109 0 235.9 104 40.10 80.6 91
## 1110 0 140.4 112 23.87 187.1 60
## 1111 0 144.6 115 24.58 258.8 66
## 1112 0 189.0 100 32.13 118.5 99
## 1113 0 101.0 93 17.17 155.6 104
## 1114 0 206.3 98 35.07 292.8 82
## 1115 15 165.1 85 28.07 267.0 93
## 1116 0 165.0 129 28.05 202.6 113
## 1117 0 155.9 95 26.50 256.1 97
## 1118 0 199.2 122 33.86 214.7 114
## 1119 0 155.3 116 26.40 188.2 85
## 1120 0 208.3 106 35.41 236.7 123
## 1121 0 157.1 79 26.71 162.6 124
## 1122 0 154.4 165 26.25 168.3 121
## 1123 0 189.1 105 32.15 246.1 147
## 1124 24 131.5 98 22.36 230.2 111
## 1125 0 166.4 85 28.29 243.2 135
## 1126 0 142.3 75 24.19 122.8 106
## 1127 19 87.7 103 14.91 223.0 86
## 1128 19 184.1 78 31.30 194.5 71
## 1129 31 174.5 104 29.67 224.2 92
## 1130 0 103.3 103 17.56 138.5 79
## 1131 0 35.1 62 5.97 180.8 89
## 1132 25 246.6 94 41.92 141.4 112
## 1133 37 78.5 109 13.35 210.5 101
## 1134 0 148.1 73 25.18 164.9 101
## 1135 0 206.2 84 35.05 256.4 138
## 1136 33 251.6 87 42.77 197.6 118
## 1137 26 270.3 111 45.95 215.2 90
## 1138 34 156.6 97 26.62 224.2 97
## 1139 0 139.4 81 23.70 223.7 113
## 1140 0 220.2 108 37.43 188.4 124
## 1141 39 214.1 108 36.40 169.2 115
## 1142 0 196.0 74 33.32 213.4 96
## 1143 0 106.4 71 18.09 240.1 83
## 1144 29 179.4 113 30.50 275.4 100
## 1145 0 216.7 30 36.84 144.3 125
## 1146 0 177.3 129 30.14 152.8 105
## 1147 0 151.6 117 25.77 219.4 87
## 1148 32 262.2 123 44.57 165.2 82
## 1149 0 173.6 110 29.51 91.7 84
## 1150 0 106.6 76 18.12 147.4 89
## 1151 0 193.3 106 32.86 128.3 94
## 1152 24 217.2 94 36.92 138.7 52
## 1153 0 209.5 89 35.62 172.8 85
## 1154 0 95.4 105 16.22 207.2 101
## 1155 26 214.6 110 36.48 205.2 87
## 1156 0 131.6 120 22.37 211.3 96
## 1157 0 168.4 117 28.63 217.1 129
## 1158 0 146.4 123 24.89 176.6 113
## 1159 0 183.0 110 31.11 206.7 93
## 1160 0 103.3 122 17.56 245.9 123
## 1161 28 112.2 70 19.07 154.8 106
## 1162 0 170.7 55 29.02 179.1 108
## 1163 0 172.5 78 29.33 142.6 91
## 1164 30 194.3 107 33.03 243.2 108
## 1165 32 187.8 117 31.93 129.8 90
## 1166 26 307.1 94 52.21 289.4 78
## 1167 0 118.2 106 20.09 167.2 136
## 1168 0 154.0 95 26.18 205.9 106
## 1169 0 155.5 101 26.44 213.4 89
## 1170 0 125.6 108 21.35 213.0 90
## 1171 0 199.3 104 33.88 224.2 92
## 1172 0 157.9 88 26.84 180.8 132
## 1173 0 203.4 81 34.58 167.7 110
## 1174 0 222.2 113 37.77 218.5 122
## 1175 39 92.8 98 15.78 271.2 115
## 1176 32 216.8 78 36.86 102.2 111
## 1177 0 193.2 89 32.84 194.4 90
## 1178 0 113.2 108 19.24 189.3 63
## 1179 36 166.2 54 28.25 238.8 109
## 1180 23 262.2 101 44.57 157.0 80
## 1181 0 207.8 92 35.33 195.7 110
## 1182 35 245.4 89 41.72 148.2 102
## 1183 0 287.1 108 48.81 178.4 125
## 1184 32 192.3 82 32.69 165.3 134
## 1185 0 194.2 122 33.01 242.1 81
## 1186 0 211.0 92 35.87 217.0 102
## 1187 12 141.9 92 24.12 228.9 102
## 1188 26 220.5 94 37.49 239.5 126
## 1189 0 157.4 122 26.76 145.0 75
## 1190 28 143.5 106 24.40 223.5 147
## 1191 0 156.0 56 26.52 56.0 116
## 1192 0 160.1 63 27.22 208.4 112
## 1193 0 235.1 98 39.97 251.8 79
## 1194 15 160.0 95 27.20 209.5 110
## 1195 0 188.4 63 32.03 165.9 89
## 1196 0 194.8 97 33.12 235.3 118
## 1197 0 247.8 117 42.13 130.0 95
## 1198 0 221.2 80 37.60 213.6 104
## 1199 26 118.5 86 20.15 213.9 118
## 1200 33 231.8 78 39.41 232.9 79
## 1201 25 215.9 90 36.70 257.9 92
## 1202 35 217.1 92 36.91 220.8 134
## 1203 0 83.5 96 14.20 221.1 63
## 1204 39 183.3 106 31.16 205.1 101
## 1205 0 236.8 141 40.26 265.3 101
## 1206 0 193.8 90 32.95 195.3 121
## 1207 25 134.0 112 22.78 206.0 111
## 1208 25 176.6 65 30.02 172.7 96
## 1209 0 191.4 93 32.54 205.4 119
## 1210 35 174.8 127 29.72 219.6 93
## 1211 0 275.2 67 46.78 180.2 108
## 1212 0 174.0 85 29.58 241.1 114
## 1213 0 165.0 132 28.05 249.7 86
## 1214 0 228.7 102 38.88 168.7 99
## 1215 0 107.9 88 18.34 235.8 109
## 1216 0 221.3 140 37.62 157.8 89
## 1217 0 141.1 84 23.99 211.4 108
## 1218 31 166.4 92 28.29 238.3 74
## 1219 28 249.6 87 42.43 227.2 138
## 1220 0 178.6 83 30.36 213.1 103
## 1221 0 139.0 96 23.63 224.9 64
## 1222 0 134.3 98 22.83 202.3 109
## 1223 0 215.9 93 36.70 240.1 85
## 1224 31 181.6 91 30.87 213.2 120
## 1225 0 178.4 97 30.33 168.3 113
## 1226 0 106.4 84 18.09 140.2 104
## 1227 0 170.7 101 29.02 240.2 82
## 1228 33 184.5 139 31.37 183.2 78
## 1229 37 161.2 109 27.40 204.2 79
## 1230 0 84.9 77 14.43 257.5 109
## 1231 0 217.9 71 37.04 230.1 116
## 1232 0 270.9 98 46.05 226.2 110
## 1233 0 243.0 91 41.31 183.9 77
## 1234 0 128.2 71 21.79 48.1 78
## 1235 0 126.3 115 21.47 168.8 112
## 1236 0 178.7 56 30.38 215.7 79
## 1237 0 159.0 109 27.03 255.1 142
## 1238 0 150.9 79 25.65 161.8 87
## 1239 24 219.9 118 37.38 208.5 116
## 1240 0 168.0 116 28.56 192.4 94
## 1241 34 162.1 83 27.56 171.8 117
## 1242 0 198.8 107 33.80 195.5 91
## 1243 0 256.8 90 43.66 230.1 104
## 1244 35 182.8 122 31.08 212.7 119
## 1245 38 196.8 92 33.46 254.2 108
## 1246 0 140.1 120 23.82 231.4 128
## 1247 0 194.3 83 33.03 189.9 97
## 1248 0 117.6 66 19.99 214.0 108
## 1249 0 193.7 108 32.93 186.6 98
## 1250 0 243.1 105 41.33 231.4 108
## 1251 0 145.4 132 24.72 129.3 91
## 1252 0 169.1 105 28.75 169.9 102
## 1253 0 229.3 93 38.98 184.5 111
## 1254 0 197.2 97 33.52 211.7 115
## 1255 33 186.4 84 31.69 201.0 136
## 1256 0 76.1 121 12.94 290.3 73
## 1257 0 162.8 65 27.68 185.0 109
## 1258 0 182.3 115 30.99 199.2 97
## 1259 0 194.4 83 33.05 247.8 84
## 1260 20 189.3 95 32.18 118.6 113
## 1261 22 160.1 107 27.22 168.7 136
## 1262 0 145.0 76 24.65 240.7 112
## 1263 0 220.7 105 37.52 119.3 127
## 1264 31 224.7 69 38.20 134.5 81
## 1265 0 147.0 79 24.99 162.3 103
## 1266 39 260.8 130 44.34 213.4 111
## 1267 0 155.4 127 26.42 164.1 45
## 1268 0 166.2 112 28.25 255.3 81
## 1269 0 211.8 115 36.01 260.5 102
## 1270 45 130.5 114 22.19 208.4 94
## 1271 0 162.7 102 27.66 292.0 105
## 1272 37 237.1 76 40.31 264.2 125
## 1273 0 166.2 102 28.25 217.6 112
## 1274 0 121.7 48 20.69 125.8 112
## 1275 0 176.4 62 29.99 201.0 124
## 1276 27 67.4 116 11.46 244.0 78
## 1277 0 229.7 129 39.05 336.0 104
## 1278 24 176.0 118 29.92 277.9 116
## 1279 0 247.7 77 42.11 269.5 108
## 1280 0 115.4 90 19.62 262.6 68
## 1281 0 112.2 95 19.07 209.6 108
## 1282 0 162.6 138 27.64 154.0 109
## 1283 0 229.4 107 39.00 214.1 99
## 1284 0 139.6 96 23.73 124.2 93
## 1285 0 263.8 66 44.85 251.3 116
## 1286 46 217.5 123 36.98 233.7 84
## 1287 14 114.3 132 19.43 199.8 91
## 1288 0 196.3 108 33.37 136.8 96
## 1289 0 253.2 95 43.04 188.0 116
## 1290 0 98.0 99 16.66 240.7 62
## 1291 0 249.4 118 42.40 211.5 95
## 1292 30 129.6 107 22.03 233.0 104
## 1293 0 221.3 106 37.62 267.6 98
## 1294 0 220.7 106 37.52 177.8 118
## 1295 0 87.6 76 14.89 262.0 111
## 1296 0 203.6 61 34.61 161.7 127
## 1297 0 213.6 110 36.31 234.9 121
## 1298 31 181.6 112 30.87 220.7 100
## 1299 22 215.4 123 36.62 328.7 98
## 1300 0 266.3 90 45.27 207.8 117
## 1301 0 199.2 111 33.86 175.1 83
## 1302 0 115.0 130 19.55 137.8 83
## 1303 0 270.5 69 45.99 230.0 112
## 1304 0 222.2 127 37.77 153.1 125
## 1305 0 61.9 78 10.52 262.6 114
## 1306 0 141.1 92 23.99 249.1 126
## 1307 0 189.2 81 32.16 184.4 117
## 1308 0 196.0 135 33.32 186.0 146
## 1309 0 171.6 119 29.17 205.0 107
## 1310 0 174.0 123 29.58 161.3 115
## 1311 0 78.6 106 13.36 187.3 110
## 1312 0 200.9 92 34.15 164.3 91
## 1313 0 141.3 123 24.02 253.6 87
## 1314 0 235.8 130 40.09 176.0 69
## 1315 0 185.1 100 31.47 165.1 88
## 1316 0 254.3 113 43.23 78.9 104
## 1317 0 183.0 103 31.11 214.8 77
## 1318 29 163.5 80 27.80 274.8 136
## 1319 0 207.9 98 35.34 210.5 96
## 1320 0 248.6 102 42.26 174.9 93
## 1321 31 185.4 105 31.52 197.6 126
## 1322 0 197.8 60 33.63 221.0 64
## 1323 0 132.1 42 22.46 138.9 88
## 1324 0 197.1 117 33.51 227.8 128
## 1325 0 154.6 112 26.28 184.2 105
## 1326 31 153.1 115 26.03 185.9 59
## 1327 0 211.2 119 35.90 231.1 120
## 1328 0 96.8 92 16.46 142.6 103
## 1329 0 172.0 145 29.24 276.4 101
## 1330 0 141.1 91 23.99 147.2 100
## 1331 29 151.1 121 25.69 244.7 88
## 1332 0 209.6 107 35.63 228.8 96
## 1333 32 247.0 109 41.99 125.6 91
## 1334 30 221.4 114 37.64 165.8 116
## 1335 0 321.3 99 54.62 167.9 93
## 1336 0 243.7 124 41.43 60.0 90
## 1337 0 251.5 85 42.76 214.2 98
## 1338 0 236.9 107 40.27 157.6 105
## 1339 0 159.7 79 27.15 216.7 131
## 1340 0 148.2 96 25.19 220.4 111
## 1341 0 150.9 86 25.65 268.6 129
## 1342 28 210.5 101 35.79 250.5 86
## 1343 24 170.9 71 29.05 201.4 80
## 1344 0 254.7 80 43.30 90.2 79
## 1345 0 284.4 89 48.35 157.0 113
## 1346 0 0.0 0 0.00 159.6 130
## 1347 0 133.7 45 22.73 187.8 107
## 1348 0 224.9 117 38.23 191.9 127
## 1349 0 151.8 98 25.81 209.9 92
## 1350 22 141.4 107 24.04 163.0 105
## 1351 0 285.7 124 48.57 230.9 106
## 1352 0 58.4 121 9.93 262.2 64
## 1353 16 90.4 105 15.37 201.3 109
## 1354 0 114.4 91 19.45 216.6 123
## 1355 0 147.7 103 25.11 222.7 78
## 1356 31 302.7 93 51.46 240.5 119
## 1357 0 136.1 120 23.14 204.2 103
## 1358 0 169.7 84 28.85 165.9 86
## 1359 0 227.2 89 38.62 194.4 106
## 1360 0 217.8 91 37.03 220.6 97
## 1361 0 124.2 102 21.11 123.9 115
## 1362 0 206.2 76 35.05 232.4 76
## 1363 0 132.9 122 22.59 67.0 62
## 1364 31 104.9 115 17.83 237.6 125
## 1365 0 245.0 97 41.65 250.7 75
## 1366 0 184.5 118 31.37 224.0 95
## 1367 0 89.5 66 15.22 179.3 104
## 1368 0 235.6 131 40.05 194.8 107
## 1369 0 186.0 127 31.62 262.3 96
## 1370 0 223.9 75 38.06 155.7 109
## 1371 0 179.5 125 30.52 162.3 139
## 1372 0 169.4 102 28.80 253.5 113
## 1373 0 118.1 90 20.08 144.3 77
## 1374 0 112.0 105 19.04 193.7 110
## 1375 32 168.4 129 28.63 225.9 97
## 1376 42 214.3 112 36.43 188.2 107
## 1377 0 245.7 139 41.77 241.9 113
## 1378 34 156.6 134 26.62 71.0 95
## 1379 43 142.8 96 24.28 272.3 100
## 1380 0 202.4 115 34.41 230.7 115
## 1381 0 116.8 119 19.86 123.1 123
## 1382 0 155.7 110 26.47 260.3 103
## 1383 39 236.1 107 40.14 289.2 110
## 1384 21 138.1 113 23.48 260.1 83
## 1385 0 51.9 108 8.82 162.0 83
## 1386 0 81.3 116 13.82 220.6 124
## 1387 35 171.5 98 29.16 153.1 127
## 1388 0 126.0 96 21.42 144.3 80
## 1389 0 197.2 127 33.52 156.0 92
## 1390 0 194.1 62 33.00 227.2 54
## 1391 0 115.7 105 19.67 127.8 113
## 1392 29 157.2 118 26.72 196.3 136
## 1393 0 269.7 85 45.85 207.6 86
## 1394 0 246.4 107 41.89 228.1 124
## 1395 0 227.4 121 38.66 268.5 89
## 1396 0 189.8 110 32.27 115.5 83
## 1397 27 188.9 124 32.11 160.9 102
## 1398 0 0.0 0 0.00 192.1 119
## 1399 19 110.5 87 18.79 227.8 97
## 1400 0 167.6 116 28.49 219.2 112
## 1401 0 132.0 90 22.44 197.5 75
## 1402 0 167.8 88 28.53 247.9 81
## 1403 0 213.4 86 36.28 204.7 77
## 1404 0 175.4 120 29.82 98.3 71
## 1405 39 82.6 113 14.04 224.4 63
## 1406 0 143.2 80 24.34 88.1 94
## 1407 0 125.5 139 21.34 269.8 93
## 1408 31 82.3 105 13.99 256.1 91
## 1409 0 165.6 104 28.15 195.9 115
## 1410 30 183.1 95 31.13 232.6 110
## 1411 0 162.1 91 27.56 212.1 94
## 1412 0 166.6 84 28.32 192.4 91
## 1413 24 135.9 60 23.10 233.2 78
## 1414 20 165.7 78 28.17 215.6 94
## 1415 0 176.1 90 29.94 174.9 106
## 1416 0 142.3 89 24.19 204.5 95
## 1417 0 177.6 121 30.19 296.8 92
## 1418 0 83.2 74 14.14 190.6 104
## 1419 37 235.0 101 39.95 183.3 79
## 1420 0 105.7 95 17.97 141.8 100
## 1421 0 149.4 68 25.40 171.9 98
## 1422 20 264.7 81 45.00 216.5 110
## 1423 31 160.3 45 27.25 221.5 70
## 1424 28 95.9 117 16.30 159.5 131
## 1425 0 140.7 77 23.92 195.2 114
## 1426 0 119.7 148 20.35 231.8 96
## 1427 30 99.9 84 16.98 263.5 125
## 1428 0 250.9 108 42.65 171.4 100
## 1429 0 200.6 117 34.10 289.5 120
## 1430 38 209.8 130 35.67 196.6 84
## 1431 34 198.0 70 33.66 273.7 121
## 1432 0 239.8 107 40.77 128.9 121
## 1433 0 164.5 75 27.97 147.9 118
## 1434 0 220.9 107 37.55 192.2 97
## 1435 37 112.8 150 19.18 243.9 97
## 1436 19 112.6 114 19.14 261.7 132
## 1437 26 226.4 117 38.49 234.7 97
## 1438 34 244.9 118 41.63 219.6 105
## 1439 0 203.2 99 34.54 235.8 131
## 1440 0 136.7 115 23.24 243.1 137
## 1441 0 152.6 97 25.94 208.9 85
## 1442 47 274.9 102 46.73 186.6 118
## 1443 0 195.7 116 33.27 209.1 87
## 1444 0 204.3 82 34.73 188.8 115
## 1445 0 222.3 99 37.79 146.2 82
## 1446 8 222.5 104 37.83 171.5 94
## 1447 28 128.8 104 21.90 157.3 52
## 1448 0 174.3 105 29.63 171.3 107
## 1449 0 242.5 110 41.23 162.3 140
## 1450 0 221.6 101 37.67 285.2 50
## 1451 0 114.3 100 19.43 221.1 103
## 1452 33 219.7 137 37.35 186.8 94
## 1453 0 144.9 136 24.63 151.3 115
## 1454 40 236.5 111 40.21 117.0 110
## 1455 44 174.0 80 29.58 209.4 113
## 1456 0 109.5 95 18.62 332.1 48
## 1457 33 81.6 120 13.87 235.6 85
## 1458 0 133.4 113 22.68 121.0 92
## 1459 0 137.1 94 23.31 209.8 83
## 1460 0 197.0 88 33.49 190.4 68
## 1461 0 198.1 160 33.68 156.7 87
## 1462 0 39.5 78 6.72 264.3 106
## 1463 0 199.5 107 33.92 207.5 110
## 1464 0 156.8 93 26.66 215.8 68
## 1465 0 183.4 85 31.18 237.6 100
## 1466 0 132.4 120 22.51 121.6 101
## 1467 0 63.2 108 10.74 220.2 88
## 1468 35 181.1 59 30.79 215.9 116
## 1469 27 117.5 102 19.98 206.8 127
## 1470 27 218.7 79 37.18 163.4 78
## 1471 41 207.3 95 35.24 137.3 120
## 1472 0 150.6 99 25.60 301.5 83
## 1473 0 273.3 66 46.46 263.6 121
## 1474 0 266.1 120 45.24 182.0 92
## 1475 0 112.8 89 19.18 156.7 65
## 1476 0 104.7 112 17.80 82.2 104
## 1477 35 193.8 62 32.95 197.6 97
## 1478 0 168.6 102 28.66 298.0 117
## 1479 0 253.2 122 43.04 201.0 78
## 1480 16 174.7 92 29.70 232.1 105
## 1481 0 87.0 102 14.79 193.6 64
## 1482 34 204.5 79 34.77 132.8 113
## 1483 0 226.5 93 38.51 152.1 122
## 1484 0 234.1 91 39.80 163.1 105
## 1485 0 133.3 106 22.66 182.9 89
## 1486 0 133.9 87 22.76 166.4 110
## 1487 0 160.2 104 27.23 138.9 70
## 1488 44 230.6 94 39.20 224.1 103
## 1489 0 227.4 84 38.66 176.0 81
## 1490 0 72.8 120 12.38 267.1 120
## 1491 0 196.1 107 33.34 296.5 82
## 1492 0 197.1 110 33.51 165.9 115
## 1493 0 219.6 126 37.33 303.3 100
## 1494 30 153.4 90 26.08 151.4 97
## 1495 0 216.0 85 36.72 186.9 114
## 1496 32 222.9 136 37.89 262.0 80
## 1497 36 115.9 120 19.70 236.6 95
## 1498 0 189.8 101 32.27 147.7 80
## 1499 0 154.7 102 26.30 298.0 108
## 1500 0 136.4 104 23.19 202.5 110
## 1501 0 170.5 86 28.99 277.5 88
## 1502 0 272.4 88 46.31 107.9 125
## 1503 40 210.0 116 35.70 232.7 89
## 1504 17 236.5 94 40.21 163.1 94
## 1505 0 153.9 117 26.16 220.1 122
## 1506 0 223.0 120 37.91 227.0 98
## 1507 0 252.4 74 42.91 167.9 81
## 1508 0 197.9 84 33.64 168.1 113
## 1509 0 152.4 74 25.91 274.6 88
## 1510 40 237.4 105 40.36 175.9 93
## 1511 0 265.6 82 45.15 180.7 75
## 1512 0 197.3 91 33.54 305.8 81
## 1513 14 199.1 100 33.85 221.8 103
## 1514 0 233.7 114 39.73 207.9 109
## 1515 0 183.1 99 31.13 160.1 107
## 1516 0 139.4 96 23.70 143.4 108
## 1517 0 213.9 112 36.36 260.5 100
## 1518 0 207.1 70 35.21 200.1 115
## 1519 0 139.7 78 23.75 202.6 119
## 1520 0 177.2 91 30.12 228.7 105
## 1521 35 169.8 136 28.87 173.7 101
## 1522 0 173.5 83 29.50 244.3 65
## 1523 0 159.9 100 27.18 172.2 99
## 1524 0 115.1 89 19.57 196.8 111
## 1525 19 136.8 113 23.26 179.5 105
## 1526 0 92.2 108 15.67 211.2 120
## 1527 23 243.9 112 41.46 133.0 106
## 1528 0 117.1 94 19.91 235.4 117
## 1529 0 223.3 99 37.96 167.1 128
## 1530 0 154.8 111 26.32 171.5 102
## 1531 0 261.4 141 44.44 215.7 102
## 1532 0 46.5 104 7.91 186.0 114
## 1533 18 149.9 84 25.48 170.9 84
## 1534 0 242.2 102 41.17 226.1 80
## 1535 0 259.4 99 44.10 172.7 125
## 1536 0 222.4 102 37.81 185.8 89
## 1537 0 69.4 79 11.80 190.8 109
## 1538 21 156.5 122 26.61 209.2 125
## 1539 0 61.2 111 10.40 92.3 88
## 1540 0 245.2 112 41.68 101.5 101
## 1541 0 102.3 100 17.39 135.2 104
## 1542 36 230.9 92 39.25 167.6 121
## 1543 0 227.4 105 38.66 211.5 120
## 1544 0 192.8 68 32.78 158.0 86
## 1545 0 162.6 98 27.64 206.2 109
## 1546 38 219.4 92 37.30 180.5 73
## 1547 0 137.2 111 23.32 165.9 119
## 1548 0 87.7 103 14.91 278.2 97
## 1549 0 271.1 80 46.09 172.0 133
## 1550 0 103.4 94 17.58 189.3 125
## 1551 0 52.2 106 8.87 220.1 113
## 1552 0 165.4 106 28.12 273.7 109
## 1553 0 147.5 110 25.08 191.7 97
## 1554 0 217.8 93 37.03 214.7 95
## 1555 0 235.7 79 40.07 136.9 85
## 1556 22 204.5 92 34.77 139.6 121
## 1557 0 178.4 143 30.33 247.0 123
## 1558 32 130.1 68 22.12 247.2 77
## 1559 34 103.7 100 17.63 236.3 78
## 1560 0 239.9 91 40.78 177.1 104
## 1561 0 148.4 110 25.23 267.1 90
## 1562 0 148.6 106 25.26 210.8 65
## 1563 0 191.1 69 32.49 129.2 113
## 1564 39 218.5 76 37.15 112.7 94
## 1565 0 97.5 95 16.58 195.8 82
## 1566 0 128.7 126 21.88 117.6 94
## 1567 38 236.6 69 40.22 197.5 68
## 1568 0 85.9 113 14.60 226.7 91
## 1569 27 141.2 96 24.00 167.7 94
## 1570 31 194.4 104 33.05 176.0 84
## 1571 0 167.6 100 28.49 154.5 90
## 1572 0 234.5 134 39.87 164.2 94
## 1573 0 154.2 78 26.21 196.7 85
## 1574 14 143.2 99 24.34 169.9 91
## 1575 40 216.4 80 36.79 249.7 90
## 1576 35 161.9 85 27.52 151.2 82
## 1577 0 118.7 90 20.18 205.1 57
## 1578 0 179.1 123 30.45 196.6 132
## 1579 0 147.9 97 25.14 209.3 99
## 1580 38 209.2 110 35.56 116.6 73
## 1581 29 244.3 140 41.53 322.3 89
## 1582 34 175.3 96 29.80 262.3 122
## 1583 0 150.5 92 25.59 120.3 95
## 1584 25 197.4 73 33.56 295.7 113
## 1585 0 163.5 136 27.80 143.7 111
## 1586 0 236.9 93 40.27 197.7 113
## 1587 0 82.3 77 13.99 167.2 80
## 1588 0 216.0 111 36.72 153.7 115
## 1589 0 180.0 119 30.60 198.8 126
## 1590 0 143.7 55 24.43 173.1 108
## 1591 39 198.2 107 33.69 280.4 132
## 1592 29 185.6 106 31.55 219.7 113
## 1593 0 137.6 108 23.39 162.0 80
## 1594 0 273.9 119 46.56 278.6 103
## 1595 31 125.3 92 21.30 141.2 108
## 1596 0 178.8 102 30.40 167.9 84
## 1597 49 214.9 86 36.53 198.2 89
## 1598 0 163.0 93 27.71 203.9 102
## 1599 29 163.8 77 27.85 134.9 112
## 1600 0 189.5 113 32.22 204.9 100
## 1601 26 155.2 110 26.38 230.9 133
## 1602 0 242.3 102 41.19 350.9 102
## 1603 44 254.1 127 43.20 180.2 108
## 1604 33 112.0 90 19.04 208.0 112
## 1605 0 115.5 73 19.64 267.3 83
## 1606 0 137.1 102 23.31 210.8 114
## 1607 0 198.4 113 33.73 235.9 144
## 1608 19 132.7 94 22.56 204.6 101
## 1609 25 219.6 99 37.33 210.4 99
## 1610 0 169.6 96 28.83 234.7 112
## 1611 0 160.4 73 27.27 293.9 103
## 1612 20 95.0 89 16.15 167.9 92
## 1613 0 160.1 87 27.22 256.7 120
## 1614 0 194.6 114 33.08 232.8 106
## 1615 0 236.4 73 40.19 287.3 120
## 1616 0 157.1 95 26.71 213.1 36
## 1617 0 179.8 125 30.57 173.2 86
## 1618 0 148.2 108 25.19 161.8 113
## 1619 39 183.2 103 31.14 209.4 111
## 1620 0 119.2 88 20.26 168.3 110
## 1621 35 224.0 102 38.08 192.0 99
## 1622 21 19.5 149 3.32 140.9 109
## 1623 0 184.8 83 31.42 248.6 101
## 1624 0 176.3 140 29.97 201.0 104
## 1625 0 241.7 115 41.09 168.5 133
## 1626 38 224.7 121 38.20 294.0 131
## 1627 0 207.3 115 35.24 198.4 82
## 1628 0 196.8 81 33.46 168.0 110
## 1629 0 110.9 74 18.85 115.6 90
## 1630 0 122.5 145 20.83 273.3 103
## 1631 0 226.9 144 38.57 201.6 122
## 1632 0 187.0 65 31.79 141.4 128
## 1633 0 170.5 113 28.99 193.2 129
## 1634 0 204.8 101 34.82 161.0 80
## 1635 0 165.9 114 28.20 235.9 97
## 1636 0 154.0 133 26.18 198.9 121
## 1637 29 158.1 104 26.88 322.2 81
## 1638 0 225.2 93 38.28 215.1 120
## 1639 0 159.4 79 27.10 179.5 88
## 1640 0 172.7 95 29.36 139.1 90
## 1641 0 222.8 99 37.88 175.8 85
## 1642 0 214.1 77 36.40 240.5 94
## 1643 0 54.8 92 9.32 173.0 103
## 1644 0 134.0 104 22.78 174.5 94
## 1645 0 184.8 74 31.42 175.1 84
## 1646 36 283.1 112 48.13 286.2 86
## 1647 0 291.8 143 49.61 214.3 134
## 1648 0 222.7 94 37.86 105.8 98
## 1649 0 174.5 79 29.67 236.8 136
## 1650 0 68.4 86 11.63 193.3 110
## 1651 31 273.0 78 46.41 215.5 98
## 1652 0 225.3 134 38.30 108.2 87
## 1653 23 283.2 130 48.14 162.6 74
## 1654 0 131.4 78 22.34 219.7 106
## 1655 12 89.7 87 15.25 138.6 73
## 1656 0 127.1 102 21.61 247.7 106
## 1657 28 105.9 132 18.00 231.7 107
## 1658 0 142.3 79 24.19 158.0 113
## 1659 0 191.3 80 32.52 138.5 94
## 1660 36 201.9 93 34.32 156.3 75
## 1661 0 247.3 91 42.04 182.7 60
## 1662 38 242.2 96 41.17 159.7 144
## 1663 0 127.3 80 21.64 222.3 115
## 1664 0 162.0 104 27.54 241.2 120
## 1665 33 179.1 93 30.45 238.3 102
## 1666 31 197.4 125 33.56 123.4 110
## 1667 0 148.2 82 25.19 308.7 67
## 1668 0 193.1 85 32.83 172.1 105
## 1669 0 171.7 99 29.19 174.8 87
## 1670 35 198.5 123 33.75 270.6 74
## 1671 24 121.7 87 20.69 184.0 76
## 1672 0 130.2 105 22.13 278.0 60
## 1673 0 203.4 96 34.58 168.6 61
## 1674 0 174.7 83 29.70 280.8 122
## 1675 0 241.0 120 40.97 231.8 96
## 1676 0 141.7 95 24.09 221.0 100
## 1677 0 134.8 96 22.92 167.2 78
## 1678 0 163.1 119 27.73 249.4 51
## 1679 0 145.5 116 24.74 228.4 110
## 1680 0 329.8 73 56.07 208.3 120
## 1681 0 194.5 97 33.07 186.3 131
## 1682 0 131.9 93 22.42 272.7 106
## 1683 29 150.0 91 25.50 159.4 75
## 1684 30 196.6 93 33.42 241.4 140
## 1685 0 99.7 107 16.95 145.1 96
## 1686 0 143.6 88 24.41 141.8 86
## 1687 40 231.9 56 39.42 211.8 91
## 1688 0 37.8 80 6.43 155.3 105
## 1689 0 72.8 107 12.38 186.4 103
## 1690 39 94.8 89 16.12 219.1 91
## 1691 15 221.8 143 37.71 210.6 115
## 1692 0 269.0 120 45.73 233.7 120
## 1693 0 268.3 114 45.61 185.5 111
## 1694 27 198.7 127 33.78 249.0 105
## 1695 0 115.5 75 19.64 218.1 111
## 1696 0 202.1 100 34.36 195.7 102
## 1697 0 215.6 113 36.65 200.6 81
## 1698 0 169.9 107 28.88 209.4 121
## 1699 0 201.7 85 34.29 169.4 116
## 1700 0 221.1 133 37.59 160.2 140
## 1701 32 218.7 117 37.18 115.0 61
## 1702 0 293.7 89 49.93 272.5 71
## 1703 0 120.3 108 20.45 240.4 84
## 1704 26 175.8 96 29.89 206.6 84
## 1705 0 278.5 95 47.35 240.7 90
## 1706 29 236.3 105 40.17 190.8 114
## 1707 0 273.8 113 46.55 119.6 156
## 1708 0 131.1 129 22.29 160.5 94
## 1709 23 167.4 83 28.46 258.6 129
## 1710 0 197.7 68 33.61 250.5 53
## 1711 0 169.5 93 28.82 230.9 71
## 1712 17 225.2 116 38.28 173.4 88
## 1713 0 174.5 73 29.67 213.7 114
## 1714 0 129.7 84 22.05 177.5 80
## 1715 0 200.0 66 34.00 107.9 104
## 1716 36 95.9 87 16.30 261.6 105
## 1717 25 152.8 110 25.98 242.8 67
## 1718 0 129.9 102 22.08 208.7 133
## 1719 0 268.4 85 45.63 150.6 131
## 1720 0 188.5 152 32.05 148.3 115
## 1721 0 170.6 97 29.00 162.1 111
## 1722 0 191.4 124 32.54 200.7 116
## 1723 0 75.3 96 12.80 179.9 113
## 1724 0 149.8 123 25.47 276.3 75
## 1725 0 115.9 87 19.70 111.3 56
## 1726 0 128.8 86 21.90 203.9 105
## 1727 0 131.7 108 22.39 216.5 103
## 1728 0 101.4 48 17.24 159.1 119
## 1729 23 149.0 104 25.33 235.8 67
## 1730 36 96.8 123 16.46 170.6 105
## 1731 0 107.5 121 18.28 256.4 46
## 1732 0 232.8 95 39.58 303.4 111
## 1733 43 121.1 105 20.59 260.2 115
## 1734 0 124.3 70 21.13 270.7 99
## 1735 0 157.7 101 26.81 298.6 100
## 1736 0 124.3 68 21.13 207.1 88
## 1737 0 286.4 125 48.69 205.7 74
## 1738 0 141.7 95 24.09 205.6 101
## 1739 25 173.0 91 29.41 245.8 64
## 1740 0 268.7 120 45.68 301.0 147
## 1741 31 218.5 130 37.15 134.2 103
## 1742 0 255.3 114 43.40 194.6 83
## 1743 0 41.9 124 7.12 211.0 95
## 1744 0 260.8 87 44.34 258.1 78
## 1745 26 239.4 94 40.70 259.4 88
## 1746 0 226.7 94 38.54 168.4 129
## 1747 0 179.3 147 30.48 208.9 89
## 1748 0 158.0 110 26.86 197.0 103
## 1749 23 175.7 82 29.87 258.9 136
## 1750 0 157.4 107 26.76 167.8 112
## 1751 0 113.1 74 19.23 168.8 95
## 1752 0 182.7 142 31.06 246.5 63
## 1753 0 161.3 83 27.42 124.4 83
## 1754 0 142.5 92 24.23 208.3 102
## 1755 0 190.5 108 32.39 259.7 108
## 1756 15 159.3 110 27.08 170.6 120
## 1757 39 153.8 106 26.15 123.3 111
## 1758 0 180.7 127 30.72 174.6 94
## 1759 0 202.7 105 34.46 224.9 90
## 1760 35 190.8 100 32.44 261.3 93
## 1761 0 205.1 102 34.87 232.7 109
## 1762 28 235.6 124 40.05 236.8 113
## 1763 0 189.3 77 32.18 155.9 128
## 1764 42 166.9 101 28.37 273.2 84
## 1765 0 245.2 87 41.68 254.1 83
## 1766 0 132.6 125 22.54 221.1 67
## 1767 0 182.3 64 30.99 139.8 121
## 1768 14 192.3 86 32.69 88.7 90
## 1769 0 122.0 110 20.74 220.2 100
## 1770 0 193.0 101 32.81 250.0 81
## 1771 0 158.6 112 26.96 220.0 114
## 1772 39 91.5 125 15.56 219.9 113
## 1773 0 153.6 92 26.11 205.5 88
## 1774 40 221.6 79 37.67 157.1 74
## 1775 0 244.7 81 41.60 168.0 117
## 1776 24 239.8 103 40.77 285.9 65
## 1777 0 172.4 132 29.31 230.5 100
## 1778 0 242.5 83 41.23 245.4 97
## 1779 39 117.6 82 19.99 159.2 60
## 1780 0 174.5 127 29.67 259.3 71
## 1781 0 157.3 83 26.74 220.9 85
## 1782 21 192.0 97 32.64 239.1 81
## 1783 0 218.2 76 37.09 169.3 60
## 1784 29 144.6 97 24.58 140.0 102
## 1785 0 153.6 108 26.11 232.9 85
## 1786 29 135.8 104 23.09 222.5 101
## 1787 0 160.7 69 27.32 146.8 106
## 1788 31 202.5 91 34.43 241.4 108
## 1789 34 152.2 119 25.87 227.1 91
## 1790 0 227.4 90 38.66 73.2 135
## 1791 0 191.6 115 32.57 205.6 108
## 1792 0 138.9 111 23.61 211.6 102
## 1793 0 127.0 102 21.59 206.9 107
## 1794 0 168.6 87 28.66 259.2 105
## 1795 0 286.6 73 48.72 223.2 108
## 1796 29 164.6 121 27.98 262.8 108
## 1797 0 144.0 90 24.48 135.8 91
## 1798 47 141.6 95 24.07 207.9 130
## 1799 0 204.3 65 34.73 247.3 123
## 1800 0 163.2 80 27.74 167.6 90
## 1801 0 225.0 110 38.25 244.2 111
## 1802 0 176.1 103 29.94 199.7 130
## 1803 36 254.2 78 43.21 228.1 105
## 1804 0 174.9 105 29.73 262.0 75
## 1805 0 187.3 118 31.84 160.7 111
## 1806 0 211.8 84 36.01 230.9 137
## 1807 0 241.9 102 41.12 126.9 117
## 1808 0 196.1 103 33.34 199.7 123
## 1809 0 231.3 100 39.32 210.4 84
## 1810 0 161.6 104 27.47 196.3 119
## 1811 0 194.0 103 32.98 241.0 116
## 1812 0 109.7 148 18.65 223.8 87
## 1813 0 277.0 119 47.09 238.3 106
## 1814 0 192.1 83 32.66 163.6 88
## 1815 0 198.4 147 33.73 216.9 121
## 1816 42 209.2 82 35.56 159.7 74
## 1817 0 184.8 98 31.42 216.4 125
## 1818 0 167.8 119 28.53 142.0 123
## 1819 0 139.2 140 23.66 191.4 113
## 1820 17 221.3 82 37.62 167.6 100
## 1821 0 121.6 84 20.67 165.3 115
## 1822 39 270.4 99 45.97 245.1 110
## 1823 0 139.6 94 23.73 240.9 112
## 1824 23 253.0 78 43.01 138.9 121
## 1825 26 183.9 83 31.26 240.7 93
## 1826 0 203.3 108 34.56 259.9 66
## 1827 0 200.6 106 34.10 152.5 127
## 1828 0 167.6 96 28.49 176.0 89
## 1829 0 156.5 67 26.61 204.3 103
## 1830 25 215.1 140 36.57 197.4 69
## 1831 0 301.7 82 51.29 167.1 118
## 1832 42 152.3 90 25.89 267.5 102
## 1833 0 195.4 116 33.22 212.1 101
## 1834 0 208.7 97 35.48 275.5 83
## 1835 29 190.1 87 32.32 223.2 123
## 1836 37 185.4 87 31.52 178.5 128
## 1837 17 183.2 95 31.14 252.8 125
## 1838 0 54.2 100 9.21 303.2 84
## 1839 26 208.0 115 35.36 185.0 113
## 1840 0 230.3 110 39.15 77.9 87
## 1841 22 240.8 102 40.94 75.9 106
## 1842 21 195.7 119 33.27 106.2 95
## 1843 0 276.1 82 46.94 201.1 106
## 1844 0 166.1 93 28.24 175.9 106
## 1845 28 135.9 117 23.10 244.5 102
## 1846 0 189.1 122 32.15 223.2 92
## 1847 43 177.9 117 30.24 175.1 70
## 1848 39 143.9 73 24.46 210.3 117
## 1849 0 148.2 138 25.19 159.6 123
## 1850 0 287.1 115 48.81 159.3 99
## 1851 26 179.7 144 30.55 218.1 129
## 1852 0 165.8 96 28.19 190.0 141
## 1853 25 144.1 144 24.50 167.6 105
## 1854 0 172.5 85 29.33 253.1 71
## 1855 0 199.8 138 33.97 167.1 91
## 1856 0 109.1 134 18.55 142.3 76
## 1857 0 171.8 106 29.21 301.7 44
## 1858 0 222.3 101 37.79 286.0 111
## 1859 0 245.8 102 41.79 264.7 90
## 1860 0 164.6 110 27.98 270.6 103
## 1861 0 211.7 107 35.99 271.7 77
## 1862 16 147.2 103 25.02 160.1 96
## 1863 0 254.7 103 43.30 252.2 80
## 1864 0 170.1 113 28.92 271.8 94
## 1865 0 195.1 91 33.17 261.5 57
## 1866 0 149.3 83 25.38 187.1 130
## 1867 0 81.9 75 13.92 253.8 114
## 1868 25 191.1 109 32.49 149.6 120
## 1869 0 206.9 115 35.17 224.4 86
## 1870 0 239.0 156 40.63 273.0 106
## 1871 0 179.3 97 30.48 252.7 126
## 1872 0 185.3 91 31.50 219.1 88
## 1873 0 141.4 80 24.04 123.9 76
## 1874 25 248.6 91 42.26 119.3 115
## 1875 0 152.5 131 25.93 252.4 107
## 1876 0 145.6 102 24.75 230.9 87
## 1877 0 164.2 116 27.91 196.2 153
## 1878 0 221.0 115 37.57 165.4 97
## 1879 0 295.4 126 50.22 232.1 117
## 1880 0 139.8 98 23.77 174.9 143
## 1881 0 162.3 99 27.59 149.1 78
## 1882 0 272.7 97 46.36 236.4 95
## 1883 33 200.3 75 34.05 226.6 67
## 1884 28 157.1 77 26.71 172.4 97
## 1885 12 135.8 60 23.09 200.6 134
## 1886 0 236.7 110 40.24 231.9 92
## 1887 0 111.4 133 18.94 175.0 66
## 1888 28 156.1 89 26.54 107.1 114
## 1889 0 191.1 93 32.49 282.8 56
## 1890 0 153.0 123 26.01 141.1 127
## 1891 0 218.8 123 37.20 242.8 64
## 1892 0 205.4 101 34.92 134.9 77
## 1893 0 225.2 111 38.28 184.9 98
## 1894 0 249.9 127 42.48 254.5 118
## 1895 0 131.6 89 22.37 137.0 109
## 1896 21 197.9 99 33.64 165.6 100
## 1897 0 166.5 129 28.31 210.2 107
## 1898 29 225.4 79 38.32 187.1 112
## 1899 0 275.8 103 46.89 189.5 108
## 1900 40 142.9 105 24.29 88.6 61
## 1901 0 207.2 113 35.22 256.0 80
## 1902 0 206.2 100 35.05 211.2 118
## 1903 0 210.3 66 35.75 195.8 76
## 1904 38 225.7 117 38.37 119.6 122
## 1905 33 167.8 91 28.53 205.3 91
## 1906 0 197.7 118 33.61 152.2 96
## 1907 39 169.8 105 28.87 65.2 116
## 1908 28 190.6 104 32.40 237.3 105
## 1909 45 80.3 140 13.65 153.3 101
## 1910 36 231.7 110 39.39 225.1 88
## 1911 0 69.1 114 11.75 230.3 109
## 1912 0 188.8 60 32.10 217.4 64
## 1913 0 150.6 125 25.60 169.1 126
## 1914 0 192.0 89 32.64 139.5 88
## 1915 25 163.7 78 27.83 113.2 112
## 1916 0 211.7 100 35.99 198.7 101
## 1917 0 175.5 103 29.84 132.3 120
## 1918 0 150.1 120 25.52 200.1 85
## 1919 0 189.5 99 32.22 176.3 117
## 1920 0 70.8 94 12.04 215.6 102
## 1921 0 215.5 102 36.64 190.7 95
## 1922 0 101.7 105 17.29 202.8 99
## 1923 0 258.4 132 43.93 126.8 119
## 1924 0 242.4 126 41.21 152.9 115
## 1925 0 131.8 82 22.41 284.3 119
## 1926 0 190.2 102 32.33 197.7 141
## 1927 0 154.1 104 26.20 204.2 112
## 1928 0 188.0 127 31.96 90.5 118
## 1929 0 103.1 70 17.53 275.0 129
## 1930 0 175.4 130 29.82 159.5 130
## 1931 0 145.4 93 24.72 209.1 98
## 1932 0 250.6 85 42.60 187.9 50
## 1933 0 161.5 123 27.46 214.2 81
## 1934 0 260.1 101 44.22 256.5 68
## 1935 0 281.3 124 47.82 301.5 96
## 1936 42 130.1 90 22.12 167.0 128
## 1937 0 102.0 118 17.34 113.3 134
## 1938 33 218.7 104 37.18 155.0 144
## 1939 30 128.5 86 21.85 188.4 91
## 1940 0 128.7 100 21.88 227.1 67
## 1941 0 172.2 92 29.27 162.6 76
## 1942 0 199.2 124 33.86 126.0 86
## 1943 0 184.5 98 31.37 200.5 93
## 1944 0 168.6 99 28.66 175.6 107
## 1945 30 174.0 118 29.58 205.3 81
## 1946 0 230.4 65 39.17 257.4 80
## 1947 0 198.2 73 33.69 202.8 115
## 1948 0 186.1 96 31.64 211.6 100
## 1949 0 148.5 105 25.25 243.0 106
## 1950 0 157.1 109 26.71 268.8 83
## 1951 0 155.0 110 26.35 133.4 104
## 1952 26 129.3 123 21.98 176.5 114
## 1953 0 188.5 77 32.05 182.0 123
## 1954 0 208.8 120 35.50 225.3 100
## 1955 0 238.0 82 40.46 278.5 94
## 1956 0 211.1 103 35.89 206.9 108
## 1957 30 198.9 87 33.81 207.0 90
## 1958 0 212.8 79 36.18 204.1 91
## 1959 0 137.4 126 23.36 120.0 94
## 1960 31 191.8 75 32.61 267.8 135
## 1961 0 149.0 92 25.33 49.2 78
## 1962 0 117.1 118 19.91 249.6 90
## 1963 0 108.0 79 18.36 241.9 152
## 1964 0 112.8 133 19.18 199.4 116
## 1965 0 175.9 105 29.90 188.3 88
## 1966 0 236.6 109 40.22 169.9 107
## 1967 0 169.4 102 28.80 184.9 144
## 1968 0 129.6 79 22.03 246.2 99
## 1969 0 177.1 97 30.11 184.7 105
## 1970 20 133.3 63 22.66 184.1 123
## 1971 0 167.8 121 28.53 212.9 123
## 1972 32 174.6 107 29.68 310.6 115
## 1973 0 150.3 101 25.55 255.9 112
## 1974 21 283.2 110 48.14 239.7 108
## 1975 20 157.8 83 26.83 161.5 56
## 1976 0 141.2 132 24.00 149.1 90
## 1977 27 230.2 106 39.13 196.1 78
## 1978 0 237.8 92 40.43 208.9 119
## 1979 0 204.0 84 34.68 168.5 61
## 1980 0 221.1 106 37.59 178.6 48
## 1981 0 177.2 93 30.12 142.6 60
## 1982 0 118.0 133 20.06 248.1 99
## 1983 0 163.8 73 27.85 255.6 85
## 1984 4 141.3 96 24.02 230.4 88
## 1985 0 272.5 119 46.33 226.1 94
## 1986 16 118.9 112 20.21 228.3 97
## 1987 0 7.9 100 1.34 136.4 83
## 1988 0 159.5 96 27.12 167.2 123
## 1989 0 150.2 70 25.53 185.7 98
## 1990 30 144.5 35 24.57 262.3 101
## 1991 0 140.7 88 23.92 210.9 98
## 1992 0 169.2 123 28.76 216.8 83
## 1993 0 220.8 77 37.54 148.5 87
## 1994 0 216.3 96 36.77 266.3 77
## 1995 0 169.5 96 28.82 157.6 94
## 1996 35 256.3 119 43.57 258.1 91
## 1997 0 179.7 128 30.55 299.8 92
## 1998 0 266.0 120 45.22 130.1 84
## 1999 0 96.7 97 16.44 193.8 95
## 2000 0 82.7 116 14.06 194.6 95
## 2001 0 168.2 87 28.59 161.7 92
## 2002 0 286.4 109 48.69 178.2 67
## 2003 0 174.3 95 29.63 186.6 128
## 2004 0 190.6 100 32.40 161.7 104
## 2005 0 175.5 86 29.84 205.1 78
## 2006 0 133.4 102 22.68 204.6 71
## 2007 27 204.6 96 34.78 136.0 93
## 2008 0 242.2 88 41.17 233.2 89
## 2009 33 253.1 112 43.03 210.1 94
## 2010 0 130.0 110 22.10 185.3 88
## 2011 0 105.9 151 18.00 189.6 142
## 2012 0 194.2 98 33.01 193.8 95
## 2013 0 183.8 111 31.25 123.5 92
## 2014 0 196.5 82 33.41 190.0 89
## 2015 0 184.5 81 31.37 172.0 103
## 2016 0 261.9 113 44.52 148.1 99
## 2017 0 202.4 118 34.41 260.2 67
## 2018 39 167.4 113 28.46 172.7 94
## 2019 22 167.7 104 28.51 246.8 91
## 2020 30 191.7 109 32.59 193.0 86
## 2021 0 240.2 78 40.83 230.3 109
## 2022 26 189.1 112 32.15 178.2 97
## 2023 0 127.7 67 21.71 182.9 90
## 2024 0 205.2 106 34.88 99.5 122
## 2025 23 153.6 93 26.11 216.9 88
## 2026 0 154.5 129 26.27 193.6 87
## 2027 0 153.7 109 26.13 194.0 105
## 2028 36 171.2 138 29.10 185.8 102
## 2029 0 328.1 106 55.78 151.7 89
## 2030 0 145.9 69 24.80 208.2 141
## 2031 37 201.2 76 34.20 280.1 122
## 2032 0 139.1 72 23.65 246.0 112
## 2033 0 118.9 128 20.21 278.3 65
## 2034 0 217.6 87 36.99 279.0 71
## 2035 0 145.0 133 24.65 209.1 92
## 2036 0 203.5 89 34.60 289.6 69
## 2037 0 240.1 115 40.82 180.4 91
## 2038 0 83.8 121 14.25 240.2 96
## 2039 0 269.8 106 45.87 228.8 101
## 2040 21 126.3 84 21.47 209.6 102
## 2041 15 88.1 125 14.98 175.9 142
## 2042 34 218.5 61 37.15 196.7 74
## 2043 26 236.8 61 40.26 263.4 97
## 2044 0 124.1 117 21.10 192.8 108
## 2045 30 184.2 132 31.31 167.5 109
## 2046 0 222.7 133 37.86 277.0 89
## 2047 0 149.2 98 25.36 193.6 88
## 2048 0 206.5 125 35.11 180.2 113
## 2049 27 159.7 102 27.15 168.8 113
## 2050 27 204.7 118 34.80 209.4 91
## 2051 0 213.2 79 36.24 120.7 116
## 2052 0 269.6 121 45.83 171.7 91
## 2053 0 116.7 92 19.84 213.8 112
## 2054 0 263.4 101 44.78 235.5 117
## 2055 0 140.2 97 23.83 213.9 102
## 2056 0 197.7 101 33.61 127.6 83
## 2057 0 136.2 92 23.15 220.9 110
## 2058 16 88.5 87 15.05 178.8 108
## 2059 0 215.3 58 36.60 242.4 91
## 2060 0 269.2 104 45.76 193.8 144
## 2061 25 203.8 118 34.65 267.1 48
## 2062 34 268.4 112 45.63 222.2 108
## 2063 0 159.1 104 27.05 269.8 106
## 2064 0 114.4 122 19.45 127.7 154
## 2065 0 138.9 65 23.61 208.9 109
## 2066 0 186.0 55 31.62 237.4 105
## 2067 26 170.4 91 28.97 254.5 90
## 2068 0 164.5 95 27.97 230.9 87
## 2069 0 168.6 121 28.66 168.6 94
## 2070 0 261.2 119 44.40 250.8 105
## 2071 0 190.5 91 32.39 178.4 75
## 2072 0 181.1 121 30.79 314.4 109
## 2073 0 177.1 131 30.11 114.7 122
## 2074 0 160.5 114 27.29 240.5 103
## 2075 0 134.7 116 22.90 295.3 98
## 2076 28 198.2 107 33.69 139.1 123
## 2077 0 228.9 134 38.91 255.7 71
## 2078 0 241.7 137 41.09 135.8 100
## 2079 0 131.1 108 22.29 176.2 81
## 2080 0 234.1 101 39.80 200.2 121
## 2081 0 200.1 72 34.02 300.9 120
## 2082 0 154.0 107 26.18 94.4 114
## 2083 23 224.2 106 38.11 189.6 100
## 2084 0 148.3 83 25.21 181.6 79
## 2085 24 174.6 76 29.68 176.6 114
## 2086 0 138.5 110 23.55 153.2 86
## 2087 0 109.0 69 18.53 265.8 98
## 2088 0 162.3 99 27.59 212.5 95
## 2089 0 210.8 84 35.84 189.6 98
## 2090 0 142.4 107 24.21 318.7 78
## 2091 37 223.5 104 38.00 235.1 99
## 2092 0 182.5 65 31.03 232.1 96
## 2093 0 219.6 97 37.33 141.1 144
## 2094 0 193.6 66 32.91 238.2 82
## 2095 0 192.4 111 32.71 156.9 87
## 2096 0 236.2 122 40.15 189.4 110
## 2097 28 233.2 88 39.64 113.3 102
## 2098 0 158.8 53 27.00 188.5 132
## 2099 0 126.1 112 21.44 274.7 126
## 2100 0 290.4 108 49.37 253.9 92
## 2101 30 60.6 113 10.30 165.9 96
## 2102 0 148.4 95 25.23 193.8 98
## 2103 0 246.5 108 41.91 216.3 89
## 2104 0 298.1 112 50.68 201.3 100
## 2105 0 119.3 82 20.28 185.1 111
## 2106 0 242.5 82 41.23 232.9 97
## 2107 18 222.1 89 37.76 160.6 109
## 2108 0 236.2 135 40.15 273.9 88
## 2109 0 144.2 87 24.51 212.2 74
## 2110 19 154.6 100 26.28 241.6 109
## 2111 25 137.4 100 23.36 176.7 83
## 2112 0 103.7 93 17.63 127.0 107
## 2113 0 136.6 112 23.22 209.4 81
## 2114 0 289.8 101 49.27 255.6 115
## 2115 0 260.9 85 44.35 168.5 103
## 2116 0 196.2 129 33.35 176.5 86
## 2117 0 195.6 71 33.25 126.4 74
## 2118 0 222.2 96 37.77 162.5 111
## 2119 0 172.9 119 29.39 183.0 86
## 2120 0 249.8 109 42.47 242.4 106
## 2121 0 154.5 84 26.27 216.2 91
## 2122 0 90.4 108 15.37 276.2 77
## 2123 27 268.8 78 45.70 246.6 89
## 2124 0 106.1 95 18.04 157.6 113
## 2125 0 27.0 117 4.59 160.9 97
## 2126 27 140.1 59 23.82 223.4 111
## 2127 0 245.0 112 41.65 180.4 91
## 2128 0 196.7 85 33.44 205.9 74
## 2129 26 131.2 98 22.30 106.5 97
## 2130 23 149.6 96 25.43 239.8 124
## 2131 0 239.8 70 40.77 251.8 99
## 2132 31 142.1 77 24.16 193.0 97
## 2133 0 115.4 137 19.62 178.7 70
## 2134 31 193.0 99 32.81 224.8 87
## 2135 0 206.1 49 35.04 224.6 115
## 2136 0 160.3 138 27.25 221.3 92
## 2137 0 199.9 108 33.98 288.4 80
## 2138 0 213.1 105 36.23 206.2 108
## 2139 0 178.3 102 30.31 235.0 120
## 2140 0 252.3 120 42.89 207.0 112
## 2141 0 197.7 64 33.61 136.7 126
## 2142 29 111.1 105 18.89 217.9 101
## 2143 0 96.5 86 16.41 210.2 133
## 2144 0 156.9 109 26.67 122.2 87
## 2145 0 123.3 78 20.96 170.0 85
## 2146 0 193.7 108 32.93 183.2 124
## 2147 0 206.9 134 35.17 167.7 105
## 2148 0 249.8 96 42.47 261.9 92
## 2149 0 144.0 102 24.48 224.7 73
## 2150 33 299.5 83 50.92 163.4 84
## 2151 0 226.0 127 38.42 304.6 83
## 2152 0 137.6 106 23.39 143.5 94
## 2153 26 211.7 121 35.99 139.2 123
## 2154 0 89.7 80 15.25 179.8 81
## 2155 0 197.6 126 33.59 246.5 112
## 2156 0 270.0 102 45.90 256.6 111
## 2157 0 224.7 116 38.20 192.0 79
## 2158 0 194.3 99 33.03 123.6 133
## 2159 0 47.7 89 8.11 264.4 95
## 2160 0 190.1 105 32.32 182.2 116
## 2161 0 89.5 94 15.22 339.9 106
## 2162 0 182.6 83 31.04 154.5 111
## 2163 35 205.5 86 34.94 298.5 119
## 2164 0 231.5 82 39.36 266.9 97
## 2165 0 251.3 69 42.72 252.5 96
## 2166 0 171.2 103 29.10 243.5 121
## 2167 0 197.9 89 33.64 251.0 113
## 2168 0 134.8 94 22.92 204.1 106
## 2169 0 191.4 114 32.54 168.5 138
## 2170 0 174.5 65 29.67 197.4 116
## 2171 0 177.4 125 30.16 226.2 104
## 2172 0 182.1 89 30.96 211.5 104
## 2173 0 222.4 85 37.81 165.4 76
## 2174 0 47.8 120 8.13 178.9 123
## 2175 0 121.8 97 20.71 89.3 97
## 2176 0 143.5 121 24.40 189.3 111
## 2177 0 164.9 68 28.03 210.4 86
## 2178 0 193.6 58 32.91 148.7 115
## 2179 0 101.1 121 17.19 263.2 110
## 2180 24 92.3 88 15.69 193.1 98
## 2181 0 168.9 128 28.71 123.9 99
## 2182 29 219.2 102 37.26 206.0 109
## 2183 37 178.1 130 30.28 242.8 103
## 2184 0 146.5 101 24.91 284.5 142
## 2185 31 172.3 116 29.29 266.2 91
## 2186 0 190.9 143 32.45 149.7 72
## 2187 0 232.1 74 39.46 327.1 88
## 2188 0 169.2 124 28.76 173.3 108
## 2189 0 123.8 107 21.05 319.0 125
## 2190 0 96.0 117 16.32 177.0 68
## 2191 27 93.4 106 15.88 252.0 92
## 2192 0 90.6 130 15.40 170.6 100
## 2193 0 152.9 81 25.99 256.6 82
## 2194 0 257.9 92 43.84 211.6 71
## 2195 29 85.2 98 14.48 230.4 85
## 2196 34 160.0 72 27.20 184.5 119
## 2197 10 182.9 54 31.09 292.4 68
## 2198 0 216.2 67 36.75 222.2 133
## 2199 0 261.7 105 44.49 181.8 107
## 2200 0 241.2 105 41.00 174.3 85
## 2201 0 177.2 142 30.12 123.5 88
## 2202 0 89.5 128 15.22 180.8 137
## 2203 16 200.3 72 34.05 197.8 91
## 2204 0 145.0 103 24.65 294.3 93
## 2205 0 159.5 99 27.12 119.7 149
## 2206 0 151.8 106 25.81 138.0 126
## 2207 0 176.2 120 29.95 236.0 138
## 2208 0 152.1 95 25.86 121.0 105
## 2209 0 161.3 122 27.42 220.6 95
## 2210 0 171.7 78 29.19 144.5 86
## 2211 0 278.9 110 47.41 190.2 67
## 2212 27 213.0 121 36.21 226.2 101
## 2213 36 242.9 67 41.29 170.9 59
## 2214 0 217.2 121 36.92 303.4 73
## 2215 0 175.9 111 29.90 285.2 115
## 2216 0 303.2 133 51.54 170.5 86
## 2217 0 238.9 107 40.61 187.2 88
## 2218 22 189.6 42 32.23 179.0 137
## 2219 0 133.3 94 22.66 247.8 126
## 2220 28 92.7 107 15.76 127.8 86
## 2221 0 177.2 72 30.12 248.9 105
## 2222 0 184.5 103 31.37 209.0 86
## 2223 24 176.1 109 29.94 159.4 81
## 2224 0 204.7 108 34.80 143.1 105
## 2225 0 143.6 80 24.41 134.3 65
## 2226 0 179.3 93 30.48 188.8 65
## 2227 0 137.3 100 23.34 212.2 129
## 2228 0 237.8 92 40.43 223.5 155
## 2229 0 203.7 92 34.63 216.4 97
## 2230 25 191.3 95 32.52 250.7 136
## 2231 0 209.1 141 35.55 205.0 93
## 2232 33 88.8 104 15.10 109.6 94
## 2233 0 97.2 88 16.52 155.6 85
## 2234 0 137.9 96 23.44 192.6 63
## 2235 0 224.3 112 38.13 185.7 103
## 2236 13 207.6 65 35.29 152.7 77
## 2237 0 268.1 95 45.58 120.5 126
## 2238 0 166.7 61 28.34 179.3 88
## 2239 0 267.1 104 45.41 180.4 131
## 2240 0 181.8 108 30.91 198.6 148
## 2241 0 147.1 80 25.01 199.7 100
## 2242 29 37.7 115 6.41 144.1 111
## 2243 0 185.0 88 31.45 224.9 98
## 2244 0 156.4 108 26.59 171.0 116
## 2245 0 239.3 84 40.68 195.7 85
## 2246 29 215.5 129 36.64 161.9 77
## 2247 0 134.9 70 22.93 211.5 74
## 2248 0 194.8 116 33.12 209.9 93
## 2249 20 239.1 105 40.65 209.1 111
## 2250 0 92.6 85 15.74 177.6 92
## 2251 0 209.4 133 35.60 211.5 121
## 2252 0 197.6 83 33.59 164.5 86
## 2253 0 17.6 121 2.99 161.7 125
## 2254 0 62.9 112 10.69 202.9 111
## 2255 28 202.3 97 34.39 69.2 84
## 2256 0 136.1 116 23.14 181.4 93
## 2257 0 207.0 109 35.19 167.4 80
## 2258 33 207.9 95 35.34 233.5 88
## 2259 0 276.5 122 47.01 195.6 79
## 2260 31 313.8 87 53.35 147.7 103
## 2261 25 288.5 114 49.05 203.4 74
## 2262 0 210.9 85 35.85 329.3 69
## 2263 35 64.9 76 11.03 184.1 91
## 2264 26 243.5 137 41.40 236.8 108
## 2265 0 197.0 97 33.49 203.7 107
## 2266 31 278.0 88 47.26 253.2 65
## 2267 37 219.9 102 37.38 222.1 77
## 2268 0 313.2 103 53.24 216.3 151
## 2269 16 145.7 88 24.77 191.0 129
## 2270 37 75.8 102 12.89 173.6 147
## 2271 0 195.9 86 33.30 228.6 82
## 2272 0 132.0 95 22.44 231.2 74
## 2273 0 124.0 102 21.08 262.1 101
## 2274 0 171.9 98 29.22 159.0 127
## 2275 31 249.4 70 42.40 209.5 59
## 2276 0 228.4 100 38.83 145.1 108
## 2277 0 168.6 71 28.66 205.1 48
## 2278 0 123.7 138 21.03 248.5 105
## 2279 0 178.7 61 30.38 252.3 84
## 2280 0 113.2 86 19.24 185.5 97
## 2281 25 142.4 106 24.21 313.7 109
## 2282 38 204.2 57 34.71 205.9 92
## 2283 0 149.7 71 25.45 212.5 97
## 2284 0 227.1 116 38.61 120.5 103
## 2285 0 155.3 75 26.40 169.9 87
## 2286 0 156.4 105 26.59 185.5 98
## 2287 42 148.7 105 25.28 167.3 105
## 2288 0 271.7 112 46.19 155.1 96
## 2289 0 193.7 74 32.93 126.9 84
## 2290 23 245.5 54 41.74 292.7 83
## 2291 0 245.3 108 41.70 259.9 140
## 2292 0 196.1 87 33.34 236.8 66
## 2293 0 134.1 112 22.80 195.1 104
## 2294 31 225.0 78 38.25 191.3 79
## 2295 0 189.7 100 32.25 115.9 133
## 2296 0 142.9 96 24.29 177.9 96
## 2297 0 175.6 80 29.85 238.0 94
## 2298 0 92.4 109 15.71 219.0 115
## 2299 0 92.8 92 15.78 159.6 87
## 2300 27 221.7 100 37.69 236.1 70
## 2301 0 159.6 94 27.13 276.8 118
## 2302 0 144.5 107 24.57 180.5 85
## 2303 0 159.1 100 27.05 202.5 90
## 2304 0 49.9 123 8.48 150.7 81
## 2305 32 116.9 120 19.87 232.4 97
## 2306 0 150.0 98 25.50 89.8 95
## 2307 0 254.4 120 43.25 159.3 92
## 2308 33 270.7 53 46.02 200.7 116
## 2309 0 207.0 112 35.19 173.8 96
## 2310 0 145.3 89 24.70 303.8 93
## 2311 25 230.7 102 39.22 233.8 109
## 2312 0 151.5 104 25.76 242.2 114
## 2313 0 146.1 57 24.84 196.2 97
## 2314 0 256.0 111 43.52 187.4 61
## 2315 35 200.2 105 34.03 244.4 88
## 2316 0 150.7 52 25.62 246.7 96
## 2317 0 186.0 107 31.62 66.0 94
## 2318 0 212.9 110 36.19 187.0 69
## 2319 0 194.8 133 33.12 213.4 73
## 2320 30 272.5 105 46.33 253.0 83
## 2321 0 135.1 109 22.97 205.2 99
## 2322 0 154.6 56 26.28 263.0 84
## 2323 35 230.5 116 39.19 265.8 130
## 2324 0 165.4 84 28.12 203.7 107
## 2325 0 143.3 120 24.36 230.7 111
## 2326 0 271.1 108 46.09 237.0 122
## 2327 0 253.5 104 43.10 117.9 123
## 2328 0 167.1 77 28.41 131.8 79
## 2329 0 168.3 96 28.61 87.6 91
## 2330 0 104.7 115 17.80 249.8 144
## 2331 0 135.4 101 23.02 238.1 124
## 2332 34 191.4 102 32.54 361.8 96
## 2333 0 158.7 90 26.98 198.4 117
## 2334 0 144.8 84 24.62 164.9 141
## 2335 0 98.8 97 16.80 146.9 68
## 2336 0 157.8 71 26.83 203.2 114
## 2337 37 163.0 107 27.71 312.8 118
## 2338 0 181.6 119 30.87 335.7 118
## 2339 0 129.0 78 21.93 188.0 116
## 2340 0 86.0 83 14.62 260.7 86
## 2341 17 193.9 71 32.96 189.8 81
## 2342 0 109.4 107 18.60 244.7 102
## 2343 0 188.9 105 32.11 153.6 116
## 2344 0 179.9 72 30.58 170.0 98
## 2345 0 183.4 98 31.18 281.3 95
## 2346 0 288.1 101 48.98 137.9 93
## 2347 0 169.2 96 28.76 149.9 83
## 2348 29 195.5 113 33.24 171.6 96
## 2349 20 264.4 102 44.95 219.6 123
## 2350 0 207.7 116 35.31 210.6 99
## 2351 0 169.5 151 28.82 112.9 84
## 2352 0 141.5 102 24.06 263.0 94
## 2353 0 154.8 71 26.32 244.0 73
## 2354 0 133.5 51 22.70 219.6 96
## 2355 0 273.2 85 46.44 211.1 82
## 2356 0 224.6 94 38.18 225.9 120
## 2357 0 273.8 97 46.55 289.7 106
## 2358 0 159.5 103 27.12 275.5 90
## 2359 0 104.0 92 17.68 197.0 125
## 2360 31 115.4 90 19.62 217.4 78
## 2361 0 222.1 107 37.76 199.4 102
## 2362 0 116.4 98 19.79 95.6 74
## 2363 0 217.7 118 37.01 231.7 128
## 2364 0 129.4 84 22.00 157.3 89
## 2365 33 161.8 73 27.51 273.0 58
## 2366 29 198.8 122 33.80 238.6 114
## 2367 45 147.8 85 25.13 147.4 93
## 2368 0 262.3 114 44.59 198.9 96
## 2369 0 246.4 83 41.89 160.3 88
## 2370 0 174.3 123 29.63 140.2 124
## 2371 0 183.4 111 31.18 168.8 98
## 2372 0 191.9 95 32.62 200.9 101
## 2373 0 187.8 109 31.93 154.6 97
## 2374 0 259.7 106 44.15 152.7 116
## 2375 0 180.4 123 30.67 194.0 98
## 2376 0 51.8 107 8.81 230.2 104
## 2377 0 303.9 106 51.66 232.2 54
## 2378 36 123.7 125 21.03 172.6 106
## 2379 0 206.2 122 35.05 164.5 94
## 2380 0 164.3 92 27.93 233.7 107
## 2381 0 228.6 117 38.86 132.8 123
## 2382 22 200.4 80 34.07 131.1 84
## 2383 0 154.3 107 26.23 183.0 111
## 2384 30 122.9 93 20.89 233.5 91
## 2385 0 220.8 100 37.54 265.7 106
## 2386 0 214.6 78 36.48 251.7 98
## 2387 0 202.0 123 34.34 184.3 78
## 2388 32 209.5 108 35.62 109.6 64
## 2389 0 297.9 141 50.64 238.1 107
## 2390 0 212.8 102 36.18 189.8 137
## 2391 0 145.6 102 24.75 284.7 111
## 2392 19 152.9 87 25.99 213.2 99
## 2393 0 125.4 158 21.32 269.1 83
## 2394 25 138.3 96 23.51 80.6 79
## 2395 0 189.3 157 32.18 174.9 70
## 2396 0 199.3 86 33.88 194.8 102
## 2397 0 247.5 99 42.08 108.5 118
## 2398 0 294.9 71 50.13 192.8 78
## 2399 0 175.4 99 29.82 155.3 83
## 2400 0 179.4 70 30.50 143.0 93
## 2401 39 126.8 94 21.56 293.6 115
## 2402 0 239.7 87 40.75 281.7 92
## 2403 33 143.0 101 24.31 212.2 102
## 2404 0 91.9 109 15.62 198.4 111
## 2405 0 210.4 80 35.77 176.6 96
## 2406 29 201.3 130 34.22 203.7 115
## 2407 0 145.6 59 24.75 287.9 131
## 2408 31 203.5 82 34.60 200.3 72
## 2409 0 232.4 76 39.51 153.3 103
## 2410 8 86.5 119 14.71 285.2 97
## 2411 0 109.9 102 18.68 220.8 114
## 2412 0 156.0 88 26.52 276.1 81
## 2413 0 326.3 112 55.47 165.1 110
## 2414 0 195.0 58 33.15 198.5 88
## 2415 0 110.0 91 18.70 147.3 75
## 2416 0 147.1 119 25.01 161.0 111
## 2417 0 156.0 141 26.52 256.8 72
## 2418 0 98.2 99 16.69 186.7 85
## 2419 0 210.6 120 35.80 153.1 84
## 2420 0 239.9 120 40.78 261.6 88
## 2421 0 159.9 94 27.18 179.9 95
## 2422 0 197.8 66 33.63 133.9 119
## 2423 36 115.4 98 19.62 166.2 83
## 2424 0 123.8 113 21.05 236.2 77
## 2425 15 117.6 97 19.99 196.3 126
## 2426 28 105.3 82 17.90 197.4 109
## 2427 0 111.7 121 18.99 237.3 119
## 2428 0 159.3 104 27.08 202.3 98
## 2429 0 81.7 123 13.89 210.2 108
## 2430 21 238.0 88 40.46 209.6 84
## 2431 40 128.1 99 21.78 247.7 78
## 2432 31 171.2 104 29.10 193.6 74
## 2433 0 109.0 88 18.53 259.3 120
## 2434 0 220.0 114 37.40 207.7 76
## 2435 0 55.6 65 9.45 242.7 121
## 2436 23 286.6 79 48.72 315.3 102
## 2437 0 207.6 96 35.29 229.0 112
## 2438 31 109.6 108 18.63 249.3 119
## 2439 0 197.2 113 33.52 242.3 116
## 2440 0 175.7 120 29.87 168.6 90
## 2441 0 205.2 115 34.88 184.8 137
## 2442 13 193.1 104 32.83 111.6 98
## 2443 34 232.6 121 39.54 153.2 115
## 2444 0 102.7 89 17.46 149.3 100
## 2445 31 263.1 70 44.73 279.3 118
## 2446 0 197.0 79 33.49 201.0 114
## 2447 0 169.3 90 28.78 156.0 138
## 2448 0 201.5 123 34.26 129.2 110
## 2449 0 251.0 119 42.67 91.2 96
## 2450 0 230.4 117 39.17 225.0 101
## 2451 0 109.8 120 18.67 230.5 86
## 2452 0 279.5 118 47.52 203.2 113
## 2453 0 173.4 107 29.48 222.0 84
## 2454 38 214.4 93 36.45 211.7 57
## 2455 0 96.1 103 16.34 246.8 134
## 2456 0 101.4 145 17.24 249.1 116
## 2457 0 232.5 74 39.53 181.8 142
## 2458 45 174.5 120 29.67 217.5 95
## 2459 23 224.0 126 38.08 233.5 89
## 2460 0 211.1 99 35.89 176.7 66
## 2461 0 109.2 96 18.56 153.1 80
## 2462 0 220.0 95 37.40 179.9 121
## 2463 0 181.4 98 30.84 164.5 98
## 2464 11 180.7 82 30.72 173.7 90
## 2465 32 96.5 109 16.41 145.8 109
## 2466 0 183.5 93 31.20 170.5 80
## 2467 38 107.9 90 18.34 140.4 94
## 2468 0 161.0 96 27.37 244.9 82
## 2469 41 146.8 128 24.96 285.6 96
## 2470 0 149.2 146 25.36 161.9 109
## 2471 0 227.8 124 38.73 169.5 112
## 2472 23 160.3 87 27.25 202.4 101
## 2473 0 137.8 120 23.43 225.8 110
## 2474 40 141.7 87 24.09 268.3 89
## 2475 22 196.4 115 33.39 150.3 109
## 2476 0 175.2 74 29.78 151.7 79
## 2477 0 146.8 133 24.96 171.7 73
## 2478 0 173.9 111 29.56 287.4 105
## 2479 34 305.2 80 51.88 156.5 109
## 2480 29 162.3 91 27.59 279.3 79
## 2481 0 150.0 106 25.50 293.8 123
## 2482 0 197.5 114 33.58 206.9 119
## 2483 0 240.2 67 40.83 153.0 98
## 2484 30 186.2 117 31.65 286.7 76
## 2485 39 116.9 127 19.87 276.5 88
## 2486 17 236.7 95 40.24 263.5 56
## 2487 0 173.2 93 29.44 131.2 80
## 2488 0 152.2 114 25.87 137.2 102
## 2489 0 181.3 135 30.82 182.4 108
## 2490 0 167.8 72 28.53 211.0 99
## 2491 0 175.4 125 29.82 250.7 87
## 2492 0 87.6 112 14.89 266.9 107
## 2493 0 203.3 45 34.56 141.9 87
## 2494 0 92.6 95 15.74 161.9 70
## 2495 21 262.9 135 44.69 149.5 96
## 2496 0 160.8 91 27.34 155.8 82
## 2497 22 141.8 116 24.11 167.3 99
## 2498 32 50.6 62 8.60 201.4 87
## 2499 0 134.9 59 22.93 156.0 152
## 2500 0 252.1 110 42.86 226.1 103
## 2501 41 215.5 95 36.64 241.8 92
## 2502 0 124.8 66 21.22 257.2 85
## 2503 0 178.7 114 30.38 271.0 96
## 2504 0 183.2 131 31.14 179.2 73
## 2505 0 167.5 96 28.48 139.1 104
## 2506 0 147.1 105 25.01 200.0 135
## 2507 0 230.1 107 39.12 212.0 120
## 2508 0 135.8 125 23.09 163.2 88
## 2509 20 205.7 98 34.97 136.1 107
## 2510 0 73.8 105 12.55 143.4 114
## 2511 0 189.3 119 32.18 233.5 112
## 2512 0 147.2 115 25.02 161.9 123
## 2513 42 137.3 95 23.34 184.2 94
## 2514 0 70.7 125 12.02 211.0 113
## 2515 0 204.6 117 34.78 205.2 94
## 2516 0 123.1 88 20.93 213.9 84
## 2517 19 129.7 115 22.05 160.8 101
## 2518 0 198.7 70 33.78 209.5 106
## 2519 0 145.1 116 24.67 233.7 82
## 2520 0 135.2 101 22.98 152.5 79
## 2521 28 124.7 105 21.20 250.4 78
## 2522 0 215.9 76 36.70 145.4 118
## 2523 0 119.2 142 20.26 228.4 139
## 2524 0 144.3 116 24.53 156.4 74
## 2525 0 235.2 121 39.98 220.6 87
## 2526 0 174.0 57 29.58 281.1 118
## 2527 0 115.0 65 19.55 122.3 96
## 2528 0 151.7 93 25.79 178.5 77
## 2529 0 153.1 102 26.03 234.1 77
## 2530 0 218.6 93 37.16 149.9 130
## 2531 0 265.2 122 45.08 178.7 102
## 2532 0 143.3 134 24.36 180.5 113
## 2533 0 190.3 98 32.35 252.7 70
## 2534 0 184.7 60 31.40 262.0 73
## 2535 0 115.3 99 19.60 224.7 117
## 2536 0 113.0 108 19.21 169.2 107
## 2537 0 294.2 100 50.01 232.5 53
## 2538 0 215.6 86 36.65 167.8 59
## 2539 0 128.8 80 21.90 208.7 93
## 2540 28 211.2 117 35.90 312.5 98
## 2541 24 71.2 82 12.10 181.6 103
## 2542 0 94.9 121 16.13 253.2 83
## 2543 0 259.4 116 44.10 269.7 109
## 2544 28 215.8 123 36.69 285.2 76
## 2545 0 97.5 113 16.58 268.1 69
## 2546 0 146.5 121 24.91 169.9 125
## 2547 0 157.9 72 26.84 234.0 93
## 2548 0 139.9 117 23.78 223.6 96
## 2549 21 153.2 112 26.04 263.3 110
## 2550 0 103.5 134 17.60 319.3 111
## 2551 0 185.8 119 31.59 192.3 83
## 2552 0 129.5 56 22.02 354.2 118
## 2553 0 236.6 91 40.22 220.9 146
## 2554 0 260.4 107 44.27 208.2 104
## 2555 0 167.3 100 28.44 163.9 79
## 2556 0 182.2 101 30.97 212.3 95
## 2557 0 113.0 80 19.21 150.1 87
## 2558 0 185.7 133 31.57 235.1 149
## 2559 0 136.2 114 23.15 165.1 118
## 2560 29 222.6 81 37.84 190.3 109
## 2561 0 197.3 67 33.54 264.5 106
## 2562 33 141.4 130 24.04 186.4 114
## 2563 0 208.0 69 35.36 95.1 94
## 2564 0 118.5 92 20.15 177.8 109
## 2565 0 153.2 65 26.04 229.7 90
## 2566 0 108.3 87 18.41 183.6 116
## 2567 0 168.6 92 28.66 187.7 107
## 2568 0 247.2 116 42.02 303.7 103
## 2569 0 224.2 81 38.11 243.3 90
## 2570 0 166.9 98 28.37 221.8 77
## 2571 43 118.4 100 20.13 144.1 108
## 2572 0 190.9 62 32.45 226.6 53
## 2573 0 317.8 60 54.03 152.9 100
## 2574 0 312.0 112 53.04 180.0 109
## 2575 0 146.0 121 24.82 203.0 141
## 2576 0 131.6 95 22.37 179.3 109
## 2577 33 193.4 105 32.88 231.6 79
## 2578 0 185.1 92 31.47 213.0 85
## 2579 0 193.3 106 32.86 169.0 150
## 2580 0 146.4 107 24.89 196.5 99
## 2581 0 71.2 90 12.10 304.4 119
## 2582 0 123.2 104 20.94 190.0 117
## 2583 0 205.0 90 34.85 140.9 114
## 2584 0 128.7 78 21.88 240.8 133
## 2585 0 216.9 78 36.87 211.0 115
## 2586 0 150.0 122 25.50 218.5 116
## 2587 0 164.1 106 27.90 206.0 56
## 2588 0 212.0 113 36.04 226.6 128
## 2589 37 167.3 99 28.44 194.7 99
## 2590 0 154.4 130 26.25 217.2 101
## 2591 30 177.3 95 30.14 211.8 102
## 2592 0 231.2 141 39.30 267.8 136
## 2593 0 202.9 100 34.49 178.6 46
## 2594 0 149.6 120 25.43 200.7 85
## 2595 0 345.3 81 58.70 203.4 106
## 2596 0 264.9 80 45.03 281.2 66
## 2597 0 122.0 92 20.74 138.3 114
## 2598 0 177.2 88 30.12 270.4 99
## 2599 0 133.1 80 22.63 206.5 120
## 2600 0 225.1 90 38.27 279.5 127
## 2601 0 208.4 120 35.43 174.4 99
## 2602 30 173.1 107 29.43 247.2 101
## 2603 0 162.4 131 27.61 167.0 102
## 2604 13 281.2 93 47.80 178.2 101
## 2605 0 208.3 89 35.41 169.4 67
## 2606 38 243.4 126 41.38 273.8 109
## 2607 0 224.2 89 38.11 314.9 121
## 2608 0 189.3 100 32.18 239.3 107
## 2609 46 168.3 124 28.61 270.9 103
## 2610 24 232.9 90 39.59 152.1 94
## 2611 37 155.0 98 26.35 142.4 105
## 2612 0 154.4 130 26.25 203.8 90
## 2613 0 234.7 102 39.90 195.7 110
## 2614 0 240.0 88 40.80 141.0 117
## 2615 0 298.4 78 50.73 270.5 142
## 2616 0 166.0 102 28.22 236.1 97
## 2617 33 111.6 140 18.97 213.3 111
## 2618 0 174.5 98 29.67 180.2 103
## 2619 27 175.5 137 29.84 210.6 60
## 2620 35 157.5 109 26.78 189.6 67
## 2621 0 206.2 113 35.05 176.4 102
## 2622 35 207.5 138 35.28 201.0 116
## 2623 16 144.8 105 24.62 206.2 111
## 2624 0 258.8 85 44.00 129.5 114
## 2625 0 226.9 106 38.57 182.2 77
## 2626 0 152.9 119 25.99 171.2 107
## 2627 27 156.7 51 26.64 236.5 118
## 2628 0 150.8 85 25.64 295.9 88
## 2629 0 221.0 126 37.57 204.5 110
## 2630 32 322.4 92 54.81 283.2 107
## 2631 0 153.6 148 26.11 262.1 87
## 2632 22 215.1 91 36.57 138.9 102
## 2633 35 174.4 108 29.65 196.7 100
## 2634 0 180.5 126 30.69 230.0 98
## 2635 0 123.1 106 20.93 182.0 102
## 2636 0 165.7 94 28.17 257.4 80
## 2637 0 200.2 92 34.03 118.7 87
## 2638 0 154.8 82 26.32 287.7 109
## 2639 0 125.4 116 21.32 261.5 95
## 2640 33 184.2 111 31.31 312.6 89
## 2641 24 274.7 99 46.70 193.5 118
## 2642 39 142.0 140 24.14 241.6 89
## 2643 21 151.5 99 25.76 147.8 89
## 2644 0 124.8 114 21.22 133.0 121
## 2645 0 179.2 85 30.46 222.9 66
## 2646 0 246.4 110 41.89 182.0 98
## 2647 0 232.7 114 39.56 186.4 123
## 2648 0 288.0 120 48.96 255.8 90
## 2649 23 170.8 145 29.04 236.7 93
## 2650 0 216.1 114 36.74 197.5 107
## 2651 0 138.7 100 23.58 215.4 58
## 2652 0 210.7 112 35.82 238.7 73
## 2653 0 181.8 117 30.91 158.1 91
## 2654 30 61.6 103 10.47 255.1 110
## 2655 0 207.7 85 35.31 196.7 112
## 2656 0 219.2 73 37.26 167.0 65
## 2657 0 227.0 122 38.59 258.7 111
## 2658 0 245.9 73 41.80 240.1 87
## 2659 0 257.3 84 43.74 184.8 115
## 2660 0 121.1 130 20.59 216.0 86
## 2661 0 301.5 136 51.26 257.7 72
## 2662 0 233.9 96 39.76 218.9 111
## 2663 0 99.6 108 16.93 308.7 102
## 2664 0 169.8 123 28.87 183.1 94
## 2665 26 198.8 115 33.80 166.6 67
## 2666 0 116.2 86 19.75 229.7 127
## 2667 0 255.9 128 43.50 140.9 92
## 2668 27 187.7 84 31.91 221.0 147
## 2669 21 195.9 91 33.30 213.9 84
## 2670 0 129.4 97 22.00 185.4 101
## 2671 12 221.0 108 37.57 151.0 118
## 2672 0 140.5 92 23.89 186.8 96
## 2673 0 277.9 123 47.24 155.8 112
## 2674 0 224.9 105 38.23 250.0 101
## 2675 0 109.1 117 18.55 217.4 124
## 2676 0 207.8 109 35.33 123.5 112
## 2677 0 205.9 96 35.00 257.1 94
## 2678 0 308.6 139 52.46 150.8 94
## 2679 0 242.6 69 41.24 209.0 117
## 2680 0 229.6 82 39.03 138.1 103
## 2681 28 166.0 62 28.22 233.9 88
## 2682 0 144.8 126 24.62 200.6 82
## 2683 0 106.1 77 18.04 123.5 100
## 2684 0 221.8 84 37.71 166.0 125
## 2685 0 204.6 98 34.78 212.5 90
## 2686 0 213.5 93 36.30 166.6 114
## 2687 44 152.0 95 25.84 274.9 73
## 2688 29 260.8 81 44.34 163.7 112
## 2689 0 166.4 117 28.29 317.0 129
## 2690 0 177.9 83 30.24 167.3 84
## 2691 0 235.1 97 39.97 196.8 104
## 2692 0 186.8 92 31.76 173.7 123
## 2693 0 268.4 81 45.63 174.4 115
## 2694 0 192.1 95 32.66 249.8 94
## 2695 0 240.7 82 40.92 269.4 85
## 2696 0 179.9 113 30.58 149.8 112
## 2697 0 314.1 86 53.40 222.4 99
## 2698 41 162.0 82 27.54 324.7 77
## 2699 0 175.8 89 29.89 274.3 119
## 2700 0 109.4 91 18.60 207.5 111
## 2701 0 255.1 124 43.37 230.6 110
## 2702 0 208.7 84 35.48 173.3 88
## 2703 20 214.6 108 36.48 96.6 82
## 2704 0 49.2 121 8.36 143.9 136
## 2705 0 141.3 133 24.02 134.9 96
## 2706 0 253.2 89 43.04 237.9 114
## 2707 0 206.0 128 35.02 198.1 71
## 2708 0 40.4 105 6.87 172.4 83
## 2709 0 291.2 104 49.50 234.2 132
## 2710 31 71.2 58 12.10 124.7 105
## 2711 0 261.8 69 44.51 245.0 135
## 2712 0 191.3 134 32.52 261.5 113
## 2713 0 133.3 101 22.66 255.5 127
## 2714 24 183.6 138 31.21 203.8 90
## 2715 30 155.2 116 26.38 195.5 50
## 2716 28 283.1 93 48.13 185.4 98
## 2717 50 186.5 94 31.71 178.0 106
## 2718 38 163.3 104 27.76 136.0 114
## 2719 0 203.4 125 34.58 182.9 88
## 2720 19 178.1 110 30.28 212.8 100
## 2721 0 195.9 103 33.30 89.1 95
## 2722 0 295.3 127 50.20 127.4 100
## 2723 0 136.1 82 23.14 156.3 118
## 2724 24 114.1 95 19.40 161.5 86
## 2725 0 279.1 124 47.45 180.5 108
## 2726 0 169.3 111 28.78 139.5 69
## 2727 0 214.4 94 36.45 138.0 149
## 2728 0 255.8 125 43.49 142.7 111
## 2729 0 148.2 71 25.19 285.1 91
## 2730 0 119.3 93 20.28 223.9 103
## 2731 27 192.3 137 32.69 199.9 115
## 2732 0 245.2 91 41.68 217.2 92
## 2733 0 216.2 106 36.75 363.7 86
## 2734 0 172.4 114 29.31 256.6 69
## 2735 30 175.3 107 29.80 153.3 116
## 2736 26 169.0 104 28.73 188.8 104
## 2737 27 2.6 113 0.44 254.0 102
## 2738 0 184.1 143 31.30 211.7 105
## 2739 0 181.9 90 30.92 151.5 87
## 2740 9 160.1 116 27.22 210.0 121
## 2741 0 189.8 122 32.27 173.7 85
## 2742 0 223.2 142 37.94 216.5 114
## 2743 31 216.0 94 36.72 225.1 123
## 2744 0 198.5 124 33.75 266.6 100
## 2745 0 159.5 115 27.12 195.4 118
## 2746 40 105.0 78 17.85 180.6 100
## 2747 0 204.5 108 34.77 162.4 110
## 2748 0 274.0 92 46.58 231.8 82
## 2749 0 158.7 84 26.98 181.7 91
## 2750 0 229.9 116 39.08 202.4 110
## 2751 0 137.8 97 23.43 187.7 118
## 2752 0 179.4 94 30.50 270.4 92
## 2753 39 139.3 101 23.68 178.3 117
## 2754 0 7.8 86 1.33 171.4 100
## 2755 23 183.1 88 31.13 147.4 89
## 2756 0 206.9 79 35.17 262.4 117
## 2757 0 140.0 106 23.80 153.7 101
## 2758 0 179.2 59 30.46 283.3 101
## 2759 0 177.4 136 30.16 240.3 104
## 2760 0 115.6 129 19.65 167.8 104
## 2761 0 237.3 103 40.34 176.7 84
## 2762 0 181.5 116 30.86 187.0 119
## 2763 0 51.5 90 8.76 164.0 98
## 2764 19 155.7 104 26.47 185.4 118
## 2765 23 245.0 88 41.65 265.0 105
## 2766 0 131.7 99 22.39 163.1 109
## 2767 0 111.1 126 18.89 313.4 95
## 2768 9 88.5 100 15.05 324.8 109
## 2769 44 116.0 85 19.72 150.1 120
## 2770 0 155.5 81 26.44 133.1 94
## 2771 30 106.5 65 18.11 225.7 108
## 2772 31 175.2 68 29.78 199.2 73
## 2773 0 154.7 84 26.30 177.8 125
## 2774 34 247.2 105 42.02 225.5 133
## 2775 32 218.4 93 37.13 236.7 132
## 2776 24 227.5 81 38.68 234.9 71
## 2777 30 185.0 117 31.45 249.5 141
## 2778 0 186.8 89 31.76 253.4 51
## 2779 0 158.8 119 27.00 211.8 105
## 2780 0 208.7 150 35.48 212.8 104
## 2781 0 185.9 95 31.60 212.0 98
## 2782 0 222.5 74 37.83 169.7 75
## 2783 0 201.1 101 34.19 170.7 86
## 2784 17 167.9 114 28.54 243.7 93
## 2785 0 239.1 88 40.65 243.5 79
## 2786 0 175.7 109 29.87 211.8 97
## 2787 29 111.2 90 18.90 263.5 98
## 2788 0 87.7 74 14.91 214.8 58
## 2789 0 244.1 99 41.50 246.9 111
## 2790 27 165.0 89 28.05 127.3 118
## 2791 27 127.4 110 21.66 103.3 99
## 2792 0 194.8 106 33.12 292.7 103
## 2793 0 54.7 131 9.30 256.1 105
## 2794 27 283.4 104 48.18 224.1 152
## 2795 0 258.0 112 43.86 246.5 117
## 2796 0 90.5 142 15.39 211.7 75
## 2797 0 235.6 132 40.05 115.9 129
## 2798 0 142.5 82 24.23 231.4 110
## 2799 0 54.0 68 9.18 179.3 96
## 2800 0 214.8 87 36.52 131.0 114
## 2801 0 251.4 118 42.74 196.6 80
## 2802 0 139.0 99 23.63 250.7 108
## 2803 0 117.3 114 19.94 208.7 105
## 2804 0 264.0 108 44.88 132.2 75
## 2805 0 82.6 105 14.04 204.0 99
## 2806 28 175.8 126 29.89 253.6 76
## 2807 0 220.4 100 37.47 211.2 79
## 2808 0 217.0 104 36.89 152.3 83
## 2809 25 129.0 77 21.93 290.0 110
## 2810 0 150.5 106 25.59 152.9 112
## 2811 42 193.3 66 32.86 263.3 85
## 2812 0 189.5 122 32.22 103.8 95
## 2813 33 137.8 95 23.43 235.5 128
## 2814 0 129.3 80 21.98 142.7 101
## 2815 0 115.6 77 19.65 213.6 100
## 2816 23 221.9 114 37.72 254.7 84
## 2817 0 263.7 113 44.83 186.5 103
## 2818 0 61.3 91 10.42 194.4 94
## 2819 0 183.8 113 31.25 164.7 110
## 2820 0 167.4 68 28.46 143.8 74
## 2821 27 154.1 122 26.20 195.3 150
## 2822 0 252.0 101 42.84 170.2 105
## 2823 0 163.1 94 27.73 291.7 108
## 2824 0 198.3 80 33.71 187.0 89
## 2825 0 324.7 48 55.20 236.4 82
## 2826 0 128.3 78 21.81 215.3 120
## 2827 0 187.9 110 31.94 200.5 101
## 2828 0 129.2 71 21.96 214.1 68
## 2829 0 125.5 106 21.34 128.9 96
## 2830 26 257.2 108 43.72 224.3 122
## 2831 0 124.6 90 21.18 146.4 70
## 2832 0 175.1 144 29.77 216.9 69
## 2833 0 124.3 91 21.13 173.4 105
## 2834 0 271.6 130 46.17 156.0 131
## 2835 0 219.9 80 37.38 143.3 117
## 2836 33 183.3 115 31.16 201.4 87
## 2837 0 101.1 119 17.19 214.4 67
## 2838 0 203.3 70 34.56 228.9 97
## 2839 35 175.4 88 29.82 190.0 65
## 2840 0 266.0 97 45.22 214.6 94
## 2841 41 171.6 110 29.17 136.1 78
## 2842 0 78.7 98 13.38 225.6 102
## 2843 20 211.9 110 36.02 215.1 120
## 2844 0 63.7 101 10.83 195.8 95
## 2845 0 173.4 100 29.48 213.7 74
## 2846 0 237.7 98 40.41 207.1 121
## 2847 0 225.9 123 38.40 162.8 106
## 2848 32 173.0 101 29.41 209.4 93
## 2849 0 224.9 102 38.23 143.8 87
## 2850 0 237.7 122 40.41 181.5 91
## 2851 0 137.0 128 23.29 217.0 116
## 2852 0 142.5 109 24.23 176.1 107
## 2853 0 142.4 126 24.21 126.2 118
## 2854 21 147.0 112 24.99 197.3 43
## 2855 0 220.3 124 37.45 188.6 101
## 2856 0 149.2 96 25.36 260.7 116
## 2857 0 204.4 88 34.75 137.5 111
## 2858 0 216.8 77 36.86 207.3 117
## 2859 28 308.0 123 52.36 247.8 128
## 2860 0 58.0 125 9.86 67.5 116
## 2861 0 173.2 80 29.44 236.2 94
## 2862 19 210.3 90 35.75 241.8 87
## 2863 24 58.9 125 10.01 305.5 90
## 2864 0 236.8 102 40.26 167.1 87
## 2865 0 228.9 102 38.91 160.7 136
## 2866 32 90.0 87 15.30 276.3 113
## 2867 0 146.7 128 24.94 106.2 74
## 2868 0 237.3 83 40.34 154.0 65
## 2869 0 162.8 118 27.68 229.6 91
## 2870 20 186.9 114 31.77 256.3 91
## 2871 0 86.1 100 14.64 259.8 113
## 2872 0 212.3 89 36.09 215.4 127
## 2873 0 151.0 98 25.67 120.6 119
## 2874 0 158.6 67 26.96 130.4 96
## 2875 0 296.0 93 50.32 226.4 117
## 2876 32 212.3 77 36.09 251.5 78
## 2877 0 234.4 61 39.85 179.3 111
## 2878 0 176.8 92 30.06 187.5 97
## 2879 19 157.3 123 26.74 257.7 94
## 2880 26 146.6 68 24.92 172.8 67
## 2881 0 260.5 108 44.29 102.4 110
## 2882 20 146.1 98 24.84 277.4 104
## 2883 0 124.5 134 21.17 141.2 78
## 2884 0 209.4 49 35.60 237.4 117
## 2885 0 285.7 44 48.57 167.5 144
## 2886 0 190.9 44 32.45 161.4 109
## 2887 0 144.4 88 24.55 264.6 105
## 2888 50 208.8 130 35.50 132.9 104
## 2889 36 77.6 141 13.19 207.0 60
## 2890 0 271.1 101 46.09 237.4 133
## 2891 0 240.8 104 40.94 144.5 92
## 2892 0 114.8 98 19.52 192.6 101
## 2893 34 138.8 80 23.60 142.0 108
## 2894 27 209.8 112 35.67 155.0 80
## 2895 0 134.9 98 22.93 248.4 130
## 2896 0 164.0 99 27.88 153.1 102
## 2897 0 245.5 130 41.74 192.7 54
## 2898 32 80.3 94 13.65 199.9 124
## 2899 0 90.7 90 15.42 207.5 109
## 2900 36 190.3 115 32.35 256.6 78
## 2901 0 108.6 108 18.46 209.9 126
## 2902 17 89.8 88 15.27 233.2 75
## 2903 15 252.4 106 42.91 187.8 69
## 2904 32 183.4 94 31.18 269.1 120
## 2905 0 183.4 103 31.18 141.9 113
## 2906 0 155.2 100 26.38 135.9 84
## 2907 19 165.8 122 28.19 186.9 89
## 2908 0 209.4 67 35.60 273.8 89
## 2909 0 279.3 104 47.48 201.6 87
## 2910 0 174.1 102 29.60 99.1 118
## 2911 0 175.7 78 29.87 184.6 96
## 2912 0 256.5 87 43.61 222.1 101
## 2913 0 170.2 89 28.93 187.5 83
## 2914 0 139.6 92 23.73 250.2 115
## 2915 34 208.8 119 35.50 142.1 106
## 2916 0 210.1 126 35.72 248.9 108
## 2917 0 113.6 87 19.31 158.6 98
## 2918 0 202.6 89 34.44 163.0 96
## 2919 0 174.4 112 29.65 265.8 122
## 2920 0 210.6 117 35.80 164.2 103
## 2921 0 121.5 88 20.66 253.0 124
## 2922 0 127.8 67 21.73 181.6 112
## 2923 0 135.2 98 22.98 242.0 107
## 2924 0 99.4 62 16.90 275.0 86
## 2925 0 276.9 105 47.07 246.9 94
## 2926 0 163.4 134 27.78 240.1 87
## 2927 0 287.4 116 48.86 235.3 126
## 2928 23 120.5 104 20.49 227.8 115
## 2929 0 184.1 106 31.30 204.9 70
## 2930 0 185.0 84 31.45 232.5 129
## 2931 0 160.9 109 27.35 144.2 152
## 2932 0 207.6 68 35.29 251.6 123
## 2933 0 209.2 134 35.56 0.0 0
## 2934 0 158.4 71 26.93 306.6 66
## 2935 0 149.0 73 25.33 131.0 81
## 2936 0 204.5 63 34.77 208.8 95
## 2937 0 288.8 86 49.10 175.9 87
## 2938 40 108.6 90 18.46 206.4 154
## 2939 0 97.5 129 16.58 260.4 78
## 2940 0 166.5 102 28.31 261.0 103
## 2941 0 156.2 104 26.55 90.0 101
## 2942 31 225.2 89 38.28 256.8 117
## 2943 0 287.4 118 48.86 259.6 84
## 2944 19 175.3 96 29.80 241.3 146
## 2945 0 102.1 75 17.36 219.5 97
## 2946 0 157.9 103 26.84 259.6 90
## 2947 19 146.5 73 24.91 246.4 65
## 2948 0 245.8 116 41.79 286.7 91
## 2949 0 177.7 114 30.21 215.6 110
## 2950 0 250.8 146 42.64 152.5 105
## 2951 0 117.8 100 20.03 199.2 105
## 2952 0 119.7 113 20.35 189.7 84
## 2953 0 242.2 87 41.17 226.1 101
## 2954 0 163.4 83 27.78 249.3 119
## 2955 0 161.0 113 27.37 208.0 134
## 2956 0 128.7 111 21.88 169.5 104
## 2957 0 81.6 94 13.87 268.1 112
## 2958 20 207.7 91 35.31 199.7 113
## 2959 0 128.6 115 21.86 216.2 88
## 2960 0 233.3 65 39.66 209.8 93
## 2961 0 182.1 106 30.96 134.9 106
## 2962 36 168.0 81 28.56 163.2 125
## 2963 0 251.6 88 42.77 175.1 103
## 2964 30 183.8 102 31.25 183.4 123
## 2965 0 256.4 44 43.59 214.5 105
## 2966 0 180.2 134 30.63 97.7 85
## 2967 0 227.8 81 38.73 161.8 97
## 2968 20 147.8 132 25.13 276.8 94
## 2969 0 234.9 136 39.93 270.8 134
## 2970 0 110.9 54 18.85 213.4 82
## 2971 22 124.5 94 21.17 231.7 90
## 2972 0 233.5 81 39.70 187.7 71
## 2973 35 197.3 134 33.54 141.1 99
## 2974 0 58.2 96 9.89 202.1 126
## 2975 0 212.7 72 36.16 225.2 90
## 2976 0 151.5 89 25.76 131.7 78
## 2977 0 146.3 117 24.87 218.7 93
## 2978 0 195.1 100 33.17 148.8 95
## 2979 0 208.9 71 35.51 214.8 92
## 2980 0 135.7 107 23.07 208.4 103
## 2981 0 225.9 86 38.40 275.6 105
## 2982 0 122.2 67 20.77 167.2 62
## 2983 0 153.3 106 26.06 224.5 117
## 2984 0 214.0 117 36.38 192.4 89
## 2985 0 194.8 112 33.12 167.2 85
## 2986 0 206.7 87 35.14 281.1 83
## 2987 12 188.0 105 31.96 151.3 107
## 2988 0 122.3 83 20.79 118.8 94
## 2989 0 259.3 96 44.08 175.2 97
## 2990 0 115.1 114 19.57 211.3 70
## 2991 28 172.9 109 29.39 137.6 94
## 2992 0 156.4 116 26.59 130.4 114
## 2993 24 128.1 104 21.78 143.4 127
## 2994 0 196.6 73 33.42 170.2 79
## 2995 0 227.9 130 38.74 302.6 71
## 2996 31 194.9 63 33.13 191.6 90
## 2997 34 44.9 63 7.63 134.2 82
## 2998 30 262.8 114 44.68 215.8 130
## 2999 0 211.2 70 35.90 252.7 122
## 3000 0 204.0 69 34.68 225.1 110
## 3001 0 223.2 109 37.94 127.5 86
## 3002 0 119.0 82 20.23 187.5 108
## 3003 0 266.1 91 45.24 225.2 79
## 3004 0 134.4 104 22.85 152.4 95
## 3005 0 171.1 78 29.09 257.2 83
## 3006 0 170.5 103 28.99 254.3 77
## 3007 0 178.5 124 30.35 146.9 141
## 3008 0 205.2 145 34.88 154.8 95
## 3009 31 232.8 97 39.58 183.5 111
## 3010 39 239.9 107 40.78 253.8 77
## 3011 0 55.6 97 9.45 288.7 83
## 3012 37 153.5 78 26.10 241.9 108
## 3013 0 109.8 100 18.67 189.6 104
## 3014 0 196.1 89 33.34 185.5 87
## 3015 0 166.8 127 28.36 143.5 121
## 3016 25 113.2 96 19.24 269.9 107
## 3017 0 203.0 92 34.51 150.9 125
## 3018 0 242.8 90 41.28 234.1 80
## 3019 0 156.5 102 26.61 140.2 134
## 3020 0 266.7 105 45.34 158.2 88
## 3021 23 182.0 80 30.94 216.1 85
## 3022 0 85.9 92 14.60 193.9 127
## 3023 33 146.6 87 24.92 114.8 59
## 3024 35 110.5 101 18.79 208.3 81
## 3025 0 118.6 89 20.16 199.6 97
## 3026 22 197.6 105 33.59 80.0 86
## 3027 32 210.3 116 35.75 192.2 83
## 3028 28 220.3 96 37.45 285.8 72
## 3029 0 150.0 98 25.50 232.4 101
## 3030 34 161.7 114 27.49 207.6 115
## 3031 0 191.4 116 32.54 167.4 99
## 3032 0 146.7 83 24.94 148.3 91
## 3033 0 109.4 103 18.60 101.3 111
## 3034 0 144.1 115 24.50 249.8 68
## 3035 42 248.9 93 42.31 170.8 108
## 3036 0 85.7 112 14.57 221.6 70
## 3037 0 214.8 112 36.52 209.7 104
## 3038 0 158.9 137 27.01 242.8 109
## 3039 28 110.0 94 18.70 141.5 76
## 3040 0 152.8 145 25.98 183.6 102
## 3041 0 145.6 103 24.75 197.1 137
## 3042 0 93.3 83 15.86 199.6 114
## 3043 0 216.8 134 36.86 187.8 106
## 3044 0 201.9 101 34.32 154.7 78
## 3045 0 146.4 81 24.89 225.1 80
## 3046 0 272.7 74 46.36 224.9 85
## 3047 0 18.9 92 3.21 258.4 81
## 3048 0 172.8 81 29.38 193.4 90
## 3049 0 190.2 119 32.33 157.1 70
## 3050 0 130.6 83 22.20 208.1 144
## 3051 0 158.4 92 26.93 188.0 117
## 3052 0 166.5 111 28.31 236.2 98
## 3053 0 129.3 103 21.98 202.8 89
## 3054 0 199.3 112 33.88 193.4 120
## 3055 0 185.1 126 31.47 233.0 98
## 3056 0 175.4 80 29.82 197.4 127
## 3057 0 263.4 123 44.78 151.9 74
## 3058 0 94.2 108 16.01 264.1 100
## 3059 0 189.4 83 32.20 219.0 89
## 3060 35 118.0 103 20.06 167.2 106
## 3061 0 212.1 98 36.06 189.4 89
## 3062 0 222.0 93 37.74 187.0 103
## 3063 31 222.8 98 37.88 180.5 105
## 3064 25 190.0 137 32.30 116.6 76
## 3065 0 271.8 129 46.21 237.2 128
## 3066 29 195.4 83 33.22 268.2 93
## 3067 0 199.6 93 33.93 214.3 99
## 3068 0 100.0 98 17.00 173.5 95
## 3069 21 160.6 85 27.30 223.1 79
## 3070 26 158.7 91 26.98 160.5 127
## 3071 0 154.5 122 26.27 214.2 71
## 3072 34 192.3 114 32.69 129.3 114
## 3073 0 305.1 106 51.87 188.0 115
## 3074 38 193.0 106 32.81 153.6 106
## 3075 0 72.5 88 12.33 204.0 112
## 3076 40 105.2 61 17.88 341.3 79
## 3077 0 180.5 88 30.69 134.7 102
## 3078 29 214.7 86 36.50 314.3 109
## 3079 0 86.8 95 14.76 108.1 85
## 3080 0 131.5 99 22.36 174.8 128
## 3081 0 135.4 102 23.02 237.1 122
## 3082 0 174.3 85 29.63 254.1 95
## 3083 0 203.9 63 34.66 191.8 93
## 3084 0 235.5 108 40.04 142.3 143
## 3085 0 157.0 113 26.69 256.9 97
## 3086 0 111.9 55 19.02 223.0 124
## 3087 0 236.3 91 40.17 152.8 130
## 3088 0 163.6 88 27.81 283.4 93
## 3089 29 213.6 127 36.31 175.9 82
## 3090 30 143.4 72 24.38 170.0 92
## 3091 0 78.3 119 13.31 198.2 94
## 3092 0 97.1 98 16.51 228.0 131
## 3093 0 94.1 93 16.00 147.6 80
## 3094 0 226.3 95 38.47 274.3 109
## 3095 0 133.8 61 22.75 158.8 96
## 3096 27 190.3 93 32.35 249.0 127
## 3097 36 294.9 106 50.13 165.7 115
## 3098 0 185.4 114 31.52 191.4 119
## 3099 0 179.5 121 30.52 191.9 131
## 3100 0 158.0 94 26.86 207.9 100
## 3101 0 173.0 131 29.41 190.4 108
## 3102 32 134.2 101 22.81 211.9 145
## 3103 32 125.2 123 21.28 230.9 101
## 3104 0 195.9 111 33.30 227.0 108
## 3105 13 214.2 61 36.41 181.2 88
## 3106 0 221.1 101 37.59 236.7 65
## 3107 26 132.0 100 22.44 173.3 121
## 3108 0 157.6 92 26.79 198.3 87
## 3109 30 110.3 71 18.75 182.4 108
## 3110 0 161.5 121 27.46 192.9 137
## 3111 28 171.8 116 29.21 240.7 125
## 3112 32 211.0 99 35.87 155.1 89
## 3113 0 139.3 89 23.68 192.3 95
## 3114 0 291.6 99 49.57 221.1 93
## 3115 0 139.0 110 23.63 132.9 93
## 3116 0 234.8 125 39.92 199.2 99
## 3117 0 187.6 83 31.89 201.4 81
## 3118 0 159.8 143 27.17 210.1 93
## 3119 33 177.1 100 30.11 194.0 85
## 3120 0 117.9 101 20.04 160.4 92
## 3121 21 247.6 95 42.09 256.3 150
## 3122 0 169.9 77 28.88 138.3 155
## 3123 0 185.0 120 31.45 203.7 129
## 3124 17 204.9 84 34.83 201.0 102
## 3125 24 225.5 119 38.34 182.0 108
## 3126 0 169.7 115 28.85 141.4 123
## 3127 0 239.3 102 40.68 223.4 127
## 3128 0 113.3 96 19.26 197.9 89
## 3129 0 161.9 100 27.52 230.1 138
## 3130 16 133.3 110 22.66 185.7 111
## 3131 25 170.7 88 29.02 109.9 113
## 3132 0 189.7 76 32.25 156.1 65
## 3133 0 322.3 100 54.79 230.4 135
## 3134 0 124.4 74 21.15 320.9 78
## 3135 0 146.9 94 24.97 114.3 111
## 3136 0 192.6 123 32.74 206.4 105
## 3137 36 96.3 83 16.37 179.6 91
## 3138 0 131.9 96 22.42 167.6 107
## 3139 0 147.2 121 25.02 175.2 87
## 3140 0 143.1 139 24.33 239.6 88
## 3141 0 280.4 127 47.67 179.4 79
## 3142 31 237.2 85 40.32 213.1 100
## 3143 0 184.2 95 31.31 181.6 101
## 3144 0 109.1 141 18.55 187.1 140
## 3145 0 138.1 115 23.48 158.2 82
## 3146 0 186.8 94 31.76 207.6 92
## 3147 0 155.4 112 26.42 290.9 92
## 3148 0 245.3 91 41.70 122.9 130
## 3149 0 205.9 97 35.00 277.4 117
## 3150 0 207.2 138 35.22 214.1 83
## 3151 14 151.5 100 25.76 248.7 126
## 3152 0 221.9 112 37.72 278.2 122
## 3153 0 190.0 100 32.30 246.6 78
## 3154 0 220.8 111 37.54 156.2 67
## 3155 47 173.7 117 29.53 204.0 114
## 3156 0 114.8 94 19.52 150.0 104
## 3157 0 113.8 97 19.35 192.3 97
## 3158 0 143.2 60 24.34 179.5 159
## 3159 0 184.4 111 31.35 203.8 110
## 3160 0 227.4 67 38.66 248.0 115
## 3161 0 224.0 99 38.08 210.7 80
## 3162 0 216.2 95 36.75 185.7 105
## 3163 0 129.9 121 22.08 230.1 105
## 3164 30 230.1 108 39.12 287.6 76
## 3165 0 204.4 97 34.75 273.2 128
## 3166 44 216.6 101 36.82 173.1 98
## 3167 0 247.5 85 42.08 225.4 93
## 3168 0 228.1 93 38.78 136.4 106
## 3169 0 225.9 110 38.40 299.1 86
## 3170 0 103.5 115 17.60 117.9 102
## 3171 0 115.5 70 19.64 252.2 143
## 3172 0 218.8 125 37.20 148.3 102
## 3173 0 223.8 67 38.05 244.8 74
## 3174 0 143.8 71 24.45 184.0 131
## 3175 43 29.9 123 5.08 129.1 117
## 3176 28 276.7 121 47.04 203.7 99
## 3177 0 141.4 128 24.04 146.4 70
## 3178 41 153.9 102 26.16 140.7 117
## 3179 0 190.5 128 32.39 205.5 103
## 3180 0 192.6 102 32.74 178.9 118
## 3181 0 151.8 115 25.81 103.6 116
## 3182 0 215.6 74 36.65 192.9 98
## 3183 0 180.0 100 30.60 229.0 103
## 3184 0 157.3 116 26.74 197.5 77
## 3185 0 196.5 88 33.41 158.6 129
## 3186 0 240.3 130 40.85 162.5 83
## 3187 0 193.3 126 32.86 154.7 85
## 3188 39 211.9 40 36.02 274.4 76
## 3189 0 218.7 111 37.18 155.6 133
## 3190 0 246.8 110 41.96 206.3 63
## 3191 0 174.7 151 29.70 148.0 56
## 3192 0 240.0 83 40.80 134.1 106
## 3193 37 181.2 76 30.80 177.6 98
## 3194 0 113.7 67 19.33 165.1 127
## 3195 41 174.7 86 29.70 160.6 93
## 3196 29 211.1 89 35.89 223.5 97
## 3197 0 169.3 108 28.78 178.6 91
## 3198 0 247.4 107 42.06 175.9 76
## 3199 32 131.2 63 22.30 227.4 125
## 3200 0 161.4 84 27.44 163.6 88
## 3201 0 107.2 98 18.22 86.8 122
## 3202 32 211.9 120 36.02 202.9 136
## 3203 0 160.4 120 27.27 285.9 104
## 3204 40 230.7 101 39.22 256.8 88
## 3205 0 232.6 96 39.54 253.4 117
## 3206 0 294.7 90 50.10 294.6 72
## 3207 0 133.4 107 22.68 223.9 117
## 3208 22 306.2 123 52.05 189.7 83
## 3209 0 236.8 135 40.26 186.4 87
## 3210 24 125.7 92 21.37 275.9 98
## 3211 0 168.4 114 28.63 276.0 127
## 3212 0 70.9 134 12.05 134.5 112
## 3213 38 105.0 86 17.85 121.8 123
## 3214 0 152.1 141 25.86 215.5 107
## 3215 0 180.9 79 30.75 194.9 83
## 3216 31 156.6 84 26.62 161.5 96
## 3217 24 180.5 85 30.69 224.1 92
## 3218 30 238.8 100 40.60 230.0 121
## 3219 18 182.1 66 30.96 213.6 65
## 3220 35 139.6 72 23.73 332.8 170
## 3221 12 200.3 76 34.05 253.6 105
## 3222 0 153.5 94 26.10 251.7 118
## 3223 29 128.2 119 21.79 171.7 83
## 3224 0 159.5 145 27.12 202.3 101
## 3225 0 226.4 101 38.49 276.8 60
## 3226 0 251.9 81 42.82 194.6 96
## 3227 0 264.5 117 44.97 194.0 111
## 3228 0 153.7 105 26.13 188.6 87
## 3229 0 232.1 81 39.46 210.8 101
## 3230 0 201.9 86 34.32 212.3 96
## 3231 0 186.9 79 31.77 182.6 105
## 3232 27 196.6 89 33.42 180.6 95
## 3233 0 232.1 102 39.46 168.2 110
## 3234 0 166.0 79 28.22 74.6 100
## 3235 28 200.6 96 34.10 164.1 111
## 3236 25 141.0 101 23.97 212.0 85
## 3237 34 245.0 95 41.65 216.9 66
## 3238 0 140.8 140 23.94 228.6 119
## 3239 0 255.1 93 43.37 266.9 97
## 3240 33 125.0 99 21.25 235.3 81
## 3241 0 180.6 65 30.70 280.4 99
## 3242 0 248.7 118 42.28 172.3 73
## 3243 30 178.1 111 30.28 236.7 109
## 3244 0 122.2 112 20.77 131.7 94
## 3245 0 231.3 87 39.32 224.7 88
## 3246 0 111.2 101 18.90 122.1 94
## 3247 44 103.2 117 17.54 236.3 86
## 3248 0 138.4 104 23.53 158.9 122
## 3249 0 146.3 85 24.87 216.6 95
## 3250 0 206.3 66 35.07 241.1 109
## 3251 0 132.0 103 22.44 279.6 114
## 3252 0 274.6 105 46.68 161.1 121
## 3253 0 185.3 87 31.50 225.3 87
## 3254 24 154.8 69 26.32 177.2 105
## 3255 30 179.2 105 30.46 283.2 83
## 3256 0 286.2 61 48.65 187.2 60
## 3257 0 268.0 115 45.56 153.6 106
## 3258 0 137.5 110 23.38 198.1 109
## 3259 0 243.0 115 41.31 191.8 91
## 3260 0 134.9 79 22.93 221.5 114
## 3261 0 234.2 76 39.81 216.7 108
## 3262 0 175.1 73 29.77 171.9 116
## 3263 0 142.2 107 24.17 262.4 84
## 3264 0 132.4 81 22.51 200.3 110
## 3265 24 97.8 98 16.63 207.2 67
## 3266 0 266.9 83 45.37 229.7 74
## 3267 33 155.2 139 26.38 268.3 79
## 3268 0 200.2 92 34.03 244.9 107
## 3269 0 289.1 100 49.15 233.8 97
## 3270 0 198.4 121 33.73 249.5 104
## 3271 0 180.3 67 30.65 208.0 68
## 3272 0 86.3 84 14.67 238.7 99
## 3273 0 295.0 141 50.15 223.6 101
## 3274 0 240.9 108 40.95 167.4 91
## 3275 0 207.7 109 35.31 217.5 117
## 3276 27 128.5 115 21.85 163.7 91
## 3277 22 224.4 114 38.15 146.0 106
## 3278 0 164.9 115 28.03 126.5 96
## 3279 0 238.0 97 40.46 164.5 97
## 3280 43 231.0 85 39.27 222.3 82
## 3281 0 107.3 140 18.24 238.2 133
## 3282 0 185.0 122 31.45 182.5 92
## 3283 31 244.1 71 41.50 203.4 58
## 3284 0 238.4 96 40.53 246.5 130
## 3285 27 141.1 109 23.99 224.7 94
## 3286 0 158.1 117 26.88 115.2 149
## 3287 30 220.1 105 37.42 222.2 109
## 3288 42 199.5 119 33.92 135.0 90
## 3289 0 109.5 105 18.62 286.1 90
## 3290 0 187.2 110 31.82 114.7 116
## 3291 0 107.9 128 18.34 187.0 77
## 3292 22 172.1 119 29.26 223.6 133
## 3293 0 203.8 85 34.65 87.8 110
## 3294 0 160.0 133 27.20 215.3 98
## 3295 0 51.1 106 8.69 208.6 137
## 3296 0 227.7 88 38.71 170.0 96
## 3297 0 203.8 77 34.65 205.1 111
## 3298 33 241.7 84 41.09 165.8 84
## 3299 0 78.1 70 13.28 239.3 115
## 3300 0 187.8 95 31.93 149.2 143
## 3301 21 127.1 94 21.61 228.3 116
## 3302 0 280.0 113 47.60 202.2 90
## 3303 0 153.2 78 26.04 210.8 99
## 3304 26 137.1 88 23.31 155.7 125
## 3305 0 186.1 114 31.64 198.6 140
## 3306 22 224.1 127 38.10 238.8 85
## 3307 29 83.6 131 14.21 203.9 131
## 3308 0 203.9 109 34.66 234.0 123
## 3309 0 211.3 87 35.92 165.7 97
## 3310 0 219.4 112 37.30 225.7 102
## 3311 0 190.4 91 32.37 92.0 107
## 3312 0 147.7 94 25.11 283.3 83
## 3313 0 229.9 130 39.08 144.4 93
## 3314 0 102.8 128 17.48 143.7 95
## 3315 0 178.7 81 30.38 233.7 74
## 3316 18 148.5 106 25.25 114.5 106
## 3317 29 164.1 111 27.90 219.1 96
## 3318 0 197.2 90 33.52 188.5 113
## 3319 0 124.9 131 21.23 300.5 118
## 3320 0 115.4 99 19.62 209.9 115
## 3321 0 140.0 101 23.80 196.4 77
## 3322 0 193.9 118 32.96 85.0 110
## 3323 0 321.1 105 54.59 265.5 122
## 3324 0 118.4 126 20.13 249.3 97
## 3325 0 169.8 114 28.87 197.7 105
## 3326 0 193.4 99 32.88 116.9 88
## 3327 0 106.6 128 18.12 284.8 87
## 3328 0 134.7 98 22.90 189.7 68
## 3329 36 156.2 77 26.55 215.5 126
## 3330 0 231.1 57 39.29 153.4 55
## 3331 0 180.8 109 30.74 288.8 58
## 3332 0 213.8 105 36.35 159.6 84
## 3333 25 234.4 113 39.85 265.9 82
## Eve.Charge Night.Mins Night.Calls Night.Charge Intl.Mins Intl.Calls
## 1 16.78 244.7 91 11.01 10.0 3
## 2 16.62 254.4 103 11.45 13.7 3
## 3 10.30 162.6 104 7.32 12.2 5
## 4 5.26 196.9 89 8.86 6.6 7
## 5 12.61 186.9 121 8.41 10.1 3
## 6 18.75 203.9 118 9.18 6.3 6
## 7 29.62 212.6 118 9.57 7.5 7
## 8 8.76 211.8 96 9.53 7.1 6
## 9 29.89 215.8 90 9.71 8.7 4
## 10 18.87 326.4 97 14.69 11.2 5
## 11 19.42 208.8 111 9.40 12.7 6
## 12 13.89 196.0 94 8.82 9.1 5
## 13 8.92 141.1 128 6.35 11.2 2
## 14 21.05 192.3 115 8.65 12.3 5
## 15 26.11 203.0 99 9.14 13.1 6
## 16 27.01 160.6 128 7.23 5.4 9
## 17 23.88 89.3 75 4.02 13.8 4
## 18 18.55 129.6 121 5.83 8.1 3
## 19 18.09 165.7 108 7.46 10.0 5
## 20 13.56 192.8 74 8.68 13.0 2
## 21 20.37 208.8 133 9.40 10.6 4
## 22 14.44 209.6 64 9.43 5.7 6
## 23 6.20 181.8 78 8.18 9.5 19
## 24 11.67 189.6 105 8.53 7.7 6
## 25 20.84 237.0 115 10.67 10.3 2
## 26 23.55 250.7 115 11.28 15.5 5
## 27 16.24 182.7 115 8.22 9.5 3
## 28 13.22 102.1 68 4.59 14.7 4
## 29 21.95 181.5 102 8.17 6.3 6
## 30 18.28 178.7 90 8.04 11.1 1
## 31 11.62 250.5 148 11.27 14.2 6
## 32 17.13 246.2 98 11.08 10.3 5
## 33 2.65 293.3 78 13.20 12.6 10
## 34 21.45 280.2 90 12.61 11.8 3
## 35 16.58 213.5 116 9.61 8.3 4
## 36 18.47 152.8 71 6.88 14.7 6
## 37 13.81 129.3 109 5.82 14.5 6
## 38 19.01 227.8 108 10.25 10.0 5
## 39 15.95 101.7 107 4.58 10.5 6
## 40 23.10 188.3 108 8.47 11.1 9
## 41 14.18 187.8 135 8.45 9.4 2
## 42 17.33 122.2 78 5.50 14.6 15
## 43 23.99 311.5 78 14.02 10.0 4
## 44 14.05 178.5 92 8.03 9.2 4
## 45 19.19 265.3 86 11.94 3.5 3
## 46 18.11 163.1 116 7.34 8.5 5
## 47 13.82 134.7 118 6.06 13.2 5
## 48 11.44 242.2 127 10.90 7.4 5
## 49 19.66 143.2 91 6.44 8.8 3
## 50 18.46 70.6 79 3.18 11.0 3
## 51 22.93 236.8 87 10.66 7.8 5
## 52 17.94 249.0 129 11.21 6.8 3
## 53 16.17 282.8 57 12.73 11.4 6
## 54 22.74 228.5 68 10.28 9.3 5
## 55 18.67 203.9 127 9.18 9.7 3
## 56 21.19 270.2 98 12.16 10.2 3
## 57 15.30 140.8 128 6.34 8.0 2
## 58 6.40 181.2 77 8.15 5.8 3
## 59 20.95 129.8 103 5.84 12.1 3
## 60 15.08 189.3 95 8.52 12.0 8
## 61 14.44 166.6 54 7.50 11.4 4
## 62 15.15 166.3 106 7.48 11.6 3
## 63 20.92 138.0 92 6.21 14.6 3
## 64 15.96 265.5 53 11.95 12.6 3
## 65 13.85 159.0 106 7.15 8.2 6
## 66 14.41 214.1 102 9.63 6.2 5
## 67 18.09 157.8 67 7.10 9.3 4
## 68 17.54 129.3 139 5.82 8.3 8
## 69 18.44 153.5 60 6.91 7.8 1
## 70 14.37 148.6 100 6.69 13.8 3
## 71 14.49 295.3 104 13.29 11.8 7
## 72 16.00 254.6 61 11.46 12.1 2
## 73 12.66 172.5 109 7.76 8.0 4
## 74 19.27 152.4 105 6.86 7.3 4
## 75 13.36 188.2 99 8.47 12.0 3
## 76 18.98 181.4 111 8.16 6.1 2
## 77 15.39 270.1 73 12.15 11.7 4
## 78 6.55 173.0 99 7.79 8.2 7
## 79 13.97 177.5 113 7.99 8.2 3
## 80 13.19 228.6 76 10.29 15.0 2
## 81 25.80 224.0 119 10.08 13.2 2
## 82 17.41 278.5 109 12.53 12.6 5
## 83 11.57 175.7 90 7.91 11.0 2
## 84 22.07 222.7 68 10.02 9.8 4
## 85 21.18 191.4 88 8.61 12.4 1
## 86 19.20 323.0 78 14.54 8.6 7
## 87 13.18 189.6 84 8.53 8.0 5
## 88 17.72 182.4 98 8.21 12.0 2
## 89 10.49 202.1 57 9.09 10.9 9
## 90 21.05 208.9 68 9.40 13.9 4
## 91 16.57 109.6 94 4.93 11.1 2
## 92 16.23 196.0 119 8.82 8.9 4
## 93 14.71 253.2 62 11.39 7.9 9
## 94 15.16 263.9 105 11.88 9.5 7
## 95 16.20 127.7 91 5.75 10.6 7
## 96 6.89 163.2 137 7.34 9.8 5
## 97 18.13 174.1 72 7.83 13.0 4
## 98 17.62 190.9 113 8.59 8.7 3
## 99 17.80 167.2 96 7.52 5.3 5
## 100 17.48 275.2 109 12.38 9.8 7
## 101 21.44 160.2 92 7.21 4.4 8
## 102 16.07 129.1 102 5.81 14.6 5
## 103 10.12 180.0 100 8.10 10.5 6
## 104 15.61 245.3 102 11.04 12.5 9
## 105 14.76 248.6 75 11.19 11.3 2
## 106 15.91 190.0 115 8.55 11.8 4
## 107 17.19 187.2 113 8.42 9.0 6
## 108 13.98 217.0 86 9.76 9.8 3
## 109 11.14 219.4 142 9.87 10.1 1
## 110 12.57 241.4 108 10.86 9.6 7
## 111 26.96 119.2 86 5.36 8.3 8
## 112 18.98 222.8 91 10.03 12.6 2
## 113 16.23 227.7 113 10.25 12.1 4
## 114 17.51 247.8 114 11.15 13.3 7
## 115 14.42 211.4 88 9.51 9.4 3
## 116 21.67 138.3 126 6.22 20.0 6
## 117 12.95 57.5 122 2.59 14.2 3
## 118 18.69 170.0 115 7.65 9.4 4
## 119 13.39 177.6 118 7.99 10.0 3
## 120 18.26 143.3 81 6.45 8.7 5
## 121 19.32 200.1 116 9.00 13.1 7
## 122 12.05 142.2 123 6.40 7.2 3
## 123 15.60 220.8 103 9.94 9.8 4
## 124 11.25 112.9 89 5.08 11.6 3
## 125 9.37 227.4 117 10.23 9.2 5
## 126 19.50 252.5 106 11.36 12.0 3
## 127 13.39 154.8 82 6.97 9.1 3
## 128 12.46 225.7 129 10.16 6.4 6
## 129 16.46 175.0 86 7.88 9.2 4
## 130 13.74 264.7 102 11.91 9.5 4
## 131 18.50 146.9 123 6.61 10.9 2
## 132 13.45 256.7 80 11.55 6.1 5
## 133 19.58 261.4 120 11.76 9.5 3
## 134 17.10 206.1 60 9.27 7.1 1
## 135 17.22 206.4 80 9.29 9.1 10
## 136 14.73 247.2 130 11.12 11.2 3
## 137 18.49 237.5 134 10.69 5.3 4
## 138 17.86 195.6 129 8.80 12.0 3
## 139 10.78 263.3 71 11.85 11.2 8
## 140 12.92 158.6 59 7.14 10.2 5
## 141 23.49 193.6 112 8.71 12.4 3
## 142 18.73 253.8 116 11.42 10.5 4
## 143 16.62 109.7 139 4.94 6.8 5
## 144 16.62 200.5 96 9.02 11.7 4
## 145 15.09 249.4 132 11.22 14.1 7
## 146 13.61 110.4 98 4.97 14.3 6
## 147 17.30 203.4 110 9.15 13.7 3
## 148 18.39 121.1 105 5.45 11.7 4
## 149 18.56 161.6 103 7.27 8.5 5
## 150 13.78 286.9 86 12.91 11.1 4
## 151 18.82 172.3 67 7.75 10.6 6
## 152 17.57 299.0 105 13.46 10.1 7
## 153 13.40 227.3 86 10.23 7.5 6
## 154 21.12 140.5 142 6.32 6.9 11
## 155 12.41 269.5 87 12.13 11.5 4
## 156 24.83 265.9 101 11.97 9.8 4
## 157 19.33 153.9 114 6.93 15.8 7
## 158 21.00 259.2 112 11.66 13.7 2
## 159 21.82 178.6 79 8.04 10.2 2
## 160 15.59 164.8 114 7.42 9.6 4
## 161 14.64 137.5 101 6.19 7.1 5
## 162 20.53 253.5 103 11.41 12.0 6
## 163 20.52 229.5 105 10.33 10.5 5
## 164 11.51 236.6 82 10.65 12.2 1
## 165 12.63 167.2 91 7.52 6.1 3
## 166 18.17 228.7 104 10.29 12.1 2
## 167 13.88 264.8 126 11.92 7.5 3
## 168 20.67 261.3 90 11.76 10.9 3
## 169 16.43 105.9 73 4.77 12.8 4
## 170 15.93 154.0 53 6.93 6.3 2
## 171 19.00 97.4 79 4.38 13.2 2
## 172 14.42 164.7 86 7.41 10.6 5
## 173 17.98 268.9 86 12.10 10.5 4
## 174 15.21 182.4 150 8.21 14.1 2
## 175 12.70 244.7 104 11.01 6.1 5
## 176 14.37 170.9 106 7.69 11.1 7
## 177 16.18 195.2 115 8.78 12.2 3
## 178 19.50 195.2 113 8.78 11.5 3
## 179 16.50 208.0 112 9.36 16.2 10
## 180 24.85 201.2 112 9.05 0.0 0
## 181 18.23 282.2 103 12.70 9.5 5
## 182 11.79 136.8 91 6.16 11.9 1
## 183 20.20 169.9 103 7.65 9.9 12
## 184 21.62 214.0 127 9.63 14.6 7
## 185 20.83 134.4 121 6.05 8.4 3
## 186 22.82 241.2 92 10.85 10.8 13
## 187 5.47 198.5 103 8.93 10.2 4
## 188 19.50 77.3 121 3.48 10.9 3
## 189 13.87 187.1 112 8.42 9.0 3
## 190 15.93 231.2 107 10.40 9.1 3
## 191 15.34 112.2 115 5.05 8.9 4
## 192 7.71 238.0 69 10.71 9.5 2
## 193 16.58 208.2 119 9.37 8.8 4
## 194 17.27 150.0 131 6.75 13.4 2
## 195 14.16 119.1 88 5.36 9.5 4
## 196 15.05 180.5 92 8.12 6.8 6
## 197 15.49 261.5 126 11.77 9.7 8
## 198 14.99 181.7 102 8.18 10.7 6
## 199 16.97 255.3 127 11.49 13.8 7
## 200 15.05 245.7 89 11.06 13.0 3
## 201 18.74 249.9 96 11.25 13.1 5
## 202 27.90 245.0 131 11.03 11.2 1
## 203 15.64 240.5 110 10.82 6.4 8
## 204 15.18 217.0 83 9.76 6.8 3
## 205 21.89 198.1 93 8.91 9.4 4
## 206 17.83 190.4 117 8.57 12.1 2
## 207 7.13 179.8 84 8.09 13.7 8
## 208 15.87 223.3 90 10.05 10.8 5
## 209 12.91 260.1 124 11.70 12.2 5
## 210 20.97 226.1 89 10.17 15.8 7
## 211 13.23 188.2 109 8.47 11.6 10
## 212 21.05 194.3 94 8.74 11.9 11
## 213 20.78 122.4 68 5.51 10.7 3
## 214 9.61 246.9 121 11.11 12.2 6
## 215 19.39 73.2 93 3.29 17.6 4
## 216 15.18 225.2 131 10.13 11.5 6
## 217 15.84 172.5 120 7.76 10.9 3
## 218 19.06 265.4 91 11.94 4.7 7
## 219 22.70 151.0 114 6.80 13.0 2
## 220 9.36 188.7 107 8.49 7.1 12
## 221 12.97 212.2 99 9.55 12.2 6
## 222 14.83 244.9 68 11.02 10.2 6
## 223 23.20 220.2 104 9.91 4.4 2
## 224 20.59 174.3 104 7.84 8.9 6
## 225 14.30 236.0 113 10.62 13.8 1
## 226 19.93 250.1 123 11.25 2.7 4
## 227 20.80 221.5 136 9.97 7.7 2
## 228 16.12 76.5 139 3.44 9.6 3
## 229 18.74 136.9 102 6.16 13.3 3
## 230 26.62 163.3 108 7.35 11.9 3
## 231 11.00 217.6 74 9.79 10.5 2
## 232 24.76 197.6 92 8.89 11.0 6
## 233 18.45 180.9 122 8.14 13.5 2
## 234 18.73 154.3 113 6.94 10.9 2
## 235 20.43 233.2 117 10.49 9.0 5
## 236 17.96 193.6 125 8.71 10.2 2
## 237 10.10 234.9 98 10.57 9.0 9
## 238 17.07 192.2 101 8.65 9.8 7
## 239 10.28 226.6 110 10.20 10.7 9
## 240 14.33 139.8 87 6.29 9.4 6
## 241 7.51 195.3 79 8.79 12.9 5
## 242 11.40 223.1 81 10.04 12.3 2
## 243 15.50 275.8 103 12.41 8.4 2
## 244 15.04 194.3 110 8.74 7.1 2
## 245 22.76 354.9 75 15.97 9.4 3
## 246 14.15 202.3 96 9.10 9.5 5
## 247 8.69 261.8 106 11.78 11.1 3
## 248 12.72 283.4 66 12.75 10.2 5
## 249 17.20 245.9 97 11.07 9.2 2
## 250 23.63 228.4 112 10.28 11.8 4
## 251 10.02 279.2 79 12.56 13.9 11
## 252 14.62 191.8 143 8.63 14.4 7
## 253 19.80 172.4 108 7.76 9.1 8
## 254 19.55 236.9 58 10.66 9.5 3
## 255 23.21 178.3 81 8.02 10.9 3
## 256 18.40 173.1 86 7.79 14.1 8
## 257 14.65 231.6 92 10.42 9.8 3
## 258 21.24 193.4 95 8.70 14.5 8
## 259 15.35 221.7 80 9.98 10.4 2
## 260 20.00 169.4 80 7.62 8.7 4
## 261 17.79 231.2 55 10.40 6.7 9
## 262 12.16 223.9 61 10.08 15.4 1
## 263 17.96 185.2 96 8.33 11.5 3
## 264 18.80 241.0 136 10.85 12.5 1
## 265 16.54 146.5 85 6.59 8.3 6
## 266 22.10 291.6 83 13.12 11.4 6
## 267 16.41 232.4 100 10.46 8.4 9
## 268 14.49 263.9 98 11.88 13.5 6
## 269 11.58 147.4 89 6.63 4.5 4
## 270 14.91 184.8 99 8.32 9.9 3
## 271 19.12 249.9 100 11.25 14.6 3
## 272 15.30 200.9 104 9.04 7.7 3
## 273 19.99 206.2 107 9.28 8.0 13
## 274 19.92 203.2 101 9.14 13.0 3
## 275 16.56 239.2 114 10.76 10.0 3
## 276 19.70 122.5 100 5.51 9.8 5
## 277 17.68 203.3 99 9.15 11.1 4
## 278 10.49 214.2 106 9.64 6.5 2
## 279 19.20 254.2 59 11.44 10.9 6
## 280 18.62 222.7 114 10.02 10.5 6
## 281 14.79 188.2 119 8.47 13.0 4
## 282 17.93 193.3 71 8.70 10.4 6
## 283 13.59 144.1 80 6.48 12.2 1
## 284 24.51 240.3 105 10.81 9.0 2
## 285 15.43 281.4 56 12.66 6.7 5
## 286 14.93 252.1 102 11.34 15.6 3
## 287 10.88 194.5 84 8.75 8.8 5
## 288 17.79 289.9 84 13.05 14.5 4
## 289 11.25 255.2 98 11.48 14.1 5
## 290 22.18 312.1 89 14.04 5.3 3
## 291 18.65 299.3 94 13.47 8.0 2
## 292 10.97 125.1 124 5.63 9.7 3
## 293 16.49 146.7 108 6.60 5.9 4
## 294 10.21 216.1 86 9.72 10.3 5
## 295 11.34 259.5 70 11.68 9.8 3
## 296 15.29 216.8 109 9.76 9.5 5
## 297 21.05 142.4 85 6.41 10.1 5
## 298 15.67 240.4 99 10.82 11.9 1
## 299 18.59 207.1 91 9.32 6.6 9
## 300 16.99 287.7 114 12.95 6.6 5
## 301 9.38 195.4 111 8.79 11.9 4
## 302 22.51 207.2 119 9.32 5.9 2
## 303 29.79 297.0 87 13.37 11.2 3
## 304 24.86 241.1 89 10.85 9.1 4
## 305 21.56 214.1 90 9.63 10.3 10
## 306 21.21 173.1 70 7.79 9.1 5
## 307 22.82 213.8 105 9.62 8.5 10
## 308 18.26 133.9 107 6.03 11.4 3
## 309 16.18 183.4 107 8.25 11.4 2
## 310 21.96 183.5 74 8.26 8.9 4
## 311 18.70 265.7 78 11.96 13.2 2
## 312 16.65 183.5 82 8.26 9.7 6
## 313 14.41 220.1 64 9.90 10.9 3
## 314 23.83 205.0 77 9.23 9.8 4
## 315 17.46 254.4 111 11.45 18.9 2
## 316 26.03 123.9 46 5.58 12.4 3
## 317 22.98 160.5 76 7.22 7.7 4
## 318 21.83 147.6 76 6.64 7.6 3
## 319 18.01 273.0 102 12.29 5.0 5
## 320 16.05 154.9 101 6.97 9.4 2
## 321 22.03 287.4 78 12.93 6.2 3
## 322 15.11 232.4 89 10.46 12.9 3
## 323 21.84 234.9 74 10.57 10.0 3
## 324 20.96 251.6 91 11.32 11.3 4
## 325 13.17 245.1 112 11.03 13.4 5
## 326 18.66 152.3 118 6.85 7.1 3
## 327 17.78 197.4 42 8.88 11.4 4
## 328 20.02 156.3 95 7.03 9.5 4
## 329 18.45 188.4 96 8.48 12.5 3
## 330 20.45 79.7 108 3.59 14.4 12
## 331 26.60 130.2 94 5.86 7.9 2
## 332 21.14 197.4 111 8.88 9.5 2
## 333 16.75 138.4 152 6.23 12.2 5
## 334 22.45 206.3 78 9.28 9.3 4
## 335 12.99 233.2 101 10.49 7.5 4
## 336 11.77 169.1 44 7.61 8.6 4
## 337 23.08 170.2 104 7.66 10.6 2
## 338 15.01 302.8 136 13.63 7.0 7
## 339 22.65 212.7 104 9.57 7.6 3
## 340 16.93 175.5 102 7.90 14.6 2
## 341 15.01 262.6 126 11.82 9.1 1
## 342 21.75 275.0 145 12.38 10.8 11
## 343 13.74 227.7 62 10.25 14.0 7
## 344 14.97 244.8 84 11.02 0.0 0
## 345 7.09 165.9 99 7.47 13.3 3
## 346 15.23 135.0 119 6.08 7.2 8
## 347 10.46 261.3 101 11.76 12.2 5
## 348 13.19 186.7 89 8.40 10.5 11
## 349 13.80 127.6 105 5.74 13.1 5
## 350 8.98 243.1 74 10.94 12.8 3
## 351 17.40 229.9 100 10.35 11.3 8
## 352 19.92 237.3 85 10.68 10.1 4
## 353 15.06 96.4 87 4.34 5.3 3
## 354 17.43 204.0 82 9.18 14.7 9
## 355 18.58 194.1 97 8.73 13.2 2
## 356 6.74 213.7 98 9.62 12.7 2
## 357 16.05 206.0 114 9.27 11.3 4
## 358 19.32 122.4 96 5.51 8.5 2
## 359 17.94 114.3 90 5.14 9.2 4
## 360 22.50 178.4 97 8.03 5.8 4
## 361 26.54 183.0 82 8.24 8.8 6
## 362 15.27 253.0 99 11.39 11.3 6
## 363 19.75 222.1 131 9.99 12.0 5
## 364 8.77 309.6 136 13.93 11.3 3
## 365 18.16 192.1 81 8.64 10.9 2
## 366 18.40 253.9 100 11.43 10.1 9
## 367 22.45 128.6 115 5.79 9.1 3
## 368 21.54 255.0 100 11.48 18.0 3
## 369 19.74 146.7 114 6.60 7.6 5
## 370 22.76 164.9 76 7.42 16.0 2
## 371 19.13 204.4 82 9.20 10.3 6
## 372 18.94 225.3 91 10.14 10.6 6
## 373 9.72 269.2 95 12.11 12.4 1
## 374 19.54 167.3 108 7.53 14.8 2
## 375 17.91 276.9 58 12.46 9.2 6
## 376 15.30 134.5 82 6.05 10.6 5
## 377 10.05 187.9 111 8.46 11.2 7
## 378 18.23 226.1 106 10.17 6.7 18
## 379 24.33 198.9 89 8.95 11.5 2
## 380 13.66 233.1 96 10.49 6.8 4
## 381 16.24 218.6 50 9.84 14.7 2
## 382 13.21 240.0 112 10.80 14.7 4
## 383 12.33 249.5 92 11.23 5.7 4
## 384 27.43 225.6 120 10.15 3.7 5
## 385 21.00 187.9 82 8.46 7.2 4
## 386 18.73 204.7 111 9.21 10.7 7
## 387 23.29 321.3 98 14.46 8.9 1
## 388 17.38 127.8 53 5.75 8.5 5
## 389 22.97 148.2 105 6.67 10.7 3
## 390 20.27 285.1 100 12.83 10.2 6
## 391 20.72 214.7 102 9.66 11.1 2
## 392 21.95 213.1 77 9.59 8.7 3
## 393 14.98 232.8 115 10.48 12.4 5
## 394 17.44 185.7 91 8.36 9.4 3
## 395 17.48 166.2 91 7.48 10.8 2
## 396 7.94 107.6 42 4.84 9.7 5
## 397 16.92 204.1 137 9.18 7.8 4
## 398 23.74 234.2 121 10.54 2.0 2
## 399 11.11 186.5 118 8.39 8.5 4
## 400 19.55 191.7 118 8.63 10.6 5
## 401 18.61 226.7 110 10.20 12.0 1
## 402 9.42 240.1 112 10.80 10.6 3
## 403 16.34 165.1 96 7.43 9.9 2
## 404 13.87 160.6 112 7.23 11.2 6
## 405 20.57 201.4 100 9.06 7.5 3
## 406 13.68 198.6 73 8.94 9.3 5
## 407 9.32 247.4 108 11.13 6.8 7
## 408 15.72 197.2 59 8.87 8.5 5
## 409 21.36 135.0 88 6.08 10.3 3
## 410 16.75 167.0 108 7.52 4.8 4
## 411 12.00 203.0 99 9.14 8.4 5
## 412 15.83 189.0 92 8.50 10.4 6
## 413 20.60 168.8 72 7.60 5.4 1
## 414 16.96 188.3 122 8.47 7.0 5
## 415 10.54 219.4 92 9.87 10.0 3
## 416 24.05 238.4 88 10.73 8.7 3
## 417 13.60 212.4 102 9.56 5.0 2
## 418 14.86 209.5 93 9.43 9.8 2
## 419 16.56 239.3 81 10.77 16.0 6
## 420 27.80 212.5 106 9.56 7.5 6
## 421 22.47 171.8 124 7.73 9.3 11
## 422 14.98 77.2 112 3.47 15.3 1
## 423 24.06 197.3 83 8.88 12.5 3
## 424 11.93 263.6 102 11.86 10.3 2
## 425 11.07 200.0 108 9.00 11.3 3
## 426 15.77 205.2 130 9.23 10.9 4
## 427 9.64 180.2 97 8.11 12.5 7
## 428 18.39 217.4 128 9.78 9.6 9
## 429 16.73 209.3 128 9.42 11.2 5
## 430 23.23 214.4 153 9.65 12.4 7
## 431 22.15 195.0 104 8.78 13.3 2
## 432 24.02 181.0 98 8.15 11.4 4
## 433 15.48 259.2 94 11.66 12.8 2
## 434 14.90 155.6 125 7.00 11.8 5
## 435 17.32 203.2 49 9.14 8.6 3
## 436 10.11 164.2 108 7.39 11.2 3
## 437 25.61 214.6 134 9.66 8.0 3
## 438 15.02 219.5 126 9.88 8.3 4
## 439 28.10 189.4 123 8.52 13.5 3
## 440 16.80 198.5 86 8.93 6.3 2
## 441 13.09 245.8 112 11.06 12.3 6
## 442 22.58 145.7 67 6.56 12.4 4
## 443 18.80 131.6 103 5.92 6.8 3
## 444 15.96 154.5 109 6.95 12.6 5
## 445 16.66 349.2 110 15.71 9.6 7
## 446 21.86 208.3 86 9.37 11.1 6
## 447 20.06 179.1 110 8.06 9.6 4
## 448 11.42 192.9 122 8.68 6.9 5
## 449 17.09 107.9 82 4.86 12.2 3
## 450 17.24 173.4 92 7.80 6.3 3
## 451 23.05 202.2 76 9.10 12.5 5
## 452 20.94 245.7 81 11.06 9.8 2
## 453 20.85 260.0 94 11.70 8.3 3
## 454 23.29 190.7 76 8.58 14.3 9
## 455 23.28 222.7 101 10.02 11.1 1
## 456 20.86 160.5 115 7.22 14.8 2
## 457 15.34 223.6 69 10.06 9.3 2
## 458 22.44 115.7 70 5.21 9.7 7
## 459 18.71 180.3 80 8.11 6.0 3
## 460 10.23 153.7 86 6.92 11.0 3
## 461 18.75 136.6 91 6.15 9.6 5
## 462 19.41 299.7 90 13.49 9.6 9
## 463 9.19 208.4 111 9.38 10.1 5
## 464 16.60 280.5 89 12.62 5.9 2
## 465 18.72 272.4 111 12.26 8.5 5
## 466 14.26 182.1 111 8.19 13.6 3
## 467 15.44 258.8 102 11.65 10.5 5
## 468 17.02 258.3 100 11.62 11.6 4
## 469 14.17 244.9 105 11.02 11.1 5
## 470 21.67 160.2 115 7.21 17.2 9
## 471 13.99 240.7 106 10.83 10.6 2
## 472 21.14 176.0 83 7.92 9.5 6
## 473 11.59 181.7 53 8.18 6.3 3
## 474 26.81 163.3 117 7.35 6.2 4
## 475 19.98 162.8 132 7.33 14.8 12
## 476 12.45 289.2 83 13.01 9.9 6
## 477 13.72 225.1 110 10.13 11.7 5
## 478 13.81 220.3 115 9.91 7.6 2
## 479 13.97 294.7 124 13.26 8.1 2
## 480 13.44 271.5 92 12.22 11.2 4
## 481 21.57 112.3 94 5.05 11.6 6
## 482 15.93 255.4 93 11.49 5.3 3
## 483 14.76 257.4 97 11.58 8.1 4
## 484 21.77 212.7 92 9.57 13.3 13
## 485 19.68 223.5 75 10.06 11.0 2
## 486 11.20 132.7 87 5.97 6.7 2
## 487 18.84 146.9 106 6.61 12.8 3
## 488 24.87 244.3 105 10.99 10.5 2
## 489 17.83 228.4 126 10.28 0.0 0
## 490 19.59 186.3 76 8.38 12.3 4
## 491 21.45 280.2 120 12.61 12.8 7
## 492 21.77 203.7 101 9.17 14.3 6
## 493 22.15 244.2 98 10.99 9.4 2
## 494 23.69 263.4 175 11.85 5.9 2
## 495 9.74 250.6 120 11.28 8.2 4
## 496 15.33 179.6 115 8.08 11.1 9
## 497 15.18 126.8 82 5.71 8.0 4
## 498 24.43 180.5 118 8.12 11.9 3
## 499 8.98 175.9 63 7.92 9.7 4
## 500 20.77 75.8 95 3.41 7.5 2
## 501 16.18 240.4 111 10.82 12.6 7
## 502 19.13 251.9 121 11.34 7.5 5
## 503 17.63 221.7 110 9.98 17.5 5
## 504 12.37 280.7 76 12.63 9.3 3
## 505 13.17 263.6 82 11.86 12.4 12
## 506 10.70 261.9 76 11.79 11.1 5
## 507 20.11 227.8 120 10.25 11.4 5
## 508 28.03 288.0 117 12.96 5.6 2
## 509 18.87 234.9 138 10.57 11.6 5
## 510 16.96 169.7 98 7.64 9.6 5
## 511 17.25 205.1 129 9.23 12.3 3
## 512 23.74 146.2 87 6.58 14.8 8
## 513 17.41 240.8 90 10.84 9.1 8
## 514 18.17 227.2 104 10.22 6.6 3
## 515 18.34 108.1 82 4.86 14.0 12
## 516 16.47 144.9 84 6.52 17.5 5
## 517 26.11 182.5 120 8.21 7.6 1
## 518 13.48 123.4 114 5.55 9.4 4
## 519 19.10 169.5 99 7.63 12.9 3
## 520 13.07 113.5 92 5.11 9.0 3
## 521 13.13 130.9 90 5.89 11.6 2
## 522 13.72 239.6 76 10.78 8.2 3
## 523 19.48 190.5 123 8.57 9.2 5
## 524 12.86 152.9 94 6.88 9.8 6
## 525 14.59 67.7 136 3.05 13.0 6
## 526 14.26 163.1 107 7.34 10.5 8
## 527 15.51 191.7 134 8.63 12.5 3
## 528 11.34 264.2 91 11.89 11.9 7
## 529 13.37 199.3 72 8.97 8.6 4
## 530 28.65 205.2 99 9.23 12.1 9
## 531 17.26 232.0 87 10.44 7.8 4
## 532 18.62 233.4 66 10.50 6.7 3
## 533 21.51 207.7 73 9.35 10.7 5
## 534 3.59 125.7 104 5.66 5.4 3
## 535 5.65 246.5 99 11.09 9.2 10
## 536 23.89 218.5 87 9.83 18.2 1
## 537 12.38 196.8 93 8.86 14.0 6
## 538 15.56 121.0 102 5.44 8.5 3
## 539 16.22 224.7 123 10.11 12.4 8
## 540 18.41 217.5 92 9.79 9.9 3
## 541 14.28 113.5 84 5.11 7.8 2
## 542 13.43 141.9 113 6.39 6.6 1
## 543 21.54 265.2 80 11.93 14.2 3
## 544 18.40 191.6 94 8.62 3.5 6
## 545 20.66 76.4 92 3.44 12.2 8
## 546 21.16 268.0 115 12.06 11.9 3
## 547 21.14 171.0 118 7.69 8.4 10
## 548 17.07 133.7 67 6.02 10.3 9
## 549 20.94 255.0 131 11.48 5.9 3
## 550 17.48 196.7 85 8.85 10.1 5
## 551 15.56 158.8 104 7.15 7.9 3
## 552 17.06 116.6 118 5.25 11.5 2
## 553 21.93 192.4 90 8.66 10.2 4
## 554 16.65 108.0 100 4.86 10.1 6
## 555 22.02 149.5 107 6.73 12.7 6
## 556 10.19 175.5 75 7.90 13.1 2
## 557 25.82 226.9 120 10.21 12.0 4
## 558 18.16 236.6 92 10.65 9.5 2
## 559 21.34 257.6 123 11.59 8.3 5
## 560 11.62 308.2 119 13.87 7.7 6
## 561 20.15 245.1 88 11.03 10.7 1
## 562 26.35 178.7 130 8.04 7.2 7
## 563 22.46 172.7 102 7.77 9.1 5
## 564 8.36 230.8 83 10.39 10.9 5
## 565 21.88 231.5 119 10.42 8.0 1
## 566 16.07 123.0 102 5.54 4.7 4
## 567 23.07 248.7 97 11.19 11.3 5
## 568 16.00 147.1 98 6.62 3.6 7
## 569 13.65 143.9 87 6.48 10.0 6
## 570 22.52 168.9 108 7.60 15.4 4
## 571 16.74 187.2 119 8.42 10.3 2
## 572 15.07 296.3 90 13.33 14.5 3
## 573 23.38 138.7 108 6.24 10.8 3
## 574 21.12 167.1 124 7.52 9.0 1
## 575 23.50 279.8 77 12.59 9.9 5
## 576 17.03 183.5 105 8.26 14.2 2
## 577 19.28 217.5 80 9.79 13.7 6
## 578 15.30 140.0 119 6.30 11.7 4
## 579 19.52 144.1 124 6.48 7.7 3
## 580 28.48 187.2 119 8.42 16.5 4
## 581 29.52 246.0 116 11.07 7.4 2
## 582 15.57 150.8 90 6.79 10.2 3
## 583 13.21 168.9 117 7.60 10.7 8
## 584 16.41 311.6 93 14.02 10.3 2
## 585 24.91 183.9 79 8.28 9.8 6
## 586 14.00 200.7 108 9.03 10.2 5
## 587 17.32 215.8 154 9.71 8.4 4
## 588 5.01 179.3 124 8.07 7.4 8
## 589 22.11 170.1 93 7.65 13.5 11
## 590 18.62 122.6 102 5.52 8.6 2
## 591 25.49 158.6 110 7.14 11.3 4
## 592 17.65 183.1 103 8.24 12.9 2
## 593 7.94 207.2 107 9.32 9.6 1
## 594 21.60 169.3 92 7.62 9.5 5
## 595 13.76 269.7 104 12.14 12.5 6
## 596 12.95 250.1 109 11.25 0.0 0
## 597 11.11 193.4 98 8.70 9.6 4
## 598 8.72 235.3 106 10.59 9.1 5
## 599 14.27 167.6 101 7.54 12.3 5
## 600 17.08 246.8 126 11.11 9.2 6
## 601 20.91 170.5 140 7.67 9.1 4
## 602 16.79 121.6 105 5.47 13.9 6
## 603 14.09 143.9 71 6.48 4.6 4
## 604 22.57 244.3 128 10.99 11.6 6
## 605 19.14 169.7 93 7.64 11.4 7
## 606 18.06 265.0 132 11.93 12.7 8
## 607 24.59 129.4 97 5.82 13.1 8
## 608 10.09 240.1 91 10.80 6.6 8
## 609 21.13 208.8 124 9.40 10.6 5
## 610 22.23 163.2 116 7.34 8.7 3
## 611 12.80 269.2 129 12.11 11.6 7
## 612 13.11 299.0 60 13.46 12.7 3
## 613 19.84 195.7 141 8.81 7.7 6
## 614 18.50 190.5 100 8.57 13.2 6
## 615 18.86 189.1 100 8.51 7.3 1
## 616 17.02 233.1 96 10.49 8.0 5
## 617 23.33 298.9 130 13.45 8.8 7
## 618 24.73 194.8 140 8.77 14.0 6
## 619 13.14 142.8 97 6.43 11.6 6
## 620 16.02 266.9 91 12.01 14.5 4
## 621 16.48 268.4 121 12.08 12.8 4
## 622 12.22 157.0 106 7.07 11.5 3
## 623 12.49 121.0 131 5.44 10.6 3
## 624 12.44 264.6 83 11.91 7.1 1
## 625 18.75 249.2 78 11.21 5.1 2
## 626 19.27 144.6 72 6.51 13.8 4
## 627 15.75 205.1 82 9.23 4.1 2
## 628 13.66 249.4 80 11.22 7.4 2
## 629 18.50 152.1 76 6.84 6.5 5
## 630 19.27 210.7 134 9.48 13.7 4
## 631 14.53 225.1 93 10.13 13.9 4
## 632 19.55 193.6 95 8.71 9.5 2
## 633 24.64 180.0 114 8.10 4.8 4
## 634 7.62 220.0 91 9.90 15.6 4
## 635 19.09 306.3 102 13.78 10.8 6
## 636 16.49 256.5 94 11.54 10.2 7
## 637 16.77 169.0 116 7.61 9.2 15
## 638 10.84 237.4 118 10.68 7.5 3
## 639 12.55 259.3 117 11.67 12.9 1
## 640 11.39 210.6 113 9.48 11.4 2
## 641 14.75 206.2 95 9.28 7.9 4
## 642 16.87 208.5 102 9.38 9.8 3
## 643 17.89 180.6 92 8.13 11.0 13
## 644 22.53 239.8 128 10.79 15.6 7
## 645 18.64 215.9 95 9.72 14.0 4
## 646 15.12 158.4 146 7.13 8.5 4
## 647 19.37 170.3 103 7.66 15.4 9
## 648 10.85 155.6 125 7.00 7.5 5
## 649 8.61 104.8 94 4.72 9.1 4
## 650 17.90 256.7 83 11.55 6.0 3
## 651 21.86 103.1 111 4.64 11.5 4
## 652 17.42 179.7 93 8.09 9.5 6
## 653 10.86 199.2 120 8.96 9.2 1
## 654 8.79 208.1 109 9.36 8.5 3
## 655 16.62 180.1 93 8.10 10.5 5
## 656 16.50 231.5 86 10.42 9.4 10
## 657 13.75 289.5 55 13.03 9.3 4
## 658 8.74 142.4 89 6.41 9.3 2
## 659 11.17 186.6 86 8.40 9.9 7
## 660 13.98 134.9 63 6.07 8.3 2
## 661 25.93 197.4 86 8.88 9.5 9
## 662 12.92 225.5 93 10.15 12.0 4
## 663 20.20 259.2 58 11.66 12.3 2
## 664 11.06 78.1 100 3.51 7.4 4
## 665 14.17 240.6 84 10.83 7.8 4
## 666 19.39 262.7 141 11.82 9.2 4
## 667 12.77 151.8 96 6.83 9.6 1
## 668 10.11 135.9 124 6.12 9.2 3
## 669 16.04 206.9 124 9.31 12.3 1
## 670 16.06 205.1 90 9.23 15.5 4
## 671 19.75 212.8 98 9.58 16.3 4
## 672 18.83 103.9 89 4.68 11.9 6
## 673 12.27 160.2 88 7.21 11.8 5
## 674 21.15 211.3 79 9.51 11.2 3
## 675 19.10 204.6 77 9.21 7.5 15
## 676 11.00 264.8 104 11.92 5.9 3
## 677 9.90 152.2 91 6.85 10.6 4
## 678 20.06 118.3 120 5.32 9.4 4
## 679 15.40 178.5 105 8.03 8.9 4
## 680 27.80 208.0 104 9.36 8.7 9
## 681 16.13 205.8 83 9.26 13.1 2
## 682 13.46 256.1 82 11.52 9.3 5
## 683 12.79 123.0 87 5.54 11.4 3
## 684 20.54 202.4 120 9.11 6.5 1
## 685 19.83 204.4 57 9.20 11.1 8
## 686 15.90 230.8 101 10.39 8.6 7
## 687 18.22 154.4 80 6.95 10.1 2
## 688 16.99 216.1 107 9.72 12.6 8
## 689 17.76 260.1 123 11.70 12.1 3
## 690 11.20 126.9 101 5.71 8.2 2
## 691 16.77 234.5 111 10.55 14.9 3
## 692 16.39 172.7 105 7.77 10.2 4
## 693 23.50 192.1 104 8.64 5.7 7
## 694 16.02 254.9 118 11.47 8.0 4
## 695 22.83 188.8 99 8.50 10.9 4
## 696 8.97 220.2 105 9.91 11.6 9
## 697 15.16 169.2 77 7.61 7.5 3
## 698 23.26 206.6 72 9.30 9.1 4
## 699 15.81 307.1 86 13.82 8.4 11
## 700 16.22 187.5 79 8.44 11.0 9
## 701 10.97 167.1 113 7.52 10.7 3
## 702 13.52 128.2 129 5.77 7.7 3
## 703 13.93 243.6 114 10.96 14.1 3
## 704 16.10 229.9 118 10.35 10.4 7
## 705 16.41 194.1 113 8.73 6.5 4
## 706 19.64 168.9 121 7.60 8.5 5
## 707 16.60 194.4 65 8.75 3.6 5
## 708 19.00 260.8 72 11.74 7.6 7
## 709 13.12 200.4 109 9.02 10.6 6
## 710 12.96 197.8 76 8.90 9.7 3
## 711 18.42 259.9 119 11.70 12.5 4
## 712 25.31 212.6 86 9.57 11.4 8
## 713 6.66 232.7 78 10.47 0.0 0
## 714 17.26 210.6 106 9.48 6.9 2
## 715 17.99 174.5 81 7.85 7.3 5
## 716 20.61 151.7 121 6.83 15.3 6
## 717 16.59 268.8 94 12.10 11.4 4
## 718 18.63 179.7 83 8.09 7.2 6
## 719 14.44 184.0 116 8.28 9.3 3
## 720 16.53 256.5 109 11.54 11.7 5
## 721 13.91 242.7 72 10.92 7.4 2
## 722 14.39 166.7 80 7.50 10.9 5
## 723 16.44 105.4 115 4.74 13.5 3
## 724 20.20 206.7 136 9.30 14.0 11
## 725 15.05 216.5 118 9.74 16.4 5
## 726 17.02 231.7 101 10.43 11.9 3
## 727 14.51 287.7 95 12.95 7.8 5
## 728 16.15 221.4 110 9.96 9.2 2
## 729 18.21 154.9 101 6.97 12.7 5
## 730 14.94 221.8 124 9.98 13.4 5
## 731 17.22 221.6 51 9.97 11.5 3
## 732 24.86 226.3 103 10.18 8.0 1
## 733 11.32 197.4 94 8.88 7.2 5
## 734 11.25 211.9 76 9.54 9.5 8
## 735 14.43 175.3 127 7.89 12.1 4
## 736 16.97 274.7 103 12.36 6.5 6
## 737 13.18 189.7 87 8.54 11.0 9
## 738 14.94 223.7 151 10.07 16.7 3
## 739 20.47 210.3 76 9.46 11.4 3
## 740 17.73 203.8 111 9.17 8.8 8
## 741 16.07 162.2 115 7.30 9.4 2
## 742 23.68 129.6 120 5.83 11.5 3
## 743 20.45 248.1 98 11.16 11.4 3
## 744 13.90 195.4 84 8.79 10.4 6
## 745 20.52 203.5 86 9.16 9.1 5
## 746 21.28 142.4 92 6.41 6.6 8
## 747 10.12 232.9 123 10.48 6.4 2
## 748 16.66 226.5 122 10.19 7.8 1
## 749 22.97 121.6 113 5.47 8.7 5
## 750 16.87 133.1 88 5.99 11.0 6
## 751 15.77 148.2 107 6.67 8.2 4
## 752 15.84 241.7 75 10.88 10.1 6
## 753 13.99 128.8 102 5.80 12.7 4
## 754 11.70 159.7 121 7.19 11.0 5
## 755 10.36 253.7 104 11.42 9.6 4
## 756 20.58 101.2 103 4.55 11.4 4
## 757 20.38 148.7 71 6.69 9.8 14
## 758 20.68 184.6 78 8.31 13.1 5
## 759 18.71 177.9 95 8.01 9.8 6
## 760 15.39 320.7 120 14.43 9.5 4
## 761 23.02 206.4 68 9.29 10.1 5
## 762 19.31 145.8 91 6.56 8.4 3
## 763 22.73 184.5 137 8.30 1.3 6
## 764 22.19 317.8 103 14.30 15.0 5
## 765 18.62 237.4 76 10.68 11.4 4
## 766 17.70 158.9 101 7.15 8.7 6
## 767 20.67 182.4 57 8.21 11.0 2
## 768 10.03 236.0 91 10.62 15.2 4
## 769 18.96 157.8 101 7.10 9.7 2
## 770 21.27 144.9 81 6.52 11.0 3
## 771 16.24 214.6 107 9.66 13.3 4
## 772 14.19 145.2 77 6.53 8.8 3
## 773 17.60 214.1 91 9.63 9.2 7
## 774 14.27 182.2 138 8.20 7.7 2
## 775 16.90 228.4 116 10.28 10.6 4
## 776 16.76 202.2 79 9.10 10.7 4
## 777 13.74 251.4 91 11.31 10.5 4
## 778 18.28 234.3 84 10.54 5.8 4
## 779 18.46 225.7 71 10.16 13.6 5
## 780 20.65 168.9 101 7.60 10.1 4
## 781 15.62 153.8 67 6.92 11.0 9
## 782 17.08 134.0 134 6.03 10.7 4
## 783 12.07 288.9 68 13.00 9.4 4
## 784 14.48 280.2 78 12.61 9.4 4
## 785 12.21 239.4 128 10.77 11.2 9
## 786 22.41 142.6 60 6.42 10.7 5
## 787 16.53 200.4 85 9.02 11.3 3
## 788 17.75 182.5 105 8.21 11.1 6
## 789 10.01 133.7 78 6.02 11.8 2
## 790 18.97 169.5 64 7.63 10.5 3
## 791 16.83 94.3 76 4.24 7.5 3
## 792 24.34 167.0 77 7.52 14.1 3
## 793 21.54 165.4 85 7.44 8.2 2
## 794 18.60 240.2 106 10.81 9.0 3
## 795 20.37 167.5 108 7.54 15.1 2
## 796 22.89 158.9 105 7.15 10.8 4
## 797 11.00 166.9 124 7.51 8.4 2
## 798 18.65 198.5 121 8.93 14.5 7
## 799 22.05 134.7 135 6.06 14.6 5
## 800 11.71 213.5 104 9.61 15.9 5
## 801 18.78 179.4 97 8.07 11.3 2
## 802 17.20 180.1 95 8.10 9.4 5
## 803 27.10 247.3 79 11.13 6.5 4
## 804 21.56 291.0 86 13.10 12.6 3
## 805 18.64 210.8 89 9.49 9.8 4
## 806 17.13 101.7 82 4.58 6.8 4
## 807 13.29 136.5 121 6.14 10.2 5
## 808 14.63 194.6 111 8.76 12.1 3
## 809 20.62 147.7 95 6.65 11.3 3
## 810 20.40 200.9 64 9.04 5.8 3
## 811 20.57 146.3 108 6.58 12.1 4
## 812 9.08 178.5 122 8.03 9.9 6
## 813 8.76 189.4 82 8.52 13.1 4
## 814 23.49 190.8 113 8.59 15.3 5
## 815 17.29 171.7 68 7.73 12.4 4
## 816 14.43 285.1 100 12.83 5.7 3
## 817 17.64 211.7 100 9.53 12.1 5
## 818 13.91 264.2 118 11.89 6.6 6
## 819 17.68 206.1 124 9.27 15.1 3
## 820 17.23 234.7 103 10.56 13.1 3
## 821 6.49 185.1 96 8.33 12.7 3
## 822 3.73 189.6 87 8.53 13.1 5
## 823 13.07 236.6 105 10.65 11.7 4
## 824 10.53 174.3 84 7.84 10.1 6
## 825 11.26 149.4 123 6.72 11.3 3
## 826 17.99 182.2 105 8.20 11.6 6
## 827 18.52 184.2 77 8.29 9.4 9
## 828 24.45 223.0 100 10.04 12.2 4
## 829 14.74 268.7 114 12.09 5.5 2
## 830 19.56 119.8 81 5.39 9.9 3
## 831 7.96 241.3 115 10.86 13.4 1
## 832 18.43 239.4 99 10.77 11.8 2
## 833 17.39 186.2 128 8.38 9.4 4
## 834 18.33 138.4 127 6.23 10.2 3
## 835 9.83 226.3 94 10.18 9.4 3
## 836 17.73 65.8 71 2.96 9.9 3
## 837 19.17 168.7 120 7.59 9.7 4
## 838 13.85 247.4 109 11.13 8.1 13
## 839 25.92 225.6 133 10.15 11.9 8
## 840 18.88 188.3 92 8.47 16.1 5
## 841 22.99 225.3 94 10.14 9.0 6
## 842 12.75 160.8 81 7.24 10.3 2
## 843 19.98 95.1 130 4.28 11.4 11
## 844 11.00 167.6 109 7.54 15.8 6
## 845 13.83 215.5 98 9.70 14.6 6
## 846 16.32 196.3 85 8.83 10.0 4
## 847 16.23 295.6 125 13.30 10.3 4
## 848 16.69 252.7 75 11.37 10.3 4
## 849 16.35 207.4 111 9.33 9.1 9
## 850 22.50 111.4 101 5.01 9.2 2
## 851 4.50 246.1 119 11.07 10.9 5
## 852 17.97 72.4 84 3.26 11.0 4
## 853 23.25 226.9 99 10.21 9.6 3
## 854 20.05 260.2 113 11.71 7.6 6
## 855 21.89 227.8 119 10.25 9.7 13
## 856 15.32 187.3 135 8.43 6.2 7
## 857 10.26 215.1 112 9.68 12.7 2
## 858 16.66 263.9 95 11.88 9.2 4
## 859 14.06 185.0 81 8.32 11.7 8
## 860 18.96 262.7 90 11.82 11.3 3
## 861 14.89 228.6 92 10.29 9.9 6
## 862 16.70 209.5 108 9.43 14.9 3
## 863 12.47 345.8 115 15.56 13.1 3
## 864 12.98 217.8 125 9.80 12.4 13
## 865 15.61 80.2 108 3.61 8.9 4
## 866 14.56 154.6 119 6.96 9.9 9
## 867 22.80 146.5 80 6.59 11.1 3
## 868 13.12 210.6 91 9.48 8.2 5
## 869 20.51 143.2 105 6.44 4.0 7
## 870 17.81 249.9 105 11.25 7.4 4
## 871 21.39 258.0 93 11.61 14.9 5
## 872 16.18 284.7 118 12.81 11.1 6
## 873 14.84 241.5 80 10.87 10.9 3
## 874 20.06 307.6 77 13.84 9.3 1
## 875 11.49 208.2 106 9.37 10.4 3
## 876 20.88 148.6 90 6.69 9.1 4
## 877 27.47 143.9 127 6.48 7.5 2
## 878 17.36 111.7 146 5.03 5.9 4
## 879 13.65 77.9 74 3.51 0.0 0
## 880 18.73 169.9 104 7.65 11.8 8
## 881 15.78 203.3 64 9.15 10.2 7
## 882 17.22 289.6 119 13.03 6.7 8
## 883 24.68 114.9 140 5.17 7.2 3
## 884 21.75 45.0 117 2.03 8.0 12
## 885 12.19 153.9 102 6.93 15.0 7
## 886 20.67 190.8 95 8.59 5.4 3
## 887 16.06 196.2 98 8.83 8.9 3
## 888 22.51 270.0 77 12.15 7.6 7
## 889 20.37 229.8 104 10.34 5.5 4
## 890 3.61 179.2 124 8.06 12.4 5
## 891 19.86 179.4 91 8.07 12.0 2
## 892 13.47 207.5 131 9.34 6.2 5
## 893 18.80 197.3 97 8.88 12.3 4
## 894 5.17 176.7 110 7.95 10.7 3
## 895 14.43 194.1 63 8.73 11.9 3
## 896 17.85 187.2 93 8.42 8.5 3
## 897 13.22 206.2 112 9.28 14.4 7
## 898 17.05 195.4 107 8.79 15.5 7
## 899 17.82 264.1 77 11.88 8.0 2
## 900 21.23 224.2 92 10.09 8.7 7
## 901 11.75 221.0 88 9.95 5.5 6
## 902 21.39 141.1 158 6.35 11.3 3
## 903 18.60 208.3 131 9.37 8.2 6
## 904 16.73 157.9 112 7.11 5.9 8
## 905 17.89 234.7 70 10.56 9.0 3
## 906 6.03 204.8 107 9.22 13.4 4
## 907 16.05 136.2 89 6.13 13.5 3
## 908 9.32 245.5 73 11.05 16.9 2
## 909 14.14 219.8 73 9.89 15.0 4
## 910 13.88 264.9 104 11.92 5.1 6
## 911 15.11 190.4 106 8.57 8.1 5
## 912 26.89 208.6 91 9.39 14.4 11
## 913 10.23 163.0 93 7.34 10.6 3
## 914 24.63 312.5 130 14.06 10.6 4
## 915 24.48 266.0 112 11.97 10.5 4
## 916 12.04 198.5 124 8.93 7.5 3
## 917 23.94 228.1 113 10.26 13.2 5
## 918 9.83 295.8 84 13.31 8.3 6
## 919 18.45 342.8 130 15.43 5.2 2
## 920 10.94 190.5 113 8.57 11.0 4
## 921 14.37 166.7 94 7.50 9.2 2
## 922 18.68 202.0 89 9.09 4.4 14
## 923 12.10 364.3 106 16.39 9.3 5
## 924 9.56 218.7 79 9.84 13.8 3
## 925 17.50 204.0 103 9.18 7.9 4
## 926 6.87 196.1 79 8.82 10.8 2
## 927 9.02 179.6 90 8.08 14.0 6
## 928 16.66 139.3 123 6.27 11.4 5
## 929 13.18 180.7 64 8.13 7.8 5
## 930 12.34 214.5 105 9.65 6.6 5
## 931 19.43 265.3 114 11.94 9.8 4
## 932 16.63 236.5 137 10.64 12.0 2
## 933 26.28 152.1 118 6.84 10.0 2
## 934 17.65 207.4 143 9.33 14.1 4
## 935 11.32 177.6 123 7.99 11.2 2
## 936 18.96 255.6 92 11.50 13.0 3
## 937 19.88 277.4 94 12.48 9.2 4
## 938 12.57 183.8 74 8.27 6.7 2
## 939 16.12 270.1 107 12.15 14.3 2
## 940 15.24 300.7 89 13.53 11.9 8
## 941 20.52 204.8 106 9.22 15.5 4
## 942 24.42 230.2 85 10.36 6.5 5
## 943 11.93 208.9 110 9.40 6.4 2
## 944 17.59 272.0 88 12.24 12.6 2
## 945 16.21 193.0 103 8.69 9.2 6
## 946 12.33 233.7 120 10.52 11.5 6
## 947 22.19 204.4 107 9.20 13.4 5
## 948 14.44 201.6 130 9.07 11.0 4
## 949 13.21 255.7 114 11.51 8.4 3
## 950 18.92 173.3 81 7.80 11.0 3
## 951 20.60 170.2 89 7.66 7.9 3
## 952 19.89 196.3 77 8.83 11.6 2
## 953 13.64 149.5 142 6.73 10.7 2
## 954 15.91 225.5 118 10.15 8.6 3
## 955 19.06 221.0 116 9.95 8.6 8
## 956 18.82 208.5 103 9.38 10.3 5
## 957 15.61 205.5 111 9.25 7.1 3
## 958 24.30 190.6 121 8.58 9.4 15
## 959 15.81 190.5 128 8.57 12.3 3
## 960 9.83 193.8 118 8.72 12.8 5
## 961 15.92 214.0 85 9.63 13.3 3
## 962 27.24 150.7 110 6.78 4.2 3
## 963 12.76 219.8 111 9.89 7.7 2
## 964 14.09 270.0 83 12.15 10.8 5
## 965 17.22 191.2 102 8.60 13.3 2
## 966 21.09 122.4 85 5.51 12.2 4
## 967 22.00 263.2 109 11.84 15.7 5
## 968 15.87 128.4 100 5.78 9.2 3
## 969 21.10 164.6 116 7.41 13.5 3
## 970 22.29 130.0 92 5.85 8.8 4
## 971 19.12 219.6 50 9.88 11.5 1
## 972 21.35 273.4 97 12.30 5.0 5
## 973 13.86 154.1 90 6.93 11.8 3
## 974 15.44 128.1 93 5.76 12.3 2
## 975 23.04 179.1 89 8.06 9.5 7
## 976 16.33 191.0 83 8.59 10.4 6
## 977 11.15 264.7 63 11.91 13.0 6
## 978 13.81 186.6 90 8.40 11.8 2
## 979 22.64 224.1 118 10.08 13.1 4
## 980 18.26 223.6 126 10.06 7.8 5
## 981 17.33 151.8 124 6.83 11.6 8
## 982 20.37 268.3 81 12.07 6.9 4
## 983 12.73 213.4 108 9.60 13.0 18
## 984 19.09 221.3 105 9.96 9.0 4
## 985 26.04 196.5 82 8.84 9.9 1
## 986 21.21 275.4 102 12.39 13.3 9
## 987 12.35 195.2 137 8.78 11.8 9
## 988 22.38 178.1 106 8.01 8.3 2
## 989 9.79 224.5 115 10.10 17.0 4
## 990 15.94 147.1 126 6.62 13.6 3
## 991 21.24 298.9 104 13.45 3.9 2
## 992 11.49 216.2 101 9.73 7.9 2
## 993 12.80 63.3 103 2.85 7.7 5
## 994 12.04 255.9 96 11.52 9.6 2
## 995 19.90 213.4 87 9.60 10.4 6
## 996 12.95 144.7 97 6.51 7.5 5
## 997 17.15 181.9 103 8.19 11.6 5
## 998 18.37 148.1 76 6.66 11.3 3
## 999 19.76 175.8 105 7.91 14.7 3
## 1000 14.01 54.5 91 2.45 7.9 3
## 1001 19.41 117.3 103 5.28 12.8 4
## 1002 14.25 260.6 94 11.73 8.4 4
## 1003 14.22 238.9 115 10.75 6.8 3
## 1004 19.20 172.0 86 7.74 8.2 3
## 1005 12.22 150.2 127 6.76 12.3 3
## 1006 9.90 220.0 110 9.90 9.8 4
## 1007 26.99 133.4 113 6.00 8.3 4
## 1008 16.62 223.3 95 10.05 6.0 7
## 1009 17.31 173.9 124 7.83 11.4 2
## 1010 14.25 168.5 122 7.58 11.3 3
## 1011 21.78 169.0 151 7.61 3.8 4
## 1012 24.60 194.0 100 8.73 9.7 6
## 1013 16.87 258.2 91 11.62 8.0 5
## 1014 16.41 222.7 94 10.02 13.1 5
## 1015 6.96 304.3 101 13.69 12.0 4
## 1016 17.47 213.7 91 9.62 11.9 2
## 1017 12.95 194.4 110 8.75 8.6 3
## 1018 20.75 176.3 120 7.93 9.1 4
## 1019 19.58 170.6 101 7.68 11.4 5
## 1020 12.62 216.7 96 9.75 11.3 3
## 1021 16.53 242.3 138 10.90 14.2 3
## 1022 14.25 110.3 71 4.96 8.4 12
## 1023 13.17 189.4 89 8.52 7.2 5
## 1024 16.63 122.1 117 5.49 7.8 8
## 1025 22.34 214.3 128 9.64 11.2 3
## 1026 24.17 262.8 99 11.83 12.3 1
## 1027 24.75 159.6 114 7.18 10.0 2
## 1028 21.20 254.9 129 11.47 12.9 1
## 1029 18.35 223.5 122 10.06 0.0 0
## 1030 19.68 226.1 130 10.17 16.5 5
## 1031 19.75 215.5 100 9.70 9.3 4
## 1032 14.60 167.5 66 7.54 5.3 9
## 1033 11.98 204.3 93 9.19 9.5 5
## 1034 18.18 171.2 105 7.70 10.6 6
## 1035 18.28 179.7 108 8.09 13.1 9
## 1036 18.33 161.2 111 7.25 10.0 1
## 1037 17.70 171.0 102 7.69 12.0 2
## 1038 14.03 173.1 102 7.79 10.7 5
## 1039 9.69 146.8 79 6.61 14.1 3
## 1040 17.96 261.4 91 11.76 10.7 2
## 1041 18.78 238.7 117 10.74 9.2 5
## 1042 17.15 206.1 112 9.27 16.1 6
## 1043 15.59 240.7 133 10.83 9.9 3
## 1044 17.95 179.3 104 8.07 10.2 8
## 1045 12.50 94.9 99 4.27 7.2 4
## 1046 13.50 306.6 107 13.80 9.3 3
## 1047 20.59 233.3 75 10.50 6.4 5
## 1048 22.65 217.6 59 9.79 7.1 7
## 1049 19.41 163.3 116 7.35 7.7 3
## 1050 14.08 243.2 107 10.94 8.4 9
## 1051 15.21 182.1 84 8.19 12.9 10
## 1052 15.22 214.7 112 9.66 10.3 2
## 1053 21.81 169.4 88 7.62 7.7 9
## 1054 16.35 240.6 100 10.83 10.1 3
## 1055 4.98 202.6 99 9.12 8.7 3
## 1056 12.45 137.6 78 6.19 8.5 2
## 1057 8.30 202.5 119 9.11 7.0 3
## 1058 11.38 138.2 103 6.22 13.3 4
## 1059 16.91 76.4 97 3.44 8.6 6
## 1060 16.02 105.6 116 4.75 8.8 3
## 1061 7.63 172.8 104 7.78 15.3 3
## 1062 20.88 172.8 76 7.78 10.3 9
## 1063 12.40 175.1 103 7.88 9.9 3
## 1064 12.75 241.1 116 10.85 10.7 2
## 1065 10.09 258.4 105 11.63 12.9 3
## 1066 17.32 167.8 70 7.55 9.9 6
## 1067 19.05 267.9 112 12.06 11.8 4
## 1068 15.11 233.4 97 10.50 12.2 6
## 1069 19.82 109.6 115 4.93 10.3 5
## 1070 18.54 192.9 115 8.68 12.5 4
## 1071 17.77 173.0 96 7.79 11.9 9
## 1072 20.44 179.1 107 8.06 5.0 9
## 1073 12.88 50.1 60 2.25 14.3 6
## 1074 14.43 215.8 77 9.71 7.6 4
## 1075 14.89 212.2 77 9.55 12.5 7
## 1076 21.04 155.5 99 7.00 8.9 8
## 1077 17.55 228.1 64 10.26 6.5 7
## 1078 9.55 246.4 75 11.09 15.4 4
## 1079 18.87 162.8 123 7.33 6.7 8
## 1080 18.81 210.0 93 9.45 8.2 3
## 1081 14.89 220.3 118 9.91 0.0 0
## 1082 19.27 219.1 67 9.86 7.5 2
## 1083 18.38 171.3 65 7.71 11.8 1
## 1084 18.16 175.1 86 7.88 12.4 6
## 1085 17.35 171.3 84 7.71 12.3 5
## 1086 18.79 109.9 100 4.95 12.4 4
## 1087 21.04 246.2 123 11.08 6.9 6
## 1088 17.60 268.0 106 12.06 8.2 4
## 1089 18.96 241.6 77 10.87 12.9 2
## 1090 15.69 164.3 131 7.39 13.3 4
## 1091 16.87 164.4 83 7.40 10.4 3
## 1092 20.34 123.2 108 5.54 10.0 3
## 1093 14.48 165.1 104 7.43 9.5 13
## 1094 12.71 255.1 67 11.48 6.5 8
## 1095 13.52 229.9 74 10.35 7.2 8
## 1096 16.88 160.8 62 7.24 6.0 3
## 1097 21.22 248.2 114 11.17 14.2 4
## 1098 18.96 251.7 94 11.33 13.0 2
## 1099 16.63 181.8 129 8.18 5.1 4
## 1100 14.09 151.6 79 6.82 2.2 4
## 1101 23.19 214.5 100 9.65 8.3 4
## 1102 20.74 180.1 89 8.10 9.1 4
## 1103 8.74 213.7 84 9.62 10.5 2
## 1104 17.47 213.6 124 9.61 12.2 6
## 1105 16.12 182.6 91 8.22 10.4 5
## 1106 20.95 154.8 131 6.97 12.9 4
## 1107 15.27 258.5 89 11.63 10.1 5
## 1108 16.08 164.3 76 7.39 12.8 7
## 1109 6.85 212.8 116 9.58 5.8 2
## 1110 15.90 207.9 155 9.36 7.9 1
## 1111 22.00 253.2 113 11.39 7.4 9
## 1112 10.07 248.1 87 11.16 17.1 6
## 1113 13.23 304.4 93 13.70 13.3 2
## 1114 24.89 43.7 121 1.97 10.6 4
## 1115 22.70 250.7 114 11.28 10.9 4
## 1116 17.22 172.3 94 7.75 12.5 7
## 1117 21.77 262.9 103 11.83 11.7 3
## 1118 18.25 150.9 105 6.79 11.8 7
## 1119 16.00 247.0 73 11.12 12.3 4
## 1120 20.12 179.1 120 8.06 11.3 5
## 1121 13.82 150.0 138 6.75 12.1 6
## 1122 14.31 239.9 81 10.80 11.7 4
## 1123 20.92 242.0 106 10.89 10.4 5
## 1124 19.57 283.7 87 12.77 10.0 3
## 1125 20.67 229.2 95 10.31 9.9 5
## 1126 10.44 229.5 94 10.33 12.8 9
## 1127 18.96 182.3 112 8.20 7.3 4
## 1128 16.53 225.6 101 10.15 16.9 3
## 1129 19.06 116.3 91 5.23 12.3 10
## 1130 11.77 164.8 98 7.42 9.0 2
## 1131 15.37 251.6 58 11.32 12.7 2
## 1132 12.02 189.8 109 8.54 13.0 5
## 1133 17.89 179.7 102 8.09 11.8 4
## 1134 14.02 216.0 125 9.72 12.3 2
## 1135 21.79 117.1 91 5.27 9.0 3
## 1136 16.80 209.2 97 9.41 12.2 3
## 1137 18.29 254.0 133 11.43 14.4 7
## 1138 19.06 260.9 135 11.74 11.3 1
## 1139 19.01 173.1 77 7.79 13.6 6
## 1140 16.01 172.7 113 7.77 11.7 3
## 1141 14.38 189.7 117 8.54 10.1 3
## 1142 18.14 196.8 81 8.86 7.9 6
## 1143 20.41 147.7 114 6.65 5.3 4
## 1144 23.41 246.1 105 11.07 10.0 5
## 1145 12.27 135.3 106 6.09 10.8 1
## 1146 12.99 162.9 92 7.33 5.1 2
## 1147 18.65 224.7 68 10.11 4.0 5
## 1148 14.04 194.3 57 8.74 10.6 5
## 1149 7.79 211.7 103 9.53 9.7 7
## 1150 12.53 235.8 113 10.61 9.6 8
## 1151 10.91 162.1 119 7.29 11.6 4
## 1152 11.79 139.3 85 6.27 11.3 4
## 1153 14.69 94.1 102 4.23 8.8 4
## 1154 17.61 136.0 117 6.12 5.6 5
## 1155 17.44 134.6 140 6.06 8.1 2
## 1156 17.96 168.3 97 7.57 11.1 4
## 1157 18.45 81.6 100 3.67 11.8 7
## 1158 15.01 212.6 102 9.57 7.8 5
## 1159 17.57 203.8 119 9.17 11.1 6
## 1160 20.90 161.1 95 7.25 6.4 7
## 1161 13.16 166.7 105 7.50 10.6 2
## 1162 15.22 281.9 89 12.69 8.2 9
## 1163 12.12 102.0 63 4.59 10.9 2
## 1164 20.67 322.2 114 14.50 7.1 5
## 1165 11.03 132.3 113 5.95 12.0 3
## 1166 24.60 174.9 109 7.87 8.0 3
## 1167 14.21 214.2 106 9.64 12.2 3
## 1168 17.50 233.7 75 10.52 12.9 1
## 1169 18.14 237.9 61 10.71 7.6 11
## 1170 18.11 181.7 108 8.18 5.4 5
## 1171 19.06 140.1 57 6.30 15.2 2
## 1172 15.37 132.5 102 5.96 12.8 3
## 1173 14.25 132.0 124 5.94 9.2 5
## 1174 18.57 266.0 88 11.97 10.9 5
## 1175 23.05 167.1 83 7.52 5.8 7
## 1176 8.69 174.0 83 7.83 8.6 2
## 1177 16.52 186.5 104 8.39 9.7 2
## 1178 16.09 271.8 124 12.23 14.1 4
## 1179 20.30 108.8 92 4.90 11.2 2
## 1180 13.35 129.1 100 5.81 7.3 14
## 1181 16.63 184.8 124 8.32 13.1 4
## 1182 12.60 274.0 136 12.33 7.5 6
## 1183 15.16 153.2 98 6.89 14.4 2
## 1184 14.05 205.0 74 9.23 9.0 1
## 1185 20.58 215.8 80 9.71 9.7 3
## 1186 18.45 214.8 104 9.67 9.8 7
## 1187 19.46 195.1 101 8.78 8.7 5
## 1188 20.36 254.3 109 11.44 5.9 9
## 1189 12.33 281.8 92 12.68 9.3 2
## 1190 19.00 175.4 69 7.89 11.2 5
## 1191 4.76 163.3 104 7.35 8.9 8
## 1192 17.71 177.6 98 7.99 9.2 3
## 1193 21.40 285.9 76 12.87 7.2 2
## 1194 17.81 82.3 107 3.70 8.7 5
## 1195 14.10 205.7 71 9.26 13.2 2
## 1196 20.00 174.4 126 7.85 11.0 3
## 1197 11.05 134.3 125 6.04 6.9 2
## 1198 18.16 291.8 89 13.13 11.9 3
## 1199 18.18 132.6 99 5.97 13.4 3
## 1200 19.80 206.9 121 9.31 7.6 4
## 1201 21.92 180.2 157 8.11 11.6 4
## 1202 18.77 249.5 93 11.23 8.0 5
## 1203 18.79 349.7 75 15.74 12.6 3
## 1204 17.43 263.7 90 11.87 5.1 7
## 1205 22.55 152.4 77 6.86 9.5 2
## 1206 16.60 182.7 108 8.22 8.5 3
## 1207 17.51 180.6 118 8.13 9.7 4
## 1208 14.68 104.5 128 4.70 11.3 5
## 1209 17.46 205.7 121 9.26 10.2 3
## 1210 18.67 255.8 90 11.51 12.8 3
## 1211 15.32 159.0 110 7.15 7.9 2
## 1212 20.49 207.8 94 9.35 7.9 1
## 1213 21.22 170.3 128 7.66 12.6 8
## 1214 14.34 223.5 100 10.06 11.8 4
## 1215 20.04 228.6 119 10.29 9.5 3
## 1216 13.41 192.5 89 8.66 11.3 6
## 1217 17.97 103.7 127 4.67 5.9 6
## 1218 20.26 150.7 84 6.78 10.7 4
## 1219 19.31 239.9 92 10.80 7.6 3
## 1220 18.11 198.0 119 8.91 10.9 5
## 1221 19.12 170.8 118 7.69 15.7 5
## 1222 17.20 195.9 100 8.82 12.6 5
## 1223 20.41 156.7 123 7.05 4.9 5
## 1224 18.12 207.8 104 9.35 11.4 4
## 1225 14.31 120.5 93 5.42 9.3 9
## 1226 11.92 90.9 81 4.09 11.4 3
## 1227 20.42 119.0 112 5.36 11.4 4
## 1228 15.57 127.4 106 5.73 12.3 6
## 1229 17.36 231.5 87 10.42 8.9 4
## 1230 21.89 210.5 66 9.47 7.5 5
## 1231 19.56 232.1 110 10.44 10.6 2
## 1232 19.23 178.8 60 8.05 8.8 5
## 1233 15.63 184.3 109 8.29 15.3 6
## 1234 4.09 116.3 80 5.23 8.9 3
## 1235 14.35 154.6 95 6.96 9.8 7
## 1236 18.33 152.7 84 6.87 10.6 2
## 1237 21.68 82.4 73 3.71 10.1 4
## 1238 13.75 167.7 115 7.55 11.7 5
## 1239 17.72 352.5 111 15.86 8.1 4
## 1240 16.35 166.5 98 7.49 10.1 3
## 1241 14.60 259.8 76 11.69 9.6 3
## 1242 16.62 213.3 120 9.60 16.5 7
## 1243 19.56 143.6 82 6.46 9.1 10
## 1244 18.08 193.8 103 8.72 11.0 2
## 1245 21.61 261.8 85 11.78 7.7 2
## 1246 19.67 188.1 127 8.46 11.2 5
## 1247 16.14 232.2 102 10.45 9.0 3
## 1248 18.19 239.5 94 10.78 8.8 5
## 1249 15.86 223.0 100 10.04 11.6 8
## 1250 19.67 180.9 120 8.14 7.8 4
## 1251 10.99 186.4 109 8.39 5.2 4
## 1252 14.44 244.9 106 11.02 9.9 10
## 1253 15.68 168.2 91 7.57 8.8 3
## 1254 17.99 210.1 133 9.45 8.3 4
## 1255 17.09 286.7 103 12.90 11.1 3
## 1256 24.68 236.9 89 10.66 10.8 3
## 1257 15.73 219.5 104 9.88 6.0 3
## 1258 16.93 120.2 113 5.41 18.0 5
## 1259 21.06 245.4 93 11.04 11.2 7
## 1260 10.08 250.2 102 11.26 12.5 4
## 1261 14.34 23.2 102 1.04 9.5 4
## 1262 20.46 197.1 134 8.87 7.1 4
## 1263 10.14 165.1 113 7.43 11.5 7
## 1264 11.43 120.3 104 5.41 7.5 5
## 1265 13.80 162.9 80 7.33 10.5 4
## 1266 18.14 195.6 97 8.80 10.1 5
## 1267 13.95 157.7 128 7.10 9.0 3
## 1268 21.70 228.1 97 10.26 5.4 7
## 1269 22.14 144.2 96 6.49 10.8 7
## 1270 17.71 141.6 114 6.37 11.0 5
## 1271 24.82 183.3 80 8.25 8.7 6
## 1272 22.46 271.3 120 12.21 7.9 3
## 1273 18.50 220.2 68 9.91 13.2 2
## 1274 10.69 261.6 122 11.77 8.3 2
## 1275 17.09 150.4 138 6.77 11.2 2
## 1276 20.74 281.1 93 12.65 11.4 2
## 1277 28.56 192.8 128 8.68 9.6 1
## 1278 23.62 174.7 71 7.86 14.7 7
## 1279 22.91 167.3 82 7.53 9.6 7
## 1280 22.32 245.7 69 11.06 13.1 5
## 1281 17.82 260.9 78 11.74 13.9 1
## 1282 13.09 209.7 118 9.44 11.5 4
## 1283 18.20 289.6 95 13.03 10.4 6
## 1284 10.56 95.6 75 4.30 15.0 4
## 1285 21.36 200.1 112 9.00 8.4 2
## 1286 19.86 163.9 99 7.38 9.0 3
## 1287 16.98 194.7 74 8.76 7.5 8
## 1288 11.63 154.7 87 6.96 7.7 3
## 1289 15.98 142.0 133 6.39 4.4 4
## 1290 20.46 254.8 123 11.47 10.5 4
## 1291 17.98 169.0 116 7.61 9.1 3
## 1292 19.81 297.0 93 13.37 14.5 5
## 1293 22.75 111.5 80 5.02 9.3 7
## 1294 15.11 206.1 102 9.27 12.4 9
## 1295 22.27 184.6 125 8.31 9.2 5
## 1296 13.74 175.9 97 7.92 8.4 3
## 1297 19.97 229.6 157 10.33 8.8 3
## 1298 18.76 236.3 121 10.63 12.9 4
## 1299 27.94 160.5 89 7.22 7.8 6
## 1300 17.66 205.0 98 9.23 14.0 2
## 1301 14.88 210.6 84 9.48 10.2 2
## 1302 11.71 224.0 61 10.08 7.3 4
## 1303 19.55 136.0 111 6.12 9.6 5
## 1304 13.01 227.4 80 10.23 12.9 4
## 1305 22.32 212.5 110 9.56 8.8 2
## 1306 21.17 136.0 73 6.12 10.8 2
## 1307 15.67 255.8 83 11.51 10.6 5
## 1308 15.81 153.0 92 6.89 9.8 1
## 1309 17.43 170.6 114 7.68 13.8 4
## 1310 13.71 260.7 98 11.73 11.4 3
## 1311 15.92 184.2 111 8.29 7.4 5
## 1312 13.97 249.0 98 11.21 8.9 7
## 1313 21.56 215.8 96 9.71 6.4 2
## 1314 14.96 63.6 122 2.86 7.3 1
## 1315 14.03 111.6 104 5.02 6.3 4
## 1316 6.71 153.2 69 6.89 11.8 2
## 1317 18.26 206.4 73 9.29 8.7 6
## 1318 23.36 381.9 147 17.19 7.5 5
## 1319 17.89 109.6 114 4.93 7.7 2
## 1320 14.87 207.2 86 9.32 6.1 3
## 1321 16.80 147.1 110 6.62 14.5 4
## 1322 18.79 168.6 134 7.59 8.9 5
## 1323 11.81 192.6 119 8.67 9.1 1
## 1324 19.36 214.0 101 9.63 9.3 11
## 1325 15.66 217.4 102 9.78 12.6 5
## 1326 15.80 224.3 102 10.09 10.0 1
## 1327 19.64 220.9 80 9.94 6.3 9
## 1328 12.12 210.1 115 9.45 10.9 5
## 1329 23.49 193.7 100 8.72 10.1 9
## 1330 12.51 254.7 75 11.46 8.0 7
## 1331 20.80 154.4 91 6.95 13.8 2
## 1332 19.45 172.4 85 7.76 7.6 2
## 1333 10.68 226.5 90 10.19 10.5 4
## 1334 14.09 247.0 105 11.12 10.8 12
## 1335 14.27 193.6 106 8.71 8.0 4
## 1336 5.10 189.0 129 8.50 11.3 2
## 1337 18.21 186.1 71 8.37 11.1 6
## 1338 13.40 241.0 120 10.85 7.3 2
## 1339 18.42 206.7 116 9.30 9.3 3
## 1340 18.73 134.2 97 6.04 9.2 1
## 1341 22.83 179.9 73 8.10 14.7 1
## 1342 21.29 241.6 125 10.87 11.5 2
## 1343 17.12 159.0 124 7.15 4.1 5
## 1344 7.67 153.4 60 6.90 10.6 8
## 1345 13.35 242.8 91 10.93 8.4 8
## 1346 13.57 167.1 88 7.52 6.8 1
## 1347 15.96 181.9 89 8.19 10.7 2
## 1348 16.31 229.9 97 10.35 10.3 3
## 1349 17.84 266.9 86 12.01 11.9 5
## 1350 13.86 220.0 99 9.90 5.6 3
## 1351 19.63 230.7 140 10.38 14.8 7
## 1352 22.29 159.0 115 7.15 11.9 5
## 1353 17.11 227.1 115 10.22 13.1 4
## 1354 18.41 250.6 102 11.28 11.0 3
## 1355 18.93 163.5 102 7.36 12.8 3
## 1356 20.44 193.9 103 8.73 13.6 14
## 1357 17.36 228.2 90 10.27 11.3 4
## 1358 14.10 191.9 83 8.64 12.8 6
## 1359 16.52 243.4 126 10.95 14.9 2
## 1360 18.75 277.3 89 12.48 10.3 6
## 1361 10.53 135.7 100 6.11 13.1 8
## 1362 19.75 251.6 96 11.32 13.6 2
## 1363 5.70 160.4 121 7.22 9.9 2
## 1364 20.20 263.4 104 11.85 7.7 6
## 1365 21.31 270.2 124 12.16 13.7 8
## 1366 19.04 180.5 82 8.12 11.6 3
## 1367 15.24 225.1 116 10.13 12.3 1
## 1368 16.56 170.6 93 7.68 8.6 4
## 1369 22.30 98.9 63 4.45 11.5 6
## 1370 13.23 150.2 143 6.76 7.3 9
## 1371 13.80 264.5 133 11.90 6.6 2
## 1372 21.55 197.1 93 8.87 8.9 5
## 1373 12.27 225.1 86 10.13 8.2 6
## 1374 16.46 208.9 93 9.40 4.1 4
## 1375 19.20 191.8 95 8.63 8.5 7
## 1376 16.00 333.5 117 15.01 11.3 10
## 1377 20.56 285.3 117 12.84 4.2 5
## 1378 6.04 261.7 120 11.78 13.4 10
## 1379 23.15 193.4 105 8.70 8.9 4
## 1380 19.61 202.0 127 9.09 10.2 2
## 1381 10.46 217.5 101 9.79 12.0 2
## 1382 22.13 192.2 98 8.65 11.0 1
## 1383 24.58 175.4 107 7.89 9.1 4
## 1384 22.11 135.4 118 6.09 8.2 2
## 1385 13.77 223.5 115 10.06 10.1 3
## 1386 18.75 235.7 113 10.61 8.9 3
## 1387 13.01 165.6 125 7.45 7.1 3
## 1388 12.27 302.8 102 13.63 7.6 3
## 1389 13.26 204.1 99 9.18 9.9 6
## 1390 19.31 190.4 115 8.57 15.3 4
## 1391 10.86 107.5 91 4.84 9.3 6
## 1392 16.69 226.7 109 10.20 8.4 5
## 1393 17.65 214.2 107 9.64 4.5 15
## 1394 19.39 166.4 95 7.49 9.1 8
## 1395 22.82 143.3 82 6.45 13.0 4
## 1396 9.82 191.3 103 8.61 12.2 4
## 1397 13.68 197.7 100 8.90 11.5 5
## 1398 16.33 168.8 95 7.60 7.2 4
## 1399 19.36 243.6 84 10.96 11.0 4
## 1400 18.63 215.9 94 9.72 11.7 2
## 1401 16.79 175.8 114 7.91 0.0 0
## 1402 21.07 155.1 108 6.98 11.9 4
## 1403 17.40 256.6 101 11.55 5.7 4
## 1404 8.36 201.9 93 9.09 10.6 1
## 1405 19.07 163.6 88 7.36 9.5 1
## 1406 7.49 233.2 135 10.49 8.8 7
## 1407 22.93 235.8 110 10.61 8.9 8
## 1408 21.77 229.6 98 10.33 11.8 2
## 1409 16.65 118.3 77 5.32 11.8 3
## 1410 19.77 248.3 110 11.17 8.4 2
## 1411 18.03 260.4 78 11.72 12.2 5
## 1412 16.35 167.9 115 7.56 7.7 6
## 1413 19.82 210.6 121 9.48 9.4 4
## 1414 18.33 243.3 91 10.95 9.8 6
## 1415 14.87 234.7 134 10.56 9.7 4
## 1416 17.38 203.1 114 9.14 9.1 1
## 1417 25.23 192.9 106 8.68 7.6 3
## 1418 16.20 150.5 79 6.77 10.7 7
## 1419 15.58 139.8 106 6.29 5.7 7
## 1420 12.05 180.5 105 8.12 6.6 12
## 1421 14.61 214.5 97 9.65 17.9 3
## 1422 18.40 210.7 102 9.48 10.4 7
## 1423 18.83 261.6 109 11.77 5.6 1
## 1424 13.56 152.8 132 6.88 10.4 3
## 1425 16.59 252.9 107 11.38 11.7 5
## 1426 19.70 222.3 113 10.00 4.6 2
## 1427 22.40 254.7 90 11.46 9.8 7
## 1428 14.57 148.6 85 6.69 9.6 6
## 1429 24.61 98.3 95 4.42 11.2 5
## 1430 16.71 233.0 79 10.49 7.0 7
## 1431 23.26 217.9 71 9.81 7.6 4
## 1432 10.96 249.9 110 11.25 11.3 5
## 1433 12.57 252.7 97 11.37 11.2 2
## 1434 16.34 161.0 74 7.25 12.2 2
## 1435 20.73 178.7 112 8.04 13.2 6
## 1436 22.24 123.5 116 5.56 11.1 2
## 1437 19.95 133.6 82 6.01 10.8 7
## 1438 18.67 210.8 136 9.49 9.7 6
## 1439 20.04 224.9 112 10.12 15.1 6
## 1440 20.66 188.9 110 8.50 8.6 4
## 1441 17.76 119.1 99 5.36 5.0 10
## 1442 15.86 245.0 123 11.03 8.8 2
## 1443 17.77 201.1 73 9.05 8.3 3
## 1444 16.05 139.4 97 6.27 9.2 7
## 1445 12.43 275.6 82 12.40 8.9 4
## 1446 14.58 377.5 114 16.99 9.7 2
## 1447 13.37 147.4 76 6.63 10.3 2
## 1448 14.56 220.8 131 9.94 8.3 2
## 1449 13.80 184.1 86 8.28 7.8 3
## 1450 24.24 167.4 83 7.53 12.7 6
## 1451 18.79 126.3 88 5.68 10.9 9
## 1452 15.88 184.5 113 8.30 9.5 2
## 1453 12.86 252.4 73 11.36 12.3 3
## 1454 9.95 221.1 115 9.95 8.1 3
## 1455 17.80 224.1 87 10.08 14.1 7
## 1456 28.23 258.6 108 11.64 6.6 7
## 1457 20.03 150.9 113 6.79 9.9 4
## 1458 10.29 254.7 129 11.46 5.9 4
## 1459 17.83 238.4 114 10.73 8.6 4
## 1460 16.18 211.9 104 9.54 16.1 8
## 1461 13.32 182.1 76 8.19 9.3 3
## 1462 22.47 185.8 90 8.36 10.0 6
## 1463 17.64 83.9 123 3.78 8.1 4
## 1464 18.34 223.3 77 10.05 7.6 6
## 1465 20.20 228.0 94 10.26 9.0 5
## 1466 10.34 197.7 84 8.90 8.6 2
## 1467 18.72 184.0 99 8.28 5.1 3
## 1468 18.35 216.3 106 9.73 16.9 4
## 1469 17.58 194.4 114 8.75 4.2 7
## 1470 13.89 173.8 116 7.82 15.0 1
## 1471 11.67 115.7 74 5.21 5.9 3
## 1472 25.63 158.7 104 7.14 8.1 5
## 1473 22.41 165.2 84 7.43 12.0 7
## 1474 15.47 206.5 103 9.29 10.3 4
## 1475 13.32 249.6 85 11.23 16.3 6
## 1476 6.99 169.4 110 7.62 15.8 7
## 1477 16.80 218.8 95 9.85 5.9 4
## 1478 25.33 194.7 110 8.76 9.8 5
## 1479 17.09 195.3 108 8.79 9.7 7
## 1480 19.73 305.4 98 13.74 8.9 2
## 1481 16.46 205.8 120 9.26 11.0 5
## 1482 11.29 190.1 117 8.55 14.8 9
## 1483 12.93 164.4 98 7.40 9.4 4
## 1484 13.86 282.5 100 12.71 10.0 3
## 1485 15.55 241.1 123 10.85 12.9 2
## 1486 14.14 193.5 139 8.71 15.4 3
## 1487 11.81 312.5 97 14.06 9.7 2
## 1488 19.05 244.0 76 10.98 11.1 2
## 1489 14.96 206.1 120 9.27 6.3 4
## 1490 22.70 222.5 91 10.01 11.8 2
## 1491 25.20 211.5 91 9.52 7.0 2
## 1492 14.10 227.3 106 10.23 12.8 3
## 1493 25.78 154.5 65 6.95 9.7 5
## 1494 12.87 153.8 97 6.92 12.8 4
## 1495 15.89 210.7 109 9.48 4.9 10
## 1496 22.27 191.4 101 8.61 10.8 4
## 1497 20.11 255.0 90 11.48 11.7 6
## 1498 12.55 172.7 121 7.77 10.6 5
## 1499 25.33 210.2 95 9.46 11.1 3
## 1500 17.21 230.7 86 10.38 11.5 1
## 1501 23.59 162.5 117 7.31 12.2 6
## 1502 9.17 185.5 81 8.35 12.7 2
## 1503 19.78 168.8 94 7.60 5.9 4
## 1504 13.86 236.7 117 10.65 12.2 3
## 1505 18.71 280.5 147 12.62 8.5 3
## 1506 19.30 188.3 125 8.47 8.8 5
## 1507 14.27 248.3 110 11.17 10.7 3
## 1508 14.29 239.8 145 10.79 12.0 6
## 1509 23.34 252.2 120 11.35 6.6 5
## 1510 14.95 210.3 110 9.46 9.2 3
## 1511 15.36 211.1 113 9.50 8.6 2
## 1512 25.99 171.0 105 7.69 6.7 6
## 1513 18.85 65.7 91 2.96 4.2 1
## 1514 17.67 212.7 101 9.57 12.0 2
## 1515 13.61 311.8 121 14.03 7.0 3
## 1516 12.19 225.2 107 10.13 10.0 5
## 1517 22.14 233.8 97 10.52 8.4 3
## 1518 17.01 194.2 100 8.74 12.4 2
## 1519 17.22 203.6 102 9.16 11.3 5
## 1520 19.44 194.3 113 8.74 8.9 3
## 1521 14.76 214.6 105 9.66 9.5 7
## 1522 20.77 221.6 66 9.97 9.7 2
## 1523 14.64 263.2 109 11.84 5.6 4
## 1524 16.73 212.4 98 9.56 11.4 3
## 1525 15.26 71.1 95 3.20 12.5 3
## 1526 17.95 129.1 73 5.81 13.1 6
## 1527 11.31 213.7 123 9.62 13.4 11
## 1528 20.01 221.3 108 9.96 9.0 2
## 1529 14.20 203.0 84 9.14 4.5 4
## 1530 14.58 227.3 86 10.23 10.6 2
## 1531 18.33 271.8 96 12.23 8.0 6
## 1532 15.81 167.5 95 7.54 9.6 4
## 1533 14.53 171.5 112 7.72 11.5 7
## 1534 19.22 252.0 96 11.34 13.9 5
## 1535 14.68 293.7 78 13.22 10.7 6
## 1536 15.79 237.7 81 10.70 12.0 8
## 1537 16.22 219.9 102 9.90 8.9 5
## 1538 17.78 158.7 81 7.14 11.1 3
## 1539 7.85 197.4 114 8.88 13.7 3
## 1540 8.63 152.3 116 6.85 10.7 5
## 1541 11.49 199.7 93 8.99 15.7 10
## 1542 14.25 270.0 87 12.15 7.6 4
## 1543 17.98 258.2 113 11.62 11.9 3
## 1544 13.43 235.5 105 10.60 12.7 6
## 1545 17.53 141.6 66 6.37 8.2 2
## 1546 15.34 104.1 91 4.68 11.0 1
## 1547 14.10 182.3 72 8.20 14.3 4
## 1548 23.65 170.6 93 7.68 10.5 10
## 1549 14.62 169.2 105 7.61 10.3 5
## 1550 16.09 227.2 125 10.22 14.4 3
## 1551 18.71 112.3 95 5.05 11.4 2
## 1552 23.26 210.0 93 9.45 8.7 3
## 1553 16.29 135.0 68 6.08 16.4 3
## 1554 18.25 228.7 70 10.29 11.3 7
## 1555 11.64 220.9 97 9.94 13.3 10
## 1556 11.87 205.0 103 9.23 8.6 5
## 1557 21.00 259.9 105 11.70 9.6 2
## 1558 21.01 289.4 87 13.02 13.5 5
## 1559 20.09 256.6 102 11.55 14.8 4
## 1560 15.05 217.2 118 9.77 5.9 3
## 1561 22.70 151.5 101 6.82 8.9 4
## 1562 17.92 203.7 86 9.17 10.0 2
## 1563 10.98 207.5 117 9.34 12.9 1
## 1564 9.58 205.1 121 9.23 7.3 4
## 1565 16.64 288.8 78 13.00 0.0 0
## 1566 10.00 198.4 132 8.93 10.8 5
## 1567 16.79 209.5 102 9.43 9.5 10
## 1568 19.27 279.6 110 12.58 15.6 16
## 1569 14.25 274.4 101 12.35 11.4 2
## 1570 14.96 230.1 110 10.35 11.5 3
## 1571 13.13 281.4 107 12.66 17.3 3
## 1572 13.96 191.4 72 8.61 6.1 4
## 1573 16.72 253.5 97 11.41 10.1 9
## 1574 14.44 221.6 77 9.97 11.6 1
## 1575 21.22 185.9 99 8.37 12.7 4
## 1576 12.85 191.0 131 8.59 8.5 2
## 1577 17.43 172.2 100 7.75 10.4 6
## 1578 16.71 186.7 116 8.40 10.2 10
## 1579 17.79 162.1 80 7.29 8.8 5
## 1580 9.91 109.6 105 4.93 16.5 4
## 1581 27.40 166.8 83 7.51 10.6 6
## 1582 22.30 143.9 76 6.48 5.6 11
## 1583 10.23 271.2 96 12.20 9.0 2
## 1584 25.13 211.7 73 9.53 13.2 2
## 1585 12.21 253.4 82 11.40 12.6 5
## 1586 16.80 309.1 78 13.91 11.4 7
## 1587 14.21 194.7 70 8.76 7.2 4
## 1588 13.06 227.0 74 10.22 12.7 4
## 1589 16.90 217.1 70 9.77 12.4 3
## 1590 14.71 239.1 95 10.76 5.8 6
## 1591 23.83 129.6 73 5.83 11.3 7
## 1592 18.67 152.1 120 6.84 11.1 5
## 1593 13.77 187.7 126 8.45 5.8 10
## 1594 23.68 255.3 90 11.49 10.9 7
## 1595 12.00 168.2 68 7.57 6.3 2
## 1596 14.27 178.9 65 8.05 8.6 4
## 1597 16.85 170.8 139 7.69 8.2 5
## 1598 17.33 159.0 109 7.15 15.1 4
## 1599 11.47 79.3 95 3.57 8.8 2
## 1600 17.42 221.7 93 9.98 13.4 3
## 1601 19.63 261.6 100 11.77 4.5 4
## 1602 29.83 163.1 93 7.34 11.3 3
## 1603 15.32 196.2 129 8.83 8.7 4
## 1604 17.68 150.3 83 6.76 11.3 4
## 1605 22.72 114.2 90 5.14 13.3 5
## 1606 17.92 191.4 120 8.61 11.1 4
## 1607 20.05 325.6 99 14.65 10.1 3
## 1608 17.39 154.7 78 6.96 12.9 7
## 1609 17.88 242.7 88 10.92 13.8 8
## 1610 19.95 285.4 83 12.84 11.2 4
## 1611 24.98 306.6 90 13.80 12.6 5
## 1612 14.27 200.6 79 9.03 11.2 2
## 1613 21.82 270.0 107 12.15 7.0 1
## 1614 19.79 173.4 92 7.80 3.8 2
## 1615 24.42 192.0 94 8.64 13.8 4
## 1616 18.11 280.4 77 12.62 7.6 3
## 1617 14.72 272.8 97 12.28 10.9 4
## 1618 13.75 259.3 103 11.67 11.0 4
## 1619 17.80 172.4 109 7.76 11.9 6
## 1620 14.31 204.7 119 9.21 12.2 6
## 1621 16.32 163.1 100 7.34 9.6 2
## 1622 11.98 179.7 111 8.09 7.9 1
## 1623 21.13 133.1 113 5.99 9.6 8
## 1624 17.09 161.9 123 7.29 11.3 5
## 1625 14.32 169.8 122 7.64 11.1 2
## 1626 24.99 290.0 61 13.05 9.8 6
## 1627 16.86 114.1 83 5.13 8.6 4
## 1628 14.28 132.6 98 5.97 12.7 7
## 1629 9.83 190.5 114 8.57 15.8 9
## 1630 23.23 197.8 71 8.90 8.0 3
## 1631 17.14 130.2 121 5.86 13.2 5
## 1632 12.02 238.2 108 10.72 10.0 8
## 1633 16.42 188.0 91 8.46 11.2 6
## 1634 13.69 285.7 89 12.86 9.5 3
## 1635 20.05 210.1 120 9.45 12.0 5
## 1636 16.91 151.9 100 6.84 9.5 3
## 1637 27.39 210.0 96 9.45 8.9 6
## 1638 18.28 241.8 95 10.88 9.1 2
## 1639 15.26 167.8 71 7.55 9.7 2
## 1640 11.82 174.3 99 7.84 11.7 1
## 1641 14.94 202.0 111 9.09 11.0 3
## 1642 20.44 188.9 75 8.50 10.1 3
## 1643 14.71 195.1 125 8.78 7.5 3
## 1644 14.83 311.1 79 14.00 7.3 3
## 1645 14.88 158.2 95 7.12 10.5 6
## 1646 24.33 261.7 129 11.78 11.3 3
## 1647 18.22 151.2 119 6.80 9.9 2
## 1648 8.99 214.8 78 9.67 13.5 4
## 1649 20.13 270.4 110 12.17 8.5 5
## 1650 16.43 171.5 139 7.72 10.4 4
## 1651 18.32 104.7 114 4.71 9.6 2
## 1652 9.20 139.6 132 6.28 17.3 9
## 1653 13.82 177.7 104 8.00 7.2 6
## 1654 18.67 155.7 103 7.01 11.1 2
## 1655 11.78 165.8 114 7.46 10.7 2
## 1656 21.05 207.7 75 9.35 5.0 3
## 1657 19.69 281.3 120 12.66 10.7 5
## 1658 13.43 177.5 75 7.99 6.0 11
## 1659 11.77 246.0 107 11.07 6.4 3
## 1660 13.29 131.3 92 5.91 13.7 5
## 1661 15.53 143.2 112 6.44 14.7 2
## 1662 13.57 210.0 108 9.45 8.9 1
## 1663 18.90 173.9 95 7.83 13.7 5
## 1664 20.50 210.4 83 9.47 10.9 7
## 1665 20.26 165.7 96 7.46 10.6 1
## 1666 10.49 115.6 101 5.20 12.3 4
## 1667 26.24 235.4 79 10.59 6.4 4
## 1668 14.63 129.6 119 5.83 10.2 1
## 1669 14.86 189.6 130 8.53 7.8 6
## 1670 23.00 209.9 130 9.45 8.1 10
## 1671 15.64 266.6 98 12.00 12.7 3
## 1672 23.63 305.4 74 13.74 14.0 6
## 1673 14.33 173.0 105 7.79 13.7 3
## 1674 23.87 171.7 80 7.73 10.5 8
## 1675 19.70 220.2 67 9.91 9.9 1
## 1676 18.79 227.1 71 10.22 10.2 3
## 1677 14.21 161.5 123 7.27 7.7 5
## 1678 21.20 168.2 77 7.57 9.0 10
## 1679 19.41 273.4 91 12.30 8.9 8
## 1680 17.71 267.1 102 12.02 10.6 6
## 1681 15.84 178.3 106 8.02 12.7 1
## 1682 23.18 192.8 105 8.68 7.1 4
## 1683 13.55 228.1 55 10.26 8.5 3
## 1684 20.52 226.0 118 10.17 12.9 4
## 1685 12.33 149.4 99 6.72 14.1 4
## 1686 12.05 194.0 83 8.73 10.8 5
## 1687 18.00 268.5 74 12.08 12.3 3
## 1688 13.20 175.0 111 7.88 14.2 5
## 1689 15.84 175.3 110 7.89 10.5 4
## 1690 18.62 197.4 65 8.88 11.4 5
## 1691 17.90 221.8 109 9.98 12.4 9
## 1692 19.86 179.3 61 8.07 7.3 4
## 1693 15.77 264.6 88 11.91 6.3 7
## 1694 21.17 173.2 124 7.79 12.5 5
## 1695 18.54 254.9 98 11.47 11.5 7
## 1696 16.63 291.8 120 13.13 13.3 5
## 1697 17.05 153.8 107 6.92 12.4 6
## 1698 17.80 206.1 79 9.27 11.5 2
## 1699 14.40 286.3 80 12.88 6.0 4
## 1700 13.62 161.8 84 7.28 8.4 3
## 1701 9.78 192.7 85 8.67 9.4 5
## 1702 23.16 178.2 76 8.02 11.0 10
## 1703 20.43 216.4 74 9.74 7.7 3
## 1704 17.56 178.0 105 8.01 11.1 2
## 1705 20.46 120.0 90 5.40 11.6 5
## 1706 16.22 129.0 105 5.81 7.2 2
## 1707 10.17 267.6 117 12.04 11.7 3
## 1708 13.64 206.9 88 9.31 5.6 9
## 1709 21.98 116.4 110 5.24 11.2 3
## 1710 21.29 181.2 67 8.15 10.5 3
## 1711 19.63 269.8 115 12.14 9.0 7
## 1712 14.74 145.8 99 6.56 11.7 4
## 1713 18.16 164.7 116 7.41 10.3 5
## 1714 15.09 228.9 87 10.30 7.5 3
## 1715 9.17 233.7 82 10.52 11.4 2
## 1716 22.24 228.6 109 10.29 13.3 4
## 1717 20.64 147.4 74 6.63 9.1 2
## 1718 17.74 231.4 93 10.41 14.3 3
## 1719 12.80 297.9 84 13.41 9.7 8
## 1720 12.61 179.8 88 8.09 15.2 5
## 1721 13.78 210.7 131 9.48 6.1 1
## 1722 17.06 230.1 76 10.35 8.2 3
## 1723 15.29 193.8 134 8.72 12.3 1
## 1724 23.49 241.4 75 10.86 10.9 7
## 1725 9.46 170.2 77 7.66 7.1 4
## 1726 17.33 282.6 131 12.72 14.1 4
## 1727 18.40 196.1 126 8.82 11.0 5
## 1728 13.52 259.2 53 11.66 12.2 2
## 1729 20.04 201.8 76 9.08 9.5 5
## 1730 14.50 166.0 85 7.47 13.4 4
## 1731 21.79 247.2 131 11.12 12.6 3
## 1732 25.79 255.6 104 11.50 12.9 7
## 1733 22.12 222.4 100 10.01 8.3 5
## 1734 23.01 239.5 83 10.78 3.5 6
## 1735 25.38 216.9 99 9.76 13.8 3
## 1736 17.60 157.4 93 7.08 14.8 1
## 1737 17.48 191.4 141 8.61 6.9 6
## 1738 17.48 218.5 60 9.83 8.8 6
## 1739 20.89 300.0 99 13.50 4.8 3
## 1740 25.59 167.0 140 7.52 5.8 1
## 1741 11.41 118.9 105 5.35 9.4 6
## 1742 16.54 276.6 78 12.45 3.7 5
## 1743 17.94 237.9 55 10.71 11.4 5
## 1744 21.94 131.3 123 5.91 5.8 2
## 1745 22.05 238.0 132 10.71 7.7 3
## 1746 14.31 188.7 117 8.49 10.2 1
## 1747 17.76 248.2 98 11.17 13.5 6
## 1748 16.75 154.9 132 6.97 10.0 5
## 1749 22.01 268.4 154 12.08 14.1 7
## 1750 14.26 188.8 102 8.50 8.8 3
## 1751 14.35 262.9 126 11.83 6.9 2
## 1752 20.95 218.0 103 9.81 8.8 2
## 1753 10.57 262.0 98 11.79 14.1 3
## 1754 17.71 228.9 120 10.30 7.5 2
## 1755 22.07 141.5 111 6.37 9.7 2
## 1756 14.50 141.2 82 6.35 11.9 5
## 1757 10.48 117.8 103 5.30 9.2 6
## 1758 14.84 165.3 114 7.44 12.0 6
## 1759 19.12 253.9 108 11.43 12.1 7
## 1760 22.21 209.5 108 9.43 8.9 6
## 1761 19.78 259.9 95 11.70 9.2 6
## 1762 20.13 241.2 127 10.85 7.7 2
## 1763 13.25 186.0 83 8.37 7.4 3
## 1764 23.22 171.0 106 7.69 11.5 1
## 1765 21.60 239.4 91 10.77 7.5 4
## 1766 18.79 127.9 101 5.76 12.7 2
## 1767 11.88 171.6 96 7.72 11.6 7
## 1768 7.54 229.4 120 10.32 10.5 3
## 1769 18.72 179.7 124 8.09 10.8 2
## 1770 21.25 133.3 79 6.00 9.6 2
## 1771 18.70 252.9 106 11.38 9.1 3
## 1772 18.69 229.0 99 10.31 12.7 8
## 1773 17.47 114.5 89 5.15 12.5 10
## 1774 13.35 222.4 124 10.01 11.5 3
## 1775 14.28 281.5 87 12.67 6.6 1
## 1776 24.30 256.7 106 11.55 9.5 4
## 1777 19.59 228.2 109 10.27 11.0 5
## 1778 20.86 219.6 80 9.88 10.0 3
## 1779 13.53 236.4 113 10.64 11.3 10
## 1780 22.04 170.5 120 7.67 11.3 7
## 1781 18.78 218.9 129 9.85 12.0 7
## 1782 20.32 116.1 125 5.22 15.1 3
## 1783 14.39 141.1 99 6.35 8.0 1
## 1784 11.90 165.4 148 7.44 10.9 3
## 1785 19.80 214.2 92 9.64 14.1 4
## 1786 18.91 235.6 92 10.60 7.9 6
## 1787 12.48 287.8 144 12.95 8.2 5
## 1788 20.52 169.6 77 7.63 7.8 2
## 1789 19.30 195.7 103 8.81 12.3 5
## 1790 6.22 114.3 99 5.14 4.7 7
## 1791 17.48 210.2 123 9.46 9.2 3
## 1792 17.99 179.5 91 8.08 10.8 3
## 1793 17.59 231.7 99 10.43 6.1 6
## 1794 22.03 279.8 123 12.59 7.3 4
## 1795 18.97 203.7 107 9.17 11.5 5
## 1796 22.34 123.8 131 5.57 15.2 4
## 1797 11.54 212.4 129 9.56 13.0 4
## 1798 17.67 203.6 95 9.16 10.2 11
## 1799 21.02 214.7 94 9.66 12.0 4
## 1800 14.25 87.5 90 3.94 6.2 10
## 1801 20.76 221.2 93 9.95 10.7 4
## 1802 16.97 263.9 96 11.88 8.5 6
## 1803 19.39 98.0 125 4.41 13.8 7
## 1804 22.27 210.0 93 9.45 8.5 5
## 1805 13.66 263.8 112 11.87 9.6 2
## 1806 19.63 217.1 99 9.77 10.7 9
## 1807 10.79 185.6 92 8.35 11.7 6
## 1808 16.97 135.9 71 6.12 12.9 1
## 1809 17.88 217.4 106 9.78 12.4 2
## 1810 16.69 294.8 111 13.27 13.8 2
## 1811 20.49 227.5 153 10.24 11.9 5
## 1812 19.02 240.3 96 10.81 15.4 8
## 1813 20.26 94.4 96 4.25 8.3 3
## 1814 13.91 169.7 138 7.64 6.1 3
## 1815 18.44 112.8 125 5.08 13.1 4
## 1816 13.57 181.6 100 8.17 9.5 3
## 1817 18.39 141.1 116 6.35 18.4 3
## 1818 12.07 190.7 128 8.58 7.3 4
## 1819 16.27 286.5 125 12.89 11.8 3
## 1820 14.25 262.7 87 11.82 4.4 4
## 1821 14.05 243.9 95 10.98 8.9 2
## 1822 20.83 108.9 113 4.90 15.4 7
## 1823 20.48 127.1 88 5.72 8.8 4
## 1824 11.81 277.8 104 12.50 11.8 3
## 1825 20.46 185.7 125 8.36 15.0 3
## 1826 22.09 115.9 103 5.22 7.8 2
## 1827 12.96 199.4 128 8.97 7.7 2
## 1828 14.96 250.9 113 11.29 13.4 6
## 1829 17.37 141.9 72 6.39 9.9 2
## 1830 16.78 162.1 117 7.29 10.6 10
## 1831 14.20 72.2 89 3.25 10.5 6
## 1832 22.74 266.9 130 12.01 11.3 5
## 1833 18.03 138.4 134 6.23 15.1 11
## 1834 23.42 182.5 122 8.21 8.0 3
## 1835 18.97 256.2 130 11.53 14.2 6
## 1836 15.17 218.3 107 9.82 8.0 3
## 1837 21.49 156.7 95 7.05 9.7 3
## 1838 25.77 171.8 84 7.73 8.6 2
## 1839 15.73 177.7 144 8.00 8.1 9
## 1840 6.62 247.1 105 11.12 13.2 4
## 1841 6.45 224.6 115 10.11 7.1 3
## 1842 9.03 157.4 94 7.08 5.3 3
## 1843 17.09 231.3 73 10.41 8.9 4
## 1844 14.95 243.5 55 10.96 16.2 3
## 1845 20.78 207.5 74 9.34 11.5 3
## 1846 18.97 269.0 116 12.11 13.9 3
## 1847 14.88 161.3 117 7.26 11.5 4
## 1848 17.88 129.2 117 5.81 12.5 8
## 1849 13.57 197.4 62 8.88 8.6 3
## 1850 13.54 216.8 86 9.76 13.9 1
## 1851 18.54 212.3 105 9.55 9.3 8
## 1852 16.15 144.0 116 6.48 10.9 3
## 1853 14.25 240.0 107 10.80 14.5 3
## 1854 21.51 221.6 113 9.97 5.9 6
## 1855 14.20 271.8 94 12.23 5.5 4
## 1856 12.10 91.2 86 4.10 10.9 5
## 1857 25.64 139.4 108 6.27 9.7 5
## 1858 24.31 249.4 117 11.22 12.1 4
## 1859 22.50 111.7 103 5.03 11.2 7
## 1860 23.00 230.4 109 10.37 8.0 3
## 1861 23.09 203.3 108 9.15 7.4 7
## 1862 13.61 184.0 120 8.28 7.7 2
## 1863 21.44 178.1 103 8.01 8.0 3
## 1864 23.10 110.7 78 4.98 8.7 4
## 1865 22.23 203.8 90 9.17 11.4 5
## 1866 15.90 149.8 100 6.74 7.9 4
## 1867 21.57 213.1 125 9.59 8.9 1
## 1868 12.72 227.8 60 10.25 9.8 3
## 1869 19.07 197.4 60 8.88 8.3 2
## 1870 23.21 278.2 93 12.52 13.5 8
## 1871 21.48 227.5 114 10.24 8.0 5
## 1872 18.62 243.6 107 10.96 5.5 5
## 1873 10.53 323.5 88 14.56 8.1 3
## 1874 10.14 194.3 83 8.74 12.0 1
## 1875 21.45 185.4 104 8.34 4.9 3
## 1876 19.63 181.5 86 8.17 11.4 7
## 1877 16.68 236.1 119 10.62 8.1 1
## 1878 14.06 235.4 117 10.59 9.7 4
## 1879 19.73 204.4 123 9.20 11.5 2
## 1880 14.87 201.6 135 9.07 9.4 7
## 1881 12.67 255.5 115 11.50 14.8 1
## 1882 20.09 235.5 105 10.60 7.7 2
## 1883 19.26 198.8 91 8.95 12.9 3
## 1884 14.65 184.5 94 8.30 11.1 9
## 1885 17.05 192.4 98 8.66 12.3 7
## 1886 19.71 164.7 85 7.41 12.7 6
## 1887 14.88 217.2 106 9.77 5.5 6
## 1888 9.10 167.7 95 7.55 14.7 3
## 1889 24.04 84.8 118 3.82 12.0 4
## 1890 11.99 171.5 76 7.72 10.3 15
## 1891 20.64 85.8 80 3.86 10.3 3
## 1892 11.47 310.5 83 13.97 10.3 2
## 1893 15.72 143.2 146 6.44 9.9 1
## 1894 21.63 273.2 98 12.29 8.9 6
## 1895 11.65 256.3 107 11.53 10.2 5
## 1896 14.08 208.0 120 9.36 10.1 9
## 1897 17.87 257.2 93 11.57 9.9 5
## 1898 15.90 281.1 112 12.65 12.9 3
## 1899 16.11 223.9 93 10.08 7.4 5
## 1900 7.53 290.0 96 13.05 10.8 6
## 1901 21.76 211.0 87 9.49 9.9 1
## 1902 17.95 196.2 122 8.83 10.2 6
## 1903 16.64 221.6 82 9.97 11.2 7
## 1904 10.17 193.2 125 8.69 14.0 7
## 1905 17.45 130.0 132 5.85 14.5 4
## 1906 12.94 221.0 93 9.95 7.0 3
## 1907 5.54 144.4 92 6.50 10.9 4
## 1908 20.17 211.6 116 9.52 9.8 1
## 1909 13.03 309.2 123 13.91 12.8 3
## 1910 19.13 201.7 89 9.08 12.1 2
## 1911 19.58 256.7 96 11.55 6.5 4
## 1912 18.48 220.1 100 9.90 8.2 7
## 1913 14.37 221.2 104 9.95 10.4 8
## 1914 11.86 187.4 102 8.43 5.5 4
## 1915 9.62 134.1 118 6.03 9.9 3
## 1916 16.89 301.7 136 13.58 6.5 9
## 1917 11.25 242.9 96 10.93 11.8 3
## 1918 17.01 266.7 105 12.00 11.0 3
## 1919 14.99 225.9 112 10.17 14.2 2
## 1920 18.33 230.8 125 10.39 9.5 1
## 1921 16.21 214.5 106 9.65 8.6 6
## 1922 17.24 136.2 119 6.13 9.4 6
## 1923 10.78 182.4 87 8.21 9.7 8
## 1924 13.00 318.3 115 14.32 11.8 6
## 1925 24.17 305.5 101 13.75 11.3 2
## 1926 16.80 247.5 102 11.14 9.8 6
## 1927 17.36 196.2 92 8.83 9.8 4
## 1928 7.69 150.3 64 6.76 15.3 3
## 1929 23.38 141.1 92 6.35 11.2 5
## 1930 13.56 260.6 96 11.73 11.6 4
## 1931 17.77 214.0 96 9.63 10.9 1
## 1932 15.97 120.3 131 5.41 7.8 5
## 1933 18.21 315.0 106 14.18 8.6 5
## 1934 21.80 229.1 89 10.31 10.0 2
## 1935 25.63 202.8 109 9.13 8.7 3
## 1936 14.20 244.7 80 11.01 13.6 5
## 1937 9.63 188.6 105 8.49 11.4 3
## 1938 13.18 99.0 117 4.46 12.1 4
## 1939 16.01 254.4 85 11.45 6.8 6
## 1940 19.30 178.1 135 8.01 9.2 4
## 1941 13.82 250.3 101 11.26 8.7 4
## 1942 10.71 289.2 135 13.01 7.6 3
## 1943 17.04 279.2 91 12.56 8.8 3
## 1944 14.93 243.3 92 10.95 10.9 7
## 1945 17.45 218.2 90 9.82 6.7 3
## 1946 21.88 107.3 88 4.83 8.5 3
## 1947 17.24 146.4 73 6.59 5.1 5
## 1948 17.99 230.6 100 10.38 8.0 4
## 1949 20.66 255.2 114 11.48 6.8 2
## 1950 22.85 181.5 91 8.17 10.0 8
## 1951 11.34 176.1 84 7.92 7.0 4
## 1952 15.00 154.5 102 6.95 9.6 7
## 1953 15.47 218.2 127 9.82 6.1 6
## 1954 19.15 221.6 130 9.97 11.1 5
## 1955 23.67 193.1 134 8.69 11.8 10
## 1956 17.59 193.9 70 8.73 5.6 4
## 1957 17.60 159.8 76 7.19 12.6 4
## 1958 17.35 156.2 113 7.03 10.2 2
## 1959 10.20 130.3 64 5.86 12.4 2
## 1960 22.76 200.5 62 9.02 12.8 3
## 1961 4.18 163.3 93 7.35 13.9 11
## 1962 21.22 162.2 84 7.30 11.1 4
## 1963 20.56 252.1 92 11.34 10.4 3
## 1964 16.95 142.7 105 6.42 10.1 5
## 1965 16.01 188.3 98 8.47 11.0 6
## 1966 14.44 212.3 118 9.55 11.1 2
## 1967 15.72 234.3 89 10.54 2.0 7
## 1968 20.93 172.1 124 7.74 9.4 10
## 1969 15.70 174.1 94 7.83 8.0 6
## 1970 15.65 272.9 107 12.28 13.5 2
## 1971 18.10 208.2 73 9.37 13.0 3
## 1972 26.40 234.7 92 10.56 9.0 4
## 1973 21.75 136.7 62 6.15 12.5 4
## 1974 20.37 149.5 80 6.73 6.3 1
## 1975 13.73 271.5 100 12.22 8.7 2
## 1976 12.67 171.4 72 7.71 7.0 2
## 1977 16.67 215.4 108 9.69 10.4 2
## 1978 17.76 167.8 86 7.55 15.6 6
## 1979 14.32 164.0 102 7.38 13.3 3
## 1980 15.18 202.7 90 9.12 7.4 3
## 1981 12.12 314.1 144 14.13 12.7 2
## 1982 21.09 214.4 122 9.65 5.3 5
## 1983 21.73 192.9 95 8.68 15.7 4
## 1984 19.58 223.7 85 10.07 9.4 3
## 1985 19.22 159.1 94 7.16 16.4 5
## 1986 19.41 180.1 111 8.10 8.2 5
## 1987 11.59 156.6 89 7.05 12.1 1
## 1988 14.21 138.6 106 6.24 10.2 4
## 1989 15.78 212.5 128 9.56 12.1 2
## 1990 22.30 226.5 82 10.19 12.0 7
## 1991 17.93 229.9 125 10.35 12.4 4
## 1992 18.43 179.4 107 8.07 12.6 3
## 1993 12.62 183.9 100 8.28 7.6 3
## 1994 22.64 214.0 110 9.63 4.5 3
## 1995 13.40 98.2 70 4.42 10.6 7
## 1996 21.94 215.5 130 9.70 11.7 1
## 1997 25.48 185.3 120 8.34 7.6 3
## 1998 11.06 165.8 63 7.46 13.1 6
## 1999 16.47 171.7 88 7.73 9.7 3
## 2000 16.54 159.0 54 7.15 10.9 9
## 2001 13.74 192.4 112 8.66 10.1 3
## 2002 15.15 214.2 152 9.64 10.7 14
## 2003 15.86 258.2 105 11.62 12.9 5
## 2004 13.74 189.9 136 8.55 13.0 6
## 2005 17.43 245.2 100 11.03 17.8 3
## 2006 17.39 196.9 103 8.86 11.1 7
## 2007 11.56 210.5 82 9.47 6.6 2
## 2008 19.82 188.5 121 8.48 6.2 6
## 2009 17.86 95.0 98 4.27 11.9 4
## 2010 15.75 178.7 105 8.04 8.3 4
## 2011 16.12 170.9 67 7.69 12.7 7
## 2012 16.47 192.0 123 8.64 9.3 7
## 2013 10.50 160.7 105 7.23 6.1 2
## 2014 16.15 163.2 99 7.34 10.8 2
## 2015 14.62 183.4 96 8.25 13.7 3
## 2016 12.59 145.2 74 6.53 13.8 4
## 2017 22.12 177.4 112 7.98 9.2 5
## 2018 14.68 192.6 113 8.67 9.5 4
## 2019 20.98 203.9 117 9.18 7.5 11
## 2020 16.41 149.4 93 6.72 11.1 4
## 2021 19.58 217.0 83 9.76 5.2 1
## 2022 15.15 199.3 104 8.97 11.1 4
## 2023 15.55 172.9 92 7.78 10.6 7
## 2024 8.46 189.5 75 8.53 13.4 3
## 2025 18.44 161.3 91 7.26 12.6 3
## 2026 16.46 180.9 145 8.14 13.4 3
## 2027 16.49 256.1 114 11.52 14.1 6
## 2028 15.79 227.6 97 10.24 10.8 3
## 2029 12.89 303.5 114 13.66 8.7 3
## 2030 17.70 180.9 106 8.14 14.4 10
## 2031 23.81 154.2 110 6.94 11.8 1
## 2032 20.91 207.2 121 9.32 11.4 9
## 2033 23.66 194.8 61 8.77 13.2 10
## 2034 23.72 250.7 65 11.28 10.4 4
## 2035 17.77 328.5 112 14.78 14.6 2
## 2036 24.62 212.9 71 9.58 8.7 3
## 2037 15.33 133.4 122 6.00 8.0 6
## 2038 20.42 158.6 108 7.14 6.7 8
## 2039 19.45 257.5 106 11.59 10.1 8
## 2040 17.82 192.5 129 8.66 10.6 2
## 2041 14.95 269.9 85 12.15 9.7 1
## 2042 16.72 151.1 103 6.80 9.9 4
## 2043 22.39 181.1 91 8.15 11.2 8
## 2044 16.39 162.9 84 7.33 6.4 5
## 2045 14.24 212.8 114 9.58 10.0 10
## 2046 23.55 101.8 94 4.58 13.6 4
## 2047 16.46 248.9 119 11.20 11.1 5
## 2048 15.32 220.6 95 9.93 12.2 4
## 2049 14.35 244.1 127 10.98 9.6 9
## 2050 17.80 212.9 67 9.58 7.0 2
## 2051 10.26 244.4 102 11.00 7.5 4
## 2052 14.59 219.0 98 9.86 8.2 6
## 2053 18.17 214.3 112 9.64 9.7 6
## 2054 20.02 102.0 146 4.59 13.0 4
## 2055 18.18 120.0 126 5.40 7.1 2
## 2056 10.85 142.1 103 6.39 13.5 3
## 2057 18.78 196.9 116 8.86 13.3 7
## 2058 15.20 228.7 96 10.29 11.5 3
## 2059 20.60 279.8 105 12.59 12.1 9
## 2060 16.47 257.6 61 11.59 8.9 2
## 2061 22.70 225.1 105 10.13 7.3 5
## 2062 18.89 117.6 102 5.29 10.3 3
## 2063 22.93 220.4 116 9.92 10.3 4
## 2064 10.85 253.1 109 11.39 10.1 5
## 2065 17.76 232.4 82 10.46 9.2 3
## 2066 20.18 148.1 83 6.66 12.2 6
## 2067 21.63 219.6 122 9.88 15.1 5
## 2068 19.63 149.9 91 6.75 9.9 3
## 2069 14.33 95.3 59 4.29 12.3 4
## 2070 21.32 176.0 112 7.92 9.8 2
## 2071 15.16 162.4 113 7.31 13.1 5
## 2072 26.72 246.7 81 11.10 4.2 9
## 2073 9.75 153.6 88 6.91 6.5 6
## 2074 20.44 233.5 121 10.51 11.3 4
## 2075 25.10 195.5 121 8.80 6.6 5
## 2076 11.82 199.1 139 8.96 8.8 1
## 2077 21.73 208.0 120 9.36 10.1 2
## 2078 11.54 277.6 123 12.49 13.1 3
## 2079 14.98 89.7 81 4.04 4.3 4
## 2080 17.02 237.4 89 10.68 13.1 9
## 2081 25.58 236.0 68 10.62 11.9 5
## 2082 8.02 287.6 95 12.94 10.1 7
## 2083 16.12 222.8 75 10.03 9.8 4
## 2084 15.44 155.6 104 7.00 8.3 6
## 2085 15.01 214.4 91 9.65 8.8 5
## 2086 13.02 215.6 103 9.70 11.1 7
## 2087 22.59 228.3 80 10.27 12.6 2
## 2088 18.06 214.7 114 9.66 11.1 8
## 2089 16.12 157.6 99 7.09 16.4 3
## 2090 27.09 224.1 108 10.08 11.1 7
## 2091 19.98 140.1 90 6.30 10.6 5
## 2092 19.73 149.2 82 6.71 7.5 2
## 2093 11.99 205.7 101 9.26 10.8 4
## 2094 20.25 176.4 107 7.94 12.9 3
## 2095 13.34 175.8 82 7.91 11.0 6
## 2096 16.10 153.6 104 6.91 13.3 4
## 2097 9.63 118.0 71 5.31 16.1 4
## 2098 16.02 189.3 87 8.52 9.8 4
## 2099 23.35 184.4 95 8.30 9.8 4
## 2100 21.58 263.3 126 11.85 10.1 5
## 2101 14.10 132.8 99 5.98 13.3 7
## 2102 16.47 206.0 106 9.27 6.9 6
## 2103 18.39 179.6 99 8.08 12.7 3
## 2104 17.11 214.7 88 9.66 9.7 4
## 2105 15.73 157.0 74 7.07 10.9 4
## 2106 19.80 154.0 86 6.93 9.6 7
## 2107 13.65 218.8 102 9.85 13.6 2
## 2108 23.28 227.0 77 10.22 10.1 6
## 2109 18.04 169.3 87 7.62 9.5 4
## 2110 20.54 160.0 112 7.20 12.6 1
## 2111 15.02 188.2 93 8.47 10.2 6
## 2112 10.80 329.3 66 14.82 14.4 1
## 2113 17.80 161.1 78 7.25 12.2 2
## 2114 21.73 242.8 76 10.93 11.7 4
## 2115 14.32 178.3 91 8.02 13.3 5
## 2116 15.00 232.4 108 10.46 15.2 1
## 2117 10.74 148.6 87 6.69 14.2 4
## 2118 13.81 184.9 120 8.32 11.9 7
## 2119 15.56 226.4 100 10.19 9.8 1
## 2120 20.60 231.8 78 10.43 11.6 4
## 2121 18.38 229.8 82 10.34 13.7 3
## 2122 23.48 146.5 111 6.59 12.7 2
## 2123 20.96 271.9 102 12.24 16.4 3
## 2124 13.40 192.5 69 8.66 8.1 3
## 2125 13.68 279.5 96 12.58 10.7 3
## 2126 18.99 257.9 73 11.61 3.8 10
## 2127 15.33 262.9 105 11.83 9.7 6
## 2128 17.50 216.6 112 9.75 11.2 5
## 2129 9.05 221.7 96 9.98 10.2 6
## 2130 20.38 293.5 135 13.21 7.4 4
## 2131 21.40 168.6 112 7.59 10.9 10
## 2132 16.41 253.4 88 11.40 11.0 4
## 2133 15.19 185.7 113 8.36 6.0 3
## 2134 19.11 197.6 91 8.89 10.3 8
## 2135 19.09 256.7 74 11.55 13.0 1
## 2136 18.81 150.4 120 6.77 11.2 2
## 2137 24.51 180.6 103 8.13 11.3 7
## 2138 17.53 163.4 93 7.35 8.9 3
## 2139 19.98 239.7 119 10.79 10.9 1
## 2140 17.60 284.6 95 12.81 12.0 5
## 2141 11.62 244.4 81 11.00 13.2 5
## 2142 18.52 248.1 108 11.16 6.6 3
## 2143 17.87 146.4 106 6.59 12.5 3
## 2144 10.39 189.1 103 8.51 11.3 5
## 2145 14.45 165.9 78 7.47 12.7 2
## 2146 15.57 293.7 72 13.22 10.8 5
## 2147 14.25 155.7 86 7.01 10.9 4
## 2148 22.26 166.8 108 7.51 12.7 4
## 2149 19.10 227.7 91 10.25 10.0 7
## 2150 13.89 146.7 88 6.60 11.6 5
## 2151 25.89 181.2 132 8.15 12.6 4
## 2152 12.20 273.7 110 12.32 9.6 6
## 2153 11.83 146.7 89 6.60 11.1 3
## 2154 15.28 145.7 120 6.56 9.5 4
## 2155 20.95 285.3 104 12.84 12.5 8
## 2156 21.81 168.5 104 7.58 12.0 5
## 2157 16.32 212.2 98 9.55 11.3 11
## 2158 10.51 229.5 99 10.33 10.2 2
## 2159 22.47 235.2 97 10.58 13.2 3
## 2160 15.49 279.8 105 12.59 13.0 2
## 2161 28.89 172.9 76 7.78 7.9 1
## 2162 13.13 196.0 57 8.82 12.1 5
## 2163 25.37 214.2 104 9.64 6.9 4
## 2164 22.69 211.0 118 9.49 7.4 10
## 2165 21.46 118.3 112 5.32 9.9 1
## 2166 20.70 178.2 92 8.02 13.0 3
## 2167 21.34 138.3 85 6.22 11.2 2
## 2168 17.35 238.4 109 10.73 6.7 8
## 2169 14.32 109.3 99 4.92 10.3 3
## 2170 16.78 238.5 86 10.73 10.6 2
## 2171 19.23 254.1 72 11.43 10.9 4
## 2172 17.98 207.4 124 9.33 6.8 1
## 2173 14.06 208.4 97 9.38 11.2 4
## 2174 15.21 152.6 96 6.87 13.3 7
## 2175 7.59 150.7 92 6.78 10.3 5
## 2176 16.09 174.9 82 7.87 8.8 5
## 2177 17.88 229.4 104 10.32 7.8 4
## 2178 12.64 282.5 105 12.71 13.1 1
## 2179 22.37 137.7 74 6.20 7.3 5
## 2180 16.41 99.3 119 4.47 11.6 3
## 2181 10.53 266.3 105 11.98 2.9 7
## 2182 17.51 192.4 117 8.66 15.0 5
## 2183 20.64 243.0 93 10.93 13.0 4
## 2184 24.18 176.0 98 7.92 14.0 6
## 2185 22.63 228.2 90 10.27 11.8 5
## 2186 12.72 191.4 87 8.61 13.0 3
## 2187 27.80 226.5 119 10.19 10.9 2
## 2188 14.73 216.5 64 9.74 12.4 4
## 2189 27.12 237.6 78 10.69 7.3 4
## 2190 15.05 162.2 127 7.30 9.7 4
## 2191 21.42 189.0 104 8.50 10.9 1
## 2192 14.50 137.4 74 6.18 5.4 9
## 2193 21.81 173.6 112 7.81 5.3 6
## 2194 17.99 189.3 104 8.52 9.4 2
## 2195 19.58 243.6 104 10.96 9.0 3
## 2196 15.68 208.3 101 9.37 6.1 10
## 2197 24.85 142.3 116 6.40 11.5 4
## 2198 18.89 192.0 95 8.64 3.1 1
## 2199 15.45 100.9 131 4.54 3.3 5
## 2200 14.82 245.3 59 11.04 8.5 4
## 2201 10.50 213.2 51 9.59 8.4 6
## 2202 15.37 193.1 94 8.69 14.0 3
## 2203 16.81 151.1 92 6.80 10.4 3
## 2204 25.02 239.8 120 10.79 11.0 2
## 2205 10.17 173.9 126 7.83 6.8 3
## 2206 11.73 233.5 112 10.51 11.2 8
## 2207 20.06 152.5 104 6.86 10.6 4
## 2208 10.29 198.0 126 8.91 9.8 5
## 2209 18.75 224.7 104 10.11 9.6 3
## 2210 12.28 157.9 106 7.11 6.8 3
## 2211 16.17 255.2 84 11.48 11.7 7
## 2212 19.23 189.8 99 8.54 11.1 3
## 2213 14.53 177.3 130 7.98 4.8 12
## 2214 25.79 197.1 71 8.87 12.4 2
## 2215 24.24 150.8 122 6.79 13.0 7
## 2216 14.49 227.6 80 10.24 11.5 3
## 2217 15.91 181.1 84 8.15 11.8 3
## 2218 15.22 179.6 126 8.08 11.4 5
## 2219 21.06 219.0 78 9.86 11.3 5
## 2220 10.86 225.6 86 10.15 9.9 4
## 2221 21.16 200.8 87 9.04 8.6 7
## 2222 17.77 169.7 70 7.64 10.2 6
## 2223 13.55 269.1 94 12.11 12.1 9
## 2224 12.16 165.8 84 7.46 11.0 4
## 2225 11.42 215.6 84 9.70 15.5 5
## 2226 16.05 253.2 88 11.39 12.1 5
## 2227 18.04 152.7 92 6.87 10.5 2
## 2228 19.00 217.4 90 9.78 10.2 6
## 2229 18.39 154.2 66 6.94 7.6 5
## 2230 21.31 249.4 86 11.22 17.6 5
## 2231 17.43 119.4 111 5.37 7.8 3
## 2232 9.32 172.7 107 7.77 7.1 9
## 2233 13.23 261.6 105 11.77 12.4 5
## 2234 16.37 255.7 125 11.51 11.0 5
## 2235 15.78 159.4 83 7.17 10.0 1
## 2236 12.98 232.8 95 10.48 9.7 3
## 2237 10.24 220.8 121 9.94 14.4 6
## 2238 15.24 242.7 131 10.92 6.8 7
## 2239 15.33 230.6 106 10.38 17.3 4
## 2240 16.88 206.6 96 9.30 9.3 3
## 2241 16.97 160.7 106 7.23 13.7 7
## 2242 12.25 226.6 101 10.20 4.9 3
## 2243 19.12 212.4 105 9.56 11.4 3
## 2244 14.54 196.1 96 8.82 8.6 4
## 2245 16.63 232.6 104 10.47 10.9 3
## 2246 13.76 128.3 91 5.77 8.8 5
## 2247 17.98 188.5 105 8.48 11.3 6
## 2248 17.84 194.1 100 8.73 12.8 3
## 2249 17.77 268.2 130 12.07 13.3 3
## 2250 15.10 159.8 72 7.19 14.4 4
## 2251 17.98 291.2 123 13.10 7.2 4
## 2252 13.98 94.0 98 4.23 6.4 6
## 2253 13.74 203.1 82 9.14 10.6 6
## 2254 17.25 259.0 58 11.66 8.9 8
## 2255 5.88 257.6 64 11.59 6.7 3
## 2256 15.42 131.4 108 5.91 11.3 4
## 2257 14.23 238.2 117 10.72 2.6 6
## 2258 19.85 221.3 92 9.96 13.5 3
## 2259 16.63 210.3 78 9.46 7.2 3
## 2260 12.55 192.7 97 8.67 10.1 7
## 2261 17.29 228.4 117 10.28 13.0 5
## 2262 27.99 127.1 78 5.72 9.4 5
## 2263 15.65 151.6 75 6.82 14.6 1
## 2264 20.13 173.3 149 7.80 9.0 9
## 2265 17.31 202.0 105 9.09 8.7 3
## 2266 21.52 223.2 114 10.04 8.7 4
## 2267 18.88 118.5 111 5.33 10.0 4
## 2268 18.39 218.4 106 9.83 12.8 4
## 2269 16.24 215.5 82 9.70 11.3 7
## 2270 14.76 162.6 96 7.32 8.2 13
## 2271 19.43 303.5 94 13.66 12.2 4
## 2272 19.65 313.4 108 14.10 8.7 10
## 2273 22.28 268.2 98 12.07 11.7 2
## 2274 13.52 139.5 101 6.28 7.6 3
## 2275 17.81 180.6 75 8.13 9.9 2
## 2276 12.33 245.3 140 11.04 7.7 7
## 2277 17.43 175.8 88 7.91 5.9 2
## 2278 21.12 269.6 78 12.13 13.3 4
## 2279 21.45 255.7 76 11.51 8.4 4
## 2280 15.77 237.3 145 10.68 9.5 5
## 2281 26.66 126.6 117 5.70 13.4 6
## 2282 17.50 286.5 80 12.89 8.3 4
## 2283 18.06 245.9 67 11.07 12.6 4
## 2284 10.24 117.0 102 5.27 4.7 4
## 2285 14.44 207.0 133 9.32 12.6 5
## 2286 15.77 226.7 96 10.20 11.8 3
## 2287 14.22 270.6 105 12.18 10.4 7
## 2288 13.18 199.5 97 8.98 6.6 4
## 2289 10.79 221.2 166 9.95 8.8 4
## 2290 24.88 184.0 90 8.28 10.8 7
## 2291 22.09 204.3 115 9.19 10.7 2
## 2292 20.13 182.3 75 8.20 11.9 1
## 2293 16.58 159.6 139 7.18 10.5 2
## 2294 16.26 226.7 79 10.20 9.1 3
## 2295 9.85 220.6 115 9.93 7.4 4
## 2296 15.12 113.3 117 5.10 6.6 4
## 2297 20.23 198.4 103 8.93 10.2 6
## 2298 18.62 212.6 80 9.57 12.9 4
## 2299 13.57 148.7 115 6.69 8.8 5
## 2300 20.07 192.7 91 8.67 8.0 4
## 2301 23.53 223.5 65 10.06 8.8 3
## 2302 15.34 226.0 94 10.17 17.0 6
## 2303 17.21 233.1 96 10.49 11.5 6
## 2304 12.81 188.2 67 8.47 10.1 4
## 2305 19.75 127.7 112 5.75 11.0 9
## 2306 7.63 326.0 91 14.67 11.1 3
## 2307 13.54 264.4 94 11.90 6.0 5
## 2308 17.06 201.7 102 9.08 10.9 3
## 2309 14.77 178.4 61 8.03 12.1 3
## 2310 25.82 206.1 82 9.27 8.9 4
## 2311 19.87 215.8 90 9.71 13.5 2
## 2312 20.59 304.2 109 13.69 10.8 2
## 2313 16.68 310.1 110 13.95 9.2 3
## 2314 15.93 119.1 81 5.36 11.5 4
## 2315 20.77 207.2 97 9.32 11.6 4
## 2316 20.97 103.8 118 4.67 7.0 4
## 2317 5.61 213.1 105 9.59 12.9 4
## 2318 15.90 128.1 71 5.76 6.3 3
## 2319 18.14 190.8 92 8.59 11.5 7
## 2320 21.51 180.8 123 8.14 8.7 6
## 2321 17.44 166.3 119 7.48 11.7 4
## 2322 22.36 367.7 89 16.55 15.5 2
## 2323 22.59 269.7 69 12.14 10.6 6
## 2324 17.31 201.7 65 9.08 8.2 1
## 2325 19.61 214.3 91 9.64 7.8 2
## 2326 20.15 239.9 122 10.80 9.8 5
## 2327 10.02 248.5 104 11.18 14.0 2
## 2328 11.20 187.4 98 8.43 9.4 1
## 2329 7.45 247.2 87 11.12 8.4 6
## 2330 21.23 192.3 99 8.65 8.9 2
## 2331 20.24 195.6 102 8.80 10.6 2
## 2332 30.75 147.5 132 6.64 7.2 2
## 2333 16.86 181.1 76 8.15 10.5 4
## 2334 14.02 231.5 75 10.42 8.2 4
## 2335 12.49 190.7 105 8.58 10.0 4
## 2336 17.27 168.7 82 7.59 10.0 2
## 2337 26.59 200.0 85 9.00 11.6 5
## 2338 28.53 149.8 64 6.74 8.3 6
## 2339 15.98 235.0 102 10.58 11.2 3
## 2340 22.16 98.6 109 4.44 8.9 4
## 2341 16.13 196.3 97 8.83 12.6 7
## 2342 20.80 276.9 123 12.46 7.1 7
## 2343 13.06 213.3 106 9.60 10.2 2
## 2344 14.45 190.6 89 8.58 13.8 2
## 2345 23.91 105.2 113 4.73 8.2 8
## 2346 11.72 206.5 88 9.29 0.0 0
## 2347 12.74 196.9 119 8.86 4.6 4
## 2348 14.59 204.0 85 9.18 13.5 9
## 2349 18.67 200.4 89 9.02 11.3 3
## 2350 17.90 238.2 88 10.72 9.6 5
## 2351 9.60 56.6 99 2.55 8.7 4
## 2352 22.36 207.1 113 9.32 3.4 4
## 2353 20.74 159.6 81 7.18 12.8 4
## 2354 18.67 210.0 74 9.45 11.7 4
## 2355 17.94 203.7 129 9.17 13.1 7
## 2356 19.20 269.0 105 12.11 12.5 8
## 2357 24.62 269.1 126 12.11 5.8 3
## 2358 23.42 176.7 126 7.95 10.1 2
## 2359 16.75 110.1 123 4.95 14.6 8
## 2360 18.48 239.9 102 10.80 13.1 4
## 2361 16.95 162.4 107 7.31 9.4 3
## 2362 8.13 181.5 94 8.17 10.5 3
## 2363 19.69 185.3 128 8.34 0.0 0
## 2364 13.37 215.5 77 9.70 13.3 3
## 2365 23.21 153.9 76 6.93 13.7 4
## 2366 20.28 289.5 69 13.03 11.5 5
## 2367 12.53 203.5 110 9.16 14.0 5
## 2368 16.91 165.9 90 7.47 6.6 5
## 2369 13.63 170.9 99 7.69 7.6 7
## 2370 11.92 215.4 89 9.69 9.0 6
## 2371 14.35 199.7 97 8.99 9.9 4
## 2372 17.08 271.9 74 12.24 18.2 3
## 2373 13.14 213.9 102 9.63 10.1 3
## 2374 12.98 224.7 92 10.11 10.2 2
## 2375 16.49 227.3 88 10.23 8.4 5
## 2376 19.57 227.5 118 10.24 10.4 4
## 2377 19.74 147.1 76 6.62 5.8 3
## 2378 14.67 280.5 127 12.62 8.8 4
## 2379 13.98 140.3 101 6.31 12.6 7
## 2380 19.86 187.3 104 8.43 11.8 1
## 2381 11.29 227.2 124 10.22 10.1 2
## 2382 11.14 230.7 67 10.38 7.6 5
## 2383 15.56 54.0 134 2.43 10.9 8
## 2384 19.85 199.5 144 8.98 9.6 2
## 2385 22.58 212.8 94 9.58 6.4 3
## 2386 21.39 240.8 88 10.84 13.9 2
## 2387 15.67 176.0 89 7.92 7.4 2
## 2388 9.32 189.7 145 8.54 9.1 6
## 2389 20.24 240.5 93 10.82 8.9 5
## 2390 16.13 170.1 105 7.65 10.6 4
## 2391 24.20 228.2 91 10.27 12.2 5
## 2392 18.12 205.3 114 9.24 10.8 6
## 2393 22.87 238.6 103 10.74 11.0 7
## 2394 6.85 163.7 83 7.37 8.3 8
## 2395 14.87 221.9 117 9.99 11.2 5
## 2396 16.56 298.2 82 13.42 14.3 2
## 2397 9.22 232.0 72 10.44 10.6 3
## 2398 16.39 148.1 87 6.66 13.2 5
## 2399 13.20 179.4 86 8.07 11.5 3
## 2400 12.16 116.3 113 5.23 11.2 5
## 2401 24.96 174.1 91 7.83 8.4 4
## 2402 23.94 183.5 113 8.26 11.4 1
## 2403 18.04 104.9 120 4.72 15.3 4
## 2404 16.86 171.7 125 7.73 13.0 7
## 2405 15.01 149.7 56 6.74 15.5 4
## 2406 17.31 129.9 113 5.85 6.4 6
## 2407 24.47 181.7 121 8.18 9.2 4
## 2408 17.03 214.0 112 9.63 13.4 6
## 2409 13.03 214.6 107 9.66 10.5 2
## 2410 24.24 180.4 133 8.12 8.7 2
## 2411 18.77 104.0 133 4.68 10.9 6
## 2412 23.47 175.9 94 7.92 9.3 5
## 2413 14.03 162.9 97 7.33 7.5 1
## 2414 16.87 304.3 110 13.69 14.8 9
## 2415 12.52 190.5 73 8.57 6.4 7
## 2416 13.69 275.9 106 12.42 9.0 3
## 2417 21.83 175.3 123 7.89 11.9 5
## 2418 15.87 146.7 96 6.60 9.3 4
## 2419 13.01 262.2 79 11.80 11.0 5
## 2420 22.24 207.1 88 9.32 8.9 4
## 2421 15.29 154.4 102 6.95 11.6 2
## 2422 11.38 177.3 94 7.98 10.9 3
## 2423 14.13 184.7 79 8.31 15.2 6
## 2424 20.08 73.2 81 3.29 3.7 2
## 2425 16.69 157.4 113 7.08 6.4 3
## 2426 16.78 187.5 91 8.44 8.6 6
## 2427 20.17 253.5 110 11.41 13.1 6
## 2428 17.20 229.0 73 10.31 9.5 3
## 2429 17.87 212.0 64 9.54 11.3 3
## 2430 17.82 233.0 95 10.49 10.0 5
## 2431 21.05 199.7 121 8.99 15.6 3
## 2432 16.46 196.5 85 8.84 10.2 4
## 2433 22.04 182.1 119 8.19 13.3 3
## 2434 17.65 168.4 137 7.58 12.1 3
## 2435 20.63 176.3 134 7.93 11.3 4
## 2436 26.80 193.9 101 8.73 10.3 6
## 2437 19.47 162.6 131 7.32 13.3 2
## 2438 21.19 321.2 101 14.45 8.3 4
## 2439 20.60 192.0 76 8.64 11.0 5
## 2440 14.33 198.9 110 8.95 14.6 4
## 2441 15.71 176.1 115 7.92 7.0 6
## 2442 9.49 227.4 94 10.23 12.1 4
## 2443 13.02 286.7 77 12.90 4.7 3
## 2444 12.69 188.1 114 8.46 11.0 5
## 2445 23.74 127.1 143 5.72 9.7 4
## 2446 17.09 151.2 111 6.80 11.6 5
## 2447 13.26 210.8 106 9.49 11.6 6
## 2448 10.98 220.6 98 9.93 12.9 4
## 2449 7.75 142.2 87 6.40 13.8 3
## 2450 19.13 198.5 111 8.93 7.6 6
## 2451 19.59 255.8 103 11.51 11.9 6
## 2452 17.27 174.2 101 7.84 10.7 4
## 2453 18.87 64.2 94 2.89 13.7 6
## 2454 17.99 165.0 79 7.43 10.0 8
## 2455 20.98 229.7 92 10.34 9.7 4
## 2456 21.17 157.6 107 7.09 7.1 6
## 2457 15.45 203.1 86 9.14 10.4 6
## 2458 18.49 220.3 67 9.91 12.2 2
## 2459 19.85 293.9 104 13.23 8.8 4
## 2460 15.02 221.5 96 9.97 14.7 7
## 2461 13.01 240.0 102 10.80 9.8 5
## 2462 15.29 188.2 109 8.47 11.5 5
## 2463 13.98 171.0 110 7.69 10.9 4
## 2464 14.76 231.5 89 10.42 10.1 4
## 2465 12.39 174.4 82 7.85 9.4 2
## 2466 14.49 193.8 88 8.72 8.3 5
## 2467 11.93 253.6 79 11.41 10.5 2
## 2468 20.82 180.8 103 8.14 7.7 6
## 2469 24.28 213.6 80 9.61 4.3 2
## 2470 13.76 197.9 109 8.91 8.3 2
## 2471 14.41 201.1 91 9.05 5.6 4
## 2472 17.20 191.1 122 8.60 7.4 3
## 2473 19.19 145.2 95 6.53 10.2 6
## 2474 22.81 241.3 68 10.86 8.5 7
## 2475 12.78 176.2 75 7.93 9.3 1
## 2476 12.89 230.5 109 10.37 5.3 3
## 2477 14.59 234.5 69 10.55 9.9 3
## 2478 24.43 204.8 91 9.22 9.1 7
## 2479 13.30 280.0 81 12.60 13.2 7
## 2480 23.74 192.7 131 8.67 11.7 2
## 2481 24.97 250.7 65 11.28 10.3 7
## 2482 17.59 163.6 109 7.36 11.3 4
## 2483 13.01 249.0 72 11.21 10.2 6
## 2484 24.37 164.3 113 7.39 12.9 3
## 2485 23.50 289.9 125 13.05 12.3 2
## 2486 22.40 259.6 107 11.68 12.0 4
## 2487 11.15 170.9 104 7.69 5.4 3
## 2488 11.66 185.9 97 8.37 9.8 3
## 2489 15.50 180.6 103 8.13 6.7 2
## 2490 17.94 153.5 109 6.91 10.5 6
## 2491 21.31 289.3 74 13.02 9.8 9
## 2492 22.69 214.6 104 9.66 9.8 10
## 2493 12.06 200.7 71 9.03 8.5 6
## 2494 13.76 285.0 78 12.83 11.3 3
## 2495 12.71 140.5 109 6.32 8.1 4
## 2496 13.24 254.3 103 11.44 8.5 3
## 2497 14.22 178.1 130 8.01 7.8 3
## 2498 17.12 146.8 121 6.61 4.2 4
## 2499 13.26 197.5 112 8.89 10.2 5
## 2500 19.22 155.6 83 7.00 13.8 3
## 2501 20.55 147.0 108 6.61 9.6 3
## 2502 21.86 193.2 115 8.69 13.4 4
## 2503 23.04 245.9 94 11.07 16.4 5
## 2504 15.23 292.8 100 13.18 9.9 5
## 2505 11.82 138.4 87 6.23 13.0 1
## 2506 17.00 234.9 65 10.57 12.5 9
## 2507 18.02 174.9 119 7.87 13.2 4
## 2508 13.87 229.8 106 10.34 12.6 3
## 2509 11.57 159.4 147 7.17 8.7 3
## 2510 12.19 170.2 98 7.66 10.9 3
## 2511 19.85 270.9 104 12.19 10.0 1
## 2512 13.76 142.1 103 6.39 7.2 6
## 2513 15.66 231.4 70 10.41 10.2 3
## 2514 17.94 174.6 107 7.86 0.0 0
## 2515 17.44 164.6 84 7.41 10.7 5
## 2516 18.18 184.9 88 8.32 12.0 2
## 2517 13.67 265.0 63 11.93 12.2 3
## 2518 17.81 281.9 126 12.69 12.4 4
## 2519 19.86 208.7 95 9.39 7.9 5
## 2520 12.96 224.8 83 10.12 8.4 5
## 2521 21.28 216.4 128 9.74 7.8 8
## 2522 12.36 186.9 129 8.41 12.1 4
## 2523 19.41 197.9 61 8.91 8.4 9
## 2524 13.29 214.7 90 9.66 7.8 10
## 2525 18.75 236.3 91 10.63 11.8 4
## 2526 23.89 197.2 94 8.87 9.7 2
## 2527 10.40 245.0 75 11.03 6.4 1
## 2528 15.17 229.1 111 10.31 13.1 8
## 2529 19.90 329.2 74 14.81 9.9 9
## 2530 12.74 204.6 131 9.21 9.2 5
## 2531 15.19 174.7 90 7.86 10.7 9
## 2532 15.34 184.2 87 8.29 10.1 4
## 2533 21.48 220.6 97 9.93 7.2 9
## 2534 22.27 239.5 120 10.78 12.3 6
## 2535 19.10 152.5 98 6.86 18.0 2
## 2536 14.38 156.6 61 7.05 9.2 5
## 2537 19.76 195.0 64 8.78 9.0 1
## 2538 14.26 207.0 67 9.32 6.4 8
## 2539 17.74 202.1 103 9.09 14.0 7
## 2540 26.56 178.0 118 8.01 10.7 2
## 2541 15.44 186.9 111 8.41 12.9 1
## 2542 21.52 175.1 86 7.88 14.2 2
## 2543 22.92 175.3 130 7.89 9.5 3
## 2544 24.24 192.1 78 8.64 6.9 3
## 2545 22.79 255.3 62 11.49 13.2 4
## 2546 14.44 238.8 112 10.75 8.2 5
## 2547 19.89 210.0 86 9.45 12.2 5
## 2548 19.01 240.8 93 10.84 12.7 4
## 2549 22.38 135.0 85 6.08 11.9 7
## 2550 27.14 239.9 124 10.80 8.4 4
## 2551 16.35 200.0 96 9.00 6.6 4
## 2552 30.11 145.5 93 6.55 10.9 3
## 2553 18.78 146.8 114 6.61 8.9 2
## 2554 17.70 207.9 115 9.36 10.0 2
## 2555 13.93 185.9 100 8.37 6.7 5
## 2556 18.05 233.0 123 10.49 9.3 4
## 2557 12.76 204.3 115 9.19 10.8 4
## 2558 19.98 256.4 78 11.54 16.9 6
## 2559 14.03 137.9 71 6.21 9.6 5
## 2560 16.18 201.2 87 9.05 11.5 2
## 2561 22.48 210.5 116 9.47 9.0 6
## 2562 15.84 210.0 111 9.45 7.7 6
## 2563 8.08 178.5 129 8.03 8.0 11
## 2564 15.11 255.7 98 11.51 12.1 4
## 2565 19.52 148.2 94 6.67 10.7 8
## 2566 15.61 176.6 109 7.95 13.5 2
## 2567 15.95 216.5 95 9.74 14.4 8
## 2568 25.81 105.4 94 4.74 9.3 2
## 2569 20.68 147.8 66 6.65 12.0 8
## 2570 18.85 243.9 114 10.98 12.8 4
## 2571 12.25 158.1 91 7.11 8.5 6
## 2572 19.26 230.1 96 10.35 7.8 3
## 2573 13.00 123.4 63 5.55 10.4 7
## 2574 15.30 168.6 94 7.59 12.8 4
## 2575 17.26 151.8 120 6.83 13.3 2
## 2576 15.24 251.2 129 11.30 15.5 3
## 2577 19.69 226.2 90 10.18 11.1 11
## 2578 18.11 196.1 85 8.82 8.5 5
## 2579 14.37 225.2 122 10.13 11.8 4
## 2580 16.70 230.1 106 10.35 7.8 2
## 2581 25.87 183.3 103 8.25 8.6 4
## 2582 16.15 170.3 95 7.66 12.9 5
## 2583 11.98 272.6 96 12.27 7.5 4
## 2584 20.47 237.7 121 10.70 12.8 6
## 2585 17.94 179.8 116 8.09 11.4 5
## 2586 18.57 212.4 89 9.56 9.8 1
## 2587 17.51 194.7 124 8.76 11.4 2
## 2588 19.26 193.6 114 8.71 8.9 7
## 2589 16.55 236.7 112 10.65 12.0 9
## 2590 18.46 185.4 52 8.34 13.9 4
## 2591 18.00 240.2 108 10.81 9.3 7
## 2592 22.76 240.3 100 10.81 8.8 5
## 2593 15.18 203.8 116 9.17 12.8 3
## 2594 17.06 181.2 107 8.15 14.3 9
## 2595 17.29 217.5 107 9.79 11.8 8
## 2596 23.90 166.1 80 7.47 8.4 4
## 2597 11.76 224.2 128 10.09 5.8 5
## 2598 22.98 231.5 90 10.42 14.0 2
## 2599 17.55 221.6 96 9.97 10.3 8
## 2600 23.76 233.8 103 10.52 8.8 4
## 2601 14.82 310.7 105 13.98 11.2 4
## 2602 21.01 158.7 104 7.14 11.5 5
## 2603 14.20 128.9 118 5.80 11.4 2
## 2604 15.15 244.2 129 10.99 6.4 5
## 2605 14.40 102.0 90 4.59 15.9 4
## 2606 23.27 282.9 91 12.73 14.1 8
## 2607 26.77 182.9 121 8.23 16.1 3
## 2608 20.34 89.7 89 4.04 9.9 3
## 2609 23.03 222.5 98 10.01 6.7 2
## 2610 12.93 344.3 82 15.49 10.7 6
## 2611 12.10 143.7 117 6.47 5.9 4
## 2612 17.32 158.7 59 7.14 11.8 3
## 2613 16.63 253.4 71 11.40 8.4 8
## 2614 11.99 128.9 137 5.80 7.1 9
## 2615 22.99 107.3 84 4.83 12.2 2
## 2616 20.07 134.3 93 6.04 10.9 4
## 2617 18.13 267.6 115 12.04 16.0 3
## 2618 15.32 179.0 89 8.06 10.7 2
## 2619 17.90 294.8 121 13.27 6.9 5
## 2620 16.12 227.0 76 10.22 11.1 2
## 2621 14.99 297.1 119 13.37 11.0 7
## 2622 17.09 164.5 107 7.40 7.5 16
## 2623 17.53 255.4 117 11.49 11.6 2
## 2624 11.01 193.6 106 8.71 10.9 7
## 2625 15.49 203.9 107 9.18 11.6 2
## 2626 14.55 257.0 106 11.57 12.0 5
## 2627 20.10 123.2 111 5.54 12.6 6
## 2628 25.15 247.2 104 11.12 12.5 1
## 2629 17.38 118.0 98 5.31 6.8 3
## 2630 24.07 209.5 111 9.43 6.7 3
## 2631 22.28 225.5 99 10.15 9.8 3
## 2632 11.81 146.2 109 6.58 12.4 2
## 2633 16.72 127.4 74 5.73 11.8 3
## 2634 19.55 232.5 73 10.46 10.6 3
## 2635 15.47 244.6 75 11.01 12.6 7
## 2636 21.88 170.8 114 7.69 10.0 4
## 2637 10.09 236.6 65 10.65 6.0 6
## 2638 24.45 208.4 80 9.38 5.9 9
## 2639 22.23 241.6 104 10.87 11.4 9
## 2640 26.57 264.0 55 11.88 12.2 4
## 2641 16.45 299.6 109 13.48 10.8 3
## 2642 20.54 302.0 72 13.59 11.3 5
## 2643 12.56 210.4 114 9.47 10.0 4
## 2644 11.31 160.3 85 7.21 10.6 7
## 2645 18.95 188.2 113 8.47 12.4 2
## 2646 15.47 157.6 106 7.09 12.1 2
## 2647 15.84 153.3 122 6.90 11.5 6
## 2648 21.74 233.4 99 10.50 13.4 4
## 2649 20.12 294.5 100 13.25 12.7 1
## 2650 16.79 217.8 104 9.80 9.8 3
## 2651 18.31 164.3 98 7.39 4.9 4
## 2652 20.29 253.6 90 11.41 9.2 5
## 2653 13.44 266.2 123 11.98 9.7 9
## 2654 21.68 225.9 96 10.17 12.4 5
## 2655 16.72 261.7 83 11.78 6.8 3
## 2656 14.20 161.4 119 7.26 10.0 5
## 2657 21.99 169.7 87 7.64 8.9 1
## 2658 20.41 158.7 89 7.14 8.9 5
## 2659 15.71 108.9 109 4.90 13.5 7
## 2660 18.36 235.1 33 10.58 16.1 5
## 2661 21.90 132.9 118 5.98 13.4 2
## 2662 18.61 182.9 109 8.23 9.5 3
## 2663 26.24 161.2 62 7.25 13.7 6
## 2664 15.56 395.0 72 17.77 12.7 7
## 2665 14.16 198.5 118 8.93 14.4 3
## 2666 19.52 204.2 109 9.19 10.1 3
## 2667 11.98 308.9 130 13.90 12.1 2
## 2668 18.79 145.7 110 6.56 10.0 4
## 2669 18.18 88.2 111 3.97 8.6 4
## 2670 15.76 204.7 106 9.21 1.1 2
## 2671 12.84 179.0 80 8.06 9.0 6
## 2672 15.88 227.0 89 10.22 9.5 5
## 2673 13.24 256.9 71 11.56 9.2 10
## 2674 21.25 216.1 73 9.72 6.7 5
## 2675 18.48 188.4 141 8.48 12.8 6
## 2676 10.50 291.6 115 13.12 5.7 9
## 2677 21.85 209.0 63 9.40 12.1 8
## 2678 12.82 198.7 66 8.94 7.3 3
## 2679 17.77 219.7 82 9.89 14.4 6
## 2680 11.74 250.8 109 11.29 3.3 3
## 2681 19.88 170.1 84 7.65 7.7 3
## 2682 17.05 208.8 81 9.40 13.3 9
## 2683 10.50 96.4 92 4.34 12.9 3
## 2684 14.11 210.2 72 9.46 13.2 4
## 2685 18.06 182.1 95 8.19 9.8 7
## 2686 14.16 122.0 78 5.49 14.1 3
## 2687 23.37 162.4 121 7.31 10.0 1
## 2688 13.91 271.7 117 12.23 17.0 6
## 2689 26.95 160.4 121 7.22 10.0 2
## 2690 14.22 223.7 142 10.07 15.2 8
## 2691 16.73 259.7 110 11.69 7.0 7
## 2692 14.76 250.9 131 11.29 9.7 4
## 2693 14.82 193.5 96 8.71 11.6 4
## 2694 21.23 132.6 100 5.97 7.3 3
## 2695 22.90 187.1 74 8.42 10.1 3
## 2696 12.73 168.2 79 7.57 9.8 7
## 2697 18.90 259.0 121 11.66 12.3 5
## 2698 27.60 160.1 112 7.20 11.9 5
## 2699 23.32 226.6 69 10.20 12.4 4
## 2700 17.64 135.0 107 6.08 11.6 5
## 2701 19.60 218.0 69 9.81 8.5 5
## 2702 14.73 264.7 107 11.91 8.3 3
## 2703 8.21 170.7 145 7.68 7.9 5
## 2704 12.23 203.0 97 9.14 12.1 13
## 2705 11.47 227.5 97 10.24 11.2 3
## 2706 20.22 154.3 85 6.94 9.7 7
## 2707 16.84 135.9 116 6.12 13.2 3
## 2708 14.65 145.1 89 6.53 9.0 2
## 2709 19.91 191.7 87 8.63 8.9 3
## 2710 10.60 155.5 108 7.00 11.7 3
## 2711 20.83 202.1 94 9.09 14.7 4
## 2712 22.23 182.3 111 8.20 10.0 3
## 2713 21.72 228.6 68 10.29 11.6 2
## 2714 17.32 166.9 89 7.51 6.0 3
## 2715 16.62 170.1 108 7.65 15.4 6
## 2716 15.76 312.8 78 14.08 6.1 8
## 2717 15.13 215.6 100 9.70 12.1 4
## 2718 11.56 249.1 127 11.21 4.3 6
## 2719 15.55 213.7 121 9.62 13.8 2
## 2720 18.09 226.3 123 10.18 10.0 6
## 2721 7.57 302.2 82 13.60 10.3 3
## 2722 10.83 166.8 105 7.51 9.6 6
## 2723 13.29 158.8 83 7.15 10.1 5
## 2724 13.73 176.3 90 7.93 13.0 9
## 2725 15.34 217.5 104 9.79 9.5 11
## 2726 11.86 197.0 87 8.87 12.0 3
## 2727 11.73 148.7 102 6.69 9.9 1
## 2728 12.13 181.2 101 8.15 11.7 3
## 2729 24.23 166.4 155 7.49 6.2 3
## 2730 19.03 211.9 122 9.54 8.7 4
## 2731 16.99 244.2 112 10.99 14.8 8
## 2732 18.46 243.1 128 10.94 13.9 6
## 2733 30.91 126.7 123 5.70 16.9 2
## 2734 21.81 235.3 104 10.59 0.0 0
## 2735 13.03 233.6 85 10.51 11.1 3
## 2736 16.05 213.3 76 9.60 13.3 3
## 2737 21.59 242.7 156 10.92 9.2 5
## 2738 17.99 243.0 116 10.93 9.9 2
## 2739 12.88 143.0 100 6.44 7.5 3
## 2740 17.85 139.1 65 6.26 10.8 9
## 2741 14.76 257.1 84 11.57 10.3 1
## 2742 18.40 214.7 111 9.66 12.4 2
## 2743 19.13 234.7 109 10.56 10.7 1
## 2744 22.66 243.3 80 10.95 8.0 7
## 2745 16.61 102.4 86 4.61 7.1 7
## 2746 15.35 174.1 115 7.83 10.2 2
## 2747 13.80 155.0 102 6.98 13.4 1
## 2748 19.70 283.6 83 12.76 6.2 1
## 2749 15.44 177.3 67 7.98 7.7 10
## 2750 17.20 171.4 105 7.71 14.2 6
## 2751 15.95 146.4 85 6.59 8.7 6
## 2752 22.98 191.0 88 8.59 7.9 4
## 2753 15.16 246.5 104 11.09 8.1 1
## 2754 14.57 186.5 80 8.39 12.9 2
## 2755 12.53 350.2 108 15.76 11.3 7
## 2756 22.30 149.3 69 6.72 10.7 3
## 2757 13.06 50.1 87 2.25 12.5 1
## 2758 24.08 285.4 83 12.84 5.8 7
## 2759 20.43 237.3 133 10.68 12.0 3
## 2760 14.26 141.8 124 6.38 12.6 9
## 2761 15.02 263.4 81 11.85 14.2 4
## 2762 15.90 220.3 96 9.91 10.5 7
## 2763 13.94 169.4 80 7.62 9.5 4
## 2764 15.76 192.7 116 8.67 8.2 2
## 2765 22.53 239.7 108 10.79 14.9 3
## 2766 13.86 201.1 116 9.05 10.7 3
## 2767 26.64 215.7 82 9.71 10.5 6
## 2768 27.61 79.9 86 3.60 8.2 4
## 2769 12.76 246.8 98 11.11 12.0 2
## 2770 11.31 253.1 77 11.39 9.1 2
## 2771 19.18 188.6 61 8.49 5.7 3
## 2772 16.93 219.8 99 9.89 13.2 6
## 2773 15.11 172.9 90 7.78 5.9 2
## 2774 19.17 186.3 76 8.38 6.1 5
## 2775 20.12 192.2 137 8.65 13.2 3
## 2776 19.97 166.4 128 7.49 9.0 13
## 2777 21.21 157.8 103 7.10 7.4 7
## 2778 21.54 273.1 105 12.29 12.3 6
## 2779 18.00 198.1 101 8.91 10.3 3
## 2780 18.09 178.1 98 8.01 8.5 4
## 2781 18.02 282.3 81 12.70 11.3 4
## 2782 14.42 264.3 94 11.89 9.0 3
## 2783 14.51 237.4 113 10.68 11.6 3
## 2784 20.71 211.9 114 9.54 9.1 2
## 2785 20.70 230.9 92 10.39 10.9 3
## 2786 18.00 137.9 109 6.21 9.2 3
## 2787 22.40 224.7 128 10.11 9.0 6
## 2788 18.26 201.3 147 9.06 10.8 6
## 2789 20.99 200.0 133 9.00 7.2 2
## 2790 10.82 284.4 95 12.80 7.7 4
## 2791 8.78 164.2 73 7.39 9.1 3
## 2792 24.88 224.6 82 10.11 5.5 3
## 2793 21.77 176.6 135 7.95 11.1 4
## 2794 19.05 241.3 63 10.86 14.4 7
## 2795 20.95 173.2 100 7.79 10.9 3
## 2796 17.99 194.9 76 8.77 9.3 2
## 2797 9.85 185.4 136 8.34 16.2 2
## 2798 19.67 131.2 67 5.90 10.0 4
## 2799 15.24 247.2 101 11.12 10.2 8
## 2800 11.14 216.9 104 9.76 9.4 3
## 2801 16.71 192.0 53 8.64 11.0 2
## 2802 21.31 286.2 87 12.88 6.1 3
## 2803 17.74 203.4 98 9.15 14.4 2
## 2804 11.24 177.7 91 8.00 10.6 8
## 2805 17.34 224.2 122 10.09 9.1 4
## 2806 21.56 128.5 72 5.78 11.4 5
## 2807 17.95 259.3 112 11.67 13.6 8
## 2808 12.95 134.3 109 6.04 11.8 4
## 2809 24.65 177.1 110 7.97 11.6 5
## 2810 13.00 215.9 86 9.72 3.5 3
## 2811 22.38 214.4 97 9.65 11.1 4
## 2812 8.82 180.6 106 8.13 10.8 5
## 2813 20.02 268.1 70 12.06 11.0 6
## 2814 12.13 258.3 89 11.62 12.3 4
## 2815 18.16 218.4 72 9.83 10.7 6
## 2816 21.65 250.5 117 11.27 7.2 5
## 2817 15.85 195.3 99 8.79 18.3 6
## 2818 16.52 143.1 80 6.44 11.4 9
## 2819 14.00 111.0 87 5.00 10.1 4
## 2820 12.22 140.1 111 6.30 10.3 3
## 2821 16.60 276.7 86 12.45 13.2 2
## 2822 14.47 209.2 64 9.41 5.7 5
## 2823 24.79 96.4 111 4.34 11.2 3
## 2824 15.90 133.5 96 6.01 16.6 4
## 2825 20.09 187.6 78 8.44 13.1 5
## 2826 18.30 143.7 140 6.47 14.3 9
## 2827 17.04 202.6 125 9.12 10.2 11
## 2828 18.20 214.9 100 9.67 10.3 4
## 2829 10.96 251.9 129 11.34 6.3 6
## 2830 19.07 204.0 118 9.18 12.6 4
## 2831 12.44 169.4 95 7.62 10.5 6
## 2832 18.44 243.7 146 10.97 9.9 3
## 2833 14.74 256.3 109 11.53 7.5 5
## 2834 13.26 136.3 108 6.13 11.6 9
## 2835 12.18 130.6 69 5.88 11.7 7
## 2836 17.12 177.4 84 7.98 10.4 15
## 2837 18.22 179.5 112 8.08 10.3 5
## 2838 19.46 222.2 118 10.00 14.3 3
## 2839 16.15 138.7 94 6.24 10.5 3
## 2840 18.24 306.2 100 13.78 14.2 2
## 2841 11.57 183.4 103 8.25 10.8 7
## 2842 19.18 150.4 106 6.77 14.0 8
## 2843 18.28 238.5 107 10.73 9.4 2
## 2844 16.64 210.1 87 9.45 10.0 6
## 2845 18.16 141.5 69 6.37 11.5 4
## 2846 17.60 182.2 95 8.20 4.5 4
## 2847 13.84 272.1 85 12.24 10.1 4
## 2848 17.80 231.1 91 10.40 12.2 4
## 2849 12.22 198.9 105 8.95 8.0 2
## 2850 15.43 185.7 151 8.36 7.7 4
## 2851 18.45 182.1 86 8.19 10.0 5
## 2852 14.97 189.6 88 8.53 8.2 3
## 2853 10.73 274.2 71 12.34 4.6 4
## 2854 16.77 267.4 93 12.03 8.7 3
## 2855 16.03 278.4 98 12.53 10.6 4
## 2856 22.16 201.0 120 9.05 8.1 2
## 2857 11.69 226.0 100 10.17 10.0 4
## 2858 17.62 228.6 117 10.29 5.6 2
## 2859 21.06 152.9 103 6.88 7.4 3
## 2860 5.74 185.9 136 8.37 11.5 3
## 2861 20.08 240.2 84 10.81 11.8 6
## 2862 20.55 215.7 102 9.71 13.1 3
## 2863 25.97 158.9 73 7.15 12.1 6
## 2864 14.20 280.2 115 12.61 9.7 3
## 2865 13.66 203.1 109 9.14 12.5 2
## 2866 23.49 185.2 107 8.33 8.6 6
## 2867 9.03 197.7 104 8.90 11.1 4
## 2868 13.09 237.0 105 10.67 11.2 6
## 2869 19.52 332.7 94 14.97 13.6 3
## 2870 21.79 334.7 104 15.06 8.9 2
## 2871 22.08 148.0 79 6.66 9.1 9
## 2872 18.31 186.8 73 8.41 11.3 2
## 2873 10.25 152.8 81 6.88 9.2 2
## 2874 11.08 229.8 80 10.34 6.9 5
## 2875 19.24 246.8 98 11.11 12.3 10
## 2876 21.38 208.7 85 9.39 6.6 2
## 2877 15.24 285.5 117 12.85 10.4 6
## 2878 15.94 196.8 88 8.86 6.5 3
## 2879 21.90 190.4 107 8.57 9.6 6
## 2880 14.69 173.8 113 7.82 10.0 2
## 2881 8.70 129.7 148 5.84 9.8 5
## 2882 23.58 137.7 100 6.20 6.2 3
## 2883 12.00 268.2 113 12.07 11.4 2
## 2884 20.18 239.2 98 10.76 9.8 11
## 2885 14.24 260.0 97 11.70 8.7 4
## 2886 13.72 231.9 100 10.44 8.4 2
## 2887 22.49 185.4 94 8.34 9.9 3
## 2888 11.30 136.7 107 6.15 11.1 4
## 2889 17.60 255.7 115 11.51 10.9 2
## 2890 20.18 145.4 103 6.54 8.4 6
## 2891 12.28 125.7 98 5.66 11.6 1
## 2892 16.37 259.0 108 11.66 12.2 5
## 2893 12.07 183.8 77 8.27 11.8 7
## 2894 13.18 251.5 111 11.32 7.2 6
## 2895 21.11 236.2 113 10.63 14.7 2
## 2896 13.01 123.8 104 5.57 6.4 4
## 2897 16.38 141.7 83 6.38 9.1 4
## 2898 16.99 170.8 117 7.69 16.6 3
## 2899 17.64 169.4 96 7.62 5.6 5
## 2900 21.81 214.9 145 9.67 3.8 4
## 2901 17.84 222.6 117 10.02 7.9 5
## 2902 19.82 165.7 116 7.46 9.3 7
## 2903 15.96 259.6 137 11.68 10.0 3
## 2904 22.87 203.5 38 9.16 6.7 4
## 2905 12.06 200.4 122 9.02 10.4 9
## 2906 11.55 184.6 82 8.31 3.8 9
## 2907 15.89 249.7 78 11.24 0.0 0
## 2908 23.27 150.2 88 6.76 12.8 1
## 2909 17.14 280.8 99 12.64 7.9 2
## 2910 8.42 211.6 126 9.52 7.7 2
## 2911 15.69 156.9 92 7.06 9.1 2
## 2912 18.88 156.7 122 7.05 13.0 3
## 2913 15.94 119.5 100 5.38 4.3 3
## 2914 21.27 158.1 79 7.11 10.8 4
## 2915 12.08 214.6 87 9.66 12.5 4
## 2916 21.16 158.6 88 7.14 14.4 2
## 2917 13.48 187.7 87 8.45 10.5 6
## 2918 13.86 268.1 151 12.06 8.3 3
## 2919 22.59 182.4 87 8.21 0.0 0
## 2920 13.96 201.4 68 9.06 9.4 5
## 2921 21.51 195.7 120 8.81 10.7 4
## 2922 15.44 197.3 63 8.88 15.9 2
## 2923 20.57 246.9 96 11.11 10.2 2
## 2924 23.38 212.1 94 9.54 16.7 3
## 2925 20.99 254.4 107 11.45 10.3 3
## 2926 20.41 164.0 147 7.38 11.6 2
## 2927 20.00 292.1 114 13.14 5.0 3
## 2928 19.36 158.5 100 7.13 10.2 3
## 2929 17.42 224.3 133 10.09 9.8 3
## 2930 19.76 191.1 82 8.60 14.9 4
## 2931 12.26 120.4 97 5.42 12.9 12
## 2932 21.39 191.6 100 8.62 10.9 6
## 2933 0.00 175.4 94 7.89 11.8 6
## 2934 26.06 144.2 93 6.49 2.1 4
## 2935 11.14 238.6 69 10.74 8.6 3
## 2936 17.75 224.0 119 10.08 9.8 2
## 2937 14.95 215.4 106 9.69 9.5 2
## 2938 17.54 126.3 118 5.68 13.4 4
## 2939 22.13 88.7 100 3.99 7.0 5
## 2940 22.19 262.7 85 11.82 13.3 5
## 2941 7.65 205.1 116 9.23 7.3 5
## 2942 21.83 249.7 87 11.24 11.5 1
## 2943 22.07 153.2 86 6.89 10.0 3
## 2944 20.51 211.4 109 9.51 7.8 2
## 2945 18.66 73.7 92 3.32 9.8 5
## 2946 22.07 230.0 117 10.35 14.0 2
## 2947 20.94 199.0 114 8.96 4.1 4
## 2948 24.37 240.7 115 10.83 9.0 13
## 2949 18.33 236.7 67 10.65 10.5 5
## 2950 12.96 148.1 104 6.66 10.0 5
## 2951 16.93 244.1 119 10.98 11.8 4
## 2952 16.12 256.2 108 11.53 12.9 7
## 2953 19.22 268.6 121 12.09 8.2 3
## 2954 21.19 249.7 90 11.24 9.8 4
## 2955 17.68 208.1 81 9.36 8.4 4
## 2956 14.41 193.6 97 8.71 10.3 5
## 2957 22.79 140.8 75 6.34 8.6 18
## 2958 16.97 216.5 110 9.74 7.3 1
## 2959 18.38 255.3 96 11.49 6.3 2
## 2960 17.83 210.6 109 9.48 9.1 4
## 2961 11.47 152.3 75 6.85 10.0 3
## 2962 13.87 172.7 120 7.77 8.0 2
## 2963 14.88 184.4 112 8.30 5.4 5
## 2964 15.59 235.0 52 10.58 11.6 7
## 2965 18.23 233.7 75 10.52 7.9 1
## 2966 8.30 181.7 134 8.18 8.4 3
## 2967 13.75 217.0 106 9.76 8.0 5
## 2968 23.53 149.9 110 6.75 10.2 6
## 2969 23.02 219.3 101 9.87 13.9 2
## 2970 18.14 186.2 116 8.38 7.9 2
## 2971 19.69 222.2 108 10.00 6.4 12
## 2972 15.95 122.3 97 5.50 9.6 2
## 2973 11.99 212.1 90 9.54 10.1 4
## 2974 17.18 210.5 97 9.47 10.4 5
## 2975 19.14 195.1 99 8.78 7.0 6
## 2976 11.19 235.3 131 10.59 11.8 4
## 2977 18.59 236.0 97 10.62 11.5 5
## 2978 12.65 224.5 117 10.10 6.7 2
## 2979 18.26 247.9 108 11.16 13.0 5
## 2980 17.71 209.0 95 9.40 8.8 3
## 2981 23.43 201.4 108 9.06 14.3 3
## 2982 14.21 194.8 98 8.77 9.7 6
## 2983 19.08 273.4 152 12.30 8.9 5
## 2984 16.35 242.6 99 10.92 7.9 4
## 2985 14.21 100.3 61 4.51 10.8 6
## 2986 23.89 158.5 77 7.13 11.0 5
## 2987 12.86 201.9 132 9.09 10.5 3
## 2988 10.10 147.9 95 6.66 13.7 3
## 2989 14.89 222.4 36 10.01 12.0 5
## 2990 17.96 136.1 85 6.12 13.8 3
## 2991 11.70 203.8 109 9.17 8.3 6
## 2992 11.08 207.3 109 9.33 7.3 5
## 2993 12.19 191.0 98 8.59 11.6 3
## 2994 14.47 194.3 79 8.74 12.5 3
## 2995 25.72 191.5 82 8.62 5.5 7
## 2996 16.29 153.0 129 6.89 13.2 2
## 2997 11.41 168.4 118 7.58 13.3 3
## 2998 18.34 154.8 88 6.97 7.8 2
## 2999 21.48 225.8 104 10.16 12.3 3
## 3000 19.13 240.3 85 10.81 9.6 5
## 3001 10.84 289.3 83 13.02 14.5 4
## 3002 15.94 189.3 97 8.52 11.5 3
## 3003 19.14 224.7 58 10.11 8.9 8
## 3004 12.95 236.5 80 10.64 9.4 3
## 3005 21.86 91.6 92 4.12 16.2 3
## 3006 21.62 197.3 138 8.88 10.5 2
## 3007 12.49 217.1 102 9.77 9.9 7
## 3008 13.16 191.4 77 8.61 14.1 5
## 3009 15.60 206.8 111 9.31 13.0 2
## 3010 21.57 128.7 85 5.79 6.7 3
## 3011 24.54 111.2 110 5.00 12.1 3
## 3012 20.56 244.7 110 11.01 10.6 3
## 3013 16.12 206.7 85 9.30 11.1 3
## 3014 15.77 250.0 132 11.25 5.2 6
## 3015 12.20 210.7 130 9.48 11.8 4
## 3016 22.94 229.1 87 10.31 7.1 7
## 3017 12.83 245.5 131 11.05 14.6 9
## 3018 19.90 211.5 104 9.52 6.0 3
## 3019 11.92 227.4 111 10.23 12.2 2
## 3020 13.45 287.7 111 12.95 13.8 3
## 3021 18.37 156.9 82 7.06 9.8 4
## 3022 16.48 231.5 93 10.42 10.1 2
## 3023 9.76 220.4 99 9.92 2.9 7
## 3024 17.71 87.4 77 3.93 13.9 2
## 3025 16.97 53.3 61 2.40 11.5 5
## 3026 6.80 120.8 82 5.44 15.6 12
## 3027 16.34 246.1 92 11.07 10.8 4
## 3028 24.29 203.0 111 9.14 9.4 6
## 3029 19.75 261.2 123 11.75 12.5 6
## 3030 17.65 205.7 114 9.26 9.2 4
## 3031 14.23 216.5 112 9.74 14.0 5
## 3032 12.61 238.6 69 10.74 12.5 3
## 3033 8.61 167.3 106 7.53 7.8 7
## 3034 21.23 211.4 82 9.51 13.6 3
## 3035 14.52 104.5 91 4.70 11.2 8
## 3036 18.84 190.6 75 8.58 11.6 3
## 3037 17.82 164.4 97 7.40 9.4 5
## 3038 20.64 247.8 97 11.15 6.5 4
## 3039 12.03 237.3 87 10.68 6.4 3
## 3040 15.61 151.8 75 6.83 10.5 2
## 3041 16.75 294.5 83 13.25 10.5 4
## 3042 16.97 206.2 104 9.28 6.5 4
## 3043 15.96 138.1 108 6.21 8.3 2
## 3044 13.15 164.4 79 7.40 9.0 2
## 3045 19.13 230.1 117 10.35 8.5 2
## 3046 19.12 178.2 104 8.02 10.5 3
## 3047 21.96 109.6 74 4.93 14.8 4
## 3048 16.44 89.6 107 4.03 12.8 5
## 3049 13.35 181.5 120 8.17 14.0 6
## 3050 17.69 204.6 72 9.21 15.6 3
## 3051 15.98 219.7 125 9.89 13.5 4
## 3052 20.08 205.6 92 9.25 15.6 2
## 3053 17.24 233.0 126 10.49 12.9 2
## 3054 16.44 254.4 117 11.45 7.0 10
## 3055 19.81 152.2 106 6.85 9.1 7
## 3056 16.78 188.2 102 8.47 9.7 2
## 3057 12.91 218.5 101 9.83 10.7 2
## 3058 22.45 203.7 79 9.17 7.3 3
## 3059 18.62 168.0 116 7.56 7.1 8
## 3060 14.21 205.7 102 9.26 11.8 2
## 3061 16.10 352.2 95 15.85 8.4 5
## 3062 15.90 282.3 124 12.70 12.4 6
## 3063 15.34 151.3 101 6.81 13.0 4
## 3064 9.91 141.5 110 6.37 12.2 2
## 3065 20.16 210.1 91 9.45 8.7 2
## 3066 22.80 168.0 95 7.56 8.4 6
## 3067 18.22 196.8 110 8.86 7.2 5
## 3068 14.75 218.0 122 9.81 10.1 4
## 3069 18.96 124.0 92 5.58 9.5 1
## 3070 13.64 218.3 88 9.82 9.9 3
## 3071 18.21 178.0 105 8.01 12.0 2
## 3072 10.99 136.3 102 6.13 6.3 12
## 3073 15.98 235.4 116 10.59 8.5 5
## 3074 13.06 260.4 87 11.72 7.4 5
## 3075 17.34 117.9 118 5.31 6.6 3
## 3076 29.01 165.7 97 7.46 6.3 3
## 3077 11.45 170.7 97 7.68 10.0 3
## 3078 26.72 280.2 110 12.61 14.3 2
## 3079 9.19 204.3 87 9.19 13.2 3
## 3080 14.86 184.2 83 8.29 7.9 2
## 3081 20.15 118.3 91 5.32 17.5 4
## 3082 21.60 176.4 96 7.94 5.9 3
## 3083 16.30 132.5 125 5.96 12.1 4
## 3084 12.10 316.7 131 14.25 12.5 5
## 3085 21.84 185.5 126 8.35 12.1 2
## 3086 18.96 243.2 81 10.94 10.0 7
## 3087 12.99 160.3 98 7.21 11.2 8
## 3088 24.09 262.1 108 11.79 8.6 9
## 3089 14.95 207.2 100 9.32 8.9 3
## 3090 14.45 127.9 68 5.76 9.4 4
## 3091 16.85 248.5 94 11.18 12.1 4
## 3092 19.38 240.0 111 10.80 10.6 3
## 3093 12.55 213.5 85 9.61 10.1 2
## 3094 23.32 242.7 119 10.92 8.2 3
## 3095 13.50 189.6 92 8.53 10.5 2
## 3096 21.17 215.7 82 9.71 10.6 4
## 3097 14.08 189.2 63 8.51 9.8 5
## 3098 16.27 144.0 78 6.48 10.0 11
## 3099 16.31 165.5 125 7.45 12.0 4
## 3100 17.67 190.4 120 8.57 10.1 10
## 3101 16.18 290.0 66 13.05 10.4 2
## 3102 18.01 167.6 138 7.54 8.2 5
## 3103 19.63 192.0 106 8.64 12.6 9
## 3104 19.30 313.2 113 14.09 13.2 1
## 3105 15.40 174.0 68 7.83 10.3 2
## 3106 20.12 252.3 137 11.35 9.5 1
## 3107 14.73 203.5 108 9.16 11.6 5
## 3108 16.86 364.9 106 16.42 9.1 4
## 3109 15.50 183.8 88 8.27 11.0 8
## 3110 16.40 168.3 96 7.57 11.2 13
## 3111 20.46 245.5 80 11.05 10.6 7
## 3112 13.18 234.8 96 10.57 11.4 5
## 3113 16.35 151.0 75 6.80 9.3 3
## 3114 18.79 229.2 110 10.31 14.0 9
## 3115 11.30 272.0 120 12.24 12.1 1
## 3116 16.93 163.2 88 7.34 10.0 1
## 3117 17.12 264.2 79 11.89 8.8 1
## 3118 17.86 175.1 86 7.88 13.1 7
## 3119 16.49 253.4 124 11.40 5.2 5
## 3120 13.63 235.3 150 10.59 11.4 10
## 3121 21.79 158.6 72 7.14 10.8 6
## 3122 11.76 142.6 105 6.42 8.5 7
## 3123 17.31 170.5 89 7.67 14.1 3
## 3124 17.09 219.7 97 9.89 11.3 5
## 3125 15.47 270.9 106 12.19 9.4 2
## 3126 12.02 253.0 115 11.39 10.5 3
## 3127 18.99 251.4 104 11.31 10.6 6
## 3128 16.82 284.5 93 12.80 11.7 2
## 3129 19.56 148.8 78 6.70 10.2 11
## 3130 15.78 161.5 113 7.27 5.6 4
## 3131 9.34 165.7 99 7.46 8.7 1
## 3132 13.27 244.0 91 10.98 8.3 3
## 3133 19.58 241.5 104 10.87 7.8 5
## 3134 27.28 157.2 126 7.07 10.4 4
## 3135 9.72 114.5 97 5.15 11.4 5
## 3136 17.54 283.2 93 12.74 10.8 3
## 3137 15.27 166.3 121 7.48 10.3 2
## 3138 14.25 205.9 106 9.27 14.7 5
## 3139 14.89 136.3 80 6.13 13.3 3
## 3140 20.37 221.7 123 9.98 7.1 5
## 3141 15.25 150.6 77 6.78 15.2 6
## 3142 18.11 192.7 87 8.67 10.7 4
## 3143 15.44 143.4 113 6.45 12.8 4
## 3144 15.90 216.6 100 9.75 10.0 4
## 3145 13.45 215.7 118 9.71 10.3 2
## 3146 17.65 195.0 98 8.78 8.8 4
## 3147 24.73 228.4 91 10.28 13.9 5
## 3148 10.45 228.4 102 10.28 8.5 4
## 3149 23.58 202.0 139 9.09 11.0 2
## 3150 18.20 193.0 105 8.69 11.9 4
## 3151 21.14 199.8 120 8.99 10.7 5
## 3152 23.65 288.1 85 12.96 7.1 5
## 3153 20.96 304.2 107 13.69 9.5 4
## 3154 13.28 187.9 89 8.46 10.5 4
## 3155 17.34 174.6 94 7.86 6.3 3
## 3156 12.75 268.6 119 12.09 9.6 4
## 3157 16.35 214.9 89 9.67 10.4 1
## 3158 15.26 171.8 122 7.73 6.2 4
## 3159 17.32 237.4 100 10.68 9.3 5
## 3160 21.08 61.4 109 2.76 7.8 6
## 3161 17.91 231.9 75 10.44 2.1 5
## 3162 15.78 300.0 143 13.50 10.0 5
## 3163 19.56 140.5 123 6.32 13.3 3
## 3164 24.45 177.1 85 7.97 6.9 3
## 3165 23.22 179.6 118 8.08 11.0 5
## 3166 14.71 242.1 95 10.89 9.1 3
## 3167 19.16 244.3 132 10.99 10.2 2
## 3168 11.59 197.3 107 8.88 9.0 2
## 3169 25.42 251.3 81 11.31 11.2 4
## 3170 10.02 201.0 94 9.05 12.0 3
## 3171 21.44 208.9 91 9.40 7.5 6
## 3172 12.61 277.8 97 12.50 9.7 6
## 3173 20.81 223.8 156 10.07 12.3 5
## 3174 15.64 275.5 132 12.40 12.9 4
## 3175 10.97 325.9 105 14.67 8.6 6
## 3176 17.31 246.2 88 11.08 8.3 3
## 3177 12.44 123.0 75 5.54 8.1 4
## 3178 11.96 217.7 101 9.80 12.8 5
## 3179 17.47 130.7 63 5.88 13.8 5
## 3180 15.21 214.6 74 9.66 9.4 4
## 3181 8.81 156.3 86 7.03 12.2 4
## 3182 16.40 144.0 103 6.48 10.1 4
## 3183 19.47 139.4 105 6.27 7.8 8
## 3184 16.79 128.2 111 5.77 8.4 4
## 3185 13.48 269.3 118 12.12 6.8 3
## 3186 13.81 231.9 136 10.44 11.9 3
## 3187 13.15 174.8 98 7.87 9.4 6
## 3188 23.32 210.5 139 9.47 5.4 4
## 3189 13.23 277.4 62 12.48 8.2 5
## 3190 17.54 208.4 123 9.38 13.2 5
## 3191 12.58 168.2 109 7.57 15.8 3
## 3192 11.40 189.1 84 8.51 9.3 2
## 3193 15.10 228.0 136 10.26 5.0 3
## 3194 14.03 141.5 142 6.37 10.8 3
## 3195 13.65 155.3 108 6.99 13.4 1
## 3196 19.00 148.4 106 6.68 9.7 9
## 3197 15.18 242.3 82 10.90 12.2 3
## 3198 14.95 287.4 90 12.93 11.3 2
## 3199 19.33 178.9 105 8.05 12.8 2
## 3200 13.91 153.2 121 6.89 11.8 5
## 3201 7.38 156.2 117 7.03 9.7 4
## 3202 17.25 213.5 95 9.61 8.8 5
## 3203 24.30 182.5 85 8.21 6.9 4
## 3204 21.83 263.9 92 11.88 6.4 3
## 3205 21.54 154.0 101 6.93 10.5 9
## 3206 25.04 260.1 121 11.70 10.8 3
## 3207 19.03 180.4 85 8.12 10.2 13
## 3208 16.12 240.3 107 10.81 11.7 2
## 3209 15.84 126.9 112 5.71 10.4 5
## 3210 23.45 214.5 108 9.65 14.2 6
## 3211 23.46 196.2 48 8.83 11.4 3
## 3212 11.43 168.8 164 7.60 12.0 6
## 3213 10.35 221.5 122 9.97 3.7 4
## 3214 18.32 262.4 111 11.81 12.0 7
## 3215 16.57 197.8 109 8.90 8.8 9
## 3216 13.73 294.6 107 13.26 9.4 6
## 3217 19.05 205.7 103 9.26 2.4 3
## 3218 19.55 206.3 66 9.28 13.2 8
## 3219 18.16 193.0 108 8.69 13.4 9
## 3220 28.29 213.8 105 9.62 8.8 2
## 3221 21.56 149.3 93 6.72 10.2 5
## 3222 21.39 182.2 99 8.20 8.5 6
## 3223 14.59 250.9 114 11.29 11.7 6
## 3224 17.20 256.0 96 11.52 16.7 2
## 3225 23.53 213.4 82 9.60 12.3 4
## 3226 16.54 211.2 87 9.50 8.4 3
## 3227 16.49 262.7 111 11.82 7.5 4
## 3228 16.03 200.8 95 9.04 10.7 2
## 3229 17.92 165.4 87 7.44 15.0 6
## 3230 18.05 176.9 98 7.96 7.8 10
## 3231 15.52 143.1 90 6.44 4.2 14
## 3232 15.35 245.0 83 11.03 6.6 5
## 3233 14.30 197.3 120 8.88 9.9 3
## 3234 6.34 247.9 74 11.16 6.3 7
## 3235 13.95 169.6 153 7.63 2.5 5
## 3236 18.02 175.2 138 7.88 4.9 2
## 3237 18.44 112.4 125 5.06 7.5 8
## 3238 19.43 152.9 88 6.88 10.9 7
## 3239 22.69 197.7 118 8.90 8.8 3
## 3240 20.00 215.3 95 9.69 10.2 7
## 3241 23.83 292.4 105 13.16 5.0 3
## 3242 14.65 191.9 87 8.64 11.3 2
## 3243 20.12 264.0 118 11.88 8.4 2
## 3244 11.19 169.5 106 7.63 10.3 9
## 3245 19.10 214.6 69 9.66 7.2 7
## 3246 10.38 180.8 85 8.14 12.6 2
## 3247 20.09 203.5 101 9.16 11.9 2
## 3248 13.51 47.4 73 2.13 3.9 9
## 3249 18.41 233.0 82 10.49 11.5 3
## 3250 20.49 227.8 102 10.25 11.7 6
## 3251 23.77 180.0 74 8.10 13.5 4
## 3252 13.69 194.4 123 8.75 9.2 4
## 3253 19.15 194.3 93 8.74 11.7 3
## 3254 15.06 207.6 102 9.34 9.0 4
## 3255 24.07 228.1 77 10.26 14.7 5
## 3256 15.91 146.2 114 6.58 11.0 4
## 3257 13.06 232.3 65 10.45 17.0 1
## 3258 16.84 292.7 131 13.17 13.3 5
## 3259 16.30 117.8 93 5.30 13.4 5
## 3260 18.83 113.8 118 5.12 15.0 2
## 3261 18.42 130.6 122 5.88 13.9 2
## 3262 14.61 131.1 94 5.90 7.3 6
## 3263 22.30 139.2 99 6.26 10.1 5
## 3264 17.03 202.5 103 9.11 6.0 1
## 3265 17.61 214.5 126 9.65 5.9 2
## 3266 19.52 251.7 99 11.33 11.0 6
## 3267 22.81 186.4 71 8.39 9.7 4
## 3268 20.82 190.9 96 8.59 8.8 3
## 3269 19.87 223.5 148 10.06 12.7 2
## 3270 21.21 162.8 115 7.33 10.5 5
## 3271 17.68 181.2 101 8.15 12.8 6
## 3272 20.29 238.4 79 10.73 12.5 1
## 3273 19.01 229.4 109 10.32 12.9 4
## 3274 14.23 322.2 109 14.50 14.7 8
## 3275 18.49 125.6 111 5.65 8.0 5
## 3276 13.91 242.9 121 10.93 0.0 0
## 3277 12.41 241.4 98 10.86 8.8 2
## 3278 10.75 238.5 125 10.73 10.0 9
## 3279 13.98 282.5 132 12.71 10.6 6
## 3280 18.90 148.0 105 6.66 8.3 5
## 3281 20.25 271.8 116 12.23 10.0 3
## 3282 15.51 274.9 92 12.37 5.1 8
## 3283 17.29 234.0 115 10.53 7.7 4
## 3284 20.95 198.4 117 8.93 12.4 4
## 3285 19.10 174.3 122 7.84 13.2 2
## 3286 9.79 182.4 92 8.21 11.8 7
## 3287 18.89 158.4 96 7.13 13.1 8
## 3288 11.48 184.6 49 8.31 10.9 3
## 3289 24.32 247.6 113 11.14 4.9 9
## 3290 9.75 104.7 83 4.71 13.2 5
## 3291 15.90 218.5 95 9.83 0.0 0
## 3292 19.01 150.0 94 6.75 13.9 20
## 3293 7.46 166.2 122 7.48 11.7 4
## 3294 18.30 188.9 87 8.50 9.1 4
## 3295 17.73 198.0 92 8.91 12.3 3
## 3296 14.45 128.7 57 5.79 11.7 5
## 3297 17.43 154.9 109 6.97 9.0 2
## 3298 14.09 160.6 80 7.23 11.3 3
## 3299 20.34 144.4 112 6.50 12.3 4
## 3300 12.68 201.4 113 9.06 11.0 4
## 3301 19.41 166.7 108 7.50 7.1 3
## 3302 17.19 156.8 103 7.06 10.4 4
## 3303 17.92 153.5 100 6.91 7.8 3
## 3304 13.23 247.6 94 11.14 11.5 7
## 3305 16.88 206.5 80 9.29 13.8 5
## 3306 20.30 174.2 86 7.84 11.5 7
## 3307 17.33 229.5 73 10.33 8.1 3
## 3308 19.89 160.7 65 7.23 17.8 4
## 3309 14.08 265.9 72 11.97 13.3 6
## 3310 19.18 255.3 95 11.49 12.0 4
## 3311 7.82 224.8 108 10.12 13.6 17
## 3312 24.08 188.3 124 8.47 6.9 5
## 3313 12.27 262.4 110 11.81 14.2 4
## 3314 12.21 191.4 97 8.61 10.0 5
## 3315 19.86 131.9 120 5.94 9.1 4
## 3316 9.73 178.3 98 8.02 6.5 4
## 3317 18.62 220.3 108 9.91 12.3 9
## 3318 16.02 211.1 94 9.50 7.8 8
## 3319 25.54 192.5 106 8.66 11.6 4
## 3320 17.84 280.9 112 12.64 15.9 6
## 3321 16.69 120.1 133 5.40 9.7 4
## 3322 7.23 210.1 134 9.45 13.2 8
## 3323 22.57 180.5 72 8.12 11.5 2
## 3324 21.19 227.0 56 10.22 13.6 3
## 3325 16.80 193.7 82 8.72 11.6 4
## 3326 9.94 243.3 109 10.95 9.3 4
## 3327 24.21 178.9 92 8.05 14.9 7
## 3328 16.12 221.4 128 9.96 11.8 5
## 3329 18.32 279.1 83 12.56 9.9 6
## 3330 13.04 191.3 123 8.61 9.6 4
## 3331 24.55 191.9 91 8.64 14.1 6
## 3332 13.57 139.2 137 6.26 5.0 10
## 3333 22.60 241.4 77 10.86 13.7 4
## Intl.Charge CustServ.Calls Churn
## 1 2.70 1 FALSE
## 2 3.70 1 FALSE
## 3 3.29 0 FALSE
## 4 1.78 2 FALSE
## 5 2.73 3 FALSE
## 6 1.70 0 FALSE
## 7 2.03 3 FALSE
## 8 1.92 0 FALSE
## 9 2.35 1 FALSE
## 10 3.02 0 FALSE
## 11 3.43 4 TRUE
## 12 2.46 0 FALSE
## 13 3.02 1 FALSE
## 14 3.32 3 FALSE
## 15 3.54 4 FALSE
## 16 1.46 4 TRUE
## 17 3.73 1 FALSE
## 18 2.19 3 FALSE
## 19 2.70 1 FALSE
## 20 3.51 1 FALSE
## 21 2.86 0 FALSE
## 22 1.54 5 TRUE
## 23 2.57 0 FALSE
## 24 2.08 2 FALSE
## 25 2.78 0 FALSE
## 26 4.19 3 FALSE
## 27 2.57 0 FALSE
## 28 3.97 3 FALSE
## 29 1.70 0 FALSE
## 30 3.00 1 FALSE
## 31 3.83 2 FALSE
## 32 2.78 1 FALSE
## 33 3.40 3 FALSE
## 34 3.19 1 TRUE
## 35 2.24 0 FALSE
## 36 3.97 3 FALSE
## 37 3.92 0 FALSE
## 38 2.70 1 FALSE
## 39 2.84 3 FALSE
## 40 3.00 1 FALSE
## 41 2.54 3 FALSE
## 42 3.94 0 TRUE
## 43 2.70 2 FALSE
## 44 2.48 3 FALSE
## 45 0.95 1 FALSE
## 46 2.30 2 FALSE
## 47 3.56 3 FALSE
## 48 2.00 2 FALSE
## 49 2.38 5 TRUE
## 50 2.97 1 FALSE
## 51 2.11 3 FALSE
## 52 1.84 1 FALSE
## 53 3.08 2 FALSE
## 54 2.51 2 FALSE
## 55 2.62 5 TRUE
## 56 2.75 1 FALSE
## 57 2.16 1 FALSE
## 58 1.57 3 TRUE
## 59 3.27 3 FALSE
## 60 3.24 1 FALSE
## 61 3.08 1 FALSE
## 62 3.13 2 FALSE
## 63 3.94 2 FALSE
## 64 3.40 3 FALSE
## 65 2.21 2 FALSE
## 66 1.67 2 FALSE
## 67 2.51 0 FALSE
## 68 2.24 0 FALSE
## 69 2.11 1 FALSE
## 70 3.73 4 TRUE
## 71 3.19 3 FALSE
## 72 3.27 0 FALSE
## 73 2.16 3 FALSE
## 74 1.97 1 FALSE
## 75 3.24 0 FALSE
## 76 1.65 1 FALSE
## 77 3.16 0 TRUE
## 78 2.21 4 TRUE
## 79 2.21 2 FALSE
## 80 4.05 1 FALSE
## 81 3.56 1 FALSE
## 82 3.40 3 FALSE
## 83 2.97 3 FALSE
## 84 2.65 1 FALSE
## 85 3.35 2 TRUE
## 86 2.32 0 FALSE
## 87 2.16 4 TRUE
## 88 3.24 1 FALSE
## 89 2.94 2 FALSE
## 90 3.75 1 TRUE
## 91 3.00 1 FALSE
## 92 2.40 0 TRUE
## 93 2.13 1 FALSE
## 94 2.57 3 FALSE
## 95 2.86 3 FALSE
## 96 2.65 1 FALSE
## 97 3.51 0 FALSE
## 98 2.35 4 FALSE
## 99 1.43 1 TRUE
## 100 2.65 2 TRUE
## 101 1.19 4 FALSE
## 102 3.94 0 FALSE
## 103 2.84 0 FALSE
## 104 3.38 1 FALSE
## 105 3.05 1 FALSE
## 106 3.19 4 FALSE
## 107 2.43 2 FALSE
## 108 2.65 1 FALSE
## 109 2.73 1 FALSE
## 110 2.59 3 FALSE
## 111 2.24 1 FALSE
## 112 3.40 2 FALSE
## 113 3.27 4 FALSE
## 114 3.59 1 FALSE
## 115 2.54 1 FALSE
## 116 5.40 0 TRUE
## 117 3.83 1 FALSE
## 118 2.54 1 TRUE
## 119 2.70 2 FALSE
## 120 2.35 2 FALSE
## 121 3.54 1 FALSE
## 122 1.94 0 FALSE
## 123 2.65 3 FALSE
## 124 3.13 1 FALSE
## 125 2.48 2 FALSE
## 126 3.24 1 FALSE
## 127 2.46 4 TRUE
## 128 1.73 4 TRUE
## 129 2.48 2 FALSE
## 130 2.57 3 FALSE
## 131 2.94 3 FALSE
## 132 1.65 1 FALSE
## 133 2.57 1 FALSE
## 134 1.92 4 FALSE
## 135 2.46 1 FALSE
## 136 3.02 3 FALSE
## 137 1.43 5 FALSE
## 138 3.24 3 FALSE
## 139 3.02 1 FALSE
## 140 2.75 2 FALSE
## 141 3.35 1 FALSE
## 142 2.84 0 FALSE
## 143 1.84 3 FALSE
## 144 3.16 1 FALSE
## 145 3.81 2 TRUE
## 146 3.86 3 FALSE
## 147 3.70 1 FALSE
## 148 3.16 1 FALSE
## 149 2.30 1 FALSE
## 150 3.00 2 FALSE
## 151 2.86 1 FALSE
## 152 2.73 1 FALSE
## 153 2.03 1 FALSE
## 154 1.86 1 FALSE
## 155 3.11 5 FALSE
## 156 2.65 0 FALSE
## 157 4.27 0 TRUE
## 158 3.70 0 FALSE
## 159 2.75 1 FALSE
## 160 2.59 1 FALSE
## 161 1.92 0 FALSE
## 162 3.24 0 FALSE
## 163 2.84 3 FALSE
## 164 3.29 1 FALSE
## 165 1.65 1 FALSE
## 166 3.27 2 FALSE
## 167 2.03 1 FALSE
## 168 2.94 1 FALSE
## 169 3.46 1 FALSE
## 170 1.70 0 FALSE
## 171 3.56 1 FALSE
## 172 2.86 2 FALSE
## 173 2.84 3 FALSE
## 174 3.81 1 FALSE
## 175 1.65 0 FALSE
## 176 3.00 2 FALSE
## 177 3.29 0 FALSE
## 178 3.11 2 FALSE
## 179 4.37 3 FALSE
## 180 0.00 3 FALSE
## 181 2.57 4 FALSE
## 182 3.21 5 TRUE
## 183 2.67 2 FALSE
## 184 3.94 2 FALSE
## 185 2.27 3 FALSE
## 186 2.92 1 FALSE
## 187 2.75 1 FALSE
## 188 2.94 2 FALSE
## 189 2.43 1 FALSE
## 190 2.46 1 FALSE
## 191 2.40 0 FALSE
## 192 2.57 1 FALSE
## 193 2.38 2 FALSE
## 194 3.62 0 FALSE
## 195 2.57 1 FALSE
## 196 1.84 1 FALSE
## 197 2.62 0 FALSE
## 198 2.89 2 TRUE
## 199 3.73 4 TRUE
## 200 3.51 0 FALSE
## 201 3.54 3 FALSE
## 202 3.02 2 FALSE
## 203 1.73 3 FALSE
## 204 1.84 2 FALSE
## 205 2.54 1 FALSE
## 206 3.27 1 FALSE
## 207 3.70 2 FALSE
## 208 2.92 3 FALSE
## 209 3.29 3 FALSE
## 210 4.27 3 FALSE
## 211 3.13 1 FALSE
## 212 3.21 0 FALSE
## 213 2.89 1 FALSE
## 214 3.29 1 FALSE
## 215 4.75 2 TRUE
## 216 3.11 3 FALSE
## 217 2.94 0 FALSE
## 218 1.27 3 FALSE
## 219 3.51 1 TRUE
## 220 1.92 0 FALSE
## 221 3.29 3 FALSE
## 222 2.75 1 FALSE
## 223 1.19 1 FALSE
## 224 2.40 2 FALSE
## 225 3.73 2 FALSE
## 226 0.73 1 FALSE
## 227 2.08 3 FALSE
## 228 2.59 2 FALSE
## 229 3.59 4 FALSE
## 230 3.21 0 FALSE
## 231 2.84 0 TRUE
## 232 2.97 1 FALSE
## 233 3.65 3 FALSE
## 234 2.94 0 FALSE
## 235 2.43 1 FALSE
## 236 2.75 5 TRUE
## 237 2.43 2 FALSE
## 238 2.65 3 FALSE
## 239 2.89 0 FALSE
## 240 2.54 1 FALSE
## 241 3.48 0 FALSE
## 242 3.32 2 TRUE
## 243 2.27 1 FALSE
## 244 1.92 3 FALSE
## 245 2.54 0 TRUE
## 246 2.57 0 FALSE
## 247 3.00 0 FALSE
## 248 2.75 0 FALSE
## 249 2.48 4 FALSE
## 250 3.19 2 FALSE
## 251 3.75 4 TRUE
## 252 3.89 4 FALSE
## 253 2.46 3 FALSE
## 254 2.57 0 FALSE
## 255 2.94 0 FALSE
## 256 3.81 4 FALSE
## 257 2.65 1 FALSE
## 258 3.92 1 FALSE
## 259 2.81 1 TRUE
## 260 2.35 1 FALSE
## 261 1.81 1 FALSE
## 262 4.16 1 FALSE
## 263 3.11 1 FALSE
## 264 3.38 1 FALSE
## 265 2.24 2 FALSE
## 266 3.08 1 FALSE
## 267 2.27 4 FALSE
## 268 3.65 3 FALSE
## 269 1.22 0 FALSE
## 270 2.67 2 FALSE
## 271 3.94 0 FALSE
## 272 2.08 1 FALSE
## 273 2.16 3 FALSE
## 274 3.51 3 FALSE
## 275 2.70 1 FALSE
## 276 2.65 3 FALSE
## 277 3.00 0 FALSE
## 278 1.76 2 TRUE
## 279 2.94 2 FALSE
## 280 2.84 3 FALSE
## 281 3.51 2 FALSE
## 282 2.81 2 FALSE
## 283 3.29 1 FALSE
## 284 2.43 1 FALSE
## 285 1.81 3 FALSE
## 286 4.21 2 FALSE
## 287 2.38 2 FALSE
## 288 3.92 2 FALSE
## 289 3.81 0 FALSE
## 290 1.43 1 TRUE
## 291 2.16 0 FALSE
## 292 2.62 0 FALSE
## 293 1.59 1 FALSE
## 294 2.78 5 TRUE
## 295 2.65 1 FALSE
## 296 2.57 1 FALSE
## 297 2.73 2 FALSE
## 298 3.21 0 FALSE
## 299 1.78 4 FALSE
## 300 1.78 1 FALSE
## 301 3.21 2 FALSE
## 302 1.59 1 TRUE
## 303 3.02 0 TRUE
## 304 2.46 1 FALSE
## 305 2.78 1 FALSE
## 306 2.46 2 FALSE
## 307 2.30 1 TRUE
## 308 3.08 4 TRUE
## 309 3.08 0 FALSE
## 310 2.40 3 FALSE
## 311 3.56 1 TRUE
## 312 2.62 1 FALSE
## 313 2.94 0 FALSE
## 314 2.65 0 FALSE
## 315 5.10 0 FALSE
## 316 3.35 1 FALSE
## 317 2.08 2 FALSE
## 318 2.05 3 FALSE
## 319 1.35 3 FALSE
## 320 2.54 2 TRUE
## 321 1.67 0 FALSE
## 322 3.48 1 FALSE
## 323 2.70 0 FALSE
## 324 3.05 1 FALSE
## 325 3.62 3 FALSE
## 326 1.92 0 FALSE
## 327 3.08 1 FALSE
## 328 2.57 1 FALSE
## 329 3.38 0 FALSE
## 330 3.89 0 FALSE
## 331 2.13 3 FALSE
## 332 2.57 1 TRUE
## 333 3.29 7 TRUE
## 334 2.51 0 FALSE
## 335 2.03 1 FALSE
## 336 2.32 1 FALSE
## 337 2.86 0 FALSE
## 338 1.89 2 FALSE
## 339 2.05 2 FALSE
## 340 3.94 0 FALSE
## 341 2.46 1 TRUE
## 342 2.92 1 FALSE
## 343 3.78 0 FALSE
## 344 0.00 2 FALSE
## 345 3.59 1 FALSE
## 346 1.94 3 FALSE
## 347 3.29 1 FALSE
## 348 2.84 1 FALSE
## 349 3.54 3 FALSE
## 350 3.46 4 TRUE
## 351 3.05 4 FALSE
## 352 2.73 4 FALSE
## 353 1.43 1 FALSE
## 354 3.97 2 FALSE
## 355 3.56 2 TRUE
## 356 3.43 1 FALSE
## 357 3.05 1 FALSE
## 358 2.30 2 FALSE
## 359 2.48 1 FALSE
## 360 1.57 1 FALSE
## 361 2.38 1 TRUE
## 362 3.05 0 FALSE
## 363 3.24 1 FALSE
## 364 3.05 2 FALSE
## 365 2.94 0 FALSE
## 366 2.73 1 TRUE
## 367 2.46 4 FALSE
## 368 4.86 1 FALSE
## 369 2.05 1 FALSE
## 370 4.32 0 FALSE
## 371 2.78 1 FALSE
## 372 2.86 2 FALSE
## 373 3.35 0 TRUE
## 374 4.00 2 FALSE
## 375 2.48 2 FALSE
## 376 2.86 0 FALSE
## 377 3.02 2 FALSE
## 378 1.81 1 FALSE
## 379 3.11 1 TRUE
## 380 1.84 2 FALSE
## 381 3.97 3 FALSE
## 382 3.97 1 FALSE
## 383 1.54 0 FALSE
## 384 1.00 1 FALSE
## 385 1.94 2 FALSE
## 386 2.89 4 FALSE
## 387 2.40 3 FALSE
## 388 2.30 1 FALSE
## 389 2.89 1 FALSE
## 390 2.75 3 FALSE
## 391 3.00 1 FALSE
## 392 2.35 0 FALSE
## 393 3.35 5 FALSE
## 394 2.54 2 FALSE
## 395 2.92 0 TRUE
## 396 2.62 0 FALSE
## 397 2.11 0 FALSE
## 398 0.54 1 TRUE
## 399 2.30 1 FALSE
## 400 2.86 1 TRUE
## 401 3.24 1 FALSE
## 402 2.86 0 FALSE
## 403 2.67 1 FALSE
## 404 3.02 1 FALSE
## 405 2.03 4 FALSE
## 406 2.51 0 FALSE
## 407 1.84 0 FALSE
## 408 2.30 4 TRUE
## 409 2.78 1 FALSE
## 410 1.30 2 FALSE
## 411 2.27 2 FALSE
## 412 2.81 2 FALSE
## 413 1.46 0 FALSE
## 414 1.89 3 FALSE
## 415 2.70 0 FALSE
## 416 2.35 2 TRUE
## 417 1.35 1 TRUE
## 418 2.65 0 FALSE
## 419 4.32 1 FALSE
## 420 2.03 2 FALSE
## 421 2.51 2 FALSE
## 422 4.13 1 FALSE
## 423 3.38 0 FALSE
## 424 2.78 3 FALSE
## 425 3.05 1 FALSE
## 426 2.94 1 FALSE
## 427 3.38 1 FALSE
## 428 2.59 1 FALSE
## 429 3.02 3 FALSE
## 430 3.35 2 FALSE
## 431 3.59 2 TRUE
## 432 3.08 1 FALSE
## 433 3.46 1 FALSE
## 434 3.19 2 FALSE
## 435 2.32 0 FALSE
## 436 3.02 1 FALSE
## 437 2.16 1 FALSE
## 438 2.24 0 TRUE
## 439 3.65 1 FALSE
## 440 1.70 2 FALSE
## 441 3.32 1 FALSE
## 442 3.35 0 FALSE
## 443 1.84 1 FALSE
## 444 3.40 1 FALSE
## 445 2.59 2 FALSE
## 446 3.00 0 FALSE
## 447 2.59 3 FALSE
## 448 1.86 2 FALSE
## 449 3.29 1 FALSE
## 450 1.70 4 FALSE
## 451 3.38 0 FALSE
## 452 2.65 0 FALSE
## 453 2.24 0 FALSE
## 454 3.86 1 FALSE
## 455 3.00 1 TRUE
## 456 4.00 1 TRUE
## 457 2.51 2 FALSE
## 458 2.62 2 FALSE
## 459 1.62 3 FALSE
## 460 2.97 0 FALSE
## 461 2.59 1 FALSE
## 462 2.59 3 FALSE
## 463 2.73 1 FALSE
## 464 1.59 0 FALSE
## 465 2.30 0 FALSE
## 466 3.67 3 TRUE
## 467 2.84 3 TRUE
## 468 3.13 1 FALSE
## 469 3.00 3 FALSE
## 470 4.64 2 FALSE
## 471 2.86 1 FALSE
## 472 2.57 3 FALSE
## 473 1.70 1 FALSE
## 474 1.67 4 TRUE
## 475 4.00 0 FALSE
## 476 2.67 3 FALSE
## 477 3.16 1 FALSE
## 478 2.05 3 FALSE
## 479 2.19 1 FALSE
## 480 3.02 2 FALSE
## 481 3.13 1 FALSE
## 482 1.43 1 FALSE
## 483 2.19 0 FALSE
## 484 3.59 2 FALSE
## 485 2.97 3 FALSE
## 486 1.81 0 FALSE
## 487 3.46 0 FALSE
## 488 2.84 0 FALSE
## 489 0.00 1 FALSE
## 490 3.32 1 FALSE
## 491 3.46 0 FALSE
## 492 3.86 1 TRUE
## 493 2.54 2 TRUE
## 494 1.59 2 FALSE
## 495 2.21 1 FALSE
## 496 3.00 2 FALSE
## 497 2.16 2 FALSE
## 498 3.21 2 FALSE
## 499 2.62 4 TRUE
## 500 2.03 1 FALSE
## 501 3.40 3 FALSE
## 502 2.03 1 FALSE
## 503 4.73 1 TRUE
## 504 2.51 0 FALSE
## 505 3.35 0 FALSE
## 506 3.00 1 FALSE
## 507 3.08 2 FALSE
## 508 1.51 3 TRUE
## 509 3.13 1 FALSE
## 510 2.59 5 TRUE
## 511 3.32 1 FALSE
## 512 4.00 3 FALSE
## 513 2.46 2 FALSE
## 514 1.78 0 FALSE
## 515 3.78 0 TRUE
## 516 4.73 1 FALSE
## 517 2.05 2 FALSE
## 518 2.54 2 FALSE
## 519 3.48 1 FALSE
## 520 2.43 3 FALSE
## 521 3.13 1 FALSE
## 522 2.21 4 TRUE
## 523 2.48 7 FALSE
## 524 2.65 2 FALSE
## 525 3.51 1 FALSE
## 526 2.84 2 FALSE
## 527 3.38 0 FALSE
## 528 3.21 0 FALSE
## 529 2.32 2 FALSE
## 530 3.27 0 FALSE
## 531 2.11 2 FALSE
## 532 1.81 2 FALSE
## 533 2.89 2 FALSE
## 534 1.46 1 FALSE
## 535 2.48 4 FALSE
## 536 4.91 1 FALSE
## 537 3.78 1 FALSE
## 538 2.30 0 FALSE
## 539 3.35 0 FALSE
## 540 2.67 2 FALSE
## 541 2.11 1 FALSE
## 542 1.78 0 FALSE
## 543 3.83 9 TRUE
## 544 0.95 3 FALSE
## 545 3.29 3 FALSE
## 546 3.21 1 FALSE
## 547 2.27 2 TRUE
## 548 2.78 5 TRUE
## 549 1.59 0 FALSE
## 550 2.73 4 FALSE
## 551 2.13 4 TRUE
## 552 3.11 2 FALSE
## 553 2.75 3 TRUE
## 554 2.73 2 FALSE
## 555 3.43 2 FALSE
## 556 3.54 2 FALSE
## 557 3.24 0 FALSE
## 558 2.57 1 FALSE
## 559 2.24 2 TRUE
## 560 2.08 2 FALSE
## 561 2.89 1 FALSE
## 562 1.94 0 FALSE
## 563 2.46 1 FALSE
## 564 2.94 1 FALSE
## 565 2.16 2 FALSE
## 566 1.27 3 FALSE
## 567 3.05 2 FALSE
## 568 0.97 2 FALSE
## 569 2.70 2 FALSE
## 570 4.16 2 TRUE
## 571 2.78 1 FALSE
## 572 3.92 2 FALSE
## 573 2.92 1 FALSE
## 574 2.43 3 FALSE
## 575 2.67 2 TRUE
## 576 3.83 1 FALSE
## 577 3.70 3 FALSE
## 578 3.16 2 FALSE
## 579 2.08 1 FALSE
## 580 4.46 1 FALSE
## 581 2.00 1 TRUE
## 582 2.75 3 FALSE
## 583 2.89 1 FALSE
## 584 2.78 1 FALSE
## 585 2.65 0 TRUE
## 586 2.75 1 FALSE
## 587 2.27 1 FALSE
## 588 2.00 1 FALSE
## 589 3.65 5 TRUE
## 590 2.32 1 FALSE
## 591 3.05 2 FALSE
## 592 3.48 1 FALSE
## 593 2.59 2 FALSE
## 594 2.57 2 FALSE
## 595 3.38 2 FALSE
## 596 0.00 1 FALSE
## 597 2.59 3 FALSE
## 598 2.46 2 FALSE
## 599 3.32 1 FALSE
## 600 2.48 0 FALSE
## 601 2.46 2 FALSE
## 602 3.75 0 TRUE
## 603 1.24 1 FALSE
## 604 3.13 3 FALSE
## 605 3.08 1 FALSE
## 606 3.43 2 TRUE
## 607 3.54 0 FALSE
## 608 1.78 1 FALSE
## 609 2.86 0 FALSE
## 610 2.35 3 FALSE
## 611 3.13 3 FALSE
## 612 3.43 1 FALSE
## 613 2.08 4 FALSE
## 614 3.56 1 TRUE
## 615 1.97 2 FALSE
## 616 2.16 1 FALSE
## 617 2.38 2 FALSE
## 618 3.78 3 FALSE
## 619 3.13 1 FALSE
## 620 3.92 0 TRUE
## 621 3.46 1 FALSE
## 622 3.11 1 FALSE
## 623 2.86 2 FALSE
## 624 1.92 3 FALSE
## 625 1.38 0 FALSE
## 626 3.73 3 FALSE
## 627 1.11 0 TRUE
## 628 2.00 4 FALSE
## 629 1.76 1 FALSE
## 630 3.70 0 TRUE
## 631 3.75 0 FALSE
## 632 2.57 0 FALSE
## 633 1.30 3 FALSE
## 634 4.21 2 FALSE
## 635 2.92 2 FALSE
## 636 2.75 5 FALSE
## 637 2.48 1 FALSE
## 638 2.03 0 FALSE
## 639 3.48 1 FALSE
## 640 3.08 0 FALSE
## 641 2.13 2 FALSE
## 642 2.65 1 FALSE
## 643 2.97 0 FALSE
## 644 4.21 0 FALSE
## 645 3.78 1 FALSE
## 646 2.30 3 FALSE
## 647 4.16 0 FALSE
## 648 2.03 1 FALSE
## 649 2.46 0 FALSE
## 650 1.62 3 TRUE
## 651 3.11 2 FALSE
## 652 2.57 1 FALSE
## 653 2.48 3 FALSE
## 654 2.30 3 FALSE
## 655 2.84 1 FALSE
## 656 2.54 5 TRUE
## 657 2.51 0 FALSE
## 658 2.51 2 FALSE
## 659 2.67 0 FALSE
## 660 2.24 1 FALSE
## 661 2.57 1 TRUE
## 662 3.24 1 FALSE
## 663 3.32 0 FALSE
## 664 2.00 3 FALSE
## 665 2.11 1 FALSE
## 666 2.48 2 FALSE
## 667 2.59 2 FALSE
## 668 2.48 0 FALSE
## 669 3.32 1 FALSE
## 670 4.19 0 FALSE
## 671 4.40 1 FALSE
## 672 3.21 2 FALSE
## 673 3.19 0 FALSE
## 674 3.02 3 FALSE
## 675 2.03 1 FALSE
## 676 1.59 1 FALSE
## 677 2.86 0 FALSE
## 678 2.54 1 FALSE
## 679 2.40 0 FALSE
## 680 2.35 1 TRUE
## 681 3.54 1 FALSE
## 682 2.51 0 FALSE
## 683 3.08 3 FALSE
## 684 1.76 1 FALSE
## 685 3.00 3 FALSE
## 686 2.32 1 FALSE
## 687 2.73 3 FALSE
## 688 3.40 1 FALSE
## 689 3.27 3 FALSE
## 690 2.21 1 FALSE
## 691 4.02 2 FALSE
## 692 2.75 1 FALSE
## 693 1.54 4 FALSE
## 694 2.16 3 FALSE
## 695 2.94 6 FALSE
## 696 3.13 1 FALSE
## 697 2.03 1 FALSE
## 698 2.46 0 FALSE
## 699 2.27 0 FALSE
## 700 2.97 0 FALSE
## 701 2.89 0 FALSE
## 702 2.08 0 FALSE
## 703 3.81 1 FALSE
## 704 2.81 1 FALSE
## 705 1.76 3 FALSE
## 706 2.30 1 FALSE
## 707 0.97 1 FALSE
## 708 2.05 3 FALSE
## 709 2.86 2 FALSE
## 710 2.62 2 FALSE
## 711 3.38 3 FALSE
## 712 3.08 4 FALSE
## 713 0.00 2 FALSE
## 714 1.86 2 FALSE
## 715 1.97 2 FALSE
## 716 4.13 1 TRUE
## 717 3.08 2 FALSE
## 718 1.94 1 FALSE
## 719 2.51 1 FALSE
## 720 3.16 2 FALSE
## 721 2.00 0 FALSE
## 722 2.94 6 TRUE
## 723 3.65 1 FALSE
## 724 3.78 3 FALSE
## 725 4.43 1 FALSE
## 726 3.21 2 FALSE
## 727 2.11 1 FALSE
## 728 2.48 1 FALSE
## 729 3.43 2 FALSE
## 730 3.62 0 FALSE
## 731 3.11 3 TRUE
## 732 2.16 2 FALSE
## 733 1.94 2 FALSE
## 734 2.57 2 FALSE
## 735 3.27 1 FALSE
## 736 1.76 3 FALSE
## 737 2.97 5 TRUE
## 738 4.51 2 TRUE
## 739 3.08 1 FALSE
## 740 2.38 1 FALSE
## 741 2.54 1 FALSE
## 742 3.11 0 FALSE
## 743 3.08 5 FALSE
## 744 2.81 1 FALSE
## 745 2.46 1 FALSE
## 746 1.78 1 FALSE
## 747 1.73 1 FALSE
## 748 2.11 1 FALSE
## 749 2.35 1 FALSE
## 750 2.97 1 FALSE
## 751 2.21 3 FALSE
## 752 2.73 0 FALSE
## 753 3.43 3 FALSE
## 754 2.97 2 FALSE
## 755 2.59 1 FALSE
## 756 3.08 2 FALSE
## 757 2.65 2 FALSE
## 758 3.54 1 FALSE
## 759 2.65 2 FALSE
## 760 2.57 2 FALSE
## 761 2.73 1 FALSE
## 762 2.27 2 FALSE
## 763 0.35 1 FALSE
## 764 4.05 0 FALSE
## 765 3.08 0 FALSE
## 766 2.35 2 FALSE
## 767 2.97 0 TRUE
## 768 4.10 2 FALSE
## 769 2.62 3 FALSE
## 770 2.97 1 FALSE
## 771 3.59 1 FALSE
## 772 2.38 5 TRUE
## 773 2.48 0 FALSE
## 774 2.08 1 TRUE
## 775 2.86 1 FALSE
## 776 2.89 1 FALSE
## 777 2.84 0 FALSE
## 778 1.57 2 FALSE
## 779 3.67 6 FALSE
## 780 2.73 2 FALSE
## 781 2.97 2 FALSE
## 782 2.89 1 FALSE
## 783 2.54 1 FALSE
## 784 2.54 3 FALSE
## 785 3.02 1 FALSE
## 786 2.89 3 FALSE
## 787 3.05 0 FALSE
## 788 3.00 2 TRUE
## 789 3.19 2 FALSE
## 790 2.84 3 FALSE
## 791 2.03 0 FALSE
## 792 3.81 2 FALSE
## 793 2.21 1 TRUE
## 794 2.43 2 FALSE
## 795 4.08 1 FALSE
## 796 2.92 1 FALSE
## 797 2.27 1 FALSE
## 798 3.92 1 TRUE
## 799 3.94 2 FALSE
## 800 4.29 1 FALSE
## 801 3.05 1 FALSE
## 802 2.54 1 FALSE
## 803 1.76 0 FALSE
## 804 3.40 1 FALSE
## 805 2.65 0 FALSE
## 806 1.84 0 FALSE
## 807 2.75 0 FALSE
## 808 3.27 1 FALSE
## 809 3.05 0 FALSE
## 810 1.57 1 FALSE
## 811 3.27 1 FALSE
## 812 2.67 0 FALSE
## 813 3.54 1 FALSE
## 814 4.13 0 FALSE
## 815 3.35 1 FALSE
## 816 1.54 2 TRUE
## 817 3.27 1 FALSE
## 818 1.78 2 FALSE
## 819 4.08 1 FALSE
## 820 3.54 1 FALSE
## 821 3.43 2 FALSE
## 822 3.54 0 FALSE
## 823 3.16 1 FALSE
## 824 2.73 1 FALSE
## 825 3.05 2 FALSE
## 826 3.13 1 FALSE
## 827 2.54 1 FALSE
## 828 3.29 0 FALSE
## 829 1.49 2 FALSE
## 830 2.67 2 FALSE
## 831 3.62 3 TRUE
## 832 3.19 2 FALSE
## 833 2.54 2 TRUE
## 834 2.75 0 FALSE
## 835 2.54 3 FALSE
## 836 2.67 1 FALSE
## 837 2.62 0 FALSE
## 838 2.19 0 FALSE
## 839 3.21 1 FALSE
## 840 4.35 1 FALSE
## 841 2.43 3 FALSE
## 842 2.78 5 FALSE
## 843 3.08 2 FALSE
## 844 4.27 1 FALSE
## 845 3.94 1 FALSE
## 846 2.70 1 FALSE
## 847 2.78 1 TRUE
## 848 2.78 1 FALSE
## 849 2.46 0 FALSE
## 850 2.48 2 FALSE
## 851 2.94 0 FALSE
## 852 2.97 3 TRUE
## 853 2.59 3 FALSE
## 854 2.05 3 FALSE
## 855 2.62 2 FALSE
## 856 1.67 2 FALSE
## 857 3.43 1 FALSE
## 858 2.48 1 FALSE
## 859 3.16 1 FALSE
## 860 3.05 3 TRUE
## 861 2.67 2 FALSE
## 862 4.02 1 FALSE
## 863 3.54 3 FALSE
## 864 3.35 1 FALSE
## 865 2.40 3 FALSE
## 866 2.67 4 FALSE
## 867 3.00 0 FALSE
## 868 2.21 1 FALSE
## 869 1.08 0 FALSE
## 870 2.00 2 FALSE
## 871 4.02 0 FALSE
## 872 3.00 4 TRUE
## 873 2.94 1 FALSE
## 874 2.51 1 FALSE
## 875 2.81 5 FALSE
## 876 2.46 1 FALSE
## 877 2.03 1 FALSE
## 878 1.59 1 FALSE
## 879 0.00 1 FALSE
## 880 3.19 4 FALSE
## 881 2.75 1 FALSE
## 882 1.81 3 FALSE
## 883 1.94 1 FALSE
## 884 2.16 1 FALSE
## 885 4.05 2 FALSE
## 886 1.46 2 FALSE
## 887 2.40 0 FALSE
## 888 2.05 1 FALSE
## 889 1.49 2 FALSE
## 890 3.35 0 FALSE
## 891 3.24 0 FALSE
## 892 1.67 1 FALSE
## 893 3.32 1 TRUE
## 894 2.89 2 FALSE
## 895 3.21 4 TRUE
## 896 2.30 2 FALSE
## 897 3.89 2 FALSE
## 898 4.19 0 FALSE
## 899 2.16 1 FALSE
## 900 2.35 1 FALSE
## 901 1.49 0 FALSE
## 902 3.05 2 TRUE
## 903 2.21 7 FALSE
## 904 1.59 0 FALSE
## 905 2.43 1 TRUE
## 906 3.62 4 TRUE
## 907 3.65 0 FALSE
## 908 4.56 1 FALSE
## 909 4.05 6 FALSE
## 910 1.38 0 FALSE
## 911 2.19 0 FALSE
## 912 3.89 5 TRUE
## 913 2.86 2 FALSE
## 914 2.86 1 FALSE
## 915 2.84 0 TRUE
## 916 2.03 2 FALSE
## 917 3.56 2 FALSE
## 918 2.24 0 FALSE
## 919 1.40 1 FALSE
## 920 2.97 1 FALSE
## 921 2.48 1 FALSE
## 922 1.19 1 FALSE
## 923 2.51 1 FALSE
## 924 3.73 1 FALSE
## 925 2.13 1 FALSE
## 926 2.92 1 FALSE
## 927 3.78 0 FALSE
## 928 3.08 0 FALSE
## 929 2.11 2 FALSE
## 930 1.78 1 FALSE
## 931 2.65 0 FALSE
## 932 3.24 1 FALSE
## 933 2.70 1 FALSE
## 934 3.81 1 TRUE
## 935 3.02 1 FALSE
## 936 3.51 4 FALSE
## 937 2.48 0 FALSE
## 938 1.81 2 FALSE
## 939 3.86 1 FALSE
## 940 3.21 2 FALSE
## 941 4.19 0 FALSE
## 942 1.76 2 FALSE
## 943 1.73 0 FALSE
## 944 3.40 1 FALSE
## 945 2.48 4 TRUE
## 946 3.11 2 FALSE
## 947 3.62 2 TRUE
## 948 2.97 1 FALSE
## 949 2.27 1 FALSE
## 950 2.97 1 FALSE
## 951 2.13 1 FALSE
## 952 3.13 4 FALSE
## 953 2.89 3 FALSE
## 954 2.32 2 FALSE
## 955 2.32 2 FALSE
## 956 2.78 0 FALSE
## 957 1.92 2 FALSE
## 958 2.54 0 FALSE
## 959 3.32 3 FALSE
## 960 3.46 2 FALSE
## 961 3.59 3 FALSE
## 962 1.13 0 FALSE
## 963 2.08 3 FALSE
## 964 2.92 1 FALSE
## 965 3.59 1 FALSE
## 966 3.29 0 FALSE
## 967 4.24 2 TRUE
## 968 2.48 0 FALSE
## 969 3.65 1 TRUE
## 970 2.38 0 FALSE
## 971 3.11 1 FALSE
## 972 1.35 3 FALSE
## 973 3.19 1 FALSE
## 974 3.32 0 FALSE
## 975 2.57 6 FALSE
## 976 2.81 0 TRUE
## 977 3.51 0 FALSE
## 978 3.19 4 TRUE
## 979 3.54 4 TRUE
## 980 2.11 0 FALSE
## 981 3.13 3 FALSE
## 982 1.86 1 FALSE
## 983 3.51 1 FALSE
## 984 2.43 1 FALSE
## 985 2.67 1 FALSE
## 986 3.59 1 TRUE
## 987 3.19 1 FALSE
## 988 2.24 1 TRUE
## 989 4.59 3 FALSE
## 990 3.67 1 FALSE
## 991 1.05 0 FALSE
## 992 2.13 2 FALSE
## 993 2.08 1 FALSE
## 994 2.59 0 FALSE
## 995 2.81 3 FALSE
## 996 2.03 1 FALSE
## 997 3.13 0 FALSE
## 998 3.05 2 FALSE
## 999 3.97 0 FALSE
## 1000 2.13 0 FALSE
## 1001 3.46 2 TRUE
## 1002 2.27 1 FALSE
## 1003 1.84 2 FALSE
## 1004 2.21 0 FALSE
## 1005 3.32 1 FALSE
## 1006 2.65 2 FALSE
## 1007 2.24 2 FALSE
## 1008 1.62 1 FALSE
## 1009 3.08 2 FALSE
## 1010 3.05 3 FALSE
## 1011 1.03 0 FALSE
## 1012 2.62 2 FALSE
## 1013 2.16 2 FALSE
## 1014 3.54 1 FALSE
## 1015 3.24 0 FALSE
## 1016 3.21 0 FALSE
## 1017 2.32 1 FALSE
## 1018 2.46 2 FALSE
## 1019 3.08 1 TRUE
## 1020 3.05 1 FALSE
## 1021 3.83 2 FALSE
## 1022 2.27 1 FALSE
## 1023 1.94 0 FALSE
## 1024 2.11 2 FALSE
## 1025 3.02 1 FALSE
## 1026 3.32 1 FALSE
## 1027 2.70 2 FALSE
## 1028 3.48 1 TRUE
## 1029 0.00 1 FALSE
## 1030 4.46 0 FALSE
## 1031 2.51 2 TRUE
## 1032 1.43 1 FALSE
## 1033 2.57 1 FALSE
## 1034 2.86 2 FALSE
## 1035 3.54 2 FALSE
## 1036 2.70 2 FALSE
## 1037 3.24 3 FALSE
## 1038 2.89 0 FALSE
## 1039 3.81 5 TRUE
## 1040 2.89 2 FALSE
## 1041 2.48 4 FALSE
## 1042 4.35 0 FALSE
## 1043 2.67 0 FALSE
## 1044 2.75 3 FALSE
## 1045 1.94 4 FALSE
## 1046 2.51 4 FALSE
## 1047 1.73 0 FALSE
## 1048 1.92 0 FALSE
## 1049 2.08 0 FALSE
## 1050 2.27 1 FALSE
## 1051 3.48 2 FALSE
## 1052 2.78 0 FALSE
## 1053 2.08 1 FALSE
## 1054 2.73 2 FALSE
## 1055 2.35 1 FALSE
## 1056 2.30 1 FALSE
## 1057 1.89 0 FALSE
## 1058 3.59 1 FALSE
## 1059 2.32 0 FALSE
## 1060 2.38 1 FALSE
## 1061 4.13 1 FALSE
## 1062 2.78 1 FALSE
## 1063 2.67 1 FALSE
## 1064 2.89 1 FALSE
## 1065 3.48 2 FALSE
## 1066 2.67 0 FALSE
## 1067 3.19 0 FALSE
## 1068 3.29 1 FALSE
## 1069 2.78 0 FALSE
## 1070 3.38 1 FALSE
## 1071 3.21 1 FALSE
## 1072 1.35 1 FALSE
## 1073 3.86 1 FALSE
## 1074 2.05 1 FALSE
## 1075 3.38 2 FALSE
## 1076 2.40 0 FALSE
## 1077 1.76 1 FALSE
## 1078 4.16 4 TRUE
## 1079 1.81 0 TRUE
## 1080 2.21 1 FALSE
## 1081 0.00 0 FALSE
## 1082 2.03 1 FALSE
## 1083 3.19 3 FALSE
## 1084 3.35 3 FALSE
## 1085 3.32 3 FALSE
## 1086 3.35 2 FALSE
## 1087 1.86 3 FALSE
## 1088 2.21 1 FALSE
## 1089 3.48 0 FALSE
## 1090 3.59 2 FALSE
## 1091 2.81 0 FALSE
## 1092 2.70 2 FALSE
## 1093 2.57 1 FALSE
## 1094 1.76 2 FALSE
## 1095 1.94 0 FALSE
## 1096 1.62 1 FALSE
## 1097 3.83 1 FALSE
## 1098 3.51 1 FALSE
## 1099 1.38 1 FALSE
## 1100 0.59 3 FALSE
## 1101 2.24 1 FALSE
## 1102 2.46 2 FALSE
## 1103 2.84 4 TRUE
## 1104 3.29 0 FALSE
## 1105 2.81 4 FALSE
## 1106 3.48 2 TRUE
## 1107 2.73 3 FALSE
## 1108 3.46 3 FALSE
## 1109 1.57 3 FALSE
## 1110 2.13 0 FALSE
## 1111 2.00 2 FALSE
## 1112 4.62 0 FALSE
## 1113 3.59 0 FALSE
## 1114 2.86 1 FALSE
## 1115 2.94 1 FALSE
## 1116 3.38 1 TRUE
## 1117 3.16 3 FALSE
## 1118 3.19 1 FALSE
## 1119 3.32 3 FALSE
## 1120 3.05 3 FALSE
## 1121 3.27 1 FALSE
## 1122 3.16 5 TRUE
## 1123 2.81 1 TRUE
## 1124 2.70 2 FALSE
## 1125 2.67 1 FALSE
## 1126 3.46 2 FALSE
## 1127 1.97 2 FALSE
## 1128 4.56 0 FALSE
## 1129 3.32 2 FALSE
## 1130 2.43 2 FALSE
## 1131 3.43 1 FALSE
## 1132 3.51 1 FALSE
## 1133 3.19 1 FALSE
## 1134 3.32 5 TRUE
## 1135 2.43 1 FALSE
## 1136 3.29 2 FALSE
## 1137 3.89 1 TRUE
## 1138 3.05 1 FALSE
## 1139 3.67 1 FALSE
## 1140 3.16 2 FALSE
## 1141 2.73 1 FALSE
## 1142 2.13 1 FALSE
## 1143 1.43 6 TRUE
## 1144 2.70 0 FALSE
## 1145 2.92 2 FALSE
## 1146 1.38 0 FALSE
## 1147 1.08 1 FALSE
## 1148 2.86 0 FALSE
## 1149 2.62 3 FALSE
## 1150 2.59 2 FALSE
## 1151 3.13 5 TRUE
## 1152 3.05 0 FALSE
## 1153 2.38 1 FALSE
## 1154 1.51 1 FALSE
## 1155 2.19 1 FALSE
## 1156 3.00 4 TRUE
## 1157 3.19 1 FALSE
## 1158 2.11 1 FALSE
## 1159 3.00 1 FALSE
## 1160 1.73 0 FALSE
## 1161 2.86 0 FALSE
## 1162 2.21 3 FALSE
## 1163 2.94 0 FALSE
## 1164 1.92 1 FALSE
## 1165 3.24 2 FALSE
## 1166 2.16 0 FALSE
## 1167 3.29 3 FALSE
## 1168 3.48 1 FALSE
## 1169 2.05 1 FALSE
## 1170 1.46 1 FALSE
## 1171 4.10 0 FALSE
## 1172 3.46 1 FALSE
## 1173 2.48 2 FALSE
## 1174 2.94 1 FALSE
## 1175 1.57 1 FALSE
## 1176 2.32 0 FALSE
## 1177 2.62 4 FALSE
## 1178 3.81 3 FALSE
## 1179 3.02 3 FALSE
## 1180 1.97 1 FALSE
## 1181 3.54 0 FALSE
## 1182 2.03 1 FALSE
## 1183 3.89 3 TRUE
## 1184 2.43 2 FALSE
## 1185 2.62 2 FALSE
## 1186 2.65 3 FALSE
## 1187 2.35 0 FALSE
## 1188 1.59 2 FALSE
## 1189 2.51 1 FALSE
## 1190 3.02 0 FALSE
## 1191 2.40 0 FALSE
## 1192 2.48 2 FALSE
## 1193 1.94 4 TRUE
## 1194 2.35 5 TRUE
## 1195 3.56 1 FALSE
## 1196 2.97 1 FALSE
## 1197 1.86 1 FALSE
## 1198 3.21 4 FALSE
## 1199 3.62 2 FALSE
## 1200 2.05 1 FALSE
## 1201 3.13 1 FALSE
## 1202 2.16 2 FALSE
## 1203 3.40 0 FALSE
## 1204 1.38 1 FALSE
## 1205 2.57 1 TRUE
## 1206 2.30 1 FALSE
## 1207 2.62 0 FALSE
## 1208 3.05 2 FALSE
## 1209 2.75 3 FALSE
## 1210 3.46 0 FALSE
## 1211 2.13 1 FALSE
## 1212 2.13 1 FALSE
## 1213 3.40 1 FALSE
## 1214 3.19 1 FALSE
## 1215 2.57 2 FALSE
## 1216 3.05 1 FALSE
## 1217 1.59 3 FALSE
## 1218 2.89 4 FALSE
## 1219 2.05 3 FALSE
## 1220 2.94 1 FALSE
## 1221 4.24 2 FALSE
## 1222 3.40 2 FALSE
## 1223 1.32 3 FALSE
## 1224 3.08 1 FALSE
## 1225 2.51 1 FALSE
## 1226 3.08 1 FALSE
## 1227 3.08 2 FALSE
## 1228 3.32 0 FALSE
## 1229 2.40 1 FALSE
## 1230 2.03 2 FALSE
## 1231 2.86 1 FALSE
## 1232 2.38 0 TRUE
## 1233 4.13 0 TRUE
## 1234 2.40 0 FALSE
## 1235 2.65 2 FALSE
## 1236 2.86 4 FALSE
## 1237 2.73 0 FALSE
## 1238 3.16 3 FALSE
## 1239 2.19 3 FALSE
## 1240 2.73 2 FALSE
## 1241 2.59 4 TRUE
## 1242 4.46 5 FALSE
## 1243 2.46 3 FALSE
## 1244 2.97 1 FALSE
## 1245 2.08 1 FALSE
## 1246 3.02 2 FALSE
## 1247 2.43 5 FALSE
## 1248 2.38 1 FALSE
## 1249 3.13 0 FALSE
## 1250 2.11 2 FALSE
## 1251 1.40 1 FALSE
## 1252 2.67 3 FALSE
## 1253 2.38 2 FALSE
## 1254 2.24 4 FALSE
## 1255 3.00 2 TRUE
## 1256 2.92 0 FALSE
## 1257 1.62 2 FALSE
## 1258 4.86 1 FALSE
## 1259 3.02 2 FALSE
## 1260 3.38 2 FALSE
## 1261 2.57 3 FALSE
## 1262 1.92 3 FALSE
## 1263 3.11 4 FALSE
## 1264 2.03 1 TRUE
## 1265 2.84 1 FALSE
## 1266 2.73 1 FALSE
## 1267 2.43 0 FALSE
## 1268 1.46 1 FALSE
## 1269 2.92 0 FALSE
## 1270 2.97 4 TRUE
## 1271 2.35 0 FALSE
## 1272 2.13 1 FALSE
## 1273 3.56 4 FALSE
## 1274 2.24 6 TRUE
## 1275 3.02 0 FALSE
## 1276 3.08 2 FALSE
## 1277 2.59 1 TRUE
## 1278 3.97 1 FALSE
## 1279 2.59 0 TRUE
## 1280 3.54 2 FALSE
## 1281 3.75 0 TRUE
## 1282 3.11 0 FALSE
## 1283 2.81 4 FALSE
## 1284 4.05 2 FALSE
## 1285 2.27 5 TRUE
## 1286 2.43 4 FALSE
## 1287 2.03 1 FALSE
## 1288 2.08 2 FALSE
## 1289 1.19 1 FALSE
## 1290 2.84 0 FALSE
## 1291 2.46 0 FALSE
## 1292 3.92 1 FALSE
## 1293 2.51 0 FALSE
## 1294 3.35 1 FALSE
## 1295 2.48 1 FALSE
## 1296 2.27 0 FALSE
## 1297 2.38 2 FALSE
## 1298 3.48 2 FALSE
## 1299 2.11 1 FALSE
## 1300 3.78 2 TRUE
## 1301 2.75 3 FALSE
## 1302 1.97 3 FALSE
## 1303 2.59 1 TRUE
## 1304 3.48 1 FALSE
## 1305 2.38 3 FALSE
## 1306 2.92 2 FALSE
## 1307 2.86 3 TRUE
## 1308 2.65 3 FALSE
## 1309 3.73 0 FALSE
## 1310 3.08 2 FALSE
## 1311 2.00 1 TRUE
## 1312 2.40 1 FALSE
## 1313 1.73 1 FALSE
## 1314 1.97 2 FALSE
## 1315 1.70 3 FALSE
## 1316 3.19 2 FALSE
## 1317 2.35 2 FALSE
## 1318 2.03 2 FALSE
## 1319 2.08 2 FALSE
## 1320 1.65 3 FALSE
## 1321 3.92 2 FALSE
## 1322 2.40 1 FALSE
## 1323 2.46 2 TRUE
## 1324 2.51 0 FALSE
## 1325 3.40 2 FALSE
## 1326 2.70 6 TRUE
## 1327 1.70 2 FALSE
## 1328 2.94 2 TRUE
## 1329 2.73 1 FALSE
## 1330 2.16 2 FALSE
## 1331 3.73 2 FALSE
## 1332 2.05 3 FALSE
## 1333 2.84 3 FALSE
## 1334 2.92 1 FALSE
## 1335 2.16 1 TRUE
## 1336 3.05 0 FALSE
## 1337 3.00 3 FALSE
## 1338 1.97 0 TRUE
## 1339 2.51 2 FALSE
## 1340 2.48 4 TRUE
## 1341 3.97 1 FALSE
## 1342 3.11 1 FALSE
## 1343 1.11 2 FALSE
## 1344 2.86 0 FALSE
## 1345 2.27 0 TRUE
## 1346 1.84 4 TRUE
## 1347 2.89 1 TRUE
## 1348 2.78 0 FALSE
## 1349 3.21 1 FALSE
## 1350 1.51 2 FALSE
## 1351 4.00 0 TRUE
## 1352 3.21 1 FALSE
## 1353 3.54 0 FALSE
## 1354 2.97 0 FALSE
## 1355 3.46 2 FALSE
## 1356 3.67 3 FALSE
## 1357 3.05 1 FALSE
## 1358 3.46 3 FALSE
## 1359 4.02 0 FALSE
## 1360 2.78 1 TRUE
## 1361 3.54 2 FALSE
## 1362 3.67 1 FALSE
## 1363 2.67 3 FALSE
## 1364 2.08 3 FALSE
## 1365 3.70 1 TRUE
## 1366 3.13 1 FALSE
## 1367 3.32 3 FALSE
## 1368 2.32 1 FALSE
## 1369 3.11 4 FALSE
## 1370 1.97 1 FALSE
## 1371 1.78 1 FALSE
## 1372 2.40 1 FALSE
## 1373 2.21 1 FALSE
## 1374 1.11 4 TRUE
## 1375 2.30 0 FALSE
## 1376 3.05 0 FALSE
## 1377 1.13 4 TRUE
## 1378 3.62 1 FALSE
## 1379 2.40 1 FALSE
## 1380 2.75 3 FALSE
## 1381 3.24 1 FALSE
## 1382 2.97 1 FALSE
## 1383 2.46 2 FALSE
## 1384 2.21 2 FALSE
## 1385 2.73 3 FALSE
## 1386 2.40 0 FALSE
## 1387 1.92 0 FALSE
## 1388 2.05 1 FALSE
## 1389 2.67 4 FALSE
## 1390 4.13 1 FALSE
## 1391 2.51 1 FALSE
## 1392 2.27 3 FALSE
## 1393 1.22 3 TRUE
## 1394 2.46 0 FALSE
## 1395 3.51 1 FALSE
## 1396 3.29 0 FALSE
## 1397 3.11 4 FALSE
## 1398 1.94 1 FALSE
## 1399 2.97 1 FALSE
## 1400 3.16 4 FALSE
## 1401 0.00 3 FALSE
## 1402 3.21 0 FALSE
## 1403 1.54 1 FALSE
## 1404 2.86 0 FALSE
## 1405 2.57 3 FALSE
## 1406 2.38 4 TRUE
## 1407 2.40 1 FALSE
## 1408 3.19 6 TRUE
## 1409 3.19 1 FALSE
## 1410 2.27 0 FALSE
## 1411 3.29 1 FALSE
## 1412 2.08 1 FALSE
## 1413 2.54 1 FALSE
## 1414 2.65 0 FALSE
## 1415 2.62 1 FALSE
## 1416 2.46 0 FALSE
## 1417 2.05 3 FALSE
## 1418 2.89 1 FALSE
## 1419 1.54 2 FALSE
## 1420 1.78 2 FALSE
## 1421 4.83 3 TRUE
## 1422 2.81 0 FALSE
## 1423 1.51 1 FALSE
## 1424 2.81 1 FALSE
## 1425 3.16 0 FALSE
## 1426 1.24 2 FALSE
## 1427 2.65 2 FALSE
## 1428 2.59 2 FALSE
## 1429 3.02 2 FALSE
## 1430 1.89 1 FALSE
## 1431 2.05 1 FALSE
## 1432 3.05 1 FALSE
## 1433 3.02 0 FALSE
## 1434 3.29 1 FALSE
## 1435 3.56 2 FALSE
## 1436 3.00 0 TRUE
## 1437 2.92 1 FALSE
## 1438 2.62 4 FALSE
## 1439 4.08 2 FALSE
## 1440 2.32 0 FALSE
## 1441 1.35 1 FALSE
## 1442 2.38 1 FALSE
## 1443 2.24 1 TRUE
## 1444 2.48 1 FALSE
## 1445 2.40 3 FALSE
## 1446 2.62 1 FALSE
## 1447 2.78 2 FALSE
## 1448 2.24 0 FALSE
## 1449 2.11 4 FALSE
## 1450 3.43 4 FALSE
## 1451 2.94 0 FALSE
## 1452 2.57 2 FALSE
## 1453 3.32 2 FALSE
## 1454 2.19 2 FALSE
## 1455 3.81 2 TRUE
## 1456 1.78 1 FALSE
## 1457 2.67 1 FALSE
## 1458 1.59 1 FALSE
## 1459 2.32 1 FALSE
## 1460 4.35 0 FALSE
## 1461 2.51 3 FALSE
## 1462 2.70 0 FALSE
## 1463 2.19 2 FALSE
## 1464 2.05 1 FALSE
## 1465 2.43 3 FALSE
## 1466 2.32 1 FALSE
## 1467 1.38 0 FALSE
## 1468 4.56 0 TRUE
## 1469 1.13 3 FALSE
## 1470 4.05 0 FALSE
## 1471 1.59 1 FALSE
## 1472 2.19 0 FALSE
## 1473 3.24 1 TRUE
## 1474 2.78 1 FALSE
## 1475 4.40 0 FALSE
## 1476 4.27 3 FALSE
## 1477 1.59 0 FALSE
## 1478 2.65 1 FALSE
## 1479 2.62 2 FALSE
## 1480 2.40 1 FALSE
## 1481 2.97 0 FALSE
## 1482 4.00 2 FALSE
## 1483 2.54 3 FALSE
## 1484 2.70 1 FALSE
## 1485 3.48 3 TRUE
## 1486 4.16 1 FALSE
## 1487 2.62 0 FALSE
## 1488 3.00 0 FALSE
## 1489 1.70 2 FALSE
## 1490 3.19 2 FALSE
## 1491 1.89 1 FALSE
## 1492 3.46 1 FALSE
## 1493 2.62 1 FALSE
## 1494 3.46 4 TRUE
## 1495 1.32 2 FALSE
## 1496 2.92 0 FALSE
## 1497 3.16 3 FALSE
## 1498 2.86 1 FALSE
## 1499 3.00 0 FALSE
## 1500 3.11 3 FALSE
## 1501 3.29 1 FALSE
## 1502 3.43 0 FALSE
## 1503 1.59 8 FALSE
## 1504 3.29 2 FALSE
## 1505 2.30 2 FALSE
## 1506 2.38 1 FALSE
## 1507 2.89 2 FALSE
## 1508 3.24 1 FALSE
## 1509 1.78 3 FALSE
## 1510 2.48 3 FALSE
## 1511 2.32 1 FALSE
## 1512 1.81 1 FALSE
## 1513 1.13 1 FALSE
## 1514 3.24 2 FALSE
## 1515 1.89 1 FALSE
## 1516 2.70 2 FALSE
## 1517 2.27 1 TRUE
## 1518 3.35 1 FALSE
## 1519 3.05 2 FALSE
## 1520 2.40 2 FALSE
## 1521 2.57 2 FALSE
## 1522 2.62 3 FALSE
## 1523 1.51 1 FALSE
## 1524 3.08 2 FALSE
## 1525 3.38 2 FALSE
## 1526 3.54 1 FALSE
## 1527 3.62 2 FALSE
## 1528 2.43 0 FALSE
## 1529 1.22 0 TRUE
## 1530 2.86 3 FALSE
## 1531 2.16 1 TRUE
## 1532 2.59 4 TRUE
## 1533 3.11 0 TRUE
## 1534 3.75 2 TRUE
## 1535 2.89 1 TRUE
## 1536 3.24 2 FALSE
## 1537 2.40 0 FALSE
## 1538 3.00 4 TRUE
## 1539 3.70 5 TRUE
## 1540 2.89 0 FALSE
## 1541 4.24 3 FALSE
## 1542 2.05 3 FALSE
## 1543 3.21 0 FALSE
## 1544 3.43 1 FALSE
## 1545 2.21 1 FALSE
## 1546 2.97 2 FALSE
## 1547 3.86 1 FALSE
## 1548 2.84 1 FALSE
## 1549 2.78 1 FALSE
## 1550 3.89 1 FALSE
## 1551 3.08 2 FALSE
## 1552 2.35 0 TRUE
## 1553 4.43 2 FALSE
## 1554 3.05 0 FALSE
## 1555 3.59 1 FALSE
## 1556 2.32 2 FALSE
## 1557 2.59 0 FALSE
## 1558 3.65 2 FALSE
## 1559 4.00 2 FALSE
## 1560 1.59 2 FALSE
## 1561 2.40 0 FALSE
## 1562 2.70 2 FALSE
## 1563 3.48 0 FALSE
## 1564 1.97 1 FALSE
## 1565 0.00 1 FALSE
## 1566 2.92 0 FALSE
## 1567 2.57 2 FALSE
## 1568 4.21 0 FALSE
## 1569 3.08 1 FALSE
## 1570 3.11 0 FALSE
## 1571 4.67 2 FALSE
## 1572 1.65 1 FALSE
## 1573 2.73 1 FALSE
## 1574 3.13 1 FALSE
## 1575 3.43 1 FALSE
## 1576 2.30 1 FALSE
## 1577 2.81 3 FALSE
## 1578 2.75 1 FALSE
## 1579 2.38 2 FALSE
## 1580 4.46 2 FALSE
## 1581 2.86 0 FALSE
## 1582 1.51 1 FALSE
## 1583 2.43 1 FALSE
## 1584 3.56 0 FALSE
## 1585 3.40 1 FALSE
## 1586 3.08 2 TRUE
## 1587 1.94 1 FALSE
## 1588 3.43 1 FALSE
## 1589 3.35 1 FALSE
## 1590 1.57 1 FALSE
## 1591 3.05 1 FALSE
## 1592 3.00 2 FALSE
## 1593 1.57 3 FALSE
## 1594 2.94 1 TRUE
## 1595 1.70 3 FALSE
## 1596 2.32 3 FALSE
## 1597 2.21 0 FALSE
## 1598 4.08 2 FALSE
## 1599 2.38 2 FALSE
## 1600 3.62 1 FALSE
## 1601 1.22 0 FALSE
## 1602 3.05 0 TRUE
## 1603 2.35 3 FALSE
## 1604 3.05 2 FALSE
## 1605 3.59 3 FALSE
## 1606 3.00 1 FALSE
## 1607 2.73 0 FALSE
## 1608 3.48 3 FALSE
## 1609 3.73 2 FALSE
## 1610 3.02 0 FALSE
## 1611 3.40 4 FALSE
## 1612 3.02 0 FALSE
## 1613 1.89 2 FALSE
## 1614 1.03 3 FALSE
## 1615 3.73 1 TRUE
## 1616 2.05 2 FALSE
## 1617 2.94 0 FALSE
## 1618 2.97 0 FALSE
## 1619 3.21 1 FALSE
## 1620 3.29 4 TRUE
## 1621 2.59 0 FALSE
## 1622 2.13 0 FALSE
## 1623 2.59 1 FALSE
## 1624 3.05 1 FALSE
## 1625 3.00 2 FALSE
## 1626 2.65 0 FALSE
## 1627 2.32 1 FALSE
## 1628 3.43 2 FALSE
## 1629 4.27 1 FALSE
## 1630 2.16 2 FALSE
## 1631 3.56 2 FALSE
## 1632 2.70 2 FALSE
## 1633 3.02 0 FALSE
## 1634 2.57 0 FALSE
## 1635 3.24 2 FALSE
## 1636 2.57 4 TRUE
## 1637 2.40 1 FALSE
## 1638 2.46 2 FALSE
## 1639 2.62 6 TRUE
## 1640 3.16 2 FALSE
## 1641 2.97 3 FALSE
## 1642 2.73 1 FALSE
## 1643 2.03 1 FALSE
## 1644 1.97 3 FALSE
## 1645 2.84 1 FALSE
## 1646 3.05 3 FALSE
## 1647 2.67 0 TRUE
## 1648 3.65 1 FALSE
## 1649 2.30 0 FALSE
## 1650 2.81 0 FALSE
## 1651 2.59 1 FALSE
## 1652 4.67 1 TRUE
## 1653 1.94 1 FALSE
## 1654 3.00 1 TRUE
## 1655 2.89 1 FALSE
## 1656 1.35 3 FALSE
## 1657 2.89 1 FALSE
## 1658 1.62 2 FALSE
## 1659 1.73 2 FALSE
## 1660 3.70 0 FALSE
## 1661 3.97 3 FALSE
## 1662 2.40 1 FALSE
## 1663 3.70 5 TRUE
## 1664 2.94 1 FALSE
## 1665 2.86 2 FALSE
## 1666 3.32 3 FALSE
## 1667 1.73 2 FALSE
## 1668 2.75 0 FALSE
## 1669 2.11 1 FALSE
## 1670 2.19 1 FALSE
## 1671 3.43 1 FALSE
## 1672 3.78 2 FALSE
## 1673 3.70 2 FALSE
## 1674 2.84 5 FALSE
## 1675 2.67 1 TRUE
## 1676 2.75 0 FALSE
## 1677 2.08 2 FALSE
## 1678 2.43 1 FALSE
## 1679 2.40 1 FALSE
## 1680 2.86 0 TRUE
## 1681 3.43 2 FALSE
## 1682 1.92 1 FALSE
## 1683 2.30 1 FALSE
## 1684 3.48 2 FALSE
## 1685 3.81 2 FALSE
## 1686 2.92 3 FALSE
## 1687 3.32 2 FALSE
## 1688 3.83 3 FALSE
## 1689 2.84 3 FALSE
## 1690 3.08 1 FALSE
## 1691 3.35 1 FALSE
## 1692 1.97 2 TRUE
## 1693 1.70 1 TRUE
## 1694 3.38 1 FALSE
## 1695 3.11 7 TRUE
## 1696 3.59 2 FALSE
## 1697 3.35 1 FALSE
## 1698 3.11 1 FALSE
## 1699 1.62 0 FALSE
## 1700 2.27 4 FALSE
## 1701 2.54 2 FALSE
## 1702 2.97 2 TRUE
## 1703 2.08 4 TRUE
## 1704 3.00 2 FALSE
## 1705 3.13 1 TRUE
## 1706 1.94 3 FALSE
## 1707 3.16 1 FALSE
## 1708 1.51 5 TRUE
## 1709 3.02 4 FALSE
## 1710 2.84 3 FALSE
## 1711 2.43 2 FALSE
## 1712 3.16 0 FALSE
## 1713 2.78 4 FALSE
## 1714 2.03 5 TRUE
## 1715 3.08 3 FALSE
## 1716 3.59 0 FALSE
## 1717 2.46 1 FALSE
## 1718 3.86 1 FALSE
## 1719 2.62 2 TRUE
## 1720 4.10 2 FALSE
## 1721 1.65 1 FALSE
## 1722 2.21 1 FALSE
## 1723 3.32 1 FALSE
## 1724 2.94 2 FALSE
## 1725 1.92 1 FALSE
## 1726 3.81 2 FALSE
## 1727 2.97 1 FALSE
## 1728 3.29 1 FALSE
## 1729 2.57 4 FALSE
## 1730 3.62 2 FALSE
## 1731 3.40 2 FALSE
## 1732 3.48 0 TRUE
## 1733 2.24 3 FALSE
## 1734 0.95 0 FALSE
## 1735 3.73 1 FALSE
## 1736 4.00 0 FALSE
## 1737 1.86 1 TRUE
## 1738 2.38 0 FALSE
## 1739 1.30 0 FALSE
## 1740 1.57 2 TRUE
## 1741 2.54 0 FALSE
## 1742 1.00 3 FALSE
## 1743 3.08 1 FALSE
## 1744 1.57 1 FALSE
## 1745 2.08 0 FALSE
## 1746 2.75 0 FALSE
## 1747 3.65 1 TRUE
## 1748 2.70 1 FALSE
## 1749 3.81 1 FALSE
## 1750 2.38 3 FALSE
## 1751 1.86 1 TRUE
## 1752 2.38 1 FALSE
## 1753 3.81 0 TRUE
## 1754 2.03 2 FALSE
## 1755 2.62 2 TRUE
## 1756 3.21 1 FALSE
## 1757 2.48 1 FALSE
## 1758 3.24 2 FALSE
## 1759 3.27 0 FALSE
## 1760 2.40 0 FALSE
## 1761 2.48 2 FALSE
## 1762 2.08 1 FALSE
## 1763 2.00 0 FALSE
## 1764 3.11 1 FALSE
## 1765 2.03 0 TRUE
## 1766 3.43 4 TRUE
## 1767 3.13 2 FALSE
## 1768 2.84 2 FALSE
## 1769 2.92 2 TRUE
## 1770 2.59 2 FALSE
## 1771 2.46 0 FALSE
## 1772 3.43 2 FALSE
## 1773 3.38 1 FALSE
## 1774 3.11 1 FALSE
## 1775 1.78 1 FALSE
## 1776 2.57 0 FALSE
## 1777 2.97 0 FALSE
## 1778 2.70 3 TRUE
## 1779 3.05 2 FALSE
## 1780 3.05 1 FALSE
## 1781 3.24 1 FALSE
## 1782 4.08 1 FALSE
## 1783 2.16 1 FALSE
## 1784 2.94 1 FALSE
## 1785 3.81 0 TRUE
## 1786 2.13 2 FALSE
## 1787 2.21 0 FALSE
## 1788 2.11 1 FALSE
## 1789 3.32 1 FALSE
## 1790 1.27 0 FALSE
## 1791 2.48 2 FALSE
## 1792 2.92 1 FALSE
## 1793 1.65 0 FALSE
## 1794 1.97 1 FALSE
## 1795 3.11 1 TRUE
## 1796 4.10 1 FALSE
## 1797 3.51 1 FALSE
## 1798 2.75 0 FALSE
## 1799 3.24 1 FALSE
## 1800 1.67 1 FALSE
## 1801 2.89 0 FALSE
## 1802 2.30 2 FALSE
## 1803 3.73 5 FALSE
## 1804 2.30 1 FALSE
## 1805 2.59 0 TRUE
## 1806 2.89 3 FALSE
## 1807 3.16 0 FALSE
## 1808 3.48 3 FALSE
## 1809 3.35 3 FALSE
## 1810 3.73 1 FALSE
## 1811 3.21 0 FALSE
## 1812 4.16 3 FALSE
## 1813 2.24 1 FALSE
## 1814 1.65 0 FALSE
## 1815 3.54 0 FALSE
## 1816 2.57 0 FALSE
## 1817 4.97 2 FALSE
## 1818 1.97 2 FALSE
## 1819 3.19 3 FALSE
## 1820 1.19 0 FALSE
## 1821 2.40 1 FALSE
## 1822 4.16 1 FALSE
## 1823 2.38 2 FALSE
## 1824 3.19 2 FALSE
## 1825 4.05 1 FALSE
## 1826 2.11 3 FALSE
## 1827 2.08 3 FALSE
## 1828 3.62 2 FALSE
## 1829 2.67 2 FALSE
## 1830 2.86 1 FALSE
## 1831 2.84 1 FALSE
## 1832 3.05 7 FALSE
## 1833 4.08 1 FALSE
## 1834 2.16 2 FALSE
## 1835 3.83 0 FALSE
## 1836 2.16 4 FALSE
## 1837 2.62 0 FALSE
## 1838 2.32 1 TRUE
## 1839 2.19 1 FALSE
## 1840 3.56 1 FALSE
## 1841 1.92 2 FALSE
## 1842 1.43 2 FALSE
## 1843 2.40 0 TRUE
## 1844 4.37 2 FALSE
## 1845 3.11 4 TRUE
## 1846 3.75 2 TRUE
## 1847 3.11 1 FALSE
## 1848 3.38 2 FALSE
## 1849 2.32 2 FALSE
## 1850 3.75 2 TRUE
## 1851 2.51 1 TRUE
## 1852 2.94 5 TRUE
## 1853 3.92 1 FALSE
## 1854 1.59 0 FALSE
## 1855 1.49 1 FALSE
## 1856 2.94 2 FALSE
## 1857 2.62 1 FALSE
## 1858 3.27 1 TRUE
## 1859 3.02 0 FALSE
## 1860 2.16 0 FALSE
## 1861 2.00 0 FALSE
## 1862 2.08 0 TRUE
## 1863 2.16 0 TRUE
## 1864 2.35 1 FALSE
## 1865 3.08 0 FALSE
## 1866 2.13 7 TRUE
## 1867 2.40 2 TRUE
## 1868 2.65 0 FALSE
## 1869 2.24 3 FALSE
## 1870 3.65 1 TRUE
## 1871 2.16 0 FALSE
## 1872 1.49 0 FALSE
## 1873 2.19 2 FALSE
## 1874 3.24 1 FALSE
## 1875 1.32 2 FALSE
## 1876 3.08 1 FALSE
## 1877 2.19 1 FALSE
## 1878 2.62 1 FALSE
## 1879 3.11 1 TRUE
## 1880 2.54 2 FALSE
## 1881 4.00 4 TRUE
## 1882 2.08 0 TRUE
## 1883 3.48 2 FALSE
## 1884 3.00 1 FALSE
## 1885 3.32 2 FALSE
## 1886 3.43 1 FALSE
## 1887 1.49 3 FALSE
## 1888 3.97 0 TRUE
## 1889 3.24 2 FALSE
## 1890 2.78 1 TRUE
## 1891 2.78 4 FALSE
## 1892 2.78 3 FALSE
## 1893 2.67 0 TRUE
## 1894 2.40 2 TRUE
## 1895 2.75 3 FALSE
## 1896 2.73 0 FALSE
## 1897 2.67 1 FALSE
## 1898 3.48 1 FALSE
## 1899 2.00 2 TRUE
## 1900 2.92 1 FALSE
## 1901 2.67 1 FALSE
## 1902 2.75 1 FALSE
## 1903 3.02 1 FALSE
## 1904 3.78 1 TRUE
## 1905 3.92 4 TRUE
## 1906 1.89 2 FALSE
## 1907 2.94 1 FALSE
## 1908 2.65 2 FALSE
## 1909 3.46 2 FALSE
## 1910 3.27 0 FALSE
## 1911 1.76 0 FALSE
## 1912 2.21 4 FALSE
## 1913 2.81 8 TRUE
## 1914 1.49 2 FALSE
## 1915 2.67 3 FALSE
## 1916 1.76 1 FALSE
## 1917 3.19 1 FALSE
## 1918 2.97 2 FALSE
## 1919 3.83 1 FALSE
## 1920 2.57 6 TRUE
## 1921 2.32 1 FALSE
## 1922 2.54 3 FALSE
## 1923 2.62 4 FALSE
## 1924 3.19 1 FALSE
## 1925 3.05 1 FALSE
## 1926 2.65 2 FALSE
## 1927 2.65 2 FALSE
## 1928 4.13 3 FALSE
## 1929 3.02 1 FALSE
## 1930 3.13 0 FALSE
## 1931 2.94 1 FALSE
## 1932 2.11 1 FALSE
## 1933 2.32 1 FALSE
## 1934 2.70 1 TRUE
## 1935 2.35 0 TRUE
## 1936 3.67 3 TRUE
## 1937 3.08 2 FALSE
## 1938 3.27 1 FALSE
## 1939 1.84 1 FALSE
## 1940 2.48 2 TRUE
## 1941 2.35 1 FALSE
## 1942 2.05 1 FALSE
## 1943 2.38 2 FALSE
## 1944 2.94 0 FALSE
## 1945 1.81 1 FALSE
## 1946 2.30 1 FALSE
## 1947 1.38 1 FALSE
## 1948 2.16 0 FALSE
## 1949 1.84 1 FALSE
## 1950 2.70 0 FALSE
## 1951 1.89 4 TRUE
## 1952 2.59 1 FALSE
## 1953 1.65 1 FALSE
## 1954 3.00 0 FALSE
## 1955 3.19 0 TRUE
## 1956 1.51 0 FALSE
## 1957 3.40 3 FALSE
## 1958 2.75 1 FALSE
## 1959 3.35 3 FALSE
## 1960 3.46 2 FALSE
## 1961 3.75 0 FALSE
## 1962 3.00 3 FALSE
## 1963 2.81 3 FALSE
## 1964 2.73 0 FALSE
## 1965 2.97 1 FALSE
## 1966 3.00 1 TRUE
## 1967 0.54 1 FALSE
## 1968 2.54 3 FALSE
## 1969 2.16 1 FALSE
## 1970 3.65 1 FALSE
## 1971 3.51 5 FALSE
## 1972 2.43 1 FALSE
## 1973 3.38 2 FALSE
## 1974 1.70 5 FALSE
## 1975 2.35 5 TRUE
## 1976 1.89 2 FALSE
## 1977 2.81 1 FALSE
## 1978 4.21 2 TRUE
## 1979 3.59 3 TRUE
## 1980 2.00 1 FALSE
## 1981 3.43 4 FALSE
## 1982 1.43 1 FALSE
## 1983 4.24 0 FALSE
## 1984 2.54 3 FALSE
## 1985 4.43 3 TRUE
## 1986 2.21 2 FALSE
## 1987 3.27 0 FALSE
## 1988 2.75 0 FALSE
## 1989 3.27 1 FALSE
## 1990 3.24 2 FALSE
## 1991 3.35 2 FALSE
## 1992 3.40 1 FALSE
## 1993 2.05 2 FALSE
## 1994 1.22 0 FALSE
## 1995 2.86 0 FALSE
## 1996 3.16 1 FALSE
## 1997 2.05 1 FALSE
## 1998 3.54 3 FALSE
## 1999 2.62 2 FALSE
## 2000 2.94 0 FALSE
## 2001 2.73 3 FALSE
## 2002 2.89 1 TRUE
## 2003 3.48 3 FALSE
## 2004 3.51 1 FALSE
## 2005 4.81 4 FALSE
## 2006 3.00 1 FALSE
## 2007 1.78 3 FALSE
## 2008 1.67 3 FALSE
## 2009 3.21 3 FALSE
## 2010 2.24 0 FALSE
## 2011 3.43 0 FALSE
## 2012 2.51 3 FALSE
## 2013 1.65 1 FALSE
## 2014 2.92 2 FALSE
## 2015 3.70 3 FALSE
## 2016 3.73 0 FALSE
## 2017 2.48 3 FALSE
## 2018 2.57 3 FALSE
## 2019 2.03 1 FALSE
## 2020 3.00 1 FALSE
## 2021 1.40 2 FALSE
## 2022 3.00 1 FALSE
## 2023 2.86 1 FALSE
## 2024 3.62 1 FALSE
## 2025 3.40 2 FALSE
## 2026 3.62 2 FALSE
## 2027 3.81 1 FALSE
## 2028 2.92 1 FALSE
## 2029 2.35 1 TRUE
## 2030 3.89 0 TRUE
## 2031 3.19 1 FALSE
## 2032 3.08 5 FALSE
## 2033 3.56 2 FALSE
## 2034 2.81 2 TRUE
## 2035 3.94 1 FALSE
## 2036 2.35 3 FALSE
## 2037 2.16 3 FALSE
## 2038 1.81 1 FALSE
## 2039 2.73 1 TRUE
## 2040 2.86 1 FALSE
## 2041 2.62 2 FALSE
## 2042 2.67 2 FALSE
## 2043 3.02 1 FALSE
## 2044 1.73 3 FALSE
## 2045 2.70 0 FALSE
## 2046 3.67 4 FALSE
## 2047 3.00 1 FALSE
## 2048 3.29 3 FALSE
## 2049 2.59 3 FALSE
## 2050 1.89 2 FALSE
## 2051 2.03 1 FALSE
## 2052 2.21 1 FALSE
## 2053 2.62 2 FALSE
## 2054 3.51 0 FALSE
## 2055 1.92 1 FALSE
## 2056 3.65 1 FALSE
## 2057 3.59 3 FALSE
## 2058 3.11 2 FALSE
## 2059 3.27 0 FALSE
## 2060 2.40 3 TRUE
## 2061 1.97 0 FALSE
## 2062 2.78 0 FALSE
## 2063 2.78 1 FALSE
## 2064 2.73 2 FALSE
## 2065 2.48 2 FALSE
## 2066 3.29 1 FALSE
## 2067 4.08 0 FALSE
## 2068 2.67 4 FALSE
## 2069 3.32 1 FALSE
## 2070 2.65 0 TRUE
## 2071 3.54 1 FALSE
## 2072 1.13 2 FALSE
## 2073 1.76 3 FALSE
## 2074 3.05 1 FALSE
## 2075 1.78 2 FALSE
## 2076 2.38 2 FALSE
## 2077 2.73 4 TRUE
## 2078 3.54 0 FALSE
## 2079 1.16 1 FALSE
## 2080 3.54 2 FALSE
## 2081 3.21 0 FALSE
## 2082 2.73 1 FALSE
## 2083 2.65 0 FALSE
## 2084 2.24 3 FALSE
## 2085 2.38 2 FALSE
## 2086 3.00 1 FALSE
## 2087 3.40 1 FALSE
## 2088 3.00 4 FALSE
## 2089 4.43 2 FALSE
## 2090 3.00 1 FALSE
## 2091 2.86 2 FALSE
## 2092 2.03 2 FALSE
## 2093 2.92 2 FALSE
## 2094 3.48 0 FALSE
## 2095 2.97 0 FALSE
## 2096 3.59 0 FALSE
## 2097 4.35 0 FALSE
## 2098 2.65 2 FALSE
## 2099 2.65 1 FALSE
## 2100 2.73 3 TRUE
## 2101 3.59 0 FALSE
## 2102 1.86 0 FALSE
## 2103 3.43 2 FALSE
## 2104 2.62 2 TRUE
## 2105 2.94 2 FALSE
## 2106 2.59 0 FALSE
## 2107 3.67 0 TRUE
## 2108 2.73 2 TRUE
## 2109 2.57 0 FALSE
## 2110 3.40 3 FALSE
## 2111 2.75 2 FALSE
## 2112 3.89 0 FALSE
## 2113 3.29 4 TRUE
## 2114 3.16 2 TRUE
## 2115 3.59 3 FALSE
## 2116 4.10 0 TRUE
## 2117 3.83 1 FALSE
## 2118 3.21 4 FALSE
## 2119 2.65 0 TRUE
## 2120 3.13 0 TRUE
## 2121 3.70 1 FALSE
## 2122 3.43 1 FALSE
## 2123 4.43 0 FALSE
## 2124 2.19 1 FALSE
## 2125 2.89 3 FALSE
## 2126 1.03 1 FALSE
## 2127 2.62 1 FALSE
## 2128 3.02 3 FALSE
## 2129 2.75 2 FALSE
## 2130 2.00 2 FALSE
## 2131 2.94 1 FALSE
## 2132 2.97 1 FALSE
## 2133 1.62 3 FALSE
## 2134 2.78 2 FALSE
## 2135 3.51 1 FALSE
## 2136 3.02 0 FALSE
## 2137 3.05 1 FALSE
## 2138 2.40 0 FALSE
## 2139 2.94 3 FALSE
## 2140 3.24 3 TRUE
## 2141 3.56 4 FALSE
## 2142 1.78 2 FALSE
## 2143 3.38 1 TRUE
## 2144 3.05 3 FALSE
## 2145 3.43 1 FALSE
## 2146 2.92 1 FALSE
## 2147 2.94 0 FALSE
## 2148 3.43 3 TRUE
## 2149 2.70 1 FALSE
## 2150 3.13 0 FALSE
## 2151 3.40 2 TRUE
## 2152 2.59 2 FALSE
## 2153 3.00 1 FALSE
## 2154 2.57 2 FALSE
## 2155 3.38 2 FALSE
## 2156 3.24 2 TRUE
## 2157 3.05 3 FALSE
## 2158 2.75 2 FALSE
## 2159 3.56 0 TRUE
## 2160 3.51 1 FALSE
## 2161 2.13 1 TRUE
## 2162 3.27 0 FALSE
## 2163 1.86 1 FALSE
## 2164 2.00 1 FALSE
## 2165 2.67 3 TRUE
## 2166 3.51 2 FALSE
## 2167 3.02 2 FALSE
## 2168 1.81 1 FALSE
## 2169 2.78 1 FALSE
## 2170 2.86 0 FALSE
## 2171 2.94 0 FALSE
## 2172 1.84 1 FALSE
## 2173 3.02 0 FALSE
## 2174 3.59 0 TRUE
## 2175 2.78 1 FALSE
## 2176 2.38 3 FALSE
## 2177 2.11 2 FALSE
## 2178 3.54 2 FALSE
## 2179 1.97 0 FALSE
## 2180 3.13 2 FALSE
## 2181 0.78 2 FALSE
## 2182 4.05 1 FALSE
## 2183 3.51 0 FALSE
## 2184 3.78 3 FALSE
## 2185 3.19 1 FALSE
## 2186 3.51 1 FALSE
## 2187 2.94 3 TRUE
## 2188 3.35 4 TRUE
## 2189 1.97 2 FALSE
## 2190 2.62 3 FALSE
## 2191 2.94 1 FALSE
## 2192 1.46 1 FALSE
## 2193 1.43 2 FALSE
## 2194 2.54 2 FALSE
## 2195 2.43 2 FALSE
## 2196 1.65 1 FALSE
## 2197 3.11 0 FALSE
## 2198 0.84 2 FALSE
## 2199 0.89 0 FALSE
## 2200 2.30 2 FALSE
## 2201 2.27 1 FALSE
## 2202 3.78 2 FALSE
## 2203 2.81 1 FALSE
## 2204 2.97 4 TRUE
## 2205 1.84 2 FALSE
## 2206 3.02 3 FALSE
## 2207 2.86 1 FALSE
## 2208 2.65 0 FALSE
## 2209 2.59 1 FALSE
## 2210 1.84 3 FALSE
## 2211 3.16 0 TRUE
## 2212 3.00 4 FALSE
## 2213 1.30 1 FALSE
## 2214 3.35 0 TRUE
## 2215 3.51 1 FALSE
## 2216 3.11 0 TRUE
## 2217 3.19 2 FALSE
## 2218 3.08 2 FALSE
## 2219 3.05 5 TRUE
## 2220 2.67 3 FALSE
## 2221 2.32 3 FALSE
## 2222 2.75 2 FALSE
## 2223 3.27 0 FALSE
## 2224 2.97 6 FALSE
## 2225 4.19 2 FALSE
## 2226 3.27 1 FALSE
## 2227 2.84 1 FALSE
## 2228 2.75 2 FALSE
## 2229 2.05 2 FALSE
## 2230 4.75 2 FALSE
## 2231 2.11 2 FALSE
## 2232 1.92 3 FALSE
## 2233 3.35 0 FALSE
## 2234 2.97 1 FALSE
## 2235 2.70 2 FALSE
## 2236 2.62 1 FALSE
## 2237 3.89 2 FALSE
## 2238 1.84 4 TRUE
## 2239 4.67 1 TRUE
## 2240 2.51 2 FALSE
## 2241 3.70 0 FALSE
## 2242 1.32 1 FALSE
## 2243 3.08 2 FALSE
## 2244 2.32 2 FALSE
## 2245 2.94 1 FALSE
## 2246 2.38 2 FALSE
## 2247 3.05 1 FALSE
## 2248 3.46 0 FALSE
## 2249 3.59 5 FALSE
## 2250 3.89 3 FALSE
## 2251 1.94 1 FALSE
## 2252 1.73 1 FALSE
## 2253 2.86 1 FALSE
## 2254 2.40 1 FALSE
## 2255 1.81 1 FALSE
## 2256 3.05 0 FALSE
## 2257 0.70 1 FALSE
## 2258 3.65 1 FALSE
## 2259 1.94 1 TRUE
## 2260 2.73 3 FALSE
## 2261 3.51 1 FALSE
## 2262 2.54 4 FALSE
## 2263 3.94 1 FALSE
## 2264 2.43 1 FALSE
## 2265 2.35 3 FALSE
## 2266 2.35 0 FALSE
## 2267 2.70 1 FALSE
## 2268 3.46 2 TRUE
## 2269 3.05 0 FALSE
## 2270 2.21 0 FALSE
## 2271 3.29 3 FALSE
## 2272 2.35 1 FALSE
## 2273 3.16 2 FALSE
## 2274 2.05 2 FALSE
## 2275 2.67 4 FALSE
## 2276 2.08 0 FALSE
## 2277 1.59 3 FALSE
## 2278 3.59 0 FALSE
## 2279 2.27 1 FALSE
## 2280 2.57 1 FALSE
## 2281 3.62 2 FALSE
## 2282 2.24 0 FALSE
## 2283 3.40 3 FALSE
## 2284 1.27 5 TRUE
## 2285 3.40 2 FALSE
## 2286 3.19 1 FALSE
## 2287 2.81 0 FALSE
## 2288 1.78 3 FALSE
## 2289 2.38 0 FALSE
## 2290 2.92 1 FALSE
## 2291 2.89 3 TRUE
## 2292 3.21 0 FALSE
## 2293 2.84 2 FALSE
## 2294 2.46 1 FALSE
## 2295 2.00 0 FALSE
## 2296 1.78 0 FALSE
## 2297 2.75 1 FALSE
## 2298 3.48 2 FALSE
## 2299 2.38 1 FALSE
## 2300 2.16 0 FALSE
## 2301 2.38 0 FALSE
## 2302 4.59 2 FALSE
## 2303 3.11 2 FALSE
## 2304 2.73 2 FALSE
## 2305 2.97 0 FALSE
## 2306 3.00 3 FALSE
## 2307 1.62 1 FALSE
## 2308 2.94 3 FALSE
## 2309 3.27 1 FALSE
## 2310 2.40 0 FALSE
## 2311 3.65 3 FALSE
## 2312 2.92 1 FALSE
## 2313 2.48 0 FALSE
## 2314 3.11 3 FALSE
## 2315 3.13 3 FALSE
## 2316 1.89 2 FALSE
## 2317 3.48 1 FALSE
## 2318 1.70 3 FALSE
## 2319 3.11 0 FALSE
## 2320 2.35 3 FALSE
## 2321 3.16 1 FALSE
## 2322 4.19 1 FALSE
## 2323 2.86 5 FALSE
## 2324 2.21 1 FALSE
## 2325 2.11 4 TRUE
## 2326 2.65 2 TRUE
## 2327 3.78 0 FALSE
## 2328 2.54 6 TRUE
## 2329 2.27 1 FALSE
## 2330 2.40 1 FALSE
## 2331 2.86 1 FALSE
## 2332 1.94 1 FALSE
## 2333 2.84 1 FALSE
## 2334 2.21 2 FALSE
## 2335 2.70 3 FALSE
## 2336 2.70 3 TRUE
## 2337 3.13 1 FALSE
## 2338 2.24 4 FALSE
## 2339 3.02 2 FALSE
## 2340 2.40 1 FALSE
## 2341 3.40 0 FALSE
## 2342 1.92 0 FALSE
## 2343 2.75 2 FALSE
## 2344 3.73 1 TRUE
## 2345 2.21 1 FALSE
## 2346 0.00 0 FALSE
## 2347 1.24 2 FALSE
## 2348 3.65 1 TRUE
## 2349 3.05 2 FALSE
## 2350 2.59 0 FALSE
## 2351 2.35 0 FALSE
## 2352 0.92 2 FALSE
## 2353 3.46 0 FALSE
## 2354 3.16 1 FALSE
## 2355 3.54 2 TRUE
## 2356 3.38 2 FALSE
## 2357 1.57 2 TRUE
## 2358 2.73 1 TRUE
## 2359 3.94 0 FALSE
## 2360 3.54 1 FALSE
## 2361 2.54 2 FALSE
## 2362 2.84 3 FALSE
## 2363 0.00 3 FALSE
## 2364 3.59 0 FALSE
## 2365 3.70 0 FALSE
## 2366 3.11 1 FALSE
## 2367 3.78 1 FALSE
## 2368 1.78 3 FALSE
## 2369 2.05 1 FALSE
## 2370 2.43 4 TRUE
## 2371 2.67 4 FALSE
## 2372 4.91 1 FALSE
## 2373 2.73 2 FALSE
## 2374 2.75 0 FALSE
## 2375 2.27 0 FALSE
## 2376 2.81 2 FALSE
## 2377 1.57 1 TRUE
## 2378 2.38 1 TRUE
## 2379 3.40 3 FALSE
## 2380 3.19 2 FALSE
## 2381 2.73 9 TRUE
## 2382 2.05 1 FALSE
## 2383 2.94 0 FALSE
## 2384 2.59 2 FALSE
## 2385 1.73 0 FALSE
## 2386 3.75 0 FALSE
## 2387 2.00 2 TRUE
## 2388 2.46 6 TRUE
## 2389 2.40 1 TRUE
## 2390 2.86 0 TRUE
## 2391 3.29 0 FALSE
## 2392 2.92 2 FALSE
## 2393 2.97 1 FALSE
## 2394 2.24 0 FALSE
## 2395 3.02 3 FALSE
## 2396 3.86 4 FALSE
## 2397 2.86 2 FALSE
## 2398 3.56 1 TRUE
## 2399 3.11 1 FALSE
## 2400 3.02 1 FALSE
## 2401 2.27 0 FALSE
## 2402 3.08 1 TRUE
## 2403 4.13 5 TRUE
## 2404 3.51 2 FALSE
## 2405 4.19 1 FALSE
## 2406 1.73 1 TRUE
## 2407 2.48 2 FALSE
## 2408 3.62 1 TRUE
## 2409 2.84 1 FALSE
## 2410 2.35 2 FALSE
## 2411 2.94 0 FALSE
## 2412 2.51 1 FALSE
## 2413 2.03 1 TRUE
## 2414 4.00 0 FALSE
## 2415 1.73 0 FALSE
## 2416 2.43 5 TRUE
## 2417 3.21 2 FALSE
## 2418 2.51 2 FALSE
## 2419 2.97 0 FALSE
## 2420 2.40 2 TRUE
## 2421 3.13 2 TRUE
## 2422 2.94 4 TRUE
## 2423 4.10 2 FALSE
## 2424 1.00 0 FALSE
## 2425 1.73 1 FALSE
## 2426 2.32 2 FALSE
## 2427 3.54 1 FALSE
## 2428 2.57 2 FALSE
## 2429 3.05 6 TRUE
## 2430 2.70 2 FALSE
## 2431 4.21 0 FALSE
## 2432 2.75 1 FALSE
## 2433 3.59 4 TRUE
## 2434 3.27 2 FALSE
## 2435 3.05 0 FALSE
## 2436 2.78 1 FALSE
## 2437 3.59 1 FALSE
## 2438 2.24 4 TRUE
## 2439 2.97 2 FALSE
## 2440 3.94 1 FALSE
## 2441 1.89 0 FALSE
## 2442 3.27 1 FALSE
## 2443 1.27 3 FALSE
## 2444 2.97 0 FALSE
## 2445 2.62 5 FALSE
## 2446 3.13 1 FALSE
## 2447 3.13 2 FALSE
## 2448 3.48 1 FALSE
## 2449 3.73 3 FALSE
## 2450 2.05 3 FALSE
## 2451 3.21 1 FALSE
## 2452 2.89 2 TRUE
## 2453 3.70 1 FALSE
## 2454 2.70 1 FALSE
## 2455 2.62 1 FALSE
## 2456 1.92 1 FALSE
## 2457 2.81 4 FALSE
## 2458 3.29 1 FALSE
## 2459 2.38 1 FALSE
## 2460 3.97 4 FALSE
## 2461 2.65 2 FALSE
## 2462 3.11 0 FALSE
## 2463 2.94 2 FALSE
## 2464 2.73 2 FALSE
## 2465 2.54 1 FALSE
## 2466 2.24 3 FALSE
## 2467 2.84 0 FALSE
## 2468 2.08 1 FALSE
## 2469 1.16 1 TRUE
## 2470 2.24 3 FALSE
## 2471 1.51 3 FALSE
## 2472 2.00 0 FALSE
## 2473 2.75 1 TRUE
## 2474 2.30 0 FALSE
## 2475 2.51 0 FALSE
## 2476 1.43 1 FALSE
## 2477 2.67 1 FALSE
## 2478 2.46 1 FALSE
## 2479 3.56 1 FALSE
## 2480 3.16 3 TRUE
## 2481 2.78 3 FALSE
## 2482 3.05 1 FALSE
## 2483 2.75 2 FALSE
## 2484 3.48 2 FALSE
## 2485 3.32 0 FALSE
## 2486 3.24 1 FALSE
## 2487 1.46 0 FALSE
## 2488 2.65 0 FALSE
## 2489 1.81 0 FALSE
## 2490 2.84 4 TRUE
## 2491 2.65 1 FALSE
## 2492 2.65 2 FALSE
## 2493 2.30 0 FALSE
## 2494 3.05 5 TRUE
## 2495 2.19 1 FALSE
## 2496 2.30 1 FALSE
## 2497 2.11 1 FALSE
## 2498 1.13 2 FALSE
## 2499 2.75 1 FALSE
## 2500 3.73 1 FALSE
## 2501 2.59 1 FALSE
## 2502 3.62 0 FALSE
## 2503 4.43 2 FALSE
## 2504 2.67 2 FALSE
## 2505 3.51 1 FALSE
## 2506 3.38 3 FALSE
## 2507 3.56 1 FALSE
## 2508 3.40 0 FALSE
## 2509 2.35 2 FALSE
## 2510 2.94 2 FALSE
## 2511 2.70 2 FALSE
## 2512 1.94 3 FALSE
## 2513 2.75 0 FALSE
## 2514 0.00 2 FALSE
## 2515 2.89 0 FALSE
## 2516 3.24 5 TRUE
## 2517 3.29 2 FALSE
## 2518 3.35 0 FALSE
## 2519 2.13 2 FALSE
## 2520 2.27 2 FALSE
## 2521 2.11 1 FALSE
## 2522 3.27 1 FALSE
## 2523 2.27 2 FALSE
## 2524 2.11 3 FALSE
## 2525 3.19 1 FALSE
## 2526 2.62 0 FALSE
## 2527 1.73 0 TRUE
## 2528 3.54 2 FALSE
## 2529 2.67 3 FALSE
## 2530 2.48 2 FALSE
## 2531 2.89 2 FALSE
## 2532 2.73 1 FALSE
## 2533 1.94 2 FALSE
## 2534 3.32 2 TRUE
## 2535 4.86 1 FALSE
## 2536 2.48 2 TRUE
## 2537 2.43 0 TRUE
## 2538 1.73 3 FALSE
## 2539 3.78 1 FALSE
## 2540 2.89 3 TRUE
## 2541 3.48 1 FALSE
## 2542 3.83 2 FALSE
## 2543 2.57 1 TRUE
## 2544 1.86 1 FALSE
## 2545 3.56 3 FALSE
## 2546 2.21 0 FALSE
## 2547 3.29 2 FALSE
## 2548 3.43 2 FALSE
## 2549 3.21 1 FALSE
## 2550 2.27 2 FALSE
## 2551 1.78 1 FALSE
## 2552 2.94 1 FALSE
## 2553 2.40 1 FALSE
## 2554 2.70 6 FALSE
## 2555 1.81 2 FALSE
## 2556 2.51 2 FALSE
## 2557 2.92 2 FALSE
## 2558 4.56 0 FALSE
## 2559 2.59 0 FALSE
## 2560 3.11 1 FALSE
## 2561 2.43 1 FALSE
## 2562 2.08 1 FALSE
## 2563 2.16 1 FALSE
## 2564 3.27 1 FALSE
## 2565 2.89 1 FALSE
## 2566 3.65 0 FALSE
## 2567 3.89 2 FALSE
## 2568 2.51 2 TRUE
## 2569 3.24 3 FALSE
## 2570 3.46 3 FALSE
## 2571 2.30 1 FALSE
## 2572 2.11 2 FALSE
## 2573 2.81 1 TRUE
## 2574 3.46 1 TRUE
## 2575 3.59 1 FALSE
## 2576 4.19 1 TRUE
## 2577 3.00 2 FALSE
## 2578 2.30 2 FALSE
## 2579 3.19 0 FALSE
## 2580 2.11 1 FALSE
## 2581 2.32 0 FALSE
## 2582 3.48 4 TRUE
## 2583 2.03 2 FALSE
## 2584 3.46 1 FALSE
## 2585 3.08 3 FALSE
## 2586 2.65 3 FALSE
## 2587 3.08 1 FALSE
## 2588 2.40 3 FALSE
## 2589 3.24 2 FALSE
## 2590 3.75 1 FALSE
## 2591 2.51 3 FALSE
## 2592 2.38 1 TRUE
## 2593 3.46 5 FALSE
## 2594 3.86 0 FALSE
## 2595 3.19 1 TRUE
## 2596 2.27 1 TRUE
## 2597 1.57 1 FALSE
## 2598 3.78 2 FALSE
## 2599 2.78 1 FALSE
## 2600 2.38 0 TRUE
## 2601 3.02 1 FALSE
## 2602 3.11 1 FALSE
## 2603 3.08 2 TRUE
## 2604 1.73 2 FALSE
## 2605 4.29 3 FALSE
## 2606 3.81 2 FALSE
## 2607 4.35 1 TRUE
## 2608 2.67 3 FALSE
## 2609 1.81 4 FALSE
## 2610 2.89 1 FALSE
## 2611 1.59 1 FALSE
## 2612 3.19 0 FALSE
## 2613 2.27 2 FALSE
## 2614 1.92 1 FALSE
## 2615 3.29 0 TRUE
## 2616 2.94 1 FALSE
## 2617 4.32 0 FALSE
## 2618 2.89 2 FALSE
## 2619 1.86 1 FALSE
## 2620 3.00 3 TRUE
## 2621 2.97 1 FALSE
## 2622 2.03 4 FALSE
## 2623 3.13 4 FALSE
## 2624 2.94 2 FALSE
## 2625 3.13 0 TRUE
## 2626 3.24 2 FALSE
## 2627 3.40 2 FALSE
## 2628 3.38 1 FALSE
## 2629 1.84 4 FALSE
## 2630 1.81 1 TRUE
## 2631 2.65 2 FALSE
## 2632 3.35 2 FALSE
## 2633 3.19 1 FALSE
## 2634 2.86 0 FALSE
## 2635 3.40 2 FALSE
## 2636 2.70 1 FALSE
## 2637 1.62 2 FALSE
## 2638 1.59 3 FALSE
## 2639 3.08 2 FALSE
## 2640 3.29 1 FALSE
## 2641 2.92 3 FALSE
## 2642 3.05 1 FALSE
## 2643 2.70 1 FALSE
## 2644 2.86 3 FALSE
## 2645 3.35 0 FALSE
## 2646 3.27 2 TRUE
## 2647 3.11 5 FALSE
## 2648 3.62 0 TRUE
## 2649 3.43 1 FALSE
## 2650 2.65 1 FALSE
## 2651 1.32 2 FALSE
## 2652 2.48 3 FALSE
## 2653 2.62 0 FALSE
## 2654 3.35 1 FALSE
## 2655 1.84 1 FALSE
## 2656 2.70 1 FALSE
## 2657 2.40 2 FALSE
## 2658 2.40 3 FALSE
## 2659 3.65 0 FALSE
## 2660 4.35 2 FALSE
## 2661 3.62 4 TRUE
## 2662 2.57 0 FALSE
## 2663 3.70 2 TRUE
## 2664 3.43 2 FALSE
## 2665 3.89 1 TRUE
## 2666 2.73 3 FALSE
## 2667 3.27 1 TRUE
## 2668 2.70 3 FALSE
## 2669 2.32 0 FALSE
## 2670 0.30 2 FALSE
## 2671 2.43 2 FALSE
## 2672 2.57 2 FALSE
## 2673 2.48 0 TRUE
## 2674 1.81 3 TRUE
## 2675 3.46 0 FALSE
## 2676 1.54 0 FALSE
## 2677 3.27 0 FALSE
## 2678 1.97 4 TRUE
## 2679 3.89 2 FALSE
## 2680 0.89 1 FALSE
## 2681 2.08 2 FALSE
## 2682 3.59 0 TRUE
## 2683 3.48 0 FALSE
## 2684 3.56 1 FALSE
## 2685 2.65 2 FALSE
## 2686 3.81 3 FALSE
## 2687 2.70 2 FALSE
## 2688 4.59 1 TRUE
## 2689 2.70 1 FALSE
## 2690 4.10 0 FALSE
## 2691 1.89 3 FALSE
## 2692 2.62 2 FALSE
## 2693 3.13 1 FALSE
## 2694 1.97 3 FALSE
## 2695 2.73 0 TRUE
## 2696 2.65 2 FALSE
## 2697 3.32 3 TRUE
## 2698 3.21 0 FALSE
## 2699 3.35 1 FALSE
## 2700 3.13 0 FALSE
## 2701 2.30 3 TRUE
## 2702 2.24 3 FALSE
## 2703 2.13 1 FALSE
## 2704 3.27 1 FALSE
## 2705 3.02 2 FALSE
## 2706 2.62 4 FALSE
## 2707 3.56 0 FALSE
## 2708 2.43 2 FALSE
## 2709 2.40 1 TRUE
## 2710 3.16 0 FALSE
## 2711 3.97 0 TRUE
## 2712 2.70 1 FALSE
## 2713 3.13 0 FALSE
## 2714 1.62 2 FALSE
## 2715 4.16 1 FALSE
## 2716 1.65 1 FALSE
## 2717 3.27 2 FALSE
## 2718 1.16 0 FALSE
## 2719 3.73 1 FALSE
## 2720 2.70 1 FALSE
## 2721 2.78 1 FALSE
## 2722 2.59 1 FALSE
## 2723 2.73 2 FALSE
## 2724 3.51 2 FALSE
## 2725 2.57 2 TRUE
## 2726 3.24 0 FALSE
## 2727 2.67 2 FALSE
## 2728 3.16 0 FALSE
## 2729 1.67 2 FALSE
## 2730 2.35 2 FALSE
## 2731 4.00 1 FALSE
## 2732 3.75 0 TRUE
## 2733 4.56 5 TRUE
## 2734 0.00 2 FALSE
## 2735 3.00 1 FALSE
## 2736 3.59 0 TRUE
## 2737 2.48 3 FALSE
## 2738 2.67 1 FALSE
## 2739 2.03 1 FALSE
## 2740 2.92 0 FALSE
## 2741 2.78 0 FALSE
## 2742 3.35 1 FALSE
## 2743 2.89 2 FALSE
## 2744 2.16 2 FALSE
## 2745 1.92 1 FALSE
## 2746 2.75 2 TRUE
## 2747 3.62 3 FALSE
## 2748 1.67 0 TRUE
## 2749 2.08 2 FALSE
## 2750 3.83 1 FALSE
## 2751 2.35 1 FALSE
## 2752 2.13 0 FALSE
## 2753 2.19 3 FALSE
## 2754 3.48 2 FALSE
## 2755 3.05 1 FALSE
## 2756 2.89 0 FALSE
## 2757 3.38 2 FALSE
## 2758 1.57 2 FALSE
## 2759 3.24 0 FALSE
## 2760 3.40 1 FALSE
## 2761 3.83 0 TRUE
## 2762 2.84 1 FALSE
## 2763 2.57 3 FALSE
## 2764 2.21 3 FALSE
## 2765 4.02 2 FALSE
## 2766 2.89 1 FALSE
## 2767 2.84 1 FALSE
## 2768 2.21 3 FALSE
## 2769 3.24 1 FALSE
## 2770 2.46 1 FALSE
## 2771 1.54 2 FALSE
## 2772 3.56 1 FALSE
## 2773 1.59 4 TRUE
## 2774 1.65 2 TRUE
## 2775 3.56 0 TRUE
## 2776 2.43 1 FALSE
## 2777 2.00 0 FALSE
## 2778 3.32 2 FALSE
## 2779 2.78 1 FALSE
## 2780 2.30 0 FALSE
## 2781 3.05 3 FALSE
## 2782 2.43 2 FALSE
## 2783 3.13 3 FALSE
## 2784 2.46 1 FALSE
## 2785 2.94 3 TRUE
## 2786 2.48 5 TRUE
## 2787 2.43 6 TRUE
## 2788 2.92 1 FALSE
## 2789 1.94 0 FALSE
## 2790 2.08 2 FALSE
## 2791 2.46 0 FALSE
## 2792 1.49 0 FALSE
## 2793 3.00 1 FALSE
## 2794 3.89 2 FALSE
## 2795 2.94 0 TRUE
## 2796 2.51 1 FALSE
## 2797 4.37 0 FALSE
## 2798 2.70 2 FALSE
## 2799 2.75 1 FALSE
## 2800 2.54 3 FALSE
## 2801 2.97 0 TRUE
## 2802 1.65 4 FALSE
## 2803 3.89 2 FALSE
## 2804 2.86 3 FALSE
## 2805 2.46 1 FALSE
## 2806 3.08 1 FALSE
## 2807 3.67 2 FALSE
## 2808 3.19 2 FALSE
## 2809 3.13 1 FALSE
## 2810 0.95 1 FALSE
## 2811 3.00 0 FALSE
## 2812 2.92 2 FALSE
## 2813 2.97 2 FALSE
## 2814 3.32 3 FALSE
## 2815 2.89 1 FALSE
## 2816 1.94 2 FALSE
## 2817 4.94 1 TRUE
## 2818 3.08 1 FALSE
## 2819 2.73 1 FALSE
## 2820 2.78 0 TRUE
## 2821 3.56 4 FALSE
## 2822 1.54 0 FALSE
## 2823 3.02 0 FALSE
## 2824 4.48 2 FALSE
## 2825 3.54 0 TRUE
## 2826 3.86 2 FALSE
## 2827 2.75 2 FALSE
## 2828 2.78 5 TRUE
## 2829 1.70 4 TRUE
## 2830 3.40 1 FALSE
## 2831 2.84 1 FALSE
## 2832 2.67 1 FALSE
## 2833 2.03 3 FALSE
## 2834 3.13 2 FALSE
## 2835 3.16 1 FALSE
## 2836 2.81 3 FALSE
## 2837 2.78 2 FALSE
## 2838 3.86 1 FALSE
## 2839 2.84 2 FALSE
## 2840 3.83 2 TRUE
## 2841 2.92 0 FALSE
## 2842 3.78 0 FALSE
## 2843 2.54 0 FALSE
## 2844 2.70 1 FALSE
## 2845 3.11 1 FALSE
## 2846 1.22 0 FALSE
## 2847 2.73 1 FALSE
## 2848 3.29 0 FALSE
## 2849 2.16 0 FALSE
## 2850 2.08 1 FALSE
## 2851 2.70 2 FALSE
## 2852 2.21 2 FALSE
## 2853 1.24 1 FALSE
## 2854 2.35 2 FALSE
## 2855 2.86 1 FALSE
## 2856 2.19 1 FALSE
## 2857 2.70 0 FALSE
## 2858 1.51 1 FALSE
## 2859 2.00 1 FALSE
## 2860 3.11 0 FALSE
## 2861 3.19 2 FALSE
## 2862 3.54 4 FALSE
## 2863 3.27 0 FALSE
## 2864 2.62 3 FALSE
## 2865 3.38 0 FALSE
## 2866 2.32 2 TRUE
## 2867 3.00 2 FALSE
## 2868 3.02 1 FALSE
## 2869 3.67 0 TRUE
## 2870 2.40 1 FALSE
## 2871 2.46 2 FALSE
## 2872 3.05 2 FALSE
## 2873 2.48 2 FALSE
## 2874 1.86 2 FALSE
## 2875 3.32 0 TRUE
## 2876 1.78 3 FALSE
## 2877 2.81 3 FALSE
## 2878 1.76 2 FALSE
## 2879 2.59 0 FALSE
## 2880 2.70 1 FALSE
## 2881 2.65 1 FALSE
## 2882 1.67 1 FALSE
## 2883 3.08 2 TRUE
## 2884 2.65 1 FALSE
## 2885 2.35 1 TRUE
## 2886 2.27 1 FALSE
## 2887 2.67 1 FALSE
## 2888 3.00 2 FALSE
## 2889 2.94 1 FALSE
## 2890 2.27 1 TRUE
## 2891 3.13 0 FALSE
## 2892 3.29 0 FALSE
## 2893 3.19 1 FALSE
## 2894 1.94 0 FALSE
## 2895 3.97 3 FALSE
## 2896 1.73 0 FALSE
## 2897 2.46 1 FALSE
## 2898 4.48 0 FALSE
## 2899 1.51 2 FALSE
## 2900 1.03 1 FALSE
## 2901 2.13 1 TRUE
## 2902 2.51 4 TRUE
## 2903 2.70 2 FALSE
## 2904 1.81 5 FALSE
## 2905 2.81 2 FALSE
## 2906 1.03 3 FALSE
## 2907 0.00 1 FALSE
## 2908 3.46 0 FALSE
## 2909 2.13 2 TRUE
## 2910 2.08 2 FALSE
## 2911 2.46 2 FALSE
## 2912 3.51 1 FALSE
## 2913 1.16 0 FALSE
## 2914 2.92 1 FALSE
## 2915 3.38 4 FALSE
## 2916 3.89 4 FALSE
## 2917 2.84 2 FALSE
## 2918 2.24 0 FALSE
## 2919 0.00 4 FALSE
## 2920 2.54 0 FALSE
## 2921 2.89 1 FALSE
## 2922 4.29 2 FALSE
## 2923 2.75 2 FALSE
## 2924 4.51 2 FALSE
## 2925 2.78 1 TRUE
## 2926 3.13 2 TRUE
## 2927 1.35 4 TRUE
## 2928 2.75 1 FALSE
## 2929 2.65 2 FALSE
## 2930 4.02 3 FALSE
## 2931 3.48 1 FALSE
## 2932 2.94 2 FALSE
## 2933 3.19 1 FALSE
## 2934 0.57 1 FALSE
## 2935 2.32 2 TRUE
## 2936 2.65 0 FALSE
## 2937 2.57 0 TRUE
## 2938 3.62 0 FALSE
## 2939 1.89 1 FALSE
## 2940 3.59 0 FALSE
## 2941 1.97 1 FALSE
## 2942 3.11 4 FALSE
## 2943 2.70 1 TRUE
## 2944 2.11 0 FALSE
## 2945 2.65 0 FALSE
## 2946 3.78 0 FALSE
## 2947 1.11 1 FALSE
## 2948 2.43 1 TRUE
## 2949 2.84 1 FALSE
## 2950 2.70 2 FALSE
## 2951 3.19 0 TRUE
## 2952 3.48 2 FALSE
## 2953 2.21 5 TRUE
## 2954 2.65 7 FALSE
## 2955 2.27 3 FALSE
## 2956 2.78 1 FALSE
## 2957 2.32 1 FALSE
## 2958 1.97 1 FALSE
## 2959 1.70 6 TRUE
## 2960 2.46 1 FALSE
## 2961 2.70 5 TRUE
## 2962 2.16 6 TRUE
## 2963 1.46 1 FALSE
## 2964 3.13 0 FALSE
## 2965 2.13 3 TRUE
## 2966 2.27 1 FALSE
## 2967 2.16 1 FALSE
## 2968 2.75 0 FALSE
## 2969 3.75 1 TRUE
## 2970 2.13 2 FALSE
## 2971 1.73 1 FALSE
## 2972 2.59 0 TRUE
## 2973 2.73 2 TRUE
## 2974 2.81 0 FALSE
## 2975 1.89 1 FALSE
## 2976 3.19 0 FALSE
## 2977 3.11 1 FALSE
## 2978 1.81 0 FALSE
## 2979 3.51 1 FALSE
## 2980 2.38 7 TRUE
## 2981 3.86 3 TRUE
## 2982 2.62 1 FALSE
## 2983 2.40 2 FALSE
## 2984 2.13 1 FALSE
## 2985 2.92 1 FALSE
## 2986 2.97 3 FALSE
## 2987 2.84 2 FALSE
## 2988 3.70 3 TRUE
## 2989 3.24 3 FALSE
## 2990 3.73 2 TRUE
## 2991 2.24 1 FALSE
## 2992 1.97 1 FALSE
## 2993 3.13 1 FALSE
## 2994 3.38 1 FALSE
## 2995 1.49 1 TRUE
## 2996 3.56 2 FALSE
## 2997 3.59 1 FALSE
## 2998 2.11 0 FALSE
## 2999 3.32 0 FALSE
## 3000 2.59 1 FALSE
## 3001 3.92 3 FALSE
## 3002 3.11 1 FALSE
## 3003 2.40 3 TRUE
## 3004 2.54 1 FALSE
## 3005 4.37 1 FALSE
## 3006 2.84 2 FALSE
## 3007 2.67 1 FALSE
## 3008 3.81 3 FALSE
## 3009 3.51 0 FALSE
## 3010 1.81 5 FALSE
## 3011 3.27 2 FALSE
## 3012 2.86 1 FALSE
## 3013 3.00 1 FALSE
## 3014 1.40 2 FALSE
## 3015 3.19 0 FALSE
## 3016 1.92 2 FALSE
## 3017 3.94 1 FALSE
## 3018 1.62 5 FALSE
## 3019 3.29 2 FALSE
## 3020 3.73 3 TRUE
## 3021 2.65 1 FALSE
## 3022 2.73 0 FALSE
## 3023 0.78 0 FALSE
## 3024 3.75 4 TRUE
## 3025 3.11 1 FALSE
## 3026 4.21 2 FALSE
## 3027 2.92 6 FALSE
## 3028 2.54 4 FALSE
## 3029 3.38 1 FALSE
## 3030 2.48 0 FALSE
## 3031 3.78 3 FALSE
## 3032 3.38 3 FALSE
## 3033 2.11 1 FALSE
## 3034 3.67 1 FALSE
## 3035 3.02 1 FALSE
## 3036 3.13 4 TRUE
## 3037 2.54 3 FALSE
## 3038 1.76 0 FALSE
## 3039 1.73 2 FALSE
## 3040 2.84 1 FALSE
## 3041 2.84 0 FALSE
## 3042 1.76 0 FALSE
## 3043 2.24 0 FALSE
## 3044 2.43 1 FALSE
## 3045 2.30 1 FALSE
## 3046 2.84 2 TRUE
## 3047 4.00 1 FALSE
## 3048 3.46 2 FALSE
## 3049 3.78 0 FALSE
## 3050 4.21 3 FALSE
## 3051 3.65 4 TRUE
## 3052 4.21 1 FALSE
## 3053 3.48 2 FALSE
## 3054 1.89 0 FALSE
## 3055 2.46 0 FALSE
## 3056 2.62 2 FALSE
## 3057 2.89 2 FALSE
## 3058 1.97 1 FALSE
## 3059 1.92 3 FALSE
## 3060 3.19 2 FALSE
## 3061 2.27 3 FALSE
## 3062 3.35 2 FALSE
## 3063 3.51 0 FALSE
## 3064 3.29 1 FALSE
## 3065 2.35 4 TRUE
## 3066 2.27 3 FALSE
## 3067 1.94 3 FALSE
## 3068 2.73 0 FALSE
## 3069 2.57 2 FALSE
## 3070 2.67 1 FALSE
## 3071 3.24 3 TRUE
## 3072 1.70 1 FALSE
## 3073 2.30 0 TRUE
## 3074 2.00 2 FALSE
## 3075 1.78 1 FALSE
## 3076 1.70 2 FALSE
## 3077 2.70 2 FALSE
## 3078 3.86 0 FALSE
## 3079 3.56 1 FALSE
## 3080 2.13 5 TRUE
## 3081 4.73 0 FALSE
## 3082 1.59 6 FALSE
## 3083 3.27 3 FALSE
## 3084 3.38 0 FALSE
## 3085 3.27 2 FALSE
## 3086 2.70 3 FALSE
## 3087 3.02 3 FALSE
## 3088 2.32 0 FALSE
## 3089 2.40 1 FALSE
## 3090 2.54 3 FALSE
## 3091 3.27 1 FALSE
## 3092 2.86 1 FALSE
## 3093 2.73 0 FALSE
## 3094 2.21 2 TRUE
## 3095 2.84 1 FALSE
## 3096 2.86 1 FALSE
## 3097 2.65 3 FALSE
## 3098 2.70 2 FALSE
## 3099 3.24 0 FALSE
## 3100 2.73 0 FALSE
## 3101 2.81 0 FALSE
## 3102 2.21 1 FALSE
## 3103 3.40 3 FALSE
## 3104 3.56 2 FALSE
## 3105 2.78 0 FALSE
## 3106 2.57 0 FALSE
## 3107 3.13 1 FALSE
## 3108 2.46 1 FALSE
## 3109 2.97 2 FALSE
## 3110 3.02 0 FALSE
## 3111 2.86 1 FALSE
## 3112 3.08 1 FALSE
## 3113 2.51 7 TRUE
## 3114 3.78 2 TRUE
## 3115 3.27 0 FALSE
## 3116 2.70 4 FALSE
## 3117 2.38 1 FALSE
## 3118 3.54 2 FALSE
## 3119 1.40 1 FALSE
## 3120 3.08 0 FALSE
## 3121 2.92 2 FALSE
## 3122 2.30 1 FALSE
## 3123 3.81 3 FALSE
## 3124 3.05 0 FALSE
## 3125 2.54 3 FALSE
## 3126 2.84 4 TRUE
## 3127 2.86 0 FALSE
## 3128 3.16 4 TRUE
## 3129 2.75 3 FALSE
## 3130 1.51 2 FALSE
## 3131 2.35 3 FALSE
## 3132 2.24 5 FALSE
## 3133 2.11 2 TRUE
## 3134 2.81 2 FALSE
## 3135 3.08 3 FALSE
## 3136 2.92 1 FALSE
## 3137 2.78 1 FALSE
## 3138 3.97 3 FALSE
## 3139 3.59 2 FALSE
## 3140 1.92 2 FALSE
## 3141 4.10 5 FALSE
## 3142 2.89 1 FALSE
## 3143 3.46 2 FALSE
## 3144 2.70 3 FALSE
## 3145 2.78 5 TRUE
## 3146 2.38 3 FALSE
## 3147 3.75 1 FALSE
## 3148 2.30 4 FALSE
## 3149 2.97 0 TRUE
## 3150 3.21 1 FALSE
## 3151 2.89 2 FALSE
## 3152 1.92 0 TRUE
## 3153 2.57 1 FALSE
## 3154 2.84 2 FALSE
## 3155 1.70 2 FALSE
## 3156 2.59 2 FALSE
## 3157 2.81 3 FALSE
## 3158 1.67 4 TRUE
## 3159 2.51 3 FALSE
## 3160 2.11 1 FALSE
## 3161 0.57 0 FALSE
## 3162 2.70 2 FALSE
## 3163 3.59 0 FALSE
## 3164 1.86 2 FALSE
## 3165 2.97 1 FALSE
## 3166 2.46 1 FALSE
## 3167 2.75 2 TRUE
## 3168 2.43 1 FALSE
## 3169 3.02 1 TRUE
## 3170 3.24 4 TRUE
## 3171 2.03 0 FALSE
## 3172 2.62 1 FALSE
## 3173 3.32 3 FALSE
## 3174 3.48 3 FALSE
## 3175 2.32 2 FALSE
## 3176 2.24 0 FALSE
## 3177 2.19 0 FALSE
## 3178 3.46 1 FALSE
## 3179 3.73 0 FALSE
## 3180 2.54 1 FALSE
## 3181 3.29 1 FALSE
## 3182 2.73 5 FALSE
## 3183 2.11 3 FALSE
## 3184 2.27 2 FALSE
## 3185 1.84 0 FALSE
## 3186 3.21 0 FALSE
## 3187 2.54 3 FALSE
## 3188 1.46 1 FALSE
## 3189 2.21 1 FALSE
## 3190 3.56 0 TRUE
## 3191 4.27 6 TRUE
## 3192 2.51 0 TRUE
## 3193 1.35 2 FALSE
## 3194 2.92 1 FALSE
## 3195 3.62 0 FALSE
## 3196 2.62 2 FALSE
## 3197 3.29 1 FALSE
## 3198 3.05 0 FALSE
## 3199 3.46 2 FALSE
## 3200 3.19 1 FALSE
## 3201 2.62 1 FALSE
## 3202 2.38 1 FALSE
## 3203 1.86 3 FALSE
## 3204 1.73 1 FALSE
## 3205 2.84 1 FALSE
## 3206 2.92 1 TRUE
## 3207 2.75 1 FALSE
## 3208 3.16 0 FALSE
## 3209 2.81 2 FALSE
## 3210 3.83 3 TRUE
## 3211 3.08 1 FALSE
## 3212 3.24 2 FALSE
## 3213 1.00 0 FALSE
## 3214 3.24 1 FALSE
## 3215 2.38 3 FALSE
## 3216 2.54 1 FALSE
## 3217 0.65 0 FALSE
## 3218 3.56 1 FALSE
## 3219 3.62 2 FALSE
## 3220 2.38 2 FALSE
## 3221 2.75 0 FALSE
## 3222 2.30 1 FALSE
## 3223 3.16 3 FALSE
## 3224 4.51 2 FALSE
## 3225 3.32 3 TRUE
## 3226 2.27 2 FALSE
## 3227 2.03 2 TRUE
## 3228 2.89 0 FALSE
## 3229 4.05 5 FALSE
## 3230 2.11 1 FALSE
## 3231 1.13 1 FALSE
## 3232 1.78 1 FALSE
## 3233 2.67 1 FALSE
## 3234 1.70 0 FALSE
## 3235 0.68 1 FALSE
## 3236 1.32 3 FALSE
## 3237 2.03 0 FALSE
## 3238 2.94 1 FALSE
## 3239 2.38 3 TRUE
## 3240 2.75 2 FALSE
## 3241 1.35 1 FALSE
## 3242 3.05 1 TRUE
## 3243 2.27 0 FALSE
## 3244 2.78 5 TRUE
## 3245 1.94 1 FALSE
## 3246 3.40 3 FALSE
## 3247 3.21 0 TRUE
## 3248 1.05 4 TRUE
## 3249 3.11 0 FALSE
## 3250 3.16 0 FALSE
## 3251 3.65 0 FALSE
## 3252 2.48 2 FALSE
## 3253 3.16 0 FALSE
## 3254 2.43 1 FALSE
## 3255 3.97 1 FALSE
## 3256 2.97 2 TRUE
## 3257 4.59 3 FALSE
## 3258 3.59 2 FALSE
## 3259 3.62 2 FALSE
## 3260 4.05 1 FALSE
## 3261 3.75 1 FALSE
## 3262 1.97 1 FALSE
## 3263 2.73 1 FALSE
## 3264 1.62 2 FALSE
## 3265 1.59 0 FALSE
## 3266 2.97 3 TRUE
## 3267 2.62 3 FALSE
## 3268 2.38 1 FALSE
## 3269 3.43 2 TRUE
## 3270 2.84 1 FALSE
## 3271 3.46 2 FALSE
## 3272 3.38 2 FALSE
## 3273 3.48 2 TRUE
## 3274 3.97 3 FALSE
## 3275 2.16 1 FALSE
## 3276 0.00 1 FALSE
## 3277 2.38 1 FALSE
## 3278 2.70 2 FALSE
## 3279 2.86 2 FALSE
## 3280 2.24 2 FALSE
## 3281 2.70 4 TRUE
## 3282 1.38 1 FALSE
## 3283 2.08 3 FALSE
## 3284 3.35 3 FALSE
## 3285 3.56 1 FALSE
## 3286 3.19 0 FALSE
## 3287 3.54 0 FALSE
## 3288 2.94 4 TRUE
## 3289 1.32 1 FALSE
## 3290 3.56 1 FALSE
## 3291 0.00 0 FALSE
## 3292 3.75 1 TRUE
## 3293 3.16 1 FALSE
## 3294 2.46 0 FALSE
## 3295 3.32 1 FALSE
## 3296 3.16 1 FALSE
## 3297 2.43 1 FALSE
## 3298 3.05 1 FALSE
## 3299 3.32 1 FALSE
## 3300 2.97 2 FALSE
## 3301 1.92 1 FALSE
## 3302 2.81 0 TRUE
## 3303 2.11 1 FALSE
## 3304 3.11 2 FALSE
## 3305 3.73 4 TRUE
## 3306 3.11 2 FALSE
## 3307 2.19 1 FALSE
## 3308 4.81 4 FALSE
## 3309 3.59 1 FALSE
## 3310 3.24 4 FALSE
## 3311 3.67 2 FALSE
## 3312 1.86 2 FALSE
## 3313 3.83 2 FALSE
## 3314 2.70 1 FALSE
## 3315 2.46 1 FALSE
## 3316 1.76 0 FALSE
## 3317 3.32 0 FALSE
## 3318 2.11 1 FALSE
## 3319 3.13 2 FALSE
## 3320 4.29 3 FALSE
## 3321 2.62 4 TRUE
## 3322 3.56 3 FALSE
## 3323 3.11 4 TRUE
## 3324 3.67 5 TRUE
## 3325 3.13 1 FALSE
## 3326 2.51 2 FALSE
## 3327 4.02 1 FALSE
## 3328 3.19 2 FALSE
## 3329 2.67 2 FALSE
## 3330 2.59 3 FALSE
## 3331 3.81 2 FALSE
## 3332 1.35 2 FALSE
## 3333 3.70 0 FALSE
options(max.print=999999999)
dim(data)
## [1] 3333 21
summary(data)
## State Account.Length Area.Code Phone Int.l.Plan
## WV : 106 Min. : 1.0 Min. :408.0 327-1058: 1 no :3010
## MN : 84 1st Qu.: 74.0 1st Qu.:408.0 327-1319: 1 yes: 323
## NY : 83 Median :101.0 Median :415.0 327-3053: 1
## AL : 80 Mean :101.1 Mean :437.2 327-3587: 1
## OH : 78 3rd Qu.:127.0 3rd Qu.:510.0 327-3850: 1
## OR : 78 Max. :243.0 Max. :510.0 327-3954: 1
## (Other):2824 (Other) :3327
## VMail.Plan EMail.Message Day.Mins Day.Calls
## no :2411 Min. : 0.000 Min. : 0.0 Min. : 0.0
## yes: 922 1st Qu.: 0.000 1st Qu.:143.7 1st Qu.: 87.0
## Median : 0.000 Median :179.4 Median :101.0
## Mean : 8.099 Mean :179.8 Mean :100.4
## 3rd Qu.:20.000 3rd Qu.:216.4 3rd Qu.:114.0
## Max. :51.000 Max. :350.8 Max. :165.0
##
## Day.Charge Eve.Mins Eve.Calls Eve.Charge
## Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.00
## 1st Qu.:24.43 1st Qu.:166.6 1st Qu.: 87.0 1st Qu.:14.16
## Median :30.50 Median :201.4 Median :100.0 Median :17.12
## Mean :30.56 Mean :201.0 Mean :100.1 Mean :17.08
## 3rd Qu.:36.79 3rd Qu.:235.3 3rd Qu.:114.0 3rd Qu.:20.00
## Max. :59.64 Max. :363.7 Max. :170.0 Max. :30.91
##
## Night.Mins Night.Calls Night.Charge Intl.Mins
## Min. : 23.2 Min. : 33.0 Min. : 1.040 Min. : 0.00
## 1st Qu.:167.0 1st Qu.: 87.0 1st Qu.: 7.520 1st Qu.: 8.50
## Median :201.2 Median :100.0 Median : 9.050 Median :10.30
## Mean :200.9 Mean :100.1 Mean : 9.039 Mean :10.24
## 3rd Qu.:235.3 3rd Qu.:113.0 3rd Qu.:10.590 3rd Qu.:12.10
## Max. :395.0 Max. :175.0 Max. :17.770 Max. :20.00
##
## Intl.Calls Intl.Charge CustServ.Calls Churn
## Min. : 0.000 Min. :0.000 Min. :0.000 Mode :logical
## 1st Qu.: 3.000 1st Qu.:2.300 1st Qu.:1.000 FALSE:2850
## Median : 4.000 Median :2.780 Median :1.000 TRUE :483
## Mean : 4.479 Mean :2.765 Mean :1.563
## 3rd Qu.: 6.000 3rd Qu.:3.270 3rd Qu.:2.000
## Max. :20.000 Max. :5.400 Max. :9.000
##
head(data$Churn)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE
colSums(is.na(data))
## State Account.Length Area.Code Phone Int.l.Plan
## 0 0 0 0 0
## VMail.Plan EMail.Message Day.Mins Day.Calls Day.Charge
## 0 0 0 0 0
## Eve.Mins Eve.Calls Eve.Charge Night.Mins Night.Calls
## 0 0 0 0 0
## Night.Charge Intl.Mins Intl.Calls Intl.Charge CustServ.Calls
## 0 0 0 0 0
## Churn
## 0
colSums(data=='')
## State Account.Length Area.Code Phone Int.l.Plan
## 0 0 0 0 0
## VMail.Plan EMail.Message Day.Mins Day.Calls Day.Charge
## 0 0 0 0 0
## Eve.Mins Eve.Calls Eve.Charge Night.Mins Night.Calls
## 0 0 0 0 0
## Night.Charge Intl.Mins Intl.Calls Intl.Charge CustServ.Calls
## 0 0 0 0 0
## Churn
## 0
data1=data[c(-1,-3,-4)]
data1$Churn=factor(data1$Churn)
levels(data1$Churn)
## [1] "FALSE" "TRUE"
levels(data1$Churn)[levels(data1$Churn)=="FALSE"] <- "0"
levels(data1$Churn)[levels(data1$Churn)=="TRUE"] <- "1"
levels(data1$Churn)
## [1] "0" "1"
data1$Churn
## [1] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
## [35] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
## [69] 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0
## [103] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
## [137] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [171] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
## [205] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
## [239] 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## [273] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
## [307] 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
## [341] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
## [375] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
## [409] 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
## [443] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
## [477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1
## [511] 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [545] 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
## [579] 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## [613] 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [647] 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [715] 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
## [749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
## [783] 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [851] 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [885] 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0
## [919] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
## [953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1
## [987] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [1021] 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [1055] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
## [1089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
## [1123] 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
## [1157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [1191] 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [1225] 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## [1259] 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
## [1293] 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
## [1327] 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1
## [1361] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [1395] 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [1429] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [1463] 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## [1497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
## [1531] 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [1565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
## [1599] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## [1633] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
## [1667] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
## [1701] 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [1735] 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
## [1769] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## [1803] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [1837] 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1
## [1871] 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1
## [1905] 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
## [1939] 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [1973] 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [2007] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0
## [2041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## [2075] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1
## [2109] 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [2143] 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
## [2177] 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [2211] 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
## [2245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [2279] 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [2313] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## [2347] 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
## [2381] 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0
## [2415] 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [2449] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0
## [2483] 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [2517] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
## [2551] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0
## [2585] 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
## [2619] 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
## [2653] 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0
## [2687] 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
## [2721] 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## [2755] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0
## [2789] 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
## [2823] 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [2857] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1
## [2891] 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [2925] 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
## [2959] 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
## [2993] 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
## [3027] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## [3061] 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## [3095] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
## [3129] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
## [3163] 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
## [3197] 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
## [3231] 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## [3265] 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
## [3299] 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
## [3333] 0
## Levels: 0 1
summary(data1)
## Account.Length Int.l.Plan VMail.Plan EMail.Message Day.Mins
## Min. : 1.0 no :3010 no :2411 Min. : 0.000 Min. : 0.0
## 1st Qu.: 74.0 yes: 323 yes: 922 1st Qu.: 0.000 1st Qu.:143.7
## Median :101.0 Median : 0.000 Median :179.4
## Mean :101.1 Mean : 8.099 Mean :179.8
## 3rd Qu.:127.0 3rd Qu.:20.000 3rd Qu.:216.4
## Max. :243.0 Max. :51.000 Max. :350.8
## Day.Calls Day.Charge Eve.Mins Eve.Calls
## Min. : 0.0 Min. : 0.00 Min. : 0.0 Min. : 0.0
## 1st Qu.: 87.0 1st Qu.:24.43 1st Qu.:166.6 1st Qu.: 87.0
## Median :101.0 Median :30.50 Median :201.4 Median :100.0
## Mean :100.4 Mean :30.56 Mean :201.0 Mean :100.1
## 3rd Qu.:114.0 3rd Qu.:36.79 3rd Qu.:235.3 3rd Qu.:114.0
## Max. :165.0 Max. :59.64 Max. :363.7 Max. :170.0
## Eve.Charge Night.Mins Night.Calls Night.Charge
## Min. : 0.00 Min. : 23.2 Min. : 33.0 Min. : 1.040
## 1st Qu.:14.16 1st Qu.:167.0 1st Qu.: 87.0 1st Qu.: 7.520
## Median :17.12 Median :201.2 Median :100.0 Median : 9.050
## Mean :17.08 Mean :200.9 Mean :100.1 Mean : 9.039
## 3rd Qu.:20.00 3rd Qu.:235.3 3rd Qu.:113.0 3rd Qu.:10.590
## Max. :30.91 Max. :395.0 Max. :175.0 Max. :17.770
## Intl.Mins Intl.Calls Intl.Charge CustServ.Calls Churn
## Min. : 0.00 Min. : 0.000 Min. :0.000 Min. :0.000 0:2850
## 1st Qu.: 8.50 1st Qu.: 3.000 1st Qu.:2.300 1st Qu.:1.000 1: 483
## Median :10.30 Median : 4.000 Median :2.780 Median :1.000
## Mean :10.24 Mean : 4.479 Mean :2.765 Mean :1.563
## 3rd Qu.:12.10 3rd Qu.: 6.000 3rd Qu.:3.270 3rd Qu.:2.000
## Max. :20.00 Max. :20.000 Max. :5.400 Max. :9.000
Train <- createDataPartition(data1$Churn, p=0.8, list=FALSE)
training <- data1[ Train, ]
testing <- data1[ -Train, ]
dim(training)
## [1] 2667 18
dim(testing)
## [1] 666 18
control <- trainControl(method="repeatedcv", number=10, repeats=3)
set.seed(7)
modelLogistic <- train(Churn~., data=training, method="glm", trControl=control)
modelLDA <- train(Churn~., data=training, method="lda", trControl=control)
modelrandomforest <- train(Churn~., data=training, method="rf", trControl=control)
modelnaivebayes<-train(Churn~.,data=training,method="nb",trControl=control)
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 1
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 2
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 3
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 4
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 5
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 6
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 7
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 8
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 9
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 10
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 11
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 12
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 13
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 14
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 15
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 16
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 17
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 18
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 19
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 20
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 21
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 22
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 23
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 24
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 25
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 26
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 27
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 28
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 29
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 30
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 31
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 32
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 33
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 34
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 35
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 36
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 37
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 38
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 39
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 40
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 41
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 42
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 43
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 44
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 45
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 46
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 47
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 48
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 49
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 50
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 51
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 52
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 53
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 54
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 55
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 56
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 57
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 58
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 59
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 60
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 61
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 62
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 63
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 64
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 65
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 66
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 67
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 68
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 69
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 70
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 71
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 72
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 73
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 74
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 75
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 76
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 77
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 78
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 79
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 80
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 81
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 82
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 83
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 84
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 85
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 86
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 87
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 88
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 89
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 90
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 91
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 92
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 93
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 94
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 95
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 96
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 97
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 98
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 99
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 100
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 101
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 102
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 103
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 104
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 105
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 106
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 107
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 108
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 109
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 110
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 111
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 112
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 113
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 114
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 115
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 116
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 117
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 118
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 119
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 120
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 121
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 122
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 123
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 124
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 125
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 126
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 127
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 128
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 129
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 130
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 131
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 132
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 133
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 134
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 135
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 136
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 137
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 138
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 139
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 140
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 141
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 142
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 143
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 144
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 145
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 146
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 147
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 148
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 149
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 150
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 151
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 152
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 153
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 154
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 155
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 156
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 157
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 158
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 159
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 160
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 161
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 162
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 163
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 164
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 165
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 166
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 167
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 168
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 169
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 170
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 171
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 172
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 173
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 174
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 175
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 176
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 177
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 178
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 179
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 180
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 181
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 182
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 183
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 184
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 185
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 186
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 187
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 188
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 189
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 190
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 191
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 192
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 193
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 194
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 195
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 196
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 197
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 198
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 199
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 200
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 201
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 202
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 203
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 204
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 205
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 206
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 207
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 208
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 209
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 210
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 211
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 212
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 213
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 214
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 215
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 216
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 217
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 218
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 219
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 220
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 221
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 222
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 223
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 224
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 225
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 226
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 227
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 228
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 229
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 230
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 231
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 232
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 233
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 234
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 235
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 236
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 237
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 238
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 239
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 240
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 241
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 242
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 243
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 244
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 245
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 246
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 247
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 248
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 249
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 250
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 251
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 252
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 253
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 254
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 255
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 256
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 257
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 258
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 259
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 260
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 261
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 262
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 263
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 264
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 265
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 266
## Warning in FUN(X[[i]], ...): Numerical 0 probability for all classes with
## observation 267
modelGbm <- train(Churn~., data=training, method="gbm", trControl=control, verbose=FALSE)
modelknn<- train(Churn~.,data=training,method="knn",trControl=control)
modelsvm<-train(Churn~.,data=training,method="svmRadial",trControl=control)
ModelRtree<-train(Churn~.,data=training,method="rpart",trControl=control)
results <- resamples(list(Logisticregression=modelLogistic,Lineardiscriminant=modelLDA,Randomforest=modelrandomforest,Naivebayestheorem=modelnaivebayes,Gradient=modelGbm,Knearestneighbour=modelknn,supportvectormachine=modelsvm,DecissionTree=ModelRtree))
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: Logisticregression, Lineardiscriminant, Randomforest, Naivebayestheorem, Gradient, Knearestneighbour, supportvectormachine, DecissionTree
## Number of resamples: 30
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu.
## Logisticregression 0.8277154 0.8464419 0.8576779 0.8560268 0.8650418
## Lineardiscriminant 0.8270677 0.8397398 0.8501873 0.8485202 0.8563403
## Randomforest 0.9288390 0.9484561 0.9568514 0.9550097 0.9625468
## Naivebayestheorem 0.8571429 0.8689139 0.8726592 0.8716384 0.8762883
## Gradient 0.9250936 0.9447073 0.9513109 0.9513841 0.9577490
## Knearestneighbour 0.8614232 0.8798119 0.8838951 0.8845161 0.8912837
## supportvectormachine 0.8838951 0.9098589 0.9176030 0.9181390 0.9250936
## DecissionTree 0.8689139 0.8951311 0.9101124 0.9083908 0.9239461
## Max. NA's
## Logisticregression 0.8834586 0
## Lineardiscriminant 0.8684211 0
## Randomforest 0.9775281 0
## Naivebayestheorem 0.8951311 0
## Gradient 0.9812030 0
## Knearestneighbour 0.9022556 0
## supportvectormachine 0.9511278 0
## DecissionTree 0.9400749 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu.
## Logisticregression 0.08717949 0.1535326 0.2045784 0.2141889 0.2624420
## Lineardiscriminant 0.01226994 0.1978552 0.2206273 0.2267778 0.2690446
## Randomforest 0.66901546 0.7724571 0.8122457 0.8028537 0.8505422
## Naivebayestheorem 0.03623188 0.1633092 0.2264826 0.2068018 0.2480716
## Gradient 0.66402416 0.7539782 0.7841821 0.7860518 0.8151072
## Knearestneighbour 0.19702512 0.3170703 0.3515597 0.3568919 0.4191142
## supportvectormachine 0.38401429 0.5456831 0.5982594 0.5920871 0.6391033
## DecissionTree 0.36011080 0.4723186 0.5869596 0.5678415 0.6499253
## Max. NA's
## Logisticregression 0.4092072 0
## Lineardiscriminant 0.3734015 0
## Randomforest 0.9059197 0
## Naivebayestheorem 0.4356884 0
## Gradient 0.9206349 0
## Knearestneighbour 0.4739884 0
## supportvectormachine 0.7785888 0
## DecissionTree 0.7491191 0
bwplot(results)
dotplot(results)
set.seed(2222)
rf <-randomForest(Churn~.,data=training)
rf
##
## Call:
## randomForest(formula = Churn ~ ., data = training)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 4.39%
## Confusion matrix:
## 0 1 class.error
## 0 2259 21 0.009210526
## 1 96 291 0.248062016
plot(rf)
attributes(rf)
## $names
## [1] "call" "type" "predicted"
## [4] "err.rate" "confusion" "votes"
## [7] "oob.times" "classes" "importance"
## [10] "importanceSD" "localImportance" "proximity"
## [13] "ntree" "mtry" "forest"
## [16] "y" "test" "inbag"
## [19] "terms"
##
## $class
## [1] "randomForest.formula" "randomForest"
rf$confusion
## 0 1 class.error
## 0 2259 21 0.009210526
## 1 96 291 0.248062016
p1=predict(rf,training)
head(p1)
## 2 4 6 8 9 10
## 0 0 0 0 0 0
## Levels: 0 1
head(training$Churn)
## [1] 0 0 0 0 0 0
## Levels: 0 1
confusionMatrix(p1,training$Churn)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 2280 0
## 1 0 387
##
## Accuracy : 1
## 95% CI : (0.9986, 1)
## No Information Rate : 0.8549
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Sensitivity : 1.0000
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 1.0000
## Prevalence : 0.8549
## Detection Rate : 0.8549
## Detection Prevalence : 0.8549
## Balanced Accuracy : 1.0000
##
## 'Positive' Class : 0
##
p2=predict(rf,testing)
confusionMatrix(p2,testing$Churn)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 567 28
## 1 3 68
##
## Accuracy : 0.9535
## 95% CI : (0.9346, 0.9682)
## No Information Rate : 0.8559
## P-Value [Acc > NIR] : 2.805e-16
##
## Kappa : 0.7884
##
## Mcnemar's Test P-Value : 1.629e-05
##
## Sensitivity : 0.9947
## Specificity : 0.7083
## Pos Pred Value : 0.9529
## Neg Pred Value : 0.9577
## Prevalence : 0.8559
## Detection Rate : 0.8514
## Detection Prevalence : 0.8934
## Balanced Accuracy : 0.8515
##
## 'Positive' Class : 0
##
plot(rf)
set.seed(9999)
t=tuneRF(training[,-18],training[,18],stepFactor=0.5,plot=TRUE,ntreeTry = 300,trace=TRUE,improve=0.05)
## mtry = 4 OOB error = 4.24%
## Searching left ...
## mtry = 8 OOB error = 4.39%
## -0.03539823 0.05
## Searching right ...
## mtry = 2 OOB error = 6.26%
## -0.4778761 0.05
rf1 <-randomForest(Churn~.,data=training,ntree=300,mtry=8,importance=TRUE,proximity=TRUE)
print(rf)
##
## Call:
## randomForest(formula = Churn ~ ., data = training)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 4.39%
## Confusion matrix:
## 0 1 class.error
## 0 2259 21 0.009210526
## 1 96 291 0.248062016
set.seed(777)
p21=predict(rf1,testing)
confusionMatrix(p21,testing$Churn)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 566 26
## 1 4 70
##
## Accuracy : 0.955
## 95% CI : (0.9363, 0.9694)
## No Information Rate : 0.8559
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.7982
##
## Mcnemar's Test P-Value : 0.000126
##
## Sensitivity : 0.9930
## Specificity : 0.7292
## Pos Pred Value : 0.9561
## Neg Pred Value : 0.9459
## Prevalence : 0.8559
## Detection Rate : 0.8498
## Detection Prevalence : 0.8889
## Balanced Accuracy : 0.8611
##
## 'Positive' Class : 0
##
##No.of nodes for the trees
hist(treesize(rf), main="No.of Nodes for the trees", col="green")
varImpPlot(rf,n.var=10,main="Top10-variable importance ")
importance (rf)
## MeanDecreaseGini
## Account.Length 19.89633
## Int.l.Plan 49.22508
## VMail.Plan 14.35279
## EMail.Message 20.37260
## Day.Mins 94.87368
## Day.Calls 21.08824
## Day.Charge 92.89156
## Eve.Mins 43.60037
## Eve.Calls 18.46752
## Eve.Charge 45.20790
## Night.Mins 26.02116
## Night.Calls 21.04078
## Night.Charge 25.72706
## Intl.Mins 27.30347
## Intl.Calls 33.60736
## Intl.Charge 27.15642
## CustServ.Calls 82.17923
varUsed(rf)
## [1] 5344 1703 862 2521 6871 5490 6910 6334 5214 6317 5552 5526 5450 4819
## [15] 4037 4798 3830
library(ROCR)
## Warning: package 'ROCR' was built under R version 3.6.1
## Loading required package: gplots
## Warning: package 'gplots' was built under R version 3.6.1
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
prob <-predict(rf1, newdata=testing, type="response")
prob1<-as.numeric(prob)
pred <- prediction(prob1, testing$Churn)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)
auc <- performance(pred, measure = "auc")
auc <- auc@y.values[[1]]
auc
## [1] 0.8610746
library("FactoMineR")
library("factoextra")
## Warning: package 'factoextra' was built under R version 3.6.1
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
data2=data1[c(-18,-2,-3)]
data2
## Account.Length EMail.Message Day.Mins Day.Calls Day.Charge Eve.Mins
## 1 128 25 265.1 110 45.07 197.4
## 2 107 26 161.6 123 27.47 195.5
## 3 137 0 243.4 114 41.38 121.2
## 4 84 0 299.4 71 50.90 61.9
## 5 75 0 166.7 113 28.34 148.3
## 6 118 0 223.4 98 37.98 220.6
## 7 121 24 218.2 88 37.09 348.5
## 8 147 0 157.0 79 26.69 103.1
## 9 117 0 184.5 97 31.37 351.6
## 10 141 37 258.6 84 43.96 222.0
## 11 65 0 129.1 137 21.95 228.5
## 12 74 0 187.7 127 31.91 163.4
## 13 168 0 128.8 96 21.90 104.9
## 14 95 0 156.6 88 26.62 247.6
## 15 62 0 120.7 70 20.52 307.2
## 16 161 0 332.9 67 56.59 317.8
## 17 85 27 196.4 139 33.39 280.9
## 18 93 0 190.7 114 32.42 218.2
## 19 76 33 189.7 66 32.25 212.8
## 20 73 0 224.4 90 38.15 159.5
## 21 147 0 155.1 117 26.37 239.7
## 22 77 0 62.4 89 10.61 169.9
## 23 130 0 183.0 112 31.11 72.9
## 24 111 0 110.4 103 18.77 137.3
## 25 132 0 81.1 86 13.79 245.2
## 26 174 0 124.3 76 21.13 277.1
## 27 57 39 213.0 115 36.21 191.1
## 28 54 0 134.3 73 22.83 155.5
## 29 20 0 190.0 109 32.30 258.2
## 30 49 0 119.3 117 20.28 215.1
## 31 142 0 84.8 95 14.42 136.7
## 32 75 0 226.1 105 38.44 201.5
## 33 172 0 212.0 121 36.04 31.2
## 34 12 0 249.6 118 42.43 252.4
## 35 57 25 176.8 94 30.06 195.0
## 36 72 37 220.0 80 37.40 217.3
## 37 36 30 146.3 128 24.87 162.5
## 38 78 0 130.8 64 22.24 223.7
## 39 136 33 203.9 106 34.66 187.6
## 40 149 0 140.4 94 23.87 271.8
## 41 98 0 126.3 102 21.47 166.8
## 42 135 41 173.1 85 29.43 203.9
## 43 34 0 124.8 82 21.22 282.2
## 44 160 0 85.8 77 14.59 165.3
## 45 64 0 154.0 67 26.18 225.8
## 46 59 28 120.9 97 20.55 213.0
## 47 65 0 211.3 120 35.92 162.6
## 48 142 0 187.0 133 31.79 134.6
## 49 119 0 159.1 114 27.05 231.3
## 50 97 24 133.2 135 22.64 217.2
## 51 52 0 191.9 108 32.62 269.8
## 52 60 0 220.6 57 37.50 211.1
## 53 10 0 186.1 112 31.64 190.2
## 54 96 0 160.2 117 27.23 267.5
## 55 87 0 151.0 83 25.67 219.7
## 56 81 0 175.5 67 29.84 249.3
## 57 141 0 126.9 98 21.57 180.0
## 58 121 30 198.4 129 33.73 75.3
## 59 68 0 148.8 70 25.30 246.5
## 60 125 0 229.3 103 38.98 177.4
## 61 174 0 192.1 97 32.66 169.9
## 62 116 34 268.6 83 45.66 178.2
## 63 74 33 193.7 91 32.93 246.1
## 64 149 28 180.7 92 30.72 187.8
## 65 38 0 131.2 98 22.30 162.9
## 66 40 41 148.1 74 25.18 169.5
## 67 43 0 251.5 105 42.76 212.8
## 68 113 0 125.2 93 21.28 206.4
## 69 126 0 211.6 70 35.97 216.9
## 70 150 0 178.9 101 30.41 169.1
## 71 138 0 241.8 93 41.11 170.5
## 72 162 46 224.9 97 38.23 188.2
## 73 147 0 248.6 83 42.26 148.9
## 74 90 0 203.4 146 34.58 226.7
## 75 85 0 235.8 109 40.09 157.2
## 76 50 0 157.1 90 26.71 223.3
## 77 82 0 300.3 109 51.05 181.0
## 78 144 0 61.6 117 10.47 77.1
## 79 46 0 214.1 72 36.40 164.4
## 80 70 0 170.2 98 28.93 155.2
## 81 144 0 201.1 99 34.19 303.5
## 82 116 0 215.4 104 36.62 204.8
## 83 55 25 165.6 123 28.15 136.1
## 84 70 24 249.5 101 42.42 259.7
## 85 106 0 210.6 96 35.80 249.2
## 86 128 29 179.3 104 30.48 225.9
## 87 94 0 157.9 105 26.84 155.0
## 88 111 0 214.3 118 36.43 208.5
## 89 74 35 154.1 104 26.20 123.4
## 90 128 0 237.9 125 40.44 247.6
## 91 82 0 143.9 61 24.46 194.9
## 92 155 0 203.4 100 34.58 190.9
## 93 80 0 124.3 100 21.13 173.0
## 94 78 0 252.9 93 42.99 178.4
## 95 90 0 179.1 71 30.45 190.6
## 96 104 0 278.4 106 47.33 81.0
## 97 73 0 160.1 110 27.22 213.3
## 98 99 0 198.2 87 33.69 207.3
## 99 120 0 212.1 131 36.06 209.4
## 100 77 0 251.8 72 42.81 205.7
## 101 98 21 161.2 114 27.40 252.2
## 102 108 0 178.3 137 30.31 189.0
## 103 135 0 151.7 82 25.79 119.0
## 104 95 0 135.0 99 22.95 183.6
## 105 122 0 170.5 94 28.99 173.7
## 106 95 0 238.1 65 40.48 187.2
## 107 36 29 281.4 102 47.84 202.2
## 108 93 21 117.9 131 20.04 164.5
## 109 141 32 148.6 91 25.26 131.1
## 110 157 0 229.8 90 39.07 147.9
## 111 120 0 165.0 100 28.05 317.2
## 112 103 0 185.0 117 31.45 223.3
## 113 98 0 161.0 117 27.37 190.9
## 114 125 0 126.7 108 21.54 206.0
## 115 63 0 58.9 125 10.01 169.6
## 116 36 42 196.8 89 33.46 254.9
## 117 64 0 162.6 83 27.64 152.3
## 118 74 0 282.5 114 48.03 219.9
## 119 112 36 113.7 117 19.33 157.5
## 120 97 0 239.8 125 40.77 214.8
## 121 46 0 210.2 92 35.73 227.3
## 122 41 22 213.8 102 36.35 141.8
## 123 121 0 190.7 103 32.42 183.5
## 124 193 0 170.9 124 29.05 132.3
## 125 130 0 154.2 119 26.21 110.2
## 126 85 0 201.4 52 34.24 229.4
## 127 162 0 70.7 108 12.02 157.5
## 128 61 27 187.5 124 31.88 146.6
## 129 92 0 91.7 90 15.59 193.7
## 130 131 36 214.2 115 36.41 161.7
## 131 90 0 145.5 92 24.74 217.7
## 132 75 0 166.3 125 28.27 158.2
## 133 78 0 231.0 115 39.27 230.4
## 134 82 0 200.3 96 34.05 201.2
## 135 163 0 197.0 109 33.49 202.6
## 136 91 0 129.9 112 22.08 173.3
## 137 75 21 175.8 97 29.89 217.5
## 138 91 0 203.1 106 34.53 210.1
## 139 127 36 183.2 117 31.14 126.8
## 140 113 23 205.0 101 34.85 152.0
## 141 110 0 148.5 115 25.25 276.4
## 142 120 39 200.3 68 34.05 220.4
## 143 157 28 192.6 107 32.74 195.5
## 144 103 0 246.5 47 41.91 195.5
## 145 117 0 167.1 86 28.41 177.5
## 146 140 0 231.9 101 39.42 160.1
## 147 127 0 146.7 91 24.94 203.5
## 148 83 0 271.5 87 46.16 216.3
## 149 121 0 181.5 121 30.86 218.4
## 150 145 43 257.7 97 43.81 162.1
## 151 113 0 193.8 99 32.95 221.4
## 152 117 0 102.8 119 17.48 206.7
## 153 65 0 187.9 116 31.94 157.6
## 154 56 0 226.0 112 38.42 248.5
## 155 96 0 260.4 115 44.27 146.0
## 156 151 0 178.7 116 30.38 292.1
## 157 83 0 337.4 120 57.36 227.4
## 158 139 23 157.6 129 26.79 247.0
## 159 6 0 183.6 117 31.21 256.7
## 160 115 24 142.1 124 24.16 183.4
## 161 87 0 136.3 97 23.17 172.2
## 162 141 0 217.1 110 36.91 241.5
## 163 141 36 187.5 99 31.88 241.4
## 164 62 0 98.9 103 16.81 135.4
## 165 146 0 206.3 151 35.07 148.6
## 166 92 33 243.1 92 41.33 213.8
## 167 185 31 189.8 126 32.27 163.3
## 168 148 0 202.0 102 34.34 243.2
## 169 94 38 170.1 124 28.92 193.3
## 170 32 0 230.9 87 39.25 187.4
## 171 68 0 237.1 105 40.31 223.5
## 172 64 27 182.1 91 30.96 169.7
## 173 25 0 119.3 87 20.28 211.5
## 174 65 0 116.8 87 19.86 178.9
## 175 179 0 219.2 92 37.26 149.4
## 176 94 0 252.6 104 42.94 169.0
## 177 62 0 147.1 91 25.01 190.4
## 178 127 0 202.1 103 34.36 229.4
## 179 116 0 173.5 93 29.50 194.1
## 180 70 0 232.1 122 39.46 292.3
## 181 94 23 197.1 125 33.51 214.5
## 182 126 0 58.2 94 9.89 138.7
## 183 67 36 115.6 111 19.65 237.7
## 184 19 0 186.1 98 31.64 254.3
## 185 170 0 259.9 68 44.18 245.0
## 186 73 0 214.3 145 36.43 268.5
## 187 106 0 158.7 74 26.98 64.3
## 188 93 0 271.6 71 46.17 229.4
## 189 164 0 160.6 111 27.30 163.2
## 190 51 0 232.4 109 39.51 187.4
## 191 107 0 133.8 85 22.75 180.5
## 192 130 0 176.9 109 30.07 90.7
## 193 80 0 209.9 74 35.68 195.1
## 194 94 0 137.5 118 23.38 203.2
## 195 118 23 289.5 52 49.22 166.6
## 196 117 23 198.1 86 33.68 177.0
## 197 78 0 149.7 119 25.45 182.2
## 198 208 0 326.5 67 55.51 176.3
## 199 131 26 292.9 101 49.79 199.7
## 200 63 0 83.0 64 14.11 177.0
## 201 53 24 145.7 146 24.77 220.5
## 202 62 0 182.3 101 30.99 328.2
## 203 97 0 218.0 86 37.06 184.0
## 204 105 0 140.6 109 23.90 178.6
## 205 157 0 152.7 105 25.96 257.5
## 206 66 36 106.7 76 18.14 209.8
## 207 122 0 243.8 98 41.45 83.9
## 208 38 0 194.4 94 33.05 186.7
## 209 106 0 213.9 95 36.36 151.9
## 210 99 0 217.2 112 36.92 246.7
## 211 99 0 241.1 72 40.99 155.6
## 212 144 0 203.5 100 34.60 247.6
## 213 82 24 155.2 131 26.38 244.5
## 214 86 31 167.6 139 28.49 113.0
## 215 70 0 226.7 98 38.54 228.1
## 216 93 0 179.3 93 30.48 178.6
## 217 93 0 151.4 89 25.74 186.4
## 218 120 0 180.0 80 30.60 224.2
## 219 136 0 250.2 121 42.53 267.1
## 220 106 0 223.0 121 37.91 110.1
## 221 81 0 183.6 116 31.21 152.6
## 222 127 22 166.0 114 28.22 174.5
## 223 65 0 136.1 112 23.14 272.9
## 224 35 0 149.3 113 25.38 242.2
## 225 88 0 65.4 97 11.12 168.2
## 226 65 0 213.4 111 36.28 234.5
## 227 123 0 206.9 85 35.17 244.7
## 228 126 27 186.2 78 31.65 189.6
## 229 104 23 280.2 136 47.63 220.5
## 230 45 22 196.6 84 33.42 313.2
## 231 93 0 312.0 109 53.04 129.4
## 232 63 36 199.0 110 33.83 291.3
## 233 100 0 203.1 96 34.53 217.0
## 234 53 0 168.8 97 28.70 220.3
## 235 92 0 173.1 140 29.43 240.3
## 236 139 0 134.4 106 22.85 211.3
## 237 110 40 202.6 103 34.44 118.8
## 238 110 0 74.5 117 12.67 200.8
## 239 215 0 83.6 148 14.21 120.9
## 240 73 0 192.2 86 32.67 168.6
## 241 138 0 220.2 89 37.43 88.3
## 242 137 0 135.1 95 22.97 134.1
## 243 36 0 253.4 77 43.08 182.4
## 244 85 0 225.0 81 38.25 176.9
## 245 108 0 198.5 99 33.75 267.8
## 246 22 0 110.3 107 18.75 166.5
## 247 107 37 60.0 102 10.20 102.2
## 248 51 0 214.8 94 36.52 149.7
## 249 94 0 181.8 85 30.91 202.4
## 250 119 23 154.0 114 26.18 278.0
## 251 33 29 157.4 99 26.76 117.9
## 252 106 0 207.9 91 35.34 172.0
## 253 82 0 207.0 90 35.19 232.9
## 254 86 41 119.0 101 20.23 230.0
## 255 97 0 143.7 117 24.43 273.0
## 256 106 32 165.9 126 28.20 216.5
## 257 108 0 138.6 122 23.56 172.3
## 258 114 0 84.7 118 14.40 249.9
## 259 92 0 62.6 111 10.64 180.6
## 260 59 0 155.2 79 26.38 235.3
## 261 24 25 164.9 110 28.03 209.3
## 262 151 0 134.5 88 22.87 143.1
## 263 117 0 143.3 103 24.36 211.3
## 264 78 0 168.3 110 28.61 221.2
## 265 155 0 262.4 55 44.61 194.6
## 266 114 30 206.2 79 35.05 260.0
## 267 114 28 225.8 94 38.39 193.0
## 268 119 0 138.3 89 23.51 170.5
## 269 64 48 94.4 104 16.05 136.2
## 270 118 0 160.0 123 27.20 175.4
## 271 101 0 206.6 105 35.12 224.9
## 272 117 0 134.7 121 22.90 180.0
## 273 49 28 214.4 78 36.45 235.2
## 274 139 0 192.8 104 32.78 234.4
## 275 92 28 151.1 90 25.69 194.8
## 276 83 0 221.4 103 37.64 231.8
## 277 148 0 218.9 88 37.21 208.0
## 278 144 48 189.8 96 32.27 123.4
## 279 131 25 192.7 85 32.76 225.9
## 280 146 0 204.4 135 34.75 219.1
## 281 143 0 172.3 97 29.29 174.0
## 282 81 0 198.4 93 33.73 210.9
## 283 48 37 211.7 115 35.99 159.9
## 284 86 28 221.6 74 37.67 288.4
## 285 71 0 197.9 108 33.64 181.5
## 286 145 24 147.5 90 25.08 175.7
## 287 137 0 206.4 122 35.09 128.0
## 288 137 0 205.9 88 35.00 209.3
## 289 167 0 207.6 88 35.29 132.4
## 290 89 0 303.9 95 51.66 260.9
## 291 199 34 230.6 121 39.20 219.4
## 292 132 0 99.5 110 16.92 129.1
## 293 94 0 177.1 112 30.11 194.0
## 294 96 37 172.7 93 29.36 120.1
## 295 96 18 172.7 86 29.36 133.4
## 296 166 0 204.2 115 34.71 179.9
## 297 74 0 85.7 83 14.57 247.7
## 298 36 0 157.6 117 26.79 184.3
## 299 113 0 215.5 129 36.64 218.7
## 300 94 0 181.5 98 30.86 199.9
## 301 67 0 171.7 80 29.19 110.4
## 302 127 0 266.6 106 45.32 264.8
## 303 121 0 170.4 108 28.97 350.5
## 304 158 0 158.0 106 26.86 292.5
## 305 136 0 92.0 117 15.64 253.6
## 306 196 0 234.0 109 39.78 249.5
## 307 113 0 272.1 111 46.26 268.5
## 308 122 0 296.4 99 50.39 214.8
## 309 112 0 194.4 101 33.05 190.3
## 310 209 0 227.2 128 38.62 258.4
## 311 62 0 248.7 109 42.28 220.0
## 312 110 38 236.3 102 40.17 195.9
## 313 16 0 205.6 69 34.95 169.5
## 314 73 0 94.1 136 16.00 280.3
## 315 128 0 125.2 99 21.28 205.4
## 316 39 0 60.4 158 10.27 306.2
## 317 103 28 121.0 105 20.57 270.4
## 318 119 29 117.8 66 20.03 256.8
## 319 173 21 232.4 96 39.51 211.9
## 320 128 32 223.5 81 38.00 188.8
## 321 86 0 176.3 79 29.97 259.2
## 322 114 32 125.2 79 21.28 177.8
## 323 104 0 138.7 107 23.58 256.9
## 324 148 0 86.3 134 14.67 246.6
## 325 129 0 207.0 91 35.19 154.9
## 326 100 30 58.8 104 10.00 219.5
## 327 121 35 68.7 95 11.68 209.2
## 328 143 33 239.2 109 40.66 235.5
## 329 76 0 198.3 130 33.71 217.1
## 330 158 0 205.2 97 34.88 240.6
## 331 116 0 192.1 98 32.66 312.9
## 332 54 0 272.6 83 46.34 248.7
## 333 86 0 128.3 121 21.81 197.1
## 334 108 0 169.6 99 28.83 264.1
## 335 66 0 201.3 95 34.22 152.8
## 336 151 17 214.7 97 36.50 138.5
## 337 99 0 169.2 70 28.76 271.5
## 338 55 0 194.1 121 33.00 176.6
## 339 77 0 233.8 104 39.75 266.5
## 340 78 0 225.1 67 38.27 199.2
## 341 89 0 213.0 63 36.21 176.6
## 342 101 0 183.9 115 31.26 255.9
## 343 44 34 221.8 105 37.71 161.7
## 344 98 21 64.6 98 10.98 176.1
## 345 64 37 154.6 92 26.28 83.4
## 346 141 0 260.2 131 44.23 179.2
## 347 81 33 161.6 117 27.47 123.0
## 348 162 0 220.6 117 37.50 155.2
## 349 83 41 155.9 122 26.50 162.3
## 350 100 0 107.0 63 18.19 105.7
## 351 59 0 182.5 104 31.03 204.7
## 352 179 38 220.1 78 37.42 234.3
## 353 79 0 152.2 112 25.87 177.2
## 354 117 0 181.5 95 30.86 205.1
## 355 64 0 236.2 77 40.15 218.6
## 356 31 0 166.1 105 28.24 79.3
## 357 124 0 244.6 89 41.58 188.8
## 358 122 23 134.2 85 22.81 227.3
## 359 37 39 149.7 122 25.45 211.1
## 360 90 29 150.1 109 25.52 264.7
## 361 159 0 257.1 53 43.71 312.2
## 362 148 0 124.4 83 21.15 179.7
## 363 39 36 141.7 121 24.09 232.3
## 364 77 0 230.0 87 39.10 103.2
## 365 194 0 162.3 88 27.59 213.7
## 366 154 0 350.8 75 59.64 216.5
## 367 112 0 193.3 96 32.86 264.1
## 368 45 0 78.2 127 13.29 253.4
## 369 132 0 83.4 110 14.18 232.2
## 370 128 0 195.6 99 33.25 267.8
## 371 135 0 201.8 81 34.31 225.0
## 372 56 0 197.0 110 33.49 222.8
## 373 151 0 218.0 57 37.06 114.4
## 374 32 0 164.8 98 28.02 229.9
## 375 90 0 179.2 77 30.46 210.7
## 376 87 21 214.0 113 36.38 180.0
## 377 138 0 170.5 87 28.99 118.2
## 378 79 0 205.7 123 34.97 214.5
## 379 95 0 165.5 84 28.14 286.2
## 380 127 0 221.0 100 37.57 160.7
## 381 137 0 242.1 118 41.16 191.0
## 382 97 0 151.6 107 25.77 155.4
## 383 149 0 176.2 87 29.95 145.0
## 384 117 22 196.0 82 33.32 322.7
## 385 84 0 159.5 125 27.12 247.1
## 386 137 0 230.2 113 39.13 220.4
## 387 99 0 146.7 64 24.94 274.0
## 388 54 0 210.5 102 35.79 204.5
## 389 85 0 102.0 95 17.34 270.2
## 390 150 0 126.0 99 21.42 238.5
## 391 43 0 168.4 125 28.63 243.8
## 392 35 0 105.6 129 17.95 258.2
## 393 98 0 206.5 92 35.11 176.2
## 394 112 0 217.1 76 36.91 205.2
## 395 16 0 229.6 78 39.03 205.7
## 396 98 22 278.3 89 47.31 93.4
## 397 84 0 138.6 102 23.56 199.0
## 398 94 0 234.4 103 39.85 279.3
## 399 84 0 181.5 129 30.86 130.7
## 400 66 0 167.3 91 28.44 230.0
## 401 98 31 121.0 105 20.57 218.9
## 402 74 0 221.1 124 37.59 110.8
## 403 96 26 145.8 108 24.79 192.2
## 404 119 0 222.8 122 37.88 163.2
## 405 73 0 183.4 80 31.18 242.0
## 406 92 0 264.3 91 44.93 160.9
## 407 21 0 146.0 78 24.82 109.7
## 408 122 0 157.1 134 26.71 184.9
## 409 133 0 127.3 108 21.64 251.3
## 410 145 0 187.9 110 31.94 197.0
## 411 25 0 178.8 90 30.40 141.2
## 412 64 0 97.2 80 16.52 186.2
## 413 85 0 259.8 85 44.17 242.3
## 414 126 0 256.5 112 43.61 199.5
## 415 76 0 169.5 77 28.82 124.0
## 416 113 0 239.7 47 40.75 282.9
## 417 224 0 171.5 99 29.16 160.0
## 418 117 0 239.9 84 40.78 174.8
## 419 128 34 142.3 73 24.19 194.8
## 420 115 0 184.1 98 31.30 327.0
## 421 141 28 206.9 126 35.17 264.4
## 422 51 0 259.9 114 44.18 176.2
## 423 100 0 203.8 122 34.65 283.1
## 424 96 45 248.8 124 42.30 140.3
## 425 112 16 221.6 110 37.67 130.2
## 426 129 0 192.9 131 32.79 185.5
## 427 163 0 122.4 129 20.81 113.4
## 428 67 40 104.9 65 17.83 216.3
## 429 140 0 173.2 91 29.44 196.8
## 430 49 0 119.4 69 20.30 273.3
## 431 46 0 250.3 100 42.55 260.6
## 432 148 0 178.3 98 30.31 282.6
## 433 112 0 243.4 77 41.38 182.1
## 434 78 0 155.0 106 26.35 175.3
## 435 61 31 288.7 101 49.08 203.8
## 436 58 29 240.4 80 40.87 118.9
## 437 155 0 190.3 123 32.35 301.3
## 438 100 0 278.0 76 47.26 176.7
## 439 113 0 155.0 93 26.35 330.6
## 440 81 0 153.5 99 26.10 197.6
## 441 135 27 273.4 141 46.48 154.0
## 442 99 0 155.3 93 26.40 265.7
## 443 59 29 133.1 114 22.63 221.2
## 444 135 0 246.8 129 41.96 187.8
## 445 85 0 165.4 107 28.12 196.0
## 446 70 0 59.5 103 10.12 257.2
## 447 88 0 138.3 116 23.51 236.0
## 448 55 0 286.7 100 48.74 134.4
## 449 75 0 117.3 114 19.94 201.1
## 450 79 21 264.3 79 44.93 202.8
## 451 85 0 127.9 107 21.74 271.2
## 452 86 23 225.5 107 38.34 246.3
## 453 91 0 149.0 115 25.33 245.3
## 454 149 20 198.9 77 33.81 274.0
## 455 97 0 256.4 125 43.59 273.9
## 456 88 0 264.8 124 45.02 245.4
## 457 60 0 98.2 88 16.69 180.5
## 458 54 0 159.8 99 27.17 264.0
## 459 11 28 190.6 86 32.40 220.1
## 460 109 0 184.0 120 31.28 120.4
## 461 90 0 261.8 128 44.51 220.6
## 462 115 0 147.9 109 25.14 228.4
## 463 144 18 106.4 109 18.09 108.1
## 464 91 0 133.7 75 22.73 195.3
## 465 105 23 193.5 85 32.90 220.2
## 466 71 0 178.2 113 30.29 167.8
## 467 132 36 226.2 103 38.45 181.6
## 468 112 0 170.4 103 28.97 200.2
## 469 86 32 70.9 163 12.05 166.7
## 470 41 34 194.4 63 33.05 254.9
## 471 44 0 240.3 146 40.85 164.6
## 472 78 0 75.0 116 12.75 248.7
## 473 149 0 69.1 117 11.75 136.3
## 474 72 33 96.6 59 16.42 315.4
## 475 139 20 214.6 101 36.48 235.1
## 476 74 0 148.5 111 25.25 146.5
## 477 50 0 258.1 106 43.88 161.4
## 478 141 23 149.7 112 25.45 162.5
## 479 140 0 149.8 134 25.47 164.4
## 480 99 0 190.4 102 32.37 158.1
## 481 166 0 181.4 108 30.84 253.8
## 482 124 0 151.1 123 25.69 187.4
## 483 74 0 155.7 116 26.47 173.7
## 484 117 0 149.9 95 25.48 256.1
## 485 85 0 222.3 132 37.79 231.5
## 486 36 16 149.4 111 25.40 131.8
## 487 102 0 233.8 103 39.75 221.6
## 488 76 0 204.2 100 34.71 292.6
## 489 165 0 242.9 126 41.29 209.8
## 490 130 0 150.4 119 25.57 230.5
## 491 78 0 208.9 119 35.51 252.4
## 492 55 0 191.9 91 32.62 256.1
## 493 92 0 130.7 113 22.22 260.6
## 494 129 33 119.6 104 20.33 278.7
## 495 18 0 273.6 93 46.51 114.6
## 496 161 0 156.1 114 26.54 180.3
## 497 93 36 178.7 134 30.38 178.6
## 498 144 0 177.5 93 30.18 287.4
## 499 75 0 211.3 61 35.92 105.6
## 500 95 0 175.2 91 29.78 244.4
## 501 126 23 114.3 102 19.43 190.3
## 502 124 28 251.4 104 42.74 225.1
## 503 93 0 216.9 61 36.87 207.4
## 504 109 26 217.2 138 36.92 145.5
## 505 80 0 206.3 97 35.07 154.9
## 506 41 0 159.3 66 27.08 125.9
## 507 136 31 143.1 88 24.33 236.6
## 508 92 0 154.0 122 26.18 329.8
## 509 143 24 186.6 69 31.72 222.0
## 510 118 26 170.8 114 29.04 199.5
## 511 193 17 124.0 102 21.08 202.9
## 512 73 0 198.3 94 33.71 279.3
## 513 62 0 172.8 101 29.38 204.8
## 514 30 30 217.4 74 36.96 213.8
## 515 60 29 265.9 113 45.20 215.8
## 516 148 14 93.6 137 15.91 193.8
## 517 96 0 98.2 100 16.69 307.2
## 518 52 0 214.7 68 36.50 158.6
## 519 87 0 168.2 92 28.59 224.7
## 520 41 0 202.9 97 34.49 153.8
## 521 112 0 261.4 108 44.44 154.5
## 522 88 0 73.3 86 12.46 161.4
## 523 122 27 253.7 84 43.13 229.2
## 524 61 0 45.0 108 7.65 151.3
## 525 87 0 231.3 105 39.32 171.7
## 526 176 0 47.4 125 8.06 167.8
## 527 30 0 227.4 88 38.66 182.5
## 528 95 22 40.9 126 6.95 133.4
## 529 46 0 124.8 133 21.22 157.3
## 530 100 0 68.5 110 11.65 337.1
## 531 47 37 163.5 77 27.80 203.1
## 532 77 0 163.0 112 27.71 219.1
## 533 98 38 213.7 61 36.33 253.0
## 534 125 36 201.3 117 34.22 42.2
## 535 67 0 310.4 97 52.77 66.5
## 536 194 0 48.4 101 8.23 281.1
## 537 128 40 171.2 88 29.10 145.7
## 538 190 22 166.5 93 28.31 183.0
## 539 165 0 216.6 126 36.82 190.8
## 540 59 0 107.8 113 18.33 216.6
## 541 47 28 141.3 94 24.02 168.0
## 542 150 29 209.9 77 35.68 158.0
## 543 152 20 237.5 120 40.38 253.4
## 544 26 0 234.5 109 39.87 216.5
## 545 79 31 103.1 90 17.53 243.0
## 546 95 27 129.5 106 22.02 248.9
## 547 69 0 279.8 90 47.57 248.7
## 548 95 41 136.8 91 23.26 200.8
## 549 31 31 100.1 54 17.02 246.3
## 550 121 31 237.1 63 40.31 205.6
## 551 111 0 172.8 58 29.38 183.1
## 552 157 0 224.5 111 38.17 200.7
## 553 44 0 288.1 112 48.98 258.0
## 554 61 0 78.2 103 13.29 195.9
## 555 65 0 148.7 80 25.28 259.0
## 556 74 25 194.6 84 33.08 119.9
## 557 123 0 159.5 77 27.12 303.8
## 558 58 20 194.5 110 33.07 213.7
## 559 74 0 174.1 96 29.60 251.1
## 560 125 0 131.8 97 22.41 136.7
## 561 80 0 160.6 103 27.30 237.0
## 562 53 18 146.8 107 24.96 310.0
## 563 99 28 200.7 88 34.12 264.2
## 564 99 0 145.6 106 24.75 98.3
## 565 66 29 229.4 104 39.00 257.4
## 566 97 0 211.0 76 35.87 189.0
## 567 75 37 121.5 97 20.66 271.4
## 568 85 0 216.0 73 36.72 188.2
## 569 108 0 293.0 88 49.81 160.6
## 570 133 32 221.1 137 37.59 264.9
## 571 51 0 181.5 108 30.86 196.9
## 572 186 26 74.3 107 12.63 177.3
## 573 44 0 62.3 92 10.59 275.0
## 574 64 31 228.6 88 38.86 248.5
## 575 44 0 228.1 121 38.78 276.5
## 576 114 36 309.9 90 52.68 200.3
## 577 92 0 201.9 74 34.32 226.8
## 578 110 0 149.8 112 25.47 180.0
## 579 90 30 183.8 76 31.25 229.7
## 580 72 21 186.7 108 31.74 335.0
## 581 113 0 209.4 151 35.60 347.3
## 582 171 25 223.2 77 37.94 183.2
## 583 104 0 164.2 109 27.91 155.4
## 584 165 0 150.5 75 25.59 193.1
## 585 104 0 234.2 128 39.81 293.1
## 586 110 0 55.3 102 9.40 164.7
## 587 90 0 221.8 97 37.71 203.8
## 588 114 0 169.6 85 28.83 58.9
## 589 101 0 89.7 118 15.25 260.1
## 590 117 14 80.2 81 13.63 219.0
## 591 109 0 218.9 105 37.21 299.9
## 592 82 0 125.7 96 21.37 207.6
## 593 92 0 176.3 85 29.97 93.4
## 594 82 29 207.2 111 35.22 254.1
## 595 90 0 205.7 138 34.97 161.9
## 596 87 28 151.4 95 25.74 152.4
## 597 124 0 157.5 70 26.78 130.7
## 598 39 0 160.4 68 27.27 102.6
## 599 84 0 159.0 80 27.03 167.9
## 600 75 46 214.1 62 36.40 200.9
## 601 102 0 102.6 89 17.44 246.0
## 602 62 0 159.7 86 27.15 197.5
## 603 143 0 202.8 109 34.48 165.8
## 604 53 0 57.5 95 9.78 265.5
## 605 30 0 169.9 144 28.88 225.2
## 606 112 0 335.5 77 57.04 212.5
## 607 129 0 139.5 119 23.72 289.3
## 608 63 29 142.3 107 24.19 118.7
## 609 28 0 187.8 94 31.93 248.6
## 610 111 0 146.2 55 24.85 261.5
## 611 91 0 231.8 120 39.41 150.6
## 612 90 0 193.7 83 32.93 154.2
## 613 151 0 156.4 108 26.59 233.4
## 614 105 29 220.7 82 37.52 217.7
## 615 41 37 239.8 110 40.77 221.9
## 616 48 43 172.0 111 29.24 200.2
## 617 166 35 128.2 138 21.79 274.5
## 618 79 0 130.2 119 22.13 290.9
## 619 153 0 195.4 107 33.22 154.6
## 620 110 0 293.3 79 49.86 188.5
## 621 163 0 191.3 89 32.52 193.9
## 622 126 0 122.4 88 20.81 143.8
## 623 105 33 209.6 68 35.63 146.9
## 624 172 0 215.7 140 36.67 146.3
## 625 126 0 161.4 110 27.44 220.6
## 626 97 0 144.2 91 24.51 226.7
## 627 95 37 220.2 109 37.43 185.3
## 628 87 0 256.2 105 43.55 160.7
## 629 97 0 112.7 119 19.16 217.7
## 630 76 0 299.5 125 50.92 226.7
## 631 140 0 194.8 107 33.12 170.9
## 632 169 0 100.8 112 17.14 230.0
## 633 68 22 82.5 97 14.03 289.9
## 634 122 34 146.4 104 24.89 89.7
## 635 36 0 177.9 129 30.24 224.6
## 636 120 27 153.5 84 26.10 194.0
## 637 121 0 150.7 105 25.62 197.3
## 638 64 19 180.1 106 30.62 127.5
## 639 13 31 265.3 94 45.10 147.6
## 640 106 0 128.6 83 21.86 134.0
## 641 88 0 161.5 92 27.46 173.5
## 642 74 0 165.3 120 28.10 198.5
## 643 83 0 195.0 92 33.15 210.5
## 644 49 0 213.8 79 36.35 265.1
## 645 111 24 205.5 114 34.94 219.3
## 646 50 22 252.9 112 42.99 177.9
## 647 153 28 235.6 74 40.05 227.9
## 648 88 0 192.0 91 32.64 127.6
## 649 131 39 69.1 122 11.75 101.3
## 650 79 0 261.7 97 44.49 210.6
## 651 140 0 235.5 81 40.04 257.2
## 652 105 0 213.4 100 36.28 204.9
## 653 54 39 206.9 143 35.17 127.8
## 654 87 22 263.8 65 44.85 103.4
## 655 96 31 183.4 126 31.18 195.5
## 656 79 0 157.6 85 26.79 194.1
## 657 55 0 175.6 147 29.85 161.8
## 658 130 0 242.5 101 41.23 102.8
## 659 34 0 151.0 102 25.67 131.4
## 660 139 0 138.1 103 23.48 164.5
## 661 109 0 264.7 69 45.00 305.0
## 662 65 31 282.3 70 47.99 152.0
## 663 63 0 211.2 80 35.90 237.7
## 664 152 0 197.1 126 33.51 130.1
## 665 147 0 205.3 95 34.90 166.7
## 666 112 22 181.8 110 30.91 228.1
## 667 120 0 252.0 120 42.84 150.2
## 668 27 0 193.8 102 32.95 118.9
## 669 171 0 231.2 135 39.30 188.7
## 670 101 33 200.1 108 34.02 188.9
## 671 32 26 266.7 109 45.34 232.3
## 672 3 36 118.1 117 20.08 221.5
## 673 151 0 175.3 106 29.80 144.3
## 674 60 0 125.1 99 21.27 248.8
## 675 119 0 176.8 90 30.06 224.7
## 676 43 0 241.9 101 41.12 129.4
## 677 42 0 241.2 134 41.00 116.5
## 678 84 0 217.1 99 36.91 236.0
## 679 65 0 195.4 110 33.22 181.2
## 680 75 0 222.4 78 37.81 327.0
## 681 116 0 189.5 90 32.22 189.8
## 682 107 0 123.1 100 20.93 158.4
## 683 189 38 256.7 98 43.64 150.5
## 684 123 0 159.1 94 27.05 241.6
## 685 110 0 100.1 90 17.02 233.3
## 686 63 32 30.9 113 5.25 187.0
## 687 176 0 223.2 76 37.94 214.4
## 688 108 0 187.4 101 31.86 199.9
## 689 13 21 315.6 105 53.65 208.9
## 690 71 0 277.5 104 47.18 131.8
## 691 88 0 189.8 111 32.27 197.3
## 692 137 0 147.2 119 25.02 192.8
## 693 82 0 185.8 36 31.59 276.5
## 694 92 29 155.4 110 26.42 188.5
## 695 165 0 154.2 91 26.21 268.6
## 696 96 0 97.6 98 16.59 105.5
## 697 156 0 178.8 94 30.40 178.4
## 698 63 0 149.3 104 25.38 273.6
## 699 37 0 206.0 89 35.02 186.0
## 700 98 0 216.8 86 36.86 190.8
## 701 121 0 103.3 110 17.56 129.1
## 702 94 0 139.4 95 23.70 159.1
## 703 99 0 191.2 110 32.50 163.9
## 704 163 23 160.0 104 27.20 189.4
## 705 161 0 221.7 95 37.69 193.0
## 706 99 0 62.9 81 10.69 231.0
## 707 108 0 215.6 78 36.65 195.3
## 708 84 42 165.3 97 28.10 223.5
## 709 83 32 94.7 111 16.10 154.4
## 710 139 0 203.2 81 34.54 152.5
## 711 69 0 195.3 70 33.20 216.7
## 712 129 0 143.7 114 24.43 297.8
## 713 106 0 114.4 104 19.45 78.3
## 714 158 0 222.8 101 37.88 203.0
## 715 168 22 175.9 70 29.90 211.7
## 716 115 0 249.9 95 42.48 242.5
## 717 57 30 234.5 130 39.87 195.2
## 718 67 0 210.7 116 35.82 219.2
## 719 127 0 182.3 124 30.99 169.9
## 720 78 0 190.3 88 32.35 194.5
## 721 100 38 177.1 88 30.11 163.7
## 722 103 36 87.2 92 14.82 169.3
## 723 113 0 215.6 96 36.65 193.4
## 724 78 0 137.4 109 23.36 237.6
## 725 129 36 192.8 103 32.78 177.0
## 726 57 0 149.3 100 25.38 200.2
## 727 82 0 143.7 116 24.43 170.7
## 728 64 0 224.8 111 38.22 190.0
## 729 86 39 261.2 122 44.40 214.2
## 730 151 26 196.5 98 33.41 175.8
## 731 94 0 271.2 105 46.10 202.6
## 732 90 0 207.2 121 35.22 292.5
## 733 48 0 300.4 94 51.07 133.2
## 734 85 37 229.6 123 39.03 132.3
## 735 93 20 187.5 110 31.88 169.8
## 736 169 0 57.1 98 9.71 199.7
## 737 68 0 162.1 86 27.56 155.0
## 738 91 0 145.0 89 24.65 175.8
## 739 68 0 159.5 123 27.12 240.8
## 740 101 0 190.7 72 32.42 208.6
## 741 67 20 230.6 40 39.20 189.1
## 742 66 0 34.0 133 5.78 278.6
## 743 116 17 193.4 112 32.88 240.6
## 744 158 0 202.0 126 34.34 163.5
## 745 78 0 191.7 122 32.59 241.4
## 746 119 26 161.3 97 27.42 250.3
## 747 120 0 150.6 85 25.60 119.0
## 748 155 0 184.6 102 31.38 196.0
## 749 106 0 220.7 120 37.52 270.2
## 750 87 0 167.3 119 28.44 198.5
## 751 146 32 154.0 80 26.18 185.5
## 752 101 29 121.1 116 20.59 186.4
## 753 22 23 182.1 94 30.96 164.6
## 754 90 0 109.6 88 18.63 137.6
## 755 41 0 209.9 105 35.68 121.9
## 756 69 0 167.5 76 28.48 242.1
## 757 33 0 213.9 88 36.36 239.8
## 758 112 0 115.8 108 19.69 243.3
## 759 108 30 276.6 99 47.02 220.1
## 760 136 21 179.4 88 30.50 181.1
## 761 128 0 187.3 84 31.84 270.8
## 762 27 0 201.2 128 34.20 227.2
## 763 161 0 189.6 78 32.23 267.4
## 764 33 35 186.8 124 31.76 261.0
## 765 120 31 153.5 83 26.10 219.1
## 766 113 0 187.6 97 31.89 208.2
## 767 122 0 230.9 132 39.25 243.2
## 768 148 26 244.9 150 41.63 118.0
## 769 74 0 230.9 93 39.25 223.0
## 770 106 0 187.1 104 31.81 250.2
## 771 179 0 170.7 54 29.02 191.1
## 772 149 28 126.9 97 21.57 166.9
## 773 77 0 189.5 112 32.22 207.0
## 774 127 0 176.9 110 30.07 167.9
## 775 80 0 161.1 99 27.39 198.8
## 776 106 0 169.4 107 28.80 197.2
## 777 61 20 254.4 133 43.25 161.7
## 778 135 24 127.7 54 21.71 215.0
## 779 115 26 170.5 107 28.99 217.2
## 780 167 0 219.1 100 37.25 242.9
## 781 107 0 273.5 104 46.50 183.8
## 782 112 0 161.9 138 27.52 200.9
## 783 35 27 241.7 87 41.09 142.0
## 784 103 0 62.8 124 10.68 170.4
## 785 107 22 281.1 83 47.79 143.7
## 786 69 0 228.2 70 38.79 263.7
## 787 85 0 209.8 82 35.67 194.5
## 788 24 0 265.6 86 45.15 208.8
## 789 90 0 214.9 97 36.53 117.8
## 790 137 0 110.5 79 18.79 223.2
## 791 92 45 281.1 88 47.79 198.0
## 792 38 0 137.8 86 23.43 286.3
## 793 69 33 271.5 98 46.16 253.4
## 794 45 0 112.8 108 19.18 218.8
## 795 73 0 187.3 118 31.84 239.7
## 796 92 0 197.0 84 33.49 269.3
## 797 113 32 180.4 89 30.67 129.4
## 798 68 0 148.5 126 25.25 219.4
## 799 135 22 197.1 113 33.51 259.4
## 800 100 26 153.7 115 26.13 137.8
## 801 96 27 261.3 96 44.42 220.9
## 802 108 0 246.2 102 41.85 202.4
## 803 84 0 191.0 88 32.47 318.8
## 804 134 0 208.3 86 35.41 253.6
## 805 72 0 253.0 73 43.01 219.3
## 806 83 0 202.3 87 34.39 201.5
## 807 137 0 174.4 120 29.65 156.3
## 808 56 30 127.1 89 21.61 172.1
## 809 61 16 143.5 76 24.40 242.6
## 810 171 17 186.9 94 31.77 240.0
## 811 123 0 194.0 118 32.98 242.0
## 812 58 0 234.8 89 39.92 106.8
## 813 156 0 123.7 96 21.03 103.0
## 814 166 0 173.9 103 29.56 276.4
## 815 75 41 130.9 115 22.25 203.4
## 816 75 0 314.6 102 53.48 169.8
## 817 83 0 227.9 78 38.74 207.5
## 818 243 0 95.5 92 16.24 163.7
## 819 153 0 185.3 127 31.50 208.0
## 820 150 0 146.3 133 24.87 202.7
## 821 92 16 184.0 99 31.28 76.4
## 822 80 0 105.8 110 17.99 43.9
## 823 134 0 178.0 110 30.26 153.8
## 824 77 24 149.4 74 25.40 123.9
## 825 147 0 209.4 104 35.60 132.5
## 826 74 0 172.1 105 29.26 211.7
## 827 138 0 169.3 82 28.78 217.9
## 828 143 0 119.1 117 20.25 287.7
## 829 64 0 194.2 147 33.01 173.4
## 830 120 0 198.8 56 33.80 230.1
## 831 121 0 167.7 94 28.51 93.7
## 832 88 0 202.2 86 34.37 216.8
## 833 87 0 322.5 106 54.83 204.6
## 834 100 0 216.2 107 36.75 215.6
## 835 104 0 76.4 116 12.99 115.6
## 836 27 0 72.7 75 12.36 208.6
## 837 81 31 210.4 100 35.77 225.5
## 838 64 33 127.2 93 21.62 162.9
## 839 107 28 201.8 79 34.31 304.9
## 840 88 17 219.5 78 37.32 222.1
## 841 111 0 99.3 112 16.88 270.5
## 842 77 0 239.2 114 40.66 150.0
## 843 67 0 120.9 58 20.55 235.0
## 844 102 0 224.7 81 38.20 129.4
## 845 146 19 176.6 88 30.02 162.7
## 846 144 51 283.9 98 48.26 192.0
## 847 96 0 180.6 92 30.70 190.9
## 848 70 31 125.9 101 21.40 196.4
## 849 149 0 237.6 79 40.39 192.4
## 850 129 0 198.4 91 33.73 264.7
## 851 166 0 274.3 110 46.63 52.9
## 852 136 0 199.6 89 33.93 211.4
## 853 149 0 217.7 91 37.01 273.5
## 854 70 0 134.7 96 22.90 235.9
## 855 120 24 212.7 73 36.16 257.5
## 856 66 0 256.3 135 43.57 180.2
## 857 104 0 183.6 133 31.21 120.7
## 858 160 0 176.2 90 29.95 196.0
## 859 129 37 205.0 94 34.85 165.4
## 860 93 0 267.9 114 45.54 223.0
## 861 169 0 179.2 111 30.46 175.2
## 862 58 0 149.4 145 25.40 196.5
## 863 75 38 163.6 132 27.81 146.7
## 864 45 0 207.6 71 35.29 152.7
## 865 155 0 165.4 108 28.12 183.7
## 866 52 0 209.8 114 35.67 171.3
## 867 119 27 220.1 128 37.42 268.2
## 868 86 0 141.3 72 24.02 154.3
## 869 42 0 196.5 89 33.41 241.3
## 870 127 0 180.9 114 30.75 209.5
## 871 123 0 105.0 150 17.85 251.6
## 872 98 0 271.4 119 46.14 190.4
## 873 149 43 206.7 79 35.14 174.6
## 874 160 0 166.8 109 28.36 236.0
## 875 103 0 204.9 107 34.83 135.2
## 876 132 15 154.6 128 26.28 245.6
## 877 137 0 127.0 107 21.59 323.2
## 878 129 0 267.4 78 45.46 204.2
## 879 62 0 281.0 66 47.77 160.6
## 880 122 33 270.8 96 46.04 220.4
## 881 32 0 171.2 82 29.10 185.6
## 882 86 0 124.1 82 21.10 202.6
## 883 130 0 162.8 113 27.68 290.3
## 884 42 0 146.3 84 24.87 255.9
## 885 73 0 254.8 85 43.32 143.4
## 886 66 26 254.9 108 43.33 243.2
## 887 103 31 107.7 124 18.31 188.9
## 888 128 0 158.8 75 27.00 264.8
## 889 104 0 182.9 113 31.09 239.6
## 890 103 0 198.5 112 33.75 42.5
## 891 124 0 178.4 72 30.33 233.6
## 892 87 0 110.9 91 18.85 158.5
## 893 109 27 166.9 85 28.37 221.2
## 894 167 0 244.8 91 41.62 60.8
## 895 97 0 120.8 96 20.54 169.8
## 896 106 0 165.3 118 28.10 210.0
## 897 125 0 126.7 113 21.54 155.5
## 898 108 35 215.9 106 36.70 200.6
## 899 125 0 140.1 132 23.82 209.6
## 900 89 32 209.9 113 35.68 249.8
## 901 72 29 139.8 114 23.77 138.2
## 902 23 0 321.6 107 54.67 251.6
## 903 149 0 166.6 61 28.32 218.8
## 904 73 0 214.2 90 36.41 196.8
## 905 61 0 260.0 123 44.20 210.5
## 906 161 0 191.9 113 32.62 70.9
## 907 73 0 213.0 95 36.21 188.8
## 908 118 24 118.1 83 20.08 109.6
## 909 23 0 190.2 89 32.33 166.4
## 910 127 25 82.2 95 13.97 163.3
## 911 42 32 163.8 80 27.85 177.8
## 912 118 0 267.8 145 45.53 316.4
## 913 45 0 159.8 91 27.17 120.4
## 914 50 24 214.3 129 36.43 289.8
## 915 179 0 287.3 123 48.84 288.0
## 916 152 0 101.2 122 17.20 141.6
## 917 105 0 102.8 74 17.48 281.7
## 918 72 0 109.1 97 18.55 115.7
## 919 52 0 215.9 67 36.70 217.0
## 920 125 0 203.4 110 34.58 128.7
## 921 143 0 110.1 113 18.72 169.0
## 922 65 0 111.0 51 18.87 219.8
## 923 80 0 239.9 121 40.78 142.3
## 924 1 0 144.8 107 24.62 112.5
## 925 60 0 135.4 134 23.02 205.9
## 926 43 0 84.2 134 14.31 80.8
## 927 143 0 209.1 127 35.55 106.1
## 928 81 24 130.1 117 22.12 196.0
## 929 205 24 175.8 139 29.89 155.0
## 930 24 0 241.9 104 41.12 145.2
## 931 74 0 136.7 106 23.24 228.6
## 932 77 0 67.7 68 11.51 195.7
## 933 74 0 200.4 87 34.07 309.2
## 934 74 0 125.8 103 21.39 207.7
## 935 200 0 128.2 87 21.79 133.2
## 936 86 0 226.3 88 38.47 223.0
## 937 91 37 162.3 107 27.59 233.9
## 938 76 0 224.4 121 38.15 147.9
## 939 130 0 120.5 127 20.49 189.7
## 940 56 0 91.1 90 15.49 179.3
## 941 117 0 168.8 137 28.70 241.4
## 942 63 0 153.5 81 26.10 287.3
## 943 126 0 226.2 88 38.45 140.3
## 944 132 0 191.9 107 32.62 206.9
## 945 81 28 167.9 147 28.54 190.7
## 946 122 0 180.0 88 30.60 145.0
## 947 46 0 257.4 67 43.76 261.1
## 948 150 28 174.4 75 29.65 169.9
## 949 99 0 159.7 83 27.15 155.4
## 950 87 0 237.2 124 40.32 222.6
## 951 108 0 103.0 129 17.51 242.3
## 952 101 0 153.8 89 26.15 234.0
## 953 53 0 205.1 86 34.87 160.5
## 954 132 39 175.7 93 29.87 187.2
## 955 158 0 155.9 123 26.50 224.2
## 956 114 34 154.4 109 26.25 221.4
## 957 77 23 209.7 73 35.65 183.6
## 958 144 0 150.0 69 25.50 285.9
## 959 91 23 232.4 97 39.51 186.0
## 960 58 0 165.4 100 28.12 115.7
## 961 5 0 199.2 106 33.86 187.3
## 962 97 0 217.6 81 36.99 320.5
## 963 107 0 212.1 95 36.06 150.1
## 964 142 30 154.0 75 26.18 165.8
## 965 9 31 193.8 130 32.95 202.6
## 966 73 0 175.4 130 29.82 248.1
## 967 48 22 152.0 63 25.84 258.8
## 968 43 0 230.2 147 39.13 186.7
## 969 122 33 174.9 103 29.73 248.2
## 970 93 0 190.2 68 32.33 262.2
## 971 85 0 176.4 122 29.99 224.9
## 972 59 0 160.9 95 27.35 251.2
## 973 87 0 228.7 90 38.88 163.0
## 974 137 0 144.0 90 24.48 181.6
## 975 21 31 135.9 90 23.10 271.0
## 976 129 0 334.3 118 56.83 192.1
## 977 104 0 130.5 77 22.19 131.2
## 978 93 21 134.2 105 22.81 162.5
## 979 63 0 278.0 102 47.26 266.4
## 980 161 0 105.4 70 17.92 214.8
## 981 50 0 188.9 94 32.11 203.9
## 982 103 24 111.8 85 19.01 239.6
## 983 84 33 159.1 106 27.05 149.8
## 984 92 0 212.4 105 36.11 224.6
## 985 77 0 142.3 112 24.19 306.3
## 986 64 0 346.8 55 58.96 249.5
## 987 159 15 113.9 102 19.36 145.3
## 988 110 27 267.9 103 45.54 263.3
## 989 138 0 171.4 117 29.14 115.2
## 990 178 0 275.4 150 46.82 187.5
## 991 38 31 197.2 118 33.52 249.9
## 992 50 35 192.6 97 32.74 135.2
## 993 45 26 91.7 104 15.59 150.6
## 994 70 0 126.3 99 21.47 141.6
## 995 147 33 251.5 107 42.76 234.1
## 996 94 0 190.6 108 32.40 152.3
## 997 179 0 116.1 101 19.74 201.8
## 998 116 0 217.3 91 36.94 216.1
## 999 59 0 179.4 80 30.50 232.5
## 1000 165 0 207.7 109 35.31 164.8
## 1001 133 0 277.3 138 47.14 228.4
## 1002 140 0 125.3 84 21.30 167.6
## 1003 93 32 138.1 91 23.48 167.3
## 1004 52 38 169.3 88 28.78 225.9
## 1005 64 27 201.3 101 34.22 143.8
## 1006 12 0 216.7 117 36.84 116.5
## 1007 48 0 190.4 92 32.37 317.5
## 1008 181 0 143.3 91 24.36 195.5
## 1009 168 42 97.4 57 16.56 203.6
## 1010 155 0 181.4 111 30.84 167.7
## 1011 105 0 246.4 83 41.89 256.2
## 1012 11 0 143.4 130 24.38 289.4
## 1013 182 0 104.9 111 17.83 198.5
## 1014 104 0 156.2 93 26.55 193.0
## 1015 102 0 114.8 125 19.52 81.9
## 1016 122 0 232.5 96 39.53 205.5
## 1017 41 0 143.6 117 24.41 152.4
## 1018 132 0 176.7 132 30.04 244.1
## 1019 76 0 263.4 148 44.78 230.3
## 1020 13 0 146.4 74 24.89 148.5
## 1021 115 33 145.0 72 24.65 194.5
## 1022 67 0 167.8 91 28.53 167.7
## 1023 154 0 166.9 99 28.37 154.9
## 1024 100 0 142.5 87 24.23 195.7
## 1025 146 0 133.0 65 22.61 262.8
## 1026 148 11 252.9 129 42.99 284.3
## 1027 67 28 95.0 94 16.15 291.2
## 1028 161 0 194.2 106 33.01 249.4
## 1029 70 0 222.8 114 37.88 215.9
## 1030 116 0 201.8 82 34.31 231.5
## 1031 99 42 216.0 125 36.72 232.3
## 1032 87 0 146.3 108 24.87 171.8
## 1033 87 0 234.8 85 39.92 140.9
## 1034 70 0 198.6 111 33.76 213.9
## 1035 131 0 94.4 80 16.05 215.1
## 1036 119 0 190.4 74 32.37 215.6
## 1037 119 32 142.6 77 24.24 208.2
## 1038 87 0 134.2 80 22.81 165.0
## 1039 112 0 111.9 92 19.02 114.0
## 1040 75 0 122.8 89 20.88 211.3
## 1041 150 0 189.3 77 32.18 220.9
## 1042 161 38 240.4 112 40.87 201.8
## 1043 91 24 93.5 112 15.90 183.4
## 1044 124 0 158.6 104 26.96 211.2
## 1045 94 0 243.2 109 41.34 147.0
## 1046 217 0 176.4 115 29.99 158.8
## 1047 158 0 220.9 129 37.55 242.2
## 1048 102 0 144.4 87 24.55 266.5
## 1049 85 0 212.3 107 36.09 228.4
## 1050 79 0 147.0 72 24.99 165.7
## 1051 139 25 96.2 112 16.35 178.9
## 1052 103 0 263.4 118 44.78 179.1
## 1053 98 0 12.5 67 2.13 256.6
## 1054 78 0 162.3 116 27.59 192.4
## 1055 50 0 183.6 107 31.21 58.6
## 1056 161 0 178.1 109 30.28 146.5
## 1057 67 0 201.4 101 34.24 97.6
## 1058 86 38 123.0 158 20.91 133.9
## 1059 92 0 208.0 125 35.36 198.9
## 1060 174 0 239.2 72 40.66 188.5
## 1061 124 0 193.0 97 32.81 89.8
## 1062 132 31 174.5 101 29.67 245.6
## 1063 190 26 116.7 71 19.84 145.9
## 1064 101 0 93.8 127 15.95 150.0
## 1065 185 30 154.1 114 26.20 118.7
## 1066 68 29 239.5 82 40.72 203.8
## 1067 117 25 216.0 140 36.72 224.1
## 1068 118 0 187.4 97 31.86 177.8
## 1069 124 0 167.4 119 28.46 233.2
## 1070 22 0 160.4 108 27.27 218.1
## 1071 75 0 143.2 92 24.34 209.1
## 1072 134 0 205.3 122 34.90 240.5
## 1073 164 25 219.1 88 37.25 151.5
## 1074 44 0 143.2 77 24.34 169.8
## 1075 177 0 232.8 106 39.58 175.2
## 1076 110 0 162.0 81 27.54 247.5
## 1077 53 27 25.9 119 4.40 206.5
## 1078 108 0 154.2 123 26.21 112.3
## 1079 80 0 322.3 113 54.79 222.0
## 1080 158 0 209.9 112 35.68 221.3
## 1081 114 0 191.5 88 32.56 175.2
## 1082 64 19 291.1 150 49.49 226.7
## 1083 88 0 215.6 115 36.65 216.2
## 1084 82 0 208.8 101 35.50 213.7
## 1085 111 0 255.9 97 43.50 204.1
## 1086 60 0 252.7 97 42.96 221.1
## 1087 113 0 132.1 72 22.46 247.5
## 1088 109 0 217.0 115 36.89 207.0
## 1089 105 42 101.9 79 17.32 223.1
## 1090 85 0 211.5 100 35.96 184.6
## 1091 131 0 153.4 86 26.08 198.5
## 1092 59 0 166.3 95 28.27 239.3
## 1093 148 0 185.2 87 31.48 170.4
## 1094 210 0 104.6 121 17.78 149.5
## 1095 115 0 245.2 105 41.68 159.0
## 1096 106 0 274.4 120 46.65 198.6
## 1097 93 0 98.4 78 16.73 249.6
## 1098 57 29 279.9 121 47.58 223.1
## 1099 98 0 187.2 127 31.82 195.6
## 1100 157 0 276.2 95 46.95 165.8
## 1101 116 35 200.4 104 34.07 272.8
## 1102 30 0 162.3 96 27.59 244.0
## 1103 111 0 176.9 128 30.07 102.8
## 1104 52 0 165.5 78 28.14 205.5
## 1105 72 0 217.8 93 37.03 189.7
## 1106 135 28 201.4 100 34.24 246.5
## 1107 86 0 190.5 115 32.39 179.6
## 1108 98 29 179.9 97 30.58 189.2
## 1109 151 0 235.9 104 40.10 80.6
## 1110 118 0 140.4 112 23.87 187.1
## 1111 117 0 144.6 115 24.58 258.8
## 1112 55 0 189.0 100 32.13 118.5
## 1113 82 0 101.0 93 17.17 155.6
## 1114 152 0 206.3 98 35.07 292.8
## 1115 108 15 165.1 85 28.07 267.0
## 1116 98 0 165.0 129 28.05 202.6
## 1117 130 0 155.9 95 26.50 256.1
## 1118 136 0 199.2 122 33.86 214.7
## 1119 47 0 155.3 116 26.40 188.2
## 1120 189 0 208.3 106 35.41 236.7
## 1121 107 0 157.1 79 26.71 162.6
## 1122 91 0 154.4 165 26.25 168.3
## 1123 159 0 189.1 105 32.15 246.1
## 1124 11 24 131.5 98 22.36 230.2
## 1125 167 0 166.4 85 28.29 243.2
## 1126 111 0 142.3 75 24.19 122.8
## 1127 99 19 87.7 103 14.91 223.0
## 1128 159 19 184.1 78 31.30 194.5
## 1129 114 31 174.5 104 29.67 224.2
## 1130 71 0 103.3 103 17.56 138.5
## 1131 122 0 35.1 62 5.97 180.8
## 1132 100 25 246.6 94 41.92 141.4
## 1133 83 37 78.5 109 13.35 210.5
## 1134 64 0 148.1 73 25.18 164.9
## 1135 105 0 206.2 84 35.05 256.4
## 1136 144 33 251.6 87 42.77 197.6
## 1137 106 26 270.3 111 45.95 215.2
## 1138 19 34 156.6 97 26.62 224.2
## 1139 46 0 139.4 81 23.70 223.7
## 1140 127 0 220.2 108 37.43 188.4
## 1141 9 39 214.1 108 36.40 169.2
## 1142 157 0 196.0 74 33.32 213.4
## 1143 105 0 106.4 71 18.09 240.1
## 1144 105 29 179.4 113 30.50 275.4
## 1145 155 0 216.7 30 36.84 144.3
## 1146 31 0 177.3 129 30.14 152.8
## 1147 161 0 151.6 117 25.77 219.4
## 1148 95 32 262.2 123 44.57 165.2
## 1149 122 0 173.6 110 29.51 91.7
## 1150 37 0 106.6 76 18.12 147.4
## 1151 132 0 193.3 106 32.86 128.3
## 1152 119 24 217.2 94 36.92 138.7
## 1153 16 0 209.5 89 35.62 172.8
## 1154 99 0 95.4 105 16.22 207.2
## 1155 76 26 214.6 110 36.48 205.2
## 1156 167 0 131.6 120 22.37 211.3
## 1157 129 0 168.4 117 28.63 217.1
## 1158 116 0 146.4 123 24.89 176.6
## 1159 60 0 183.0 110 31.11 206.7
## 1160 128 0 103.3 122 17.56 245.9
## 1161 47 28 112.2 70 19.07 154.8
## 1162 40 0 170.7 55 29.02 179.1
## 1163 173 0 172.5 78 29.33 142.6
## 1164 157 30 194.3 107 33.03 243.2
## 1165 66 32 187.8 117 31.93 129.8
## 1166 50 26 307.1 94 52.21 289.4
## 1167 72 0 118.2 106 20.09 167.2
## 1168 130 0 154.0 95 26.18 205.9
## 1169 143 0 155.5 101 26.44 213.4
## 1170 89 0 125.6 108 21.35 213.0
## 1171 108 0 199.3 104 33.88 224.2
## 1172 32 0 157.9 88 26.84 180.8
## 1173 166 0 203.4 81 34.58 167.7
## 1174 109 0 222.2 113 37.77 218.5
## 1175 72 39 92.8 98 15.78 271.2
## 1176 134 32 216.8 78 36.86 102.2
## 1177 13 0 193.2 89 32.84 194.4
## 1178 90 0 113.2 108 19.24 189.3
## 1179 111 36 166.2 54 28.25 238.8
## 1180 101 23 262.2 101 44.57 157.0
## 1181 72 0 207.8 92 35.33 195.7
## 1182 67 35 245.4 89 41.72 148.2
## 1183 172 0 287.1 108 48.81 178.4
## 1184 154 32 192.3 82 32.69 165.3
## 1185 69 0 194.2 122 33.01 242.1
## 1186 123 0 211.0 92 35.87 217.0
## 1187 130 12 141.9 92 24.12 228.9
## 1188 142 26 220.5 94 37.49 239.5
## 1189 29 0 157.4 122 26.76 145.0
## 1190 87 28 143.5 106 24.40 223.5
## 1191 149 0 156.0 56 26.52 56.0
## 1192 146 0 160.1 63 27.22 208.4
## 1193 88 0 235.1 98 39.97 251.8
## 1194 119 15 160.0 95 27.20 209.5
## 1195 48 0 188.4 63 32.03 165.9
## 1196 135 0 194.8 97 33.12 235.3
## 1197 100 0 247.8 117 42.13 130.0
## 1198 98 0 221.2 80 37.60 213.6
## 1199 75 26 118.5 86 20.15 213.9
## 1200 180 33 231.8 78 39.41 232.9
## 1201 100 25 215.9 90 36.70 257.9
## 1202 119 35 217.1 92 36.91 220.8
## 1203 86 0 83.5 96 14.20 221.1
## 1204 155 39 183.3 106 31.16 205.1
## 1205 78 0 236.8 141 40.26 265.3
## 1206 153 0 193.8 90 32.95 195.3
## 1207 92 25 134.0 112 22.78 206.0
## 1208 13 25 176.6 65 30.02 172.7
## 1209 154 0 191.4 93 32.54 205.4
## 1210 144 35 174.8 127 29.72 219.6
## 1211 48 0 275.2 67 46.78 180.2
## 1212 94 0 174.0 85 29.58 241.1
## 1213 139 0 165.0 132 28.05 249.7
## 1214 126 0 228.7 102 38.88 168.7
## 1215 122 0 107.9 88 18.34 235.8
## 1216 139 0 221.3 140 37.62 157.8
## 1217 95 0 141.1 84 23.99 211.4
## 1218 80 31 166.4 92 28.29 238.3
## 1219 131 28 249.6 87 42.43 227.2
## 1220 36 0 178.6 83 30.36 213.1
## 1221 180 0 139.0 96 23.63 224.9
## 1222 25 0 134.3 98 22.83 202.3
## 1223 113 0 215.9 93 36.70 240.1
## 1224 88 31 181.6 91 30.87 213.2
## 1225 120 0 178.4 97 30.33 168.3
## 1226 74 0 106.4 84 18.09 140.2
## 1227 109 0 170.7 101 29.02 240.2
## 1228 162 33 184.5 139 31.37 183.2
## 1229 124 37 161.2 109 27.40 204.2
## 1230 177 0 84.9 77 14.43 257.5
## 1231 91 0 217.9 71 37.04 230.1
## 1232 105 0 270.9 98 46.05 226.2
## 1233 24 0 243.0 91 41.31 183.9
## 1234 48 0 128.2 71 21.79 48.1
## 1235 86 0 126.3 115 21.47 168.8
## 1236 163 0 178.7 56 30.38 215.7
## 1237 91 0 159.0 109 27.03 255.1
## 1238 56 0 150.9 79 25.65 161.8
## 1239 147 24 219.9 118 37.38 208.5
## 1240 64 0 168.0 116 28.56 192.4
## 1241 108 34 162.1 83 27.56 171.8
## 1242 159 0 198.8 107 33.80 195.5
## 1243 136 0 256.8 90 43.66 230.1
## 1244 116 35 182.8 122 31.08 212.7
## 1245 45 38 196.8 92 33.46 254.2
## 1246 122 0 140.1 120 23.82 231.4
## 1247 138 0 194.3 83 33.03 189.9
## 1248 132 0 117.6 66 19.99 214.0
## 1249 101 0 193.7 108 32.93 186.6
## 1250 58 0 243.1 105 41.33 231.4
## 1251 81 0 145.4 132 24.72 129.3
## 1252 87 0 169.1 105 28.75 169.9
## 1253 116 0 229.3 93 38.98 184.5
## 1254 85 0 197.2 97 33.52 211.7
## 1255 62 33 186.4 84 31.69 201.0
## 1256 90 0 76.1 121 12.94 290.3
## 1257 98 0 162.8 65 27.68 185.0
## 1258 73 0 182.3 115 30.99 199.2
## 1259 107 0 194.4 83 33.05 247.8
## 1260 55 20 189.3 95 32.18 118.6
## 1261 76 22 160.1 107 27.22 168.7
## 1262 30 0 145.0 76 24.65 240.7
## 1263 157 0 220.7 105 37.52 119.3
## 1264 40 31 224.7 69 38.20 134.5
## 1265 72 0 147.0 79 24.99 162.3
## 1266 95 39 260.8 130 44.34 213.4
## 1267 42 0 155.4 127 26.42 164.1
## 1268 86 0 166.2 112 28.25 255.3
## 1269 131 0 211.8 115 36.01 260.5
## 1270 55 45 130.5 114 22.19 208.4
## 1271 74 0 162.7 102 27.66 292.0
## 1272 81 37 237.1 76 40.31 264.2
## 1273 81 0 166.2 102 28.25 217.6
## 1274 28 0 121.7 48 20.69 125.8
## 1275 111 0 176.4 62 29.99 201.0
## 1276 3 27 67.4 116 11.46 244.0
## 1277 51 0 229.7 129 39.05 336.0
## 1278 68 24 176.0 118 29.92 277.9
## 1279 163 0 247.7 77 42.11 269.5
## 1280 87 0 115.4 90 19.62 262.6
## 1281 58 0 112.2 95 19.07 209.6
## 1282 109 0 162.6 138 27.64 154.0
## 1283 111 0 229.4 107 39.00 214.1
## 1284 144 0 139.6 96 23.73 124.2
## 1285 135 0 263.8 66 44.85 251.3
## 1286 109 46 217.5 123 36.98 233.7
## 1287 107 14 114.3 132 19.43 199.8
## 1288 149 0 196.3 108 33.37 136.8
## 1289 56 0 253.2 95 43.04 188.0
## 1290 129 0 98.0 99 16.66 240.7
## 1291 92 0 249.4 118 42.40 211.5
## 1292 67 30 129.6 107 22.03 233.0
## 1293 120 0 221.3 106 37.62 267.6
## 1294 166 0 220.7 106 37.52 177.8
## 1295 66 0 87.6 76 14.89 262.0
## 1296 76 0 203.6 61 34.61 161.7
## 1297 79 0 213.6 110 36.31 234.9
## 1298 98 31 181.6 112 30.87 220.7
## 1299 141 22 215.4 123 36.62 328.7
## 1300 49 0 266.3 90 45.27 207.8
## 1301 46 0 199.2 111 33.86 175.1
## 1302 137 0 115.0 130 19.55 137.8
## 1303 171 0 270.5 69 45.99 230.0
## 1304 10 0 222.2 127 37.77 153.1
## 1305 88 0 61.9 78 10.52 262.6
## 1306 89 0 141.1 92 23.99 249.1
## 1307 82 0 189.2 81 32.16 184.4
## 1308 139 0 196.0 135 33.32 186.0
## 1309 87 0 171.6 119 29.17 205.0
## 1310 137 0 174.0 123 29.58 161.3
## 1311 45 0 78.6 106 13.36 187.3
## 1312 90 0 200.9 92 34.15 164.3
## 1313 103 0 141.3 123 24.02 253.6
## 1314 100 0 235.8 130 40.09 176.0
## 1315 110 0 185.1 100 31.47 165.1
## 1316 124 0 254.3 113 43.23 78.9
## 1317 10 0 183.0 103 31.11 214.8
## 1318 89 29 163.5 80 27.80 274.8
## 1319 121 0 207.9 98 35.34 210.5
## 1320 101 0 248.6 102 42.26 174.9
## 1321 103 31 185.4 105 31.52 197.6
## 1322 51 0 197.8 60 33.63 221.0
## 1323 2 0 132.1 42 22.46 138.9
## 1324 111 0 197.1 117 33.51 227.8
## 1325 118 0 154.6 112 26.28 184.2
## 1326 17 31 153.1 115 26.03 185.9
## 1327 130 0 211.2 119 35.90 231.1
## 1328 193 0 96.8 92 16.46 142.6
## 1329 114 0 172.0 145 29.24 276.4
## 1330 137 0 141.1 91 23.99 147.2
## 1331 185 29 151.1 121 25.69 244.7
## 1332 101 0 209.6 107 35.63 228.8
## 1333 95 32 247.0 109 41.99 125.6
## 1334 7 30 221.4 114 37.64 165.8
## 1335 126 0 321.3 99 54.62 167.9
## 1336 71 0 243.7 124 41.43 60.0
## 1337 124 0 251.5 85 42.76 214.2
## 1338 97 0 236.9 107 40.27 157.6
## 1339 28 0 159.7 79 27.15 216.7
## 1340 90 0 148.2 96 25.19 220.4
## 1341 190 0 150.9 86 25.65 268.6
## 1342 31 28 210.5 101 35.79 250.5
## 1343 52 24 170.9 71 29.05 201.4
## 1344 73 0 254.7 80 43.30 90.2
## 1345 111 0 284.4 89 48.35 157.0
## 1346 98 0 0.0 0 0.00 159.6
## 1347 106 0 133.7 45 22.73 187.8
## 1348 111 0 224.9 117 38.23 191.9
## 1349 59 0 151.8 98 25.81 209.9
## 1350 71 22 141.4 107 24.04 163.0
## 1351 55 0 285.7 124 48.57 230.9
## 1352 13 0 58.4 121 9.93 262.2
## 1353 136 16 90.4 105 15.37 201.3
## 1354 123 0 114.4 91 19.45 216.6
## 1355 105 0 147.7 103 25.11 222.7
## 1356 50 31 302.7 93 51.46 240.5
## 1357 118 0 136.1 120 23.14 204.2
## 1358 97 0 169.7 84 28.85 165.9
## 1359 51 0 227.2 89 38.62 194.4
## 1360 73 0 217.8 91 37.03 220.6
## 1361 35 0 124.2 102 21.11 123.9
## 1362 64 0 206.2 76 35.05 232.4
## 1363 63 0 132.9 122 22.59 67.0
## 1364 117 31 104.9 115 17.83 237.6
## 1365 115 0 245.0 97 41.65 250.7
## 1366 162 0 184.5 118 31.37 224.0
## 1367 89 0 89.5 66 15.22 179.3
## 1368 94 0 235.6 131 40.05 194.8
## 1369 129 0 186.0 127 31.62 262.3
## 1370 86 0 223.9 75 38.06 155.7
## 1371 96 0 179.5 125 30.52 162.3
## 1372 190 0 169.4 102 28.80 253.5
## 1373 80 0 118.1 90 20.08 144.3
## 1374 108 0 112.0 105 19.04 193.7
## 1375 97 32 168.4 129 28.63 225.9
## 1376 84 42 214.3 112 36.43 188.2
## 1377 65 0 245.7 139 41.77 241.9
## 1378 131 34 156.6 134 26.62 71.0
## 1379 58 43 142.8 96 24.28 272.3
## 1380 36 0 202.4 115 34.41 230.7
## 1381 54 0 116.8 119 19.86 123.1
## 1382 45 0 155.7 110 26.47 260.3
## 1383 125 39 236.1 107 40.14 289.2
## 1384 72 21 138.1 113 23.48 260.1
## 1385 141 0 51.9 108 8.82 162.0
## 1386 113 0 81.3 116 13.82 220.6
## 1387 20 35 171.5 98 29.16 153.1
## 1388 212 0 126.0 96 21.42 144.3
## 1389 99 0 197.2 127 33.52 156.0
## 1390 94 0 194.1 62 33.00 227.2
## 1391 40 0 115.7 105 19.67 127.8
## 1392 86 29 157.2 118 26.72 196.3
## 1393 101 0 269.7 85 45.85 207.6
## 1394 170 0 246.4 107 41.89 228.1
## 1395 105 0 227.4 121 38.66 268.5
## 1396 103 0 189.8 110 32.27 115.5
## 1397 140 27 188.9 124 32.11 160.9
## 1398 101 0 0.0 0 0.00 192.1
## 1399 98 19 110.5 87 18.79 227.8
## 1400 104 0 167.6 116 28.49 219.2
## 1401 115 0 132.0 90 22.44 197.5
## 1402 112 0 167.8 88 28.53 247.9
## 1403 70 0 213.4 86 36.28 204.7
## 1404 126 0 175.4 120 29.82 98.3
## 1405 87 39 82.6 113 14.04 224.4
## 1406 125 0 143.2 80 24.34 88.1
## 1407 86 0 125.5 139 21.34 269.8
## 1408 73 31 82.3 105 13.99 256.1
## 1409 232 0 165.6 104 28.15 195.9
## 1410 1 30 183.1 95 31.13 232.6
## 1411 133 0 162.1 91 27.56 212.1
## 1412 103 0 166.6 84 28.32 192.4
## 1413 131 24 135.9 60 23.10 233.2
## 1414 95 20 165.7 78 28.17 215.6
## 1415 182 0 176.1 90 29.94 174.9
## 1416 99 0 142.3 89 24.19 204.5
## 1417 27 0 177.6 121 30.19 296.8
## 1418 141 0 83.2 74 14.14 190.6
## 1419 29 37 235.0 101 39.95 183.3
## 1420 65 0 105.7 95 17.97 141.8
## 1421 81 0 149.4 68 25.40 171.9
## 1422 37 20 264.7 81 45.00 216.5
## 1423 107 31 160.3 45 27.25 221.5
## 1424 127 28 95.9 117 16.30 159.5
## 1425 78 0 140.7 77 23.92 195.2
## 1426 55 0 119.7 148 20.35 231.8
## 1427 86 30 99.9 84 16.98 263.5
## 1428 176 0 250.9 108 42.65 171.4
## 1429 96 0 200.6 117 34.10 289.5
## 1430 11 38 209.8 130 35.67 196.6
## 1431 48 34 198.0 70 33.66 273.7
## 1432 127 0 239.8 107 40.77 128.9
## 1433 63 0 164.5 75 27.97 147.9
## 1434 79 0 220.9 107 37.55 192.2
## 1435 47 37 112.8 150 19.18 243.9
## 1436 89 19 112.6 114 19.14 261.7
## 1437 83 26 226.4 117 38.49 234.7
## 1438 126 34 244.9 118 41.63 219.6
## 1439 60 0 203.2 99 34.54 235.8
## 1440 122 0 136.7 115 23.24 243.1
## 1441 136 0 152.6 97 25.94 208.9
## 1442 172 47 274.9 102 46.73 186.6
## 1443 102 0 195.7 116 33.27 209.1
## 1444 113 0 204.3 82 34.73 188.8
## 1445 79 0 222.3 99 37.79 146.2
## 1446 55 8 222.5 104 37.83 171.5
## 1447 111 28 128.8 104 21.90 157.3
## 1448 160 0 174.3 105 29.63 171.3
## 1449 110 0 242.5 110 41.23 162.3
## 1450 192 0 221.6 101 37.67 285.2
## 1451 93 0 114.3 100 19.43 221.1
## 1452 101 33 219.7 137 37.35 186.8
## 1453 77 0 144.9 136 24.63 151.3
## 1454 105 40 236.5 111 40.21 117.0
## 1455 133 44 174.0 80 29.58 209.4
## 1456 131 0 109.5 95 18.62 332.1
## 1457 106 33 81.6 120 13.87 235.6
## 1458 118 0 133.4 113 22.68 121.0
## 1459 125 0 137.1 94 23.31 209.8
## 1460 95 0 197.0 88 33.49 190.4
## 1461 80 0 198.1 160 33.68 156.7
## 1462 145 0 39.5 78 6.72 264.3
## 1463 37 0 199.5 107 33.92 207.5
## 1464 87 0 156.8 93 26.66 215.8
## 1465 69 0 183.4 85 31.18 237.6
## 1466 83 0 132.4 120 22.51 121.6
## 1467 195 0 63.2 108 10.74 220.2
## 1468 67 35 181.1 59 30.79 215.9
## 1469 75 27 117.5 102 19.98 206.8
## 1470 123 27 218.7 79 37.18 163.4
## 1471 41 41 207.3 95 35.24 137.3
## 1472 75 0 150.6 99 25.60 301.5
## 1473 76 0 273.3 66 46.46 263.6
## 1474 86 0 266.1 120 45.24 182.0
## 1475 140 0 112.8 89 19.18 156.7
## 1476 70 0 104.7 112 17.80 82.2
## 1477 121 35 193.8 62 32.95 197.6
## 1478 112 0 168.6 102 28.66 298.0
## 1479 118 0 253.2 122 43.04 201.0
## 1480 66 16 174.7 92 29.70 232.1
## 1481 78 0 87.0 102 14.79 193.6
## 1482 129 34 204.5 79 34.77 132.8
## 1483 6 0 226.5 93 38.51 152.1
## 1484 107 0 234.1 91 39.80 163.1
## 1485 107 0 133.3 106 22.66 182.9
## 1486 138 0 133.9 87 22.76 166.4
## 1487 103 0 160.2 104 27.23 138.9
## 1488 116 44 230.6 94 39.20 224.1
## 1489 189 0 227.4 84 38.66 176.0
## 1490 161 0 72.8 120 12.38 267.1
## 1491 1 0 196.1 107 33.34 296.5
## 1492 89 0 197.1 110 33.51 165.9
## 1493 64 0 219.6 126 37.33 303.3
## 1494 126 30 153.4 90 26.08 151.4
## 1495 129 0 216.0 85 36.72 186.9
## 1496 128 32 222.9 136 37.89 262.0
## 1497 81 36 115.9 120 19.70 236.6
## 1498 114 0 189.8 101 32.27 147.7
## 1499 50 0 154.7 102 26.30 298.0
## 1500 86 0 136.4 104 23.19 202.5
## 1501 96 0 170.5 86 28.99 277.5
## 1502 72 0 272.4 88 46.31 107.9
## 1503 64 40 210.0 116 35.70 232.7
## 1504 57 17 236.5 94 40.21 163.1
## 1505 65 0 153.9 117 26.16 220.1
## 1506 163 0 223.0 120 37.91 227.0
## 1507 136 0 252.4 74 42.91 167.9
## 1508 116 0 197.9 84 33.64 168.1
## 1509 93 0 152.4 74 25.91 274.6
## 1510 142 40 237.4 105 40.36 175.9
## 1511 92 0 265.6 82 45.15 180.7
## 1512 70 0 197.3 91 33.54 305.8
## 1513 22 14 199.1 100 33.85 221.8
## 1514 37 0 233.7 114 39.73 207.9
## 1515 51 0 183.1 99 31.13 160.1
## 1516 174 0 139.4 96 23.70 143.4
## 1517 68 0 213.9 112 36.36 260.5
## 1518 130 0 207.1 70 35.21 200.1
## 1519 104 0 139.7 78 23.75 202.6
## 1520 134 0 177.2 91 30.12 228.7
## 1521 108 35 169.8 136 28.87 173.7
## 1522 103 0 173.5 83 29.50 244.3
## 1523 62 0 159.9 100 27.18 172.2
## 1524 162 0 115.1 89 19.57 196.8
## 1525 93 19 136.8 113 23.26 179.5
## 1526 42 0 92.2 108 15.67 211.2
## 1527 155 23 243.9 112 41.46 133.0
## 1528 36 0 117.1 94 19.91 235.4
## 1529 143 0 223.3 99 37.96 167.1
## 1530 197 0 154.8 111 26.32 171.5
## 1531 81 0 261.4 141 44.44 215.7
## 1532 138 0 46.5 104 7.91 186.0
## 1533 103 18 149.9 84 25.48 170.9
## 1534 127 0 242.2 102 41.17 226.1
## 1535 136 0 259.4 99 44.10 172.7
## 1536 99 0 222.4 102 37.81 185.8
## 1537 95 0 69.4 79 11.80 190.8
## 1538 118 21 156.5 122 26.61 209.2
## 1539 113 0 61.2 111 10.40 92.3
## 1540 128 0 245.2 112 41.68 101.5
## 1541 117 0 102.3 100 17.39 135.2
## 1542 48 36 230.9 92 39.25 167.6
## 1543 81 0 227.4 105 38.66 211.5
## 1544 57 0 192.8 68 32.78 158.0
## 1545 140 0 162.6 98 27.64 206.2
## 1546 107 38 219.4 92 37.30 180.5
## 1547 56 0 137.2 111 23.32 165.9
## 1548 159 0 87.7 103 14.91 278.2
## 1549 102 0 271.1 80 46.09 172.0
## 1550 107 0 103.4 94 17.58 189.3
## 1551 106 0 52.2 106 8.87 220.1
## 1552 225 0 165.4 106 28.12 273.7
## 1553 75 0 147.5 110 25.08 191.7
## 1554 86 0 217.8 93 37.03 214.7
## 1555 169 0 235.7 79 40.07 136.9
## 1556 122 22 204.5 92 34.77 139.6
## 1557 106 0 178.4 143 30.33 247.0
## 1558 52 32 130.1 68 22.12 247.2
## 1559 79 34 103.7 100 17.63 236.3
## 1560 135 0 239.9 91 40.78 177.1
## 1561 70 0 148.4 110 25.23 267.1
## 1562 80 0 148.6 106 25.26 210.8
## 1563 37 0 191.1 69 32.49 129.2
## 1564 161 39 218.5 76 37.15 112.7
## 1565 137 0 97.5 95 16.58 195.8
## 1566 123 0 128.7 126 21.88 117.6
## 1567 80 38 236.6 69 40.22 197.5
## 1568 94 0 85.9 113 14.60 226.7
## 1569 105 27 141.2 96 24.00 167.7
## 1570 73 31 194.4 104 33.05 176.0
## 1571 112 0 167.6 100 28.49 154.5
## 1572 179 0 234.5 134 39.87 164.2
## 1573 57 0 154.2 78 26.21 196.7
## 1574 127 14 143.2 99 24.34 169.9
## 1575 122 40 216.4 80 36.79 249.7
## 1576 33 35 161.9 85 27.52 151.2
## 1577 94 0 118.7 90 20.18 205.1
## 1578 100 0 179.1 123 30.45 196.6
## 1579 106 0 147.9 97 25.14 209.3
## 1580 148 38 209.2 110 35.56 116.6
## 1581 120 29 244.3 140 41.53 322.3
## 1582 91 34 175.3 96 29.80 262.3
## 1583 86 0 150.5 92 25.59 120.3
## 1584 78 25 197.4 73 33.56 295.7
## 1585 94 0 163.5 136 27.80 143.7
## 1586 85 0 236.9 93 40.27 197.7
## 1587 89 0 82.3 77 13.99 167.2
## 1588 128 0 216.0 111 36.72 153.7
## 1589 115 0 180.0 119 30.60 198.8
## 1590 76 0 143.7 55 24.43 173.1
## 1591 75 39 198.2 107 33.69 280.4
## 1592 90 29 185.6 106 31.55 219.7
## 1593 30 0 137.6 108 23.39 162.0
## 1594 105 0 273.9 119 46.56 278.6
## 1595 102 31 125.3 92 21.30 141.2
## 1596 83 0 178.8 102 30.40 167.9
## 1597 63 49 214.9 86 36.53 198.2
## 1598 155 0 163.0 93 27.71 203.9
## 1599 82 29 163.8 77 27.85 134.9
## 1600 87 0 189.5 113 32.22 204.9
## 1601 115 26 155.2 110 26.38 230.9
## 1602 99 0 242.3 102 41.19 350.9
## 1603 121 44 254.1 127 43.20 180.2
## 1604 54 33 112.0 90 19.04 208.0
## 1605 105 0 115.5 73 19.64 267.3
## 1606 73 0 137.1 102 23.31 210.8
## 1607 95 0 198.4 113 33.73 235.9
## 1608 21 19 132.7 94 22.56 204.6
## 1609 163 25 219.6 99 37.33 210.4
## 1610 57 0 169.6 96 28.83 234.7
## 1611 104 0 160.4 73 27.27 293.9
## 1612 83 20 95.0 89 16.15 167.9
## 1613 141 0 160.1 87 27.22 256.7
## 1614 95 0 194.6 114 33.08 232.8
## 1615 184 0 236.4 73 40.19 287.3
## 1616 74 0 157.1 95 26.71 213.1
## 1617 67 0 179.8 125 30.57 173.2
## 1618 104 0 148.2 108 25.19 161.8
## 1619 71 39 183.2 103 31.14 209.4
## 1620 149 0 119.2 88 20.26 168.3
## 1621 154 35 224.0 102 38.08 192.0
## 1622 138 21 19.5 149 3.32 140.9
## 1623 117 0 184.8 83 31.42 248.6
## 1624 130 0 176.3 140 29.97 201.0
## 1625 73 0 241.7 115 41.09 168.5
## 1626 100 38 224.7 121 38.20 294.0
## 1627 149 0 207.3 115 35.24 198.4
## 1628 29 0 196.8 81 33.46 168.0
## 1629 131 0 110.9 74 18.85 115.6
## 1630 153 0 122.5 145 20.83 273.3
## 1631 84 0 226.9 144 38.57 201.6
## 1632 133 0 187.0 65 31.79 141.4
## 1633 112 0 170.5 113 28.99 193.2
## 1634 87 0 204.8 101 34.82 161.0
## 1635 72 0 165.9 114 28.20 235.9
## 1636 66 0 154.0 133 26.18 198.9
## 1637 65 29 158.1 104 26.88 322.2
## 1638 74 0 225.2 93 38.28 215.1
## 1639 116 0 159.4 79 27.10 179.5
## 1640 68 0 172.7 95 29.36 139.1
## 1641 68 0 222.8 99 37.88 175.8
## 1642 54 0 214.1 77 36.40 240.5
## 1643 99 0 54.8 92 9.32 173.0
## 1644 107 0 134.0 104 22.78 174.5
## 1645 124 0 184.8 74 31.42 175.1
## 1646 95 36 283.1 112 48.13 286.2
## 1647 173 0 291.8 143 49.61 214.3
## 1648 110 0 222.7 94 37.86 105.8
## 1649 102 0 174.5 79 29.67 236.8
## 1650 130 0 68.4 86 11.63 193.3
## 1651 91 31 273.0 78 46.41 215.5
## 1652 64 0 225.3 134 38.30 108.2
## 1653 176 23 283.2 130 48.14 162.6
## 1654 93 0 131.4 78 22.34 219.7
## 1655 84 12 89.7 87 15.25 138.6
## 1656 138 0 127.1 102 21.61 247.7
## 1657 101 28 105.9 132 18.00 231.7
## 1658 136 0 142.3 79 24.19 158.0
## 1659 111 0 191.3 80 32.52 138.5
## 1660 132 36 201.9 93 34.32 156.3
## 1661 128 0 247.3 91 42.04 182.7
## 1662 92 38 242.2 96 41.17 159.7
## 1663 197 0 127.3 80 21.64 222.3
## 1664 191 0 162.0 104 27.54 241.2
## 1665 99 33 179.1 93 30.45 238.3
## 1666 106 31 197.4 125 33.56 123.4
## 1667 88 0 148.2 82 25.19 308.7
## 1668 78 0 193.1 85 32.83 172.1
## 1669 98 0 171.7 99 29.19 174.8
## 1670 17 35 198.5 123 33.75 270.6
## 1671 56 24 121.7 87 20.69 184.0
## 1672 84 0 130.2 105 22.13 278.0
## 1673 95 0 203.4 96 34.58 168.6
## 1674 16 0 174.7 83 29.70 280.8
## 1675 76 0 241.0 120 40.97 231.8
## 1676 93 0 141.7 95 24.09 221.0
## 1677 83 0 134.8 96 22.92 167.2
## 1678 123 0 163.1 119 27.73 249.4
## 1679 64 0 145.5 116 24.74 228.4
## 1680 82 0 329.8 73 56.07 208.3
## 1681 107 0 194.5 97 33.07 186.3
## 1682 110 0 131.9 93 22.42 272.7
## 1683 96 29 150.0 91 25.50 159.4
## 1684 47 30 196.6 93 33.42 241.4
## 1685 115 0 99.7 107 16.95 145.1
## 1686 69 0 143.6 88 24.41 141.8
## 1687 163 40 231.9 56 39.42 211.8
## 1688 90 0 37.8 80 6.43 155.3
## 1689 98 0 72.8 107 12.38 186.4
## 1690 90 39 94.8 89 16.12 219.1
## 1691 174 15 221.8 143 37.71 210.6
## 1692 95 0 269.0 120 45.73 233.7
## 1693 79 0 268.3 114 45.61 185.5
## 1694 123 27 198.7 127 33.78 249.0
## 1695 99 0 115.5 75 19.64 218.1
## 1696 114 0 202.1 100 34.36 195.7
## 1697 141 0 215.6 113 36.65 200.6
## 1698 132 0 169.9 107 28.88 209.4
## 1699 133 0 201.7 85 34.29 169.4
## 1700 133 0 221.1 133 37.59 160.2
## 1701 93 32 218.7 117 37.18 115.0
## 1702 34 0 293.7 89 49.93 272.5
## 1703 140 0 120.3 108 20.45 240.4
## 1704 96 26 175.8 96 29.89 206.6
## 1705 144 0 278.5 95 47.35 240.7
## 1706 24 29 236.3 105 40.17 190.8
## 1707 54 0 273.8 113 46.55 119.6
## 1708 50 0 131.1 129 22.29 160.5
## 1709 92 23 167.4 83 28.46 258.6
## 1710 96 0 197.7 68 33.61 250.5
## 1711 146 0 169.5 93 28.82 230.9
## 1712 138 17 225.2 116 38.28 173.4
## 1713 102 0 174.5 73 29.67 213.7
## 1714 76 0 129.7 84 22.05 177.5
## 1715 99 0 200.0 66 34.00 107.9
## 1716 83 36 95.9 87 16.30 261.6
## 1717 36 25 152.8 110 25.98 242.8
## 1718 70 0 129.9 102 22.08 208.7
## 1719 109 0 268.4 85 45.63 150.6
## 1720 100 0 188.5 152 32.05 148.3
## 1721 104 0 170.6 97 29.00 162.1
## 1722 106 0 191.4 124 32.54 200.7
## 1723 84 0 75.3 96 12.80 179.9
## 1724 80 0 149.8 123 25.47 276.3
## 1725 100 0 115.9 87 19.70 111.3
## 1726 99 0 128.8 86 21.90 203.9
## 1727 50 0 131.7 108 22.39 216.5
## 1728 105 0 101.4 48 17.24 159.1
## 1729 113 23 149.0 104 25.33 235.8
## 1730 111 36 96.8 123 16.46 170.6
## 1731 161 0 107.5 121 18.28 256.4
## 1732 70 0 232.8 95 39.58 303.4
## 1733 97 43 121.1 105 20.59 260.2
## 1734 130 0 124.3 70 21.13 270.7
## 1735 92 0 157.7 101 26.81 298.6
## 1736 119 0 124.3 68 21.13 207.1
## 1737 115 0 286.4 125 48.69 205.7
## 1738 134 0 141.7 95 24.09 205.6
## 1739 127 25 173.0 91 29.41 245.8
## 1740 80 0 268.7 120 45.68 301.0
## 1741 153 31 218.5 130 37.15 134.2
## 1742 85 0 255.3 114 43.40 194.6
## 1743 79 0 41.9 124 7.12 211.0
## 1744 35 0 260.8 87 44.34 258.1
## 1745 120 26 239.4 94 40.70 259.4
## 1746 68 0 226.7 94 38.54 168.4
## 1747 60 0 179.3 147 30.48 208.9
## 1748 120 0 158.0 110 26.86 197.0
## 1749 71 23 175.7 82 29.87 258.9
## 1750 124 0 157.4 107 26.76 167.8
## 1751 23 0 113.1 74 19.23 168.8
## 1752 225 0 182.7 142 31.06 246.5
## 1753 181 0 161.3 83 27.42 124.4
## 1754 63 0 142.5 92 24.23 208.3
## 1755 54 0 190.5 108 32.39 259.7
## 1756 80 15 159.3 110 27.08 170.6
## 1757 118 39 153.8 106 26.15 123.3
## 1758 42 0 180.7 127 30.72 174.6
## 1759 134 0 202.7 105 34.46 224.9
## 1760 66 35 190.8 100 32.44 261.3
## 1761 66 0 205.1 102 34.87 232.7
## 1762 127 28 235.6 124 40.05 236.8
## 1763 146 0 189.3 77 32.18 155.9
## 1764 93 42 166.9 101 28.37 273.2
## 1765 77 0 245.2 87 41.68 254.1
## 1766 111 0 132.6 125 22.54 221.1
## 1767 125 0 182.3 64 30.99 139.8
## 1768 115 14 192.3 86 32.69 88.7
## 1769 115 0 122.0 110 20.74 220.2
## 1770 114 0 193.0 101 32.81 250.0
## 1771 106 0 158.6 112 26.96 220.0
## 1772 118 39 91.5 125 15.56 219.9
## 1773 59 0 153.6 92 26.11 205.5
## 1774 87 40 221.6 79 37.67 157.1
## 1775 21 0 244.7 81 41.60 168.0
## 1776 142 24 239.8 103 40.77 285.9
## 1777 62 0 172.4 132 29.31 230.5
## 1778 149 0 242.5 83 41.23 245.4
## 1779 54 39 117.6 82 19.99 159.2
## 1780 112 0 174.5 127 29.67 259.3
## 1781 68 0 157.3 83 26.74 220.9
## 1782 201 21 192.0 97 32.64 239.1
## 1783 88 0 218.2 76 37.09 169.3
## 1784 85 29 144.6 97 24.58 140.0
## 1785 51 0 153.6 108 26.11 232.9
## 1786 45 29 135.8 104 23.09 222.5
## 1787 116 0 160.7 69 27.32 146.8
## 1788 146 31 202.5 91 34.43 241.4
## 1789 63 34 152.2 119 25.87 227.1
## 1790 133 0 227.4 90 38.66 73.2
## 1791 125 0 191.6 115 32.57 205.6
## 1792 72 0 138.9 111 23.61 211.6
## 1793 130 0 127.0 102 21.59 206.9
## 1794 97 0 168.6 87 28.66 259.2
## 1795 54 0 286.6 73 48.72 223.2
## 1796 160 29 164.6 121 27.98 262.8
## 1797 79 0 144.0 90 24.48 135.8
## 1798 92 47 141.6 95 24.07 207.9
## 1799 59 0 204.3 65 34.73 247.3
## 1800 132 0 163.2 80 27.74 167.6
## 1801 21 0 225.0 110 38.25 244.2
## 1802 93 0 176.1 103 29.94 199.7
## 1803 147 36 254.2 78 43.21 228.1
## 1804 101 0 174.9 105 29.73 262.0
## 1805 125 0 187.3 118 31.84 160.7
## 1806 63 0 211.8 84 36.01 230.9
## 1807 107 0 241.9 102 41.12 126.9
## 1808 110 0 196.1 103 33.34 199.7
## 1809 83 0 231.3 100 39.32 210.4
## 1810 117 0 161.6 104 27.47 196.3
## 1811 124 0 194.0 103 32.98 241.0
## 1812 115 0 109.7 148 18.65 223.8
## 1813 156 0 277.0 119 47.09 238.3
## 1814 89 0 192.1 83 32.66 163.6
## 1815 72 0 198.4 147 33.73 216.9
## 1816 101 42 209.2 82 35.56 159.7
## 1817 53 0 184.8 98 31.42 216.4
## 1818 116 0 167.8 119 28.53 142.0
## 1819 78 0 139.2 140 23.66 191.4
## 1820 117 17 221.3 82 37.62 167.6
## 1821 56 0 121.6 84 20.67 165.3
## 1822 123 39 270.4 99 45.97 245.1
## 1823 127 0 139.6 94 23.73 240.9
## 1824 116 23 253.0 78 43.01 138.9
## 1825 138 26 183.9 83 31.26 240.7
## 1826 120 0 203.3 108 34.56 259.9
## 1827 102 0 200.6 106 34.10 152.5
## 1828 95 0 167.6 96 28.49 176.0
## 1829 102 0 156.5 67 26.61 204.3
## 1830 89 25 215.1 140 36.57 197.4
## 1831 50 0 301.7 82 51.29 167.1
## 1832 93 42 152.3 90 25.89 267.5
## 1833 68 0 195.4 116 33.22 212.1
## 1834 70 0 208.7 97 35.48 275.5
## 1835 138 29 190.1 87 32.32 223.2
## 1836 141 37 185.4 87 31.52 178.5
## 1837 112 17 183.2 95 31.14 252.8
## 1838 117 0 54.2 100 9.21 303.2
## 1839 1 26 208.0 115 35.36 185.0
## 1840 70 0 230.3 110 39.15 77.9
## 1841 87 22 240.8 102 40.94 75.9
## 1842 52 21 195.7 119 33.27 106.2
## 1843 97 0 276.1 82 46.94 201.1
## 1844 105 0 166.1 93 28.24 175.9
## 1845 77 28 135.9 117 23.10 244.5
## 1846 80 0 189.1 122 32.15 223.2
## 1847 120 43 177.9 117 30.24 175.1
## 1848 54 39 143.9 73 24.46 210.3
## 1849 148 0 148.2 138 25.19 159.6
## 1850 119 0 287.1 115 48.81 159.3
## 1851 162 26 179.7 144 30.55 218.1
## 1852 85 0 165.8 96 28.19 190.0
## 1853 101 25 144.1 144 24.50 167.6
## 1854 172 0 172.5 85 29.33 253.1
## 1855 80 0 199.8 138 33.97 167.1
## 1856 67 0 109.1 134 18.55 142.3
## 1857 86 0 171.8 106 29.21 301.7
## 1858 107 0 222.3 101 37.79 286.0
## 1859 133 0 245.8 102 41.79 264.7
## 1860 116 0 164.6 110 27.98 270.6
## 1861 63 0 211.7 107 35.99 271.7
## 1862 119 16 147.2 103 25.02 160.1
## 1863 133 0 254.7 103 43.30 252.2
## 1864 94 0 170.1 113 28.92 271.8
## 1865 69 0 195.1 91 33.17 261.5
## 1866 146 0 149.3 83 25.38 187.1
## 1867 119 0 81.9 75 13.92 253.8
## 1868 142 25 191.1 109 32.49 149.6
## 1869 123 0 206.9 115 35.17 224.4
## 1870 101 0 239.0 156 40.63 273.0
## 1871 43 0 179.3 97 30.48 252.7
## 1872 69 0 185.3 91 31.50 219.1
## 1873 15 0 141.4 80 24.04 123.9
## 1874 107 25 248.6 91 42.26 119.3
## 1875 67 0 152.5 131 25.93 252.4
## 1876 99 0 145.6 102 24.75 230.9
## 1877 46 0 164.2 116 27.91 196.2
## 1878 55 0 221.0 115 37.57 165.4
## 1879 39 0 295.4 126 50.22 232.1
## 1880 92 0 139.8 98 23.77 174.9
## 1881 56 0 162.3 99 27.59 149.1
## 1882 76 0 272.7 97 46.36 236.4
## 1883 132 33 200.3 75 34.05 226.6
## 1884 140 28 157.1 77 26.71 172.4
## 1885 51 12 135.8 60 23.09 200.6
## 1886 27 0 236.7 110 40.24 231.9
## 1887 224 0 111.4 133 18.94 175.0
## 1888 105 28 156.1 89 26.54 107.1
## 1889 117 0 191.1 93 32.49 282.8
## 1890 91 0 153.0 123 26.01 141.1
## 1891 135 0 218.8 123 37.20 242.8
## 1892 146 0 205.4 101 34.92 134.9
## 1893 147 0 225.2 111 38.28 184.9
## 1894 68 0 249.9 127 42.48 254.5
## 1895 68 0 131.6 89 22.37 137.0
## 1896 86 21 197.9 99 33.64 165.6
## 1897 131 0 166.5 129 28.31 210.2
## 1898 86 29 225.4 79 38.32 187.1
## 1899 159 0 275.8 103 46.89 189.5
## 1900 134 40 142.9 105 24.29 88.6
## 1901 113 0 207.2 113 35.22 256.0
## 1902 132 0 206.2 100 35.05 211.2
## 1903 85 0 210.3 66 35.75 195.8
## 1904 93 38 225.7 117 38.37 119.6
## 1905 174 33 167.8 91 28.53 205.3
## 1906 61 0 197.7 118 33.61 152.2
## 1907 91 39 169.8 105 28.87 65.2
## 1908 88 28 190.6 104 32.40 237.3
## 1909 88 45 80.3 140 13.65 153.3
## 1910 195 36 231.7 110 39.39 225.1
## 1911 182 0 69.1 114 11.75 230.3
## 1912 118 0 188.8 60 32.10 217.4
## 1913 103 0 150.6 125 25.60 169.1
## 1914 65 0 192.0 89 32.64 139.5
## 1915 61 25 163.7 78 27.83 113.2
## 1916 172 0 211.7 100 35.99 198.7
## 1917 72 0 175.5 103 29.84 132.3
## 1918 113 0 150.1 120 25.52 200.1
## 1919 177 0 189.5 99 32.22 176.3
## 1920 100 0 70.8 94 12.04 215.6
## 1921 67 0 215.5 102 36.64 190.7
## 1922 136 0 101.7 105 17.29 202.8
## 1923 71 0 258.4 132 43.93 126.8
## 1924 134 0 242.4 126 41.21 152.9
## 1925 124 0 131.8 82 22.41 284.3
## 1926 84 0 190.2 102 32.33 197.7
## 1927 39 0 154.1 104 26.20 204.2
## 1928 110 0 188.0 127 31.96 90.5
## 1929 102 0 103.1 70 17.53 275.0
## 1930 70 0 175.4 130 29.82 159.5
## 1931 142 0 145.4 93 24.72 209.1
## 1932 81 0 250.6 85 42.60 187.9
## 1933 17 0 161.5 123 27.46 214.2
## 1934 119 0 260.1 101 44.22 256.5
## 1935 105 0 281.3 124 47.82 301.5
## 1936 108 42 130.1 90 22.12 167.0
## 1937 90 0 102.0 118 17.34 113.3
## 1938 100 33 218.7 104 37.18 155.0
## 1939 155 30 128.5 86 21.85 188.4
## 1940 113 0 128.7 100 21.88 227.1
## 1941 123 0 172.2 92 29.27 162.6
## 1942 145 0 199.2 124 33.86 126.0
## 1943 42 0 184.5 98 31.37 200.5
## 1944 125 0 168.6 99 28.66 175.6
## 1945 131 30 174.0 118 29.58 205.3
## 1946 107 0 230.4 65 39.17 257.4
## 1947 48 0 198.2 73 33.69 202.8
## 1948 76 0 186.1 96 31.64 211.6
## 1949 128 0 148.5 105 25.25 243.0
## 1950 73 0 157.1 109 26.71 268.8
## 1951 52 0 155.0 110 26.35 133.4
## 1952 126 26 129.3 123 21.98 176.5
## 1953 124 0 188.5 77 32.05 182.0
## 1954 137 0 208.8 120 35.50 225.3
## 1955 71 0 238.0 82 40.46 278.5
## 1956 139 0 211.1 103 35.89 206.9
## 1957 107 30 198.9 87 33.81 207.0
## 1958 147 0 212.8 79 36.18 204.1
## 1959 116 0 137.4 126 23.36 120.0
## 1960 60 31 191.8 75 32.61 267.8
## 1961 38 0 149.0 92 25.33 49.2
## 1962 63 0 117.1 118 19.91 249.6
## 1963 94 0 108.0 79 18.36 241.9
## 1964 131 0 112.8 133 19.18 199.4
## 1965 158 0 175.9 105 29.90 188.3
## 1966 139 0 236.6 109 40.22 169.9
## 1967 77 0 169.4 102 28.80 184.9
## 1968 140 0 129.6 79 22.03 246.2
## 1969 72 0 177.1 97 30.11 184.7
## 1970 52 20 133.3 63 22.66 184.1
## 1971 103 0 167.8 121 28.53 212.9
## 1972 74 32 174.6 107 29.68 310.6
## 1973 124 0 150.3 101 25.55 255.9
## 1974 85 21 283.2 110 48.14 239.7
## 1975 113 20 157.8 83 26.83 161.5
## 1976 71 0 141.2 132 24.00 149.1
## 1977 177 27 230.2 106 39.13 196.1
## 1978 49 0 237.8 92 40.43 208.9
## 1979 106 0 204.0 84 34.68 168.5
## 1980 60 0 221.1 106 37.59 178.6
## 1981 43 0 177.2 93 30.12 142.6
## 1982 66 0 118.0 133 20.06 248.1
## 1983 125 0 163.8 73 27.85 255.6
## 1984 114 4 141.3 96 24.02 230.4
## 1985 112 0 272.5 119 46.33 226.1
## 1986 101 16 118.9 112 20.21 228.3
## 1987 70 0 7.9 100 1.34 136.4
## 1988 59 0 159.5 96 27.12 167.2
## 1989 59 0 150.2 70 25.53 185.7
## 1990 124 30 144.5 35 24.57 262.3
## 1991 99 0 140.7 88 23.92 210.9
## 1992 150 0 169.2 123 28.76 216.8
## 1993 81 0 220.8 77 37.54 148.5
## 1994 86 0 216.3 96 36.77 266.3
## 1995 84 0 169.5 96 28.82 157.6
## 1996 118 35 256.3 119 43.57 258.1
## 1997 89 0 179.7 128 30.55 299.8
## 1998 93 0 266.0 120 45.22 130.1
## 1999 85 0 96.7 97 16.44 193.8
## 2000 160 0 82.7 116 14.06 194.6
## 2001 28 0 168.2 87 28.59 161.7
## 2002 73 0 286.4 109 48.69 178.2
## 2003 156 0 174.3 95 29.63 186.6
## 2004 33 0 190.6 100 32.40 161.7
## 2005 77 0 175.5 86 29.84 205.1
## 2006 119 0 133.4 102 22.68 204.6
## 2007 91 27 204.6 96 34.78 136.0
## 2008 102 0 242.2 88 41.17 233.2
## 2009 86 33 253.1 112 43.03 210.1
## 2010 82 0 130.0 110 22.10 185.3
## 2011 89 0 105.9 151 18.00 189.6
## 2012 86 0 194.2 98 33.01 193.8
## 2013 134 0 183.8 111 31.25 123.5
## 2014 92 0 196.5 82 33.41 190.0
## 2015 87 0 184.5 81 31.37 172.0
## 2016 64 0 261.9 113 44.52 148.1
## 2017 80 0 202.4 118 34.41 260.2
## 2018 165 39 167.4 113 28.46 172.7
## 2019 153 22 167.7 104 28.51 246.8
## 2020 41 30 191.7 109 32.59 193.0
## 2021 108 0 240.2 78 40.83 230.3
## 2022 104 26 189.1 112 32.15 178.2
## 2023 115 0 127.7 67 21.71 182.9
## 2024 87 0 205.2 106 34.88 99.5
## 2025 159 23 153.6 93 26.11 216.9
## 2026 119 0 154.5 129 26.27 193.6
## 2027 69 0 153.7 109 26.13 194.0
## 2028 87 36 171.2 138 29.10 185.8
## 2029 93 0 328.1 106 55.78 151.7
## 2030 154 0 145.9 69 24.80 208.2
## 2031 57 37 201.2 76 34.20 280.1
## 2032 130 0 139.1 72 23.65 246.0
## 2033 151 0 118.9 128 20.21 278.3
## 2034 162 0 217.6 87 36.99 279.0
## 2035 60 0 145.0 133 24.65 209.1
## 2036 81 0 203.5 89 34.60 289.6
## 2037 132 0 240.1 115 40.82 180.4
## 2038 86 0 83.8 121 14.25 240.2
## 2039 136 0 269.8 106 45.87 228.8
## 2040 121 21 126.3 84 21.47 209.6
## 2041 105 15 88.1 125 14.98 175.9
## 2042 105 34 218.5 61 37.15 196.7
## 2043 51 26 236.8 61 40.26 263.4
## 2044 64 0 124.1 117 21.10 192.8
## 2045 80 30 184.2 132 31.31 167.5
## 2046 56 0 222.7 133 37.86 277.0
## 2047 120 0 149.2 98 25.36 193.6
## 2048 103 0 206.5 125 35.11 180.2
## 2049 164 27 159.7 102 27.15 168.8
## 2050 116 27 204.7 118 34.80 209.4
## 2051 121 0 213.2 79 36.24 120.7
## 2052 55 0 269.6 121 45.83 171.7
## 2053 183 0 116.7 92 19.84 213.8
## 2054 104 0 263.4 101 44.78 235.5
## 2055 90 0 140.2 97 23.83 213.9
## 2056 82 0 197.7 101 33.61 127.6
## 2057 101 0 136.2 92 23.15 220.9
## 2058 9 16 88.5 87 15.05 178.8
## 2059 97 0 215.3 58 36.60 242.4
## 2060 94 0 269.2 104 45.76 193.8
## 2061 127 25 203.8 118 34.65 267.1
## 2062 125 34 268.4 112 45.63 222.2
## 2063 140 0 159.1 104 27.05 269.8
## 2064 90 0 114.4 122 19.45 127.7
## 2065 67 0 138.9 65 23.61 208.9
## 2066 113 0 186.0 55 31.62 237.4
## 2067 121 26 170.4 91 28.97 254.5
## 2068 93 0 164.5 95 27.97 230.9
## 2069 121 0 168.6 121 28.66 168.6
## 2070 53 0 261.2 119 44.40 250.8
## 2071 75 0 190.5 91 32.39 178.4
## 2072 132 0 181.1 121 30.79 314.4
## 2073 162 0 177.1 131 30.11 114.7
## 2074 140 0 160.5 114 27.29 240.5
## 2075 91 0 134.7 116 22.90 295.3
## 2076 73 28 198.2 107 33.69 139.1
## 2077 95 0 228.9 134 38.91 255.7
## 2078 145 0 241.7 137 41.09 135.8
## 2079 100 0 131.1 108 22.29 176.2
## 2080 122 0 234.1 101 39.80 200.2
## 2081 109 0 200.1 72 34.02 300.9
## 2082 82 0 154.0 107 26.18 94.4
## 2083 65 23 224.2 106 38.11 189.6
## 2084 52 0 148.3 83 25.21 181.6
## 2085 136 24 174.6 76 29.68 176.6
## 2086 75 0 138.5 110 23.55 153.2
## 2087 146 0 109.0 69 18.53 265.8
## 2088 105 0 162.3 99 27.59 212.5
## 2089 48 0 210.8 84 35.84 189.6
## 2090 45 0 142.4 107 24.21 318.7
## 2091 106 37 223.5 104 38.00 235.1
## 2092 33 0 182.5 65 31.03 232.1
## 2093 68 0 219.6 97 37.33 141.1
## 2094 106 0 193.6 66 32.91 238.2
## 2095 141 0 192.4 111 32.71 156.9
## 2096 98 0 236.2 122 40.15 189.4
## 2097 94 28 233.2 88 39.64 113.3
## 2098 65 0 158.8 53 27.00 188.5
## 2099 85 0 126.1 112 21.44 274.7
## 2100 71 0 290.4 108 49.37 253.9
## 2101 112 30 60.6 113 10.30 165.9
## 2102 110 0 148.4 95 25.23 193.8
## 2103 111 0 246.5 108 41.91 216.3
## 2104 74 0 298.1 112 50.68 201.3
## 2105 105 0 119.3 82 20.28 185.1
## 2106 40 0 242.5 82 41.23 232.9
## 2107 128 18 222.1 89 37.76 160.6
## 2108 123 0 236.2 135 40.15 273.9
## 2109 122 0 144.2 87 24.51 212.2
## 2110 114 19 154.6 100 26.28 241.6
## 2111 102 25 137.4 100 23.36 176.7
## 2112 126 0 103.7 93 17.63 127.0
## 2113 150 0 136.6 112 23.22 209.4
## 2114 60 0 289.8 101 49.27 255.6
## 2115 123 0 260.9 85 44.35 168.5
## 2116 138 0 196.2 129 33.35 176.5
## 2117 29 0 195.6 71 33.25 126.4
## 2118 111 0 222.2 96 37.77 162.5
## 2119 37 0 172.9 119 29.39 183.0
## 2120 111 0 249.8 109 42.47 242.4
## 2121 81 0 154.5 84 26.27 216.2
## 2122 46 0 90.4 108 15.37 276.2
## 2123 69 27 268.8 78 45.70 246.6
## 2124 125 0 106.1 95 18.04 157.6
## 2125 43 0 27.0 117 4.59 160.9
## 2126 127 27 140.1 59 23.82 223.4
## 2127 94 0 245.0 112 41.65 180.4
## 2128 46 0 196.7 85 33.44 205.9
## 2129 73 26 131.2 98 22.30 106.5
## 2130 146 23 149.6 96 25.43 239.8
## 2131 93 0 239.8 70 40.77 251.8
## 2132 52 31 142.1 77 24.16 193.0
## 2133 202 0 115.4 137 19.62 178.7
## 2134 129 31 193.0 99 32.81 224.8
## 2135 94 0 206.1 49 35.04 224.6
## 2136 100 0 160.3 138 27.25 221.3
## 2137 43 0 199.9 108 33.98 288.4
## 2138 130 0 213.1 105 36.23 206.2
## 2139 124 0 178.3 102 30.31 235.0
## 2140 92 0 252.3 120 42.89 207.0
## 2141 48 0 197.7 64 33.61 136.7
## 2142 98 29 111.1 105 18.89 217.9
## 2143 100 0 96.5 86 16.41 210.2
## 2144 79 0 156.9 109 26.67 122.2
## 2145 164 0 123.3 78 20.96 170.0
## 2146 105 0 193.7 108 32.93 183.2
## 2147 89 0 206.9 134 35.17 167.7
## 2148 126 0 249.8 96 42.47 261.9
## 2149 96 0 144.0 102 24.48 224.7
## 2150 120 33 299.5 83 50.92 163.4
## 2151 212 0 226.0 127 38.42 304.6
## 2152 72 0 137.6 106 23.39 143.5
## 2153 155 26 211.7 121 35.99 139.2
## 2154 89 0 89.7 80 15.25 179.8
## 2155 126 0 197.6 126 33.59 246.5
## 2156 172 0 270.0 102 45.90 256.6
## 2157 75 0 224.7 116 38.20 192.0
## 2158 143 0 194.3 99 33.03 123.6
## 2159 166 0 47.7 89 8.11 264.4
## 2160 132 0 190.1 105 32.32 182.2
## 2161 94 0 89.5 94 15.22 339.9
## 2162 99 0 182.6 83 31.04 154.5
## 2163 136 35 205.5 86 34.94 298.5
## 2164 119 0 231.5 82 39.36 266.9
## 2165 115 0 251.3 69 42.72 252.5
## 2166 160 0 171.2 103 29.10 243.5
## 2167 166 0 197.9 89 33.64 251.0
## 2168 120 0 134.8 94 22.92 204.1
## 2169 173 0 191.4 114 32.54 168.5
## 2170 156 0 174.5 65 29.67 197.4
## 2171 70 0 177.4 125 30.16 226.2
## 2172 41 0 182.1 89 30.96 211.5
## 2173 132 0 222.4 85 37.81 165.4
## 2174 47 0 47.8 120 8.13 178.9
## 2175 160 0 121.8 97 20.71 89.3
## 2176 180 0 143.5 121 24.40 189.3
## 2177 93 0 164.9 68 28.03 210.4
## 2178 109 0 193.6 58 32.91 148.7
## 2179 80 0 101.1 121 17.19 263.2
## 2180 54 24 92.3 88 15.69 193.1
## 2181 121 0 168.9 128 28.71 123.9
## 2182 157 29 219.2 102 37.26 206.0
## 2183 170 37 178.1 130 30.28 242.8
## 2184 138 0 146.5 101 24.91 284.5
## 2185 92 31 172.3 116 29.29 266.2
## 2186 126 0 190.9 143 32.45 149.7
## 2187 41 0 232.1 74 39.46 327.1
## 2188 167 0 169.2 124 28.76 173.3
## 2189 91 0 123.8 107 21.05 319.0
## 2190 127 0 96.0 117 16.32 177.0
## 2191 88 27 93.4 106 15.88 252.0
## 2192 113 0 90.6 130 15.40 170.6
## 2193 78 0 152.9 81 25.99 256.6
## 2194 123 0 257.9 92 43.84 211.6
## 2195 136 29 85.2 98 14.48 230.4
## 2196 68 34 160.0 72 27.20 184.5
## 2197 132 10 182.9 54 31.09 292.4
## 2198 133 0 216.2 67 36.75 222.2
## 2199 127 0 261.7 105 44.49 181.8
## 2200 110 0 241.2 105 41.00 174.3
## 2201 121 0 177.2 142 30.12 123.5
## 2202 116 0 89.5 128 15.22 180.8
## 2203 112 16 200.3 72 34.05 197.8
## 2204 97 0 145.0 103 24.65 294.3
## 2205 43 0 159.5 99 27.12 119.7
## 2206 110 0 151.8 106 25.81 138.0
## 2207 67 0 176.2 120 29.95 236.0
## 2208 166 0 152.1 95 25.86 121.0
## 2209 129 0 161.3 122 27.42 220.6
## 2210 103 0 171.7 78 29.19 144.5
## 2211 71 0 278.9 110 47.41 190.2
## 2212 112 27 213.0 121 36.21 226.2
## 2213 8 36 242.9 67 41.29 170.9
## 2214 98 0 217.2 121 36.92 303.4
## 2215 90 0 175.9 111 29.90 285.2
## 2216 13 0 303.2 133 51.54 170.5
## 2217 58 0 238.9 107 40.61 187.2
## 2218 137 22 189.6 42 32.23 179.0
## 2219 116 0 133.3 94 22.66 247.8
## 2220 94 28 92.7 107 15.76 127.8
## 2221 87 0 177.2 72 30.12 248.9
## 2222 120 0 184.5 103 31.37 209.0
## 2223 97 24 176.1 109 29.94 159.4
## 2224 134 0 204.7 108 34.80 143.1
## 2225 68 0 143.6 80 24.41 134.3
## 2226 93 0 179.3 93 30.48 188.8
## 2227 120 0 137.3 100 23.34 212.2
## 2228 41 0 237.8 92 40.43 223.5
## 2229 80 0 203.7 92 34.63 216.4
## 2230 83 25 191.3 95 32.52 250.7
## 2231 109 0 209.1 141 35.55 205.0
## 2232 66 33 88.8 104 15.10 109.6
## 2233 104 0 97.2 88 16.52 155.6
## 2234 89 0 137.9 96 23.44 192.6
## 2235 127 0 224.3 112 38.13 185.7
## 2236 117 13 207.6 65 35.29 152.7
## 2237 128 0 268.1 95 45.58 120.5
## 2238 88 0 166.7 61 28.34 179.3
## 2239 61 0 267.1 104 45.41 180.4
## 2240 22 0 181.8 108 30.91 198.6
## 2241 78 0 147.1 80 25.01 199.7
## 2242 56 29 37.7 115 6.41 144.1
## 2243 192 0 185.0 88 31.45 224.9
## 2244 70 0 156.4 108 26.59 171.0
## 2245 148 0 239.3 84 40.68 195.7
## 2246 65 29 215.5 129 36.64 161.9
## 2247 119 0 134.9 70 22.93 211.5
## 2248 80 0 194.8 116 33.12 209.9
## 2249 152 20 239.1 105 40.65 209.1
## 2250 113 0 92.6 85 15.74 177.6
## 2251 75 0 209.4 133 35.60 211.5
## 2252 80 0 197.6 83 33.59 164.5
## 2253 148 0 17.6 121 2.99 161.7
## 2254 63 0 62.9 112 10.69 202.9
## 2255 97 28 202.3 97 34.39 69.2
## 2256 166 0 136.1 116 23.14 181.4
## 2257 94 0 207.0 109 35.19 167.4
## 2258 85 33 207.9 95 35.34 233.5
## 2259 80 0 276.5 122 47.01 195.6
## 2260 210 31 313.8 87 53.35 147.7
## 2261 88 25 288.5 114 49.05 203.4
## 2262 100 0 210.9 85 35.85 329.3
## 2263 154 35 64.9 76 11.03 184.1
## 2264 32 26 243.5 137 41.40 236.8
## 2265 18 0 197.0 97 33.49 203.7
## 2266 126 31 278.0 88 47.26 253.2
## 2267 144 37 219.9 102 37.38 222.1
## 2268 29 0 313.2 103 53.24 216.3
## 2269 86 16 145.7 88 24.77 191.0
## 2270 138 37 75.8 102 12.89 173.6
## 2271 146 0 195.9 86 33.30 228.6
## 2272 175 0 132.0 95 22.44 231.2
## 2273 74 0 124.0 102 21.08 262.1
## 2274 48 0 171.9 98 29.22 159.0
## 2275 74 31 249.4 70 42.40 209.5
## 2276 105 0 228.4 100 38.83 145.1
## 2277 157 0 168.6 71 28.66 205.1
## 2278 217 0 123.7 138 21.03 248.5
## 2279 68 0 178.7 61 30.38 252.3
## 2280 80 0 113.2 86 19.24 185.5
## 2281 38 25 142.4 106 24.21 313.7
## 2282 107 38 204.2 57 34.71 205.9
## 2283 140 0 149.7 71 25.45 212.5
## 2284 98 0 227.1 116 38.61 120.5
## 2285 114 0 155.3 75 26.40 169.9
## 2286 46 0 156.4 105 26.59 185.5
## 2287 118 42 148.7 105 25.28 167.3
## 2288 37 0 271.7 112 46.19 155.1
## 2289 34 0 193.7 74 32.93 126.9
## 2290 98 23 245.5 54 41.74 292.7
## 2291 113 0 245.3 108 41.70 259.9
## 2292 69 0 196.1 87 33.34 236.8
## 2293 121 0 134.1 112 22.80 195.1
## 2294 59 31 225.0 78 38.25 191.3
## 2295 59 0 189.7 100 32.25 115.9
## 2296 190 0 142.9 96 24.29 177.9
## 2297 109 0 175.6 80 29.85 238.0
## 2298 136 0 92.4 109 15.71 219.0
## 2299 86 0 92.8 92 15.78 159.6
## 2300 100 27 221.7 100 37.69 236.1
## 2301 106 0 159.6 94 27.13 276.8
## 2302 104 0 144.5 107 24.57 180.5
## 2303 129 0 159.1 100 27.05 202.5
## 2304 205 0 49.9 123 8.48 150.7
## 2305 93 32 116.9 120 19.87 232.4
## 2306 123 0 150.0 98 25.50 89.8
## 2307 99 0 254.4 120 43.25 159.3
## 2308 61 33 270.7 53 46.02 200.7
## 2309 71 0 207.0 112 35.19 173.8
## 2310 4 0 145.3 89 24.70 303.8
## 2311 148 25 230.7 102 39.22 233.8
## 2312 141 0 151.5 104 25.76 242.2
## 2313 56 0 146.1 57 24.84 196.2
## 2314 160 0 256.0 111 43.52 187.4
## 2315 43 35 200.2 105 34.03 244.4
## 2316 42 0 150.7 52 25.62 246.7
## 2317 135 0 186.0 107 31.62 66.0
## 2318 106 0 212.9 110 36.19 187.0
## 2319 106 0 194.8 133 33.12 213.4
## 2320 83 30 272.5 105 46.33 253.0
## 2321 110 0 135.1 109 22.97 205.2
## 2322 153 0 154.6 56 26.28 263.0
## 2323 109 35 230.5 116 39.19 265.8
## 2324 31 0 165.4 84 28.12 203.7
## 2325 124 0 143.3 120 24.36 230.7
## 2326 110 0 271.1 108 46.09 237.0
## 2327 124 0 253.5 104 43.10 117.9
## 2328 82 0 167.1 77 28.41 131.8
## 2329 122 0 168.3 96 28.61 87.6
## 2330 137 0 104.7 115 17.80 249.8
## 2331 69 0 135.4 101 23.02 238.1
## 2332 46 34 191.4 102 32.54 361.8
## 2333 103 0 158.7 90 26.98 198.4
## 2334 16 0 144.8 84 24.62 164.9
## 2335 119 0 98.8 97 16.80 146.9
## 2336 124 0 157.8 71 26.83 203.2
## 2337 122 37 163.0 107 27.71 312.8
## 2338 139 0 181.6 119 30.87 335.7
## 2339 67 0 129.0 78 21.93 188.0
## 2340 84 0 86.0 83 14.62 260.7
## 2341 101 17 193.9 71 32.96 189.8
## 2342 40 0 109.4 107 18.60 244.7
## 2343 61 0 188.9 105 32.11 153.6
## 2344 120 0 179.9 72 30.58 170.0
## 2345 95 0 183.4 98 31.18 281.3
## 2346 98 0 288.1 101 48.98 137.9
## 2347 114 0 169.2 96 28.76 149.9
## 2348 68 29 195.5 113 33.24 171.6
## 2349 149 20 264.4 102 44.95 219.6
## 2350 22 0 207.7 116 35.31 210.6
## 2351 176 0 169.5 151 28.82 112.9
## 2352 152 0 141.5 102 24.06 263.0
## 2353 118 0 154.8 71 26.32 244.0
## 2354 101 0 133.5 51 22.70 219.6
## 2355 102 0 273.2 85 46.44 211.1
## 2356 118 0 224.6 94 38.18 225.9
## 2357 105 0 273.8 97 46.55 289.7
## 2358 153 0 159.5 103 27.12 275.5
## 2359 71 0 104.0 92 17.68 197.0
## 2360 71 31 115.4 90 19.62 217.4
## 2361 68 0 222.1 107 37.76 199.4
## 2362 66 0 116.4 98 19.79 95.6
## 2363 101 0 217.7 118 37.01 231.7
## 2364 116 0 129.4 84 22.00 157.3
## 2365 54 33 161.8 73 27.51 273.0
## 2366 112 29 198.8 122 33.80 238.6
## 2367 122 45 147.8 85 25.13 147.4
## 2368 74 0 262.3 114 44.59 198.9
## 2369 90 0 246.4 83 41.89 160.3
## 2370 112 0 174.3 123 29.63 140.2
## 2371 85 0 183.4 111 31.18 168.8
## 2372 100 0 191.9 95 32.62 200.9
## 2373 114 0 187.8 109 31.93 154.6
## 2374 83 0 259.7 106 44.15 152.7
## 2375 157 0 180.4 123 30.67 194.0
## 2376 51 0 51.8 107 8.81 230.2
## 2377 42 0 303.9 106 51.66 232.2
## 2378 101 36 123.7 125 21.03 172.6
## 2379 112 0 206.2 122 35.05 164.5
## 2380 56 0 164.3 92 27.93 233.7
## 2381 53 0 228.6 117 38.86 132.8
## 2382 64 22 200.4 80 34.07 131.1
## 2383 123 0 154.3 107 26.23 183.0
## 2384 68 30 122.9 93 20.89 233.5
## 2385 40 0 220.8 100 37.54 265.7
## 2386 132 0 214.6 78 36.48 251.7
## 2387 120 0 202.0 123 34.34 184.3
## 2388 108 32 209.5 108 35.62 109.6
## 2389 161 0 297.9 141 50.64 238.1
## 2390 130 0 212.8 102 36.18 189.8
## 2391 122 0 145.6 102 24.75 284.7
## 2392 130 19 152.9 87 25.99 213.2
## 2393 90 0 125.4 158 21.32 269.1
## 2394 139 25 138.3 96 23.51 80.6
## 2395 57 0 189.3 157 32.18 174.9
## 2396 128 0 199.3 86 33.88 194.8
## 2397 127 0 247.5 99 42.08 108.5
## 2398 107 0 294.9 71 50.13 192.8
## 2399 177 0 175.4 99 29.82 155.3
## 2400 121 0 179.4 70 30.50 143.0
## 2401 99 39 126.8 94 21.56 293.6
## 2402 126 0 239.7 87 40.75 281.7
## 2403 77 33 143.0 101 24.31 212.2
## 2404 21 0 91.9 109 15.62 198.4
## 2405 56 0 210.4 80 35.77 176.6
## 2406 92 29 201.3 130 34.22 203.7
## 2407 81 0 145.6 59 24.75 287.9
## 2408 139 31 203.5 82 34.60 200.3
## 2409 68 0 232.4 76 39.51 153.3
## 2410 183 8 86.5 119 14.71 285.2
## 2411 90 0 109.9 102 18.68 220.8
## 2412 165 0 156.0 88 26.52 276.1
## 2413 89 0 326.3 112 55.47 165.1
## 2414 59 0 195.0 58 33.15 198.5
## 2415 16 0 110.0 91 18.70 147.3
## 2416 114 0 147.1 119 25.01 161.0
## 2417 113 0 156.0 141 26.52 256.8
## 2418 120 0 98.2 99 16.69 186.7
## 2419 115 0 210.6 120 35.80 153.1
## 2420 37 0 239.9 120 40.78 261.6
## 2421 100 0 159.9 94 27.18 179.9
## 2422 132 0 197.8 66 33.63 133.9
## 2423 38 36 115.4 98 19.62 166.2
## 2424 1 0 123.8 113 21.05 236.2
## 2425 97 15 117.6 97 19.99 196.3
## 2426 55 28 105.3 82 17.90 197.4
## 2427 75 0 111.7 121 18.99 237.3
## 2428 83 0 159.3 104 27.08 202.3
## 2429 40 0 81.7 123 13.89 210.2
## 2430 101 21 238.0 88 40.46 209.6
## 2431 120 40 128.1 99 21.78 247.7
## 2432 183 31 171.2 104 29.10 193.6
## 2433 75 0 109.0 88 18.53 259.3
## 2434 80 0 220.0 114 37.40 207.7
## 2435 88 0 55.6 65 9.45 242.7
## 2436 112 23 286.6 79 48.72 315.3
## 2437 63 0 207.6 96 35.29 229.0
## 2438 105 31 109.6 108 18.63 249.3
## 2439 92 0 197.2 113 33.52 242.3
## 2440 177 0 175.7 120 29.87 168.6
## 2441 118 0 205.2 115 34.88 184.8
## 2442 111 13 193.1 104 32.83 111.6
## 2443 82 34 232.6 121 39.54 153.2
## 2444 74 0 102.7 89 17.46 149.3
## 2445 121 31 263.1 70 44.73 279.3
## 2446 131 0 197.0 79 33.49 201.0
## 2447 125 0 169.3 90 28.78 156.0
## 2448 19 0 201.5 123 34.26 129.2
## 2449 138 0 251.0 119 42.67 91.2
## 2450 119 0 230.4 117 39.17 225.0
## 2451 137 0 109.8 120 18.67 230.5
## 2452 182 0 279.5 118 47.52 203.2
## 2453 135 0 173.4 107 29.48 222.0
## 2454 134 38 214.4 93 36.45 211.7
## 2455 45 0 96.1 103 16.34 246.8
## 2456 129 0 101.4 145 17.24 249.1
## 2457 142 0 232.5 74 39.53 181.8
## 2458 130 45 174.5 120 29.67 217.5
## 2459 163 23 224.0 126 38.08 233.5
## 2460 105 0 211.1 99 35.89 176.7
## 2461 119 0 109.2 96 18.56 153.1
## 2462 78 0 220.0 95 37.40 179.9
## 2463 92 0 181.4 98 30.84 164.5
## 2464 146 11 180.7 82 30.72 173.7
## 2465 125 32 96.5 109 16.41 145.8
## 2466 88 0 183.5 93 31.20 170.5
## 2467 83 38 107.9 90 18.34 140.4
## 2468 3 0 161.0 96 27.37 244.9
## 2469 152 41 146.8 128 24.96 285.6
## 2470 48 0 149.2 146 25.36 161.9
## 2471 189 0 227.8 124 38.73 169.5
## 2472 95 23 160.3 87 27.25 202.4
## 2473 129 0 137.8 120 23.43 225.8
## 2474 66 40 141.7 87 24.09 268.3
## 2475 80 22 196.4 115 33.39 150.3
## 2476 1 0 175.2 74 29.78 151.7
## 2477 84 0 146.8 133 24.96 171.7
## 2478 96 0 173.9 111 29.56 287.4
## 2479 123 34 305.2 80 51.88 156.5
## 2480 116 29 162.3 91 27.59 279.3
## 2481 105 0 150.0 106 25.50 293.8
## 2482 80 0 197.5 114 33.58 206.9
## 2483 157 0 240.2 67 40.83 153.0
## 2484 67 30 186.2 117 31.65 286.7
## 2485 141 39 116.9 127 19.87 276.5
## 2486 79 17 236.7 95 40.24 263.5
## 2487 76 0 173.2 93 29.44 131.2
## 2488 111 0 152.2 114 25.87 137.2
## 2489 94 0 181.3 135 30.82 182.4
## 2490 143 0 167.8 72 28.53 211.0
## 2491 109 0 175.4 125 29.82 250.7
## 2492 138 0 87.6 112 14.89 266.9
## 2493 73 0 203.3 45 34.56 141.9
## 2494 21 0 92.6 95 15.74 161.9
## 2495 148 21 262.9 135 44.69 149.5
## 2496 103 0 160.8 91 27.34 155.8
## 2497 143 22 141.8 116 24.11 167.3
## 2498 79 32 50.6 62 8.60 201.4
## 2499 89 0 134.9 59 22.93 156.0
## 2500 120 0 252.1 110 42.86 226.1
## 2501 121 41 215.5 95 36.64 241.8
## 2502 101 0 124.8 66 21.22 257.2
## 2503 115 0 178.7 114 30.38 271.0
## 2504 168 0 183.2 131 31.14 179.2
## 2505 90 0 167.5 96 28.48 139.1
## 2506 70 0 147.1 105 25.01 200.0
## 2507 138 0 230.1 107 39.12 212.0
## 2508 43 0 135.8 125 23.09 163.2
## 2509 117 20 205.7 98 34.97 136.1
## 2510 108 0 73.8 105 12.55 143.4
## 2511 118 0 189.3 119 32.18 233.5
## 2512 169 0 147.2 115 25.02 161.9
## 2513 62 42 137.3 95 23.34 184.2
## 2514 86 0 70.7 125 12.02 211.0
## 2515 44 0 204.6 117 34.78 205.2
## 2516 111 0 123.1 88 20.93 213.9
## 2517 127 19 129.7 115 22.05 160.8
## 2518 151 0 198.7 70 33.78 209.5
## 2519 53 0 145.1 116 24.67 233.7
## 2520 15 0 135.2 101 22.98 152.5
## 2521 123 28 124.7 105 21.20 250.4
## 2522 137 0 215.9 76 36.70 145.4
## 2523 106 0 119.2 142 20.26 228.4
## 2524 88 0 144.3 116 24.53 156.4
## 2525 106 0 235.2 121 39.98 220.6
## 2526 95 0 174.0 57 29.58 281.1
## 2527 57 0 115.0 65 19.55 122.3
## 2528 184 0 151.7 93 25.79 178.5
## 2529 109 0 153.1 102 26.03 234.1
## 2530 127 0 218.6 93 37.16 149.9
## 2531 82 0 265.2 122 45.08 178.7
## 2532 180 0 143.3 134 24.36 180.5
## 2533 174 0 190.3 98 32.35 252.7
## 2534 92 0 184.7 60 31.40 262.0
## 2535 81 0 115.3 99 19.60 224.7
## 2536 125 0 113.0 108 19.21 169.2
## 2537 119 0 294.2 100 50.01 232.5
## 2538 122 0 215.6 86 36.65 167.8
## 2539 34 0 128.8 80 21.90 208.7
## 2540 138 28 211.2 117 35.90 312.5
## 2541 90 24 71.2 82 12.10 181.6
## 2542 73 0 94.9 121 16.13 253.2
## 2543 19 0 259.4 116 44.10 269.7
## 2544 120 28 215.8 123 36.69 285.2
## 2545 160 0 97.5 113 16.58 268.1
## 2546 141 0 146.5 121 24.91 169.9
## 2547 90 0 157.9 72 26.84 234.0
## 2548 72 0 139.9 117 23.78 223.6
## 2549 117 21 153.2 112 26.04 263.3
## 2550 79 0 103.5 134 17.60 319.3
## 2551 87 0 185.8 119 31.59 192.3
## 2552 102 0 129.5 56 22.02 354.2
## 2553 49 0 236.6 91 40.22 220.9
## 2554 67 0 260.4 107 44.27 208.2
## 2555 107 0 167.3 100 28.44 163.9
## 2556 190 0 182.2 101 30.97 212.3
## 2557 118 0 113.0 80 19.21 150.1
## 2558 120 0 185.7 133 31.57 235.1
## 2559 94 0 136.2 114 23.15 165.1
## 2560 115 29 222.6 81 37.84 190.3
## 2561 61 0 197.3 67 33.54 264.5
## 2562 143 33 141.4 130 24.04 186.4
## 2563 110 0 208.0 69 35.36 95.1
## 2564 104 0 118.5 92 20.15 177.8
## 2565 16 0 153.2 65 26.04 229.7
## 2566 183 0 108.3 87 18.41 183.6
## 2567 147 0 168.6 92 28.66 187.7
## 2568 58 0 247.2 116 42.02 303.7
## 2569 102 0 224.2 81 38.11 243.3
## 2570 123 0 166.9 98 28.37 221.8
## 2571 64 43 118.4 100 20.13 144.1
## 2572 103 0 190.9 62 32.45 226.6
## 2573 152 0 317.8 60 54.03 152.9
## 2574 124 0 312.0 112 53.04 180.0
## 2575 97 0 146.0 121 24.82 203.0
## 2576 131 0 131.6 95 22.37 179.3
## 2577 57 33 193.4 105 32.88 231.6
## 2578 157 0 185.1 92 31.47 213.0
## 2579 194 0 193.3 106 32.86 169.0
## 2580 66 0 146.4 107 24.89 196.5
## 2581 155 0 71.2 90 12.10 304.4
## 2582 123 0 123.2 104 20.94 190.0
## 2583 116 0 205.0 90 34.85 140.9
## 2584 63 0 128.7 78 21.88 240.8
## 2585 64 0 216.9 78 36.87 211.0
## 2586 96 0 150.0 122 25.50 218.5
## 2587 53 0 164.1 106 27.90 206.0
## 2588 105 0 212.0 113 36.04 226.6
## 2589 53 37 167.3 99 28.44 194.7
## 2590 101 0 154.4 130 26.25 217.2
## 2591 129 30 177.3 95 30.14 211.8
## 2592 122 0 231.2 141 39.30 267.8
## 2593 163 0 202.9 100 34.49 178.6
## 2594 93 0 149.6 120 25.43 200.7
## 2595 115 0 345.3 81 58.70 203.4
## 2596 25 0 264.9 80 45.03 281.2
## 2597 73 0 122.0 92 20.74 138.3
## 2598 120 0 177.2 88 30.12 270.4
## 2599 196 0 133.1 80 22.63 206.5
## 2600 97 0 225.1 90 38.27 279.5
## 2601 148 0 208.4 120 35.43 174.4
## 2602 85 30 173.1 107 29.43 247.2
## 2603 86 0 162.4 131 27.61 167.0
## 2604 78 13 281.2 93 47.80 178.2
## 2605 106 0 208.3 89 35.41 169.4
## 2606 147 38 243.4 126 41.38 273.8
## 2607 145 0 224.2 89 38.11 314.9
## 2608 91 0 189.3 100 32.18 239.3
## 2609 81 46 168.3 124 28.61 270.9
## 2610 116 24 232.9 90 39.59 152.1
## 2611 69 37 155.0 98 26.35 142.4
## 2612 135 0 154.4 130 26.25 203.8
## 2613 73 0 234.7 102 39.90 195.7
## 2614 48 0 240.0 88 40.80 141.0
## 2615 125 0 298.4 78 50.73 270.5
## 2616 100 0 166.0 102 28.22 236.1
## 2617 165 33 111.6 140 18.97 213.3
## 2618 64 0 174.5 98 29.67 180.2
## 2619 116 27 175.5 137 29.84 210.6
## 2620 147 35 157.5 109 26.78 189.6
## 2621 115 0 206.2 113 35.05 176.4
## 2622 84 35 207.5 138 35.28 201.0
## 2623 86 16 144.8 105 24.62 206.2
## 2624 134 0 258.8 85 44.00 129.5
## 2625 105 0 226.9 106 38.57 182.2
## 2626 88 0 152.9 119 25.99 171.2
## 2627 90 27 156.7 51 26.64 236.5
## 2628 86 0 150.8 85 25.64 295.9
## 2629 37 0 221.0 126 37.57 204.5
## 2630 141 32 322.4 92 54.81 283.2
## 2631 148 0 153.6 148 26.11 262.1
## 2632 163 22 215.1 91 36.57 138.9
## 2633 89 35 174.4 108 29.65 196.7
## 2634 63 0 180.5 126 30.69 230.0
## 2635 102 0 123.1 106 20.93 182.0
## 2636 76 0 165.7 94 28.17 257.4
## 2637 104 0 200.2 92 34.03 118.7
## 2638 109 0 154.8 82 26.32 287.7
## 2639 105 0 125.4 116 21.32 261.5
## 2640 63 33 184.2 111 31.31 312.6
## 2641 105 24 274.7 99 46.70 193.5
## 2642 68 39 142.0 140 24.14 241.6
## 2643 63 21 151.5 99 25.76 147.8
## 2644 74 0 124.8 114 21.22 133.0
## 2645 76 0 179.2 85 30.46 222.9
## 2646 91 0 246.4 110 41.89 182.0
## 2647 101 0 232.7 114 39.56 186.4
## 2648 116 0 288.0 120 48.96 255.8
## 2649 131 23 170.8 145 29.04 236.7
## 2650 84 0 216.1 114 36.74 197.5
## 2651 104 0 138.7 100 23.58 215.4
## 2652 108 0 210.7 112 35.82 238.7
## 2653 111 0 181.8 117 30.91 158.1
## 2654 155 30 61.6 103 10.47 255.1
## 2655 66 0 207.7 85 35.31 196.7
## 2656 64 0 219.2 73 37.26 167.0
## 2657 69 0 227.0 122 38.59 258.7
## 2658 116 0 245.9 73 41.80 240.1
## 2659 101 0 257.3 84 43.74 184.8
## 2660 15 0 121.1 130 20.59 216.0
## 2661 88 0 301.5 136 51.26 257.7
## 2662 197 0 233.9 96 39.76 218.9
## 2663 50 0 99.6 108 16.93 308.7
## 2664 172 0 169.8 123 28.87 183.1
## 2665 188 26 198.8 115 33.80 166.6
## 2666 85 0 116.2 86 19.75 229.7
## 2667 103 0 255.9 128 43.50 140.9
## 2668 136 27 187.7 84 31.91 221.0
## 2669 155 21 195.9 91 33.30 213.9
## 2670 145 0 129.4 97 22.00 185.4
## 2671 116 12 221.0 108 37.57 151.0
## 2672 152 0 140.5 92 23.89 186.8
## 2673 65 0 277.9 123 47.24 155.8
## 2674 180 0 224.9 105 38.23 250.0
## 2675 67 0 109.1 117 18.55 217.4
## 2676 60 0 207.8 109 35.33 123.5
## 2677 138 0 205.9 96 35.00 257.1
## 2678 44 0 308.6 139 52.46 150.8
## 2679 25 0 242.6 69 41.24 209.0
## 2680 145 0 229.6 82 39.03 138.1
## 2681 122 28 166.0 62 28.22 233.9
## 2682 121 0 144.8 126 24.62 200.6
## 2683 55 0 106.1 77 18.04 123.5
## 2684 77 0 221.8 84 37.71 166.0
## 2685 12 0 204.6 98 34.78 212.5
## 2686 64 0 213.5 93 36.30 166.6
## 2687 92 44 152.0 95 25.84 274.9
## 2688 125 29 260.8 81 44.34 163.7
## 2689 160 0 166.4 117 28.29 317.0
## 2690 79 0 177.9 83 30.24 167.3
## 2691 36 0 235.1 97 39.97 196.8
## 2692 102 0 186.8 92 31.76 173.7
## 2693 138 0 268.4 81 45.63 174.4
## 2694 164 0 192.1 95 32.66 249.8
## 2695 125 0 240.7 82 40.92 269.4
## 2696 72 0 179.9 113 30.58 149.8
## 2697 74 0 314.1 86 53.40 222.4
## 2698 134 41 162.0 82 27.54 324.7
## 2699 145 0 175.8 89 29.89 274.3
## 2700 136 0 109.4 91 18.60 207.5
## 2701 209 0 255.1 124 43.37 230.6
## 2702 66 0 208.7 84 35.48 173.3
## 2703 152 20 214.6 108 36.48 96.6
## 2704 162 0 49.2 121 8.36 143.9
## 2705 72 0 141.3 133 24.02 134.9
## 2706 101 0 253.2 89 43.04 237.9
## 2707 125 0 206.0 128 35.02 198.1
## 2708 46 0 40.4 105 6.87 172.4
## 2709 132 0 291.2 104 49.50 234.2
## 2710 193 31 71.2 58 12.10 124.7
## 2711 63 0 261.8 69 44.51 245.0
## 2712 124 0 191.3 134 32.52 261.5
## 2713 144 0 133.3 101 22.66 255.5
## 2714 116 24 183.6 138 31.21 203.8
## 2715 189 30 155.2 116 26.38 195.5
## 2716 97 28 283.1 93 48.13 185.4
## 2717 137 50 186.5 94 31.71 178.0
## 2718 142 38 163.3 104 27.76 136.0
## 2719 84 0 203.4 125 34.58 182.9
## 2720 119 19 178.1 110 30.28 212.8
## 2721 158 0 195.9 103 33.30 89.1
## 2722 50 0 295.3 127 50.20 127.4
## 2723 98 0 136.1 82 23.14 156.3
## 2724 101 24 114.1 95 19.40 161.5
## 2725 182 0 279.1 124 47.45 180.5
## 2726 51 0 169.3 111 28.78 139.5
## 2727 117 0 214.4 94 36.45 138.0
## 2728 92 0 255.8 125 43.49 142.7
## 2729 86 0 148.2 71 25.19 285.1
## 2730 122 0 119.3 93 20.28 223.9
## 2731 156 27 192.3 137 32.69 199.9
## 2732 127 0 245.2 91 41.68 217.2
## 2733 130 0 216.2 106 36.75 363.7
## 2734 158 0 172.4 114 29.31 256.6
## 2735 145 30 175.3 107 29.80 153.3
## 2736 90 26 169.0 104 28.73 188.8
## 2737 127 27 2.6 113 0.44 254.0
## 2738 109 0 184.1 143 31.30 211.7
## 2739 88 0 181.9 90 30.92 151.5
## 2740 101 9 160.1 116 27.22 210.0
## 2741 171 0 189.8 122 32.27 173.7
## 2742 21 0 223.2 142 37.94 216.5
## 2743 145 31 216.0 94 36.72 225.1
## 2744 90 0 198.5 124 33.75 266.6
## 2745 33 0 159.5 115 27.12 195.4
## 2746 61 40 105.0 78 17.85 180.6
## 2747 107 0 204.5 108 34.77 162.4
## 2748 147 0 274.0 92 46.58 231.8
## 2749 117 0 158.7 84 26.98 181.7
## 2750 95 0 229.9 116 39.08 202.4
## 2751 186 0 137.8 97 23.43 187.7
## 2752 128 0 179.4 94 30.50 270.4
## 2753 55 39 139.3 101 23.68 178.3
## 2754 134 0 7.8 86 1.33 171.4
## 2755 96 23 183.1 88 31.13 147.4
## 2756 107 0 206.9 79 35.17 262.4
## 2757 123 0 140.0 106 23.80 153.7
## 2758 35 0 179.2 59 30.46 283.3
## 2759 74 0 177.4 136 30.16 240.3
## 2760 130 0 115.6 129 19.65 167.8
## 2761 137 0 237.3 103 40.34 176.7
## 2762 88 0 181.5 116 30.86 187.0
## 2763 80 0 51.5 90 8.76 164.0
## 2764 116 19 155.7 104 26.47 185.4
## 2765 123 23 245.0 88 41.65 265.0
## 2766 120 0 131.7 99 22.39 163.1
## 2767 146 0 111.1 126 18.89 313.4
## 2768 106 9 88.5 100 15.05 324.8
## 2769 121 44 116.0 85 19.72 150.1
## 2770 137 0 155.5 81 26.44 133.1
## 2771 84 30 106.5 65 18.11 225.7
## 2772 67 31 175.2 68 29.78 199.2
## 2773 161 0 154.7 84 26.30 177.8
## 2774 134 34 247.2 105 42.02 225.5
## 2775 62 32 218.4 93 37.13 236.7
## 2776 120 24 227.5 81 38.68 234.9
## 2777 130 30 185.0 117 31.45 249.5
## 2778 20 0 186.8 89 31.76 253.4
## 2779 68 0 158.8 119 27.00 211.8
## 2780 112 0 208.7 150 35.48 212.8
## 2781 77 0 185.9 95 31.60 212.0
## 2782 109 0 222.5 74 37.83 169.7
## 2783 108 0 201.1 101 34.19 170.7
## 2784 79 17 167.9 114 28.54 243.7
## 2785 119 0 239.1 88 40.65 243.5
## 2786 38 0 175.7 109 29.87 211.8
## 2787 109 29 111.2 90 18.90 263.5
## 2788 78 0 87.7 74 14.91 214.8
## 2789 134 0 244.1 99 41.50 246.9
## 2790 47 27 165.0 89 28.05 127.3
## 2791 59 27 127.4 110 21.66 103.3
## 2792 151 0 194.8 106 33.12 292.7
## 2793 129 0 54.7 131 9.30 256.1
## 2794 107 27 283.4 104 48.18 224.1
## 2795 137 0 258.0 112 43.86 246.5
## 2796 76 0 90.5 142 15.39 211.7
## 2797 24 0 235.6 132 40.05 115.9
## 2798 169 0 142.5 82 24.23 231.4
## 2799 30 0 54.0 68 9.18 179.3
## 2800 70 0 214.8 87 36.52 131.0
## 2801 52 0 251.4 118 42.74 196.6
## 2802 3 0 139.0 99 23.63 250.7
## 2803 38 0 117.3 114 19.94 208.7
## 2804 104 0 264.0 108 44.88 132.2
## 2805 27 0 82.6 105 14.04 204.0
## 2806 166 28 175.8 126 29.89 253.6
## 2807 13 0 220.4 100 37.47 211.2
## 2808 52 0 217.0 104 36.89 152.3
## 2809 114 25 129.0 77 21.93 290.0
## 2810 156 0 150.5 106 25.59 152.9
## 2811 90 42 193.3 66 32.86 263.3
## 2812 62 0 189.5 122 32.22 103.8
## 2813 82 33 137.8 95 23.43 235.5
## 2814 52 0 129.3 80 21.98 142.7
## 2815 146 0 115.6 77 19.65 213.6
## 2816 120 23 221.9 114 37.72 254.7
## 2817 130 0 263.7 113 44.83 186.5
## 2818 90 0 61.3 91 10.42 194.4
## 2819 147 0 183.8 113 31.25 164.7
## 2820 159 0 167.4 68 28.46 143.8
## 2821 74 27 154.1 122 26.20 195.3
## 2822 130 0 252.0 101 42.84 170.2
## 2823 155 0 163.1 94 27.73 291.7
## 2824 87 0 198.3 80 33.71 187.0
## 2825 81 0 324.7 48 55.20 236.4
## 2826 99 0 128.3 78 21.81 215.3
## 2827 131 0 187.9 110 31.94 200.5
## 2828 89 0 129.2 71 21.96 214.1
## 2829 123 0 125.5 106 21.34 128.9
## 2830 130 26 257.2 108 43.72 224.3
## 2831 99 0 124.6 90 21.18 146.4
## 2832 36 0 175.1 144 29.77 216.9
## 2833 87 0 124.3 91 21.13 173.4
## 2834 139 0 271.6 130 46.17 156.0
## 2835 189 0 219.9 80 37.38 143.3
## 2836 96 33 183.3 115 31.16 201.4
## 2837 112 0 101.1 119 17.19 214.4
## 2838 75 0 203.3 70 34.56 228.9
## 2839 178 35 175.4 88 29.82 190.0
## 2840 112 0 266.0 97 45.22 214.6
## 2841 108 41 171.6 110 29.17 136.1
## 2842 100 0 78.7 98 13.38 225.6
## 2843 121 20 211.9 110 36.02 215.1
## 2844 116 0 63.7 101 10.83 195.8
## 2845 161 0 173.4 100 29.48 213.7
## 2846 19 0 237.7 98 40.41 207.1
## 2847 104 0 225.9 123 38.40 162.8
## 2848 119 32 173.0 101 29.41 209.4
## 2849 125 0 224.9 102 38.23 143.8
## 2850 156 0 237.7 122 40.41 181.5
## 2851 109 0 137.0 128 23.29 217.0
## 2852 95 0 142.5 109 24.23 176.1
## 2853 90 0 142.4 126 24.21 126.2
## 2854 105 21 147.0 112 24.99 197.3
## 2855 101 0 220.3 124 37.45 188.6
## 2856 95 0 149.2 96 25.36 260.7
## 2857 123 0 204.4 88 34.75 137.5
## 2858 160 0 216.8 77 36.86 207.3
## 2859 141 28 308.0 123 52.36 247.8
## 2860 87 0 58.0 125 9.86 67.5
## 2861 81 0 173.2 80 29.44 236.2
## 2862 75 19 210.3 90 35.75 241.8
## 2863 126 24 58.9 125 10.01 305.5
## 2864 28 0 236.8 102 40.26 167.1
## 2865 153 0 228.9 102 38.91 160.7
## 2866 97 32 90.0 87 15.30 276.3
## 2867 115 0 146.7 128 24.94 106.2
## 2868 95 0 237.3 83 40.34 154.0
## 2869 17 0 162.8 118 27.68 229.6
## 2870 105 20 186.9 114 31.77 256.3
## 2871 121 0 86.1 100 14.64 259.8
## 2872 125 0 212.3 89 36.09 215.4
## 2873 124 0 151.0 98 25.67 120.6
## 2874 35 0 158.6 67 26.96 130.4
## 2875 134 0 296.0 93 50.32 226.4
## 2876 123 32 212.3 77 36.09 251.5
## 2877 124 0 234.4 61 39.85 179.3
## 2878 133 0 176.8 92 30.06 187.5
## 2879 185 19 157.3 123 26.74 257.7
## 2880 1 26 146.6 68 24.92 172.8
## 2881 107 0 260.5 108 44.29 102.4
## 2882 91 20 146.1 98 24.84 277.4
## 2883 178 0 124.5 134 21.17 141.2
## 2884 123 0 209.4 49 35.60 237.4
## 2885 170 0 285.7 44 48.57 167.5
## 2886 135 0 190.9 44 32.45 161.4
## 2887 85 0 144.4 88 24.55 264.6
## 2888 134 50 208.8 130 35.50 132.9
## 2889 148 36 77.6 141 13.19 207.0
## 2890 93 0 271.1 101 46.09 237.4
## 2891 138 0 240.8 104 40.94 144.5
## 2892 159 0 114.8 98 19.52 192.6
## 2893 103 34 138.8 80 23.60 142.0
## 2894 150 27 209.8 112 35.67 155.0
## 2895 37 0 134.9 98 22.93 248.4
## 2896 33 0 164.0 99 27.88 153.1
## 2897 55 0 245.5 130 41.74 192.7
## 2898 134 32 80.3 94 13.65 199.9
## 2899 107 0 90.7 90 15.42 207.5
## 2900 80 36 190.3 115 32.35 256.6
## 2901 78 0 108.6 108 18.46 209.9
## 2902 85 17 89.8 88 15.27 233.2
## 2903 61 15 252.4 106 42.91 187.8
## 2904 97 32 183.4 94 31.18 269.1
## 2905 136 0 183.4 103 31.18 141.9
## 2906 135 0 155.2 100 26.38 135.9
## 2907 87 19 165.8 122 28.19 186.9
## 2908 165 0 209.4 67 35.60 273.8
## 2909 148 0 279.3 104 47.48 201.6
## 2910 99 0 174.1 102 29.60 99.1
## 2911 123 0 175.7 78 29.87 184.6
## 2912 127 0 256.5 87 43.61 222.1
## 2913 151 0 170.2 89 28.93 187.5
## 2914 185 0 139.6 92 23.73 250.2
## 2915 65 34 208.8 119 35.50 142.1
## 2916 58 0 210.1 126 35.72 248.9
## 2917 104 0 113.6 87 19.31 158.6
## 2918 44 0 202.6 89 34.44 163.0
## 2919 58 0 174.4 112 29.65 265.8
## 2920 108 0 210.6 117 35.80 164.2
## 2921 132 0 121.5 88 20.66 253.0
## 2922 80 0 127.8 67 21.73 181.6
## 2923 162 0 135.2 98 22.98 242.0
## 2924 110 0 99.4 62 16.90 275.0
## 2925 96 0 276.9 105 47.07 246.9
## 2926 168 0 163.4 134 27.78 240.1
## 2927 72 0 287.4 116 48.86 235.3
## 2928 125 23 120.5 104 20.49 227.8
## 2929 170 0 184.1 106 31.30 204.9
## 2930 71 0 185.0 84 31.45 232.5
## 2931 124 0 160.9 109 27.35 144.2
## 2932 68 0 207.6 68 35.29 251.6
## 2933 97 0 209.2 134 35.56 0.0
## 2934 98 0 158.4 71 26.93 306.6
## 2935 24 0 149.0 73 25.33 131.0
## 2936 136 0 204.5 63 34.77 208.8
## 2937 44 0 288.8 86 49.10 175.9
## 2938 96 40 108.6 90 18.46 206.4
## 2939 31 0 97.5 129 16.58 260.4
## 2940 72 0 166.5 102 28.31 261.0
## 2941 24 0 156.2 104 26.55 90.0
## 2942 112 31 225.2 89 38.28 256.8
## 2943 117 0 287.4 118 48.86 259.6
## 2944 137 19 175.3 96 29.80 241.3
## 2945 136 0 102.1 75 17.36 219.5
## 2946 95 0 157.9 103 26.84 259.6
## 2947 82 19 146.5 73 24.91 246.4
## 2948 145 0 245.8 116 41.79 286.7
## 2949 56 0 177.7 114 30.21 215.6
## 2950 155 0 250.8 146 42.64 152.5
## 2951 133 0 117.8 100 20.03 199.2
## 2952 53 0 119.7 113 20.35 189.7
## 2953 123 0 242.2 87 41.17 226.1
## 2954 136 0 163.4 83 27.78 249.3
## 2955 57 0 161.0 113 27.37 208.0
## 2956 62 0 128.7 111 21.88 169.5
## 2957 112 0 81.6 94 13.87 268.1
## 2958 55 20 207.7 91 35.31 199.7
## 2959 95 0 128.6 115 21.86 216.2
## 2960 125 0 233.3 65 39.66 209.8
## 2961 1 0 182.1 106 30.96 134.9
## 2962 98 36 168.0 81 28.56 163.2
## 2963 105 0 251.6 88 42.77 175.1
## 2964 113 30 183.8 102 31.25 183.4
## 2965 99 0 256.4 44 43.59 214.5
## 2966 103 0 180.2 134 30.63 97.7
## 2967 177 0 227.8 81 38.73 161.8
## 2968 149 20 147.8 132 25.13 276.8
## 2969 160 0 234.9 136 39.93 270.8
## 2970 116 0 110.9 54 18.85 213.4
## 2971 90 22 124.5 94 21.17 231.7
## 2972 148 0 233.5 81 39.70 187.7
## 2973 147 35 197.3 134 33.54 141.1
## 2974 95 0 58.2 96 9.89 202.1
## 2975 201 0 212.7 72 36.16 225.2
## 2976 80 0 151.5 89 25.76 131.7
## 2977 122 0 146.3 117 24.87 218.7
## 2978 132 0 195.1 100 33.17 148.8
## 2979 83 0 208.9 71 35.51 214.8
## 2980 99 0 135.7 107 23.07 208.4
## 2981 84 0 225.9 86 38.40 275.6
## 2982 46 0 122.2 67 20.77 167.2
## 2983 87 0 153.3 106 26.06 224.5
## 2984 150 0 214.0 117 36.38 192.4
## 2985 73 0 194.8 112 33.12 167.2
## 2986 7 0 206.7 87 35.14 281.1
## 2987 89 12 188.0 105 31.96 151.3
## 2988 131 0 122.3 83 20.79 118.8
## 2989 105 0 259.3 96 44.08 175.2
## 2990 108 0 115.1 114 19.57 211.3
## 2991 47 28 172.9 109 29.39 137.6
## 2992 101 0 156.4 116 26.59 130.4
## 2993 182 24 128.1 104 21.78 143.4
## 2994 161 0 196.6 73 33.42 170.2
## 2995 128 0 227.9 130 38.74 302.6
## 2996 69 31 194.9 63 33.13 191.6
## 2997 113 34 44.9 63 7.63 134.2
## 2998 87 30 262.8 114 44.68 215.8
## 2999 71 0 211.2 70 35.90 252.7
## 3000 76 0 204.0 69 34.68 225.1
## 3001 87 0 223.2 109 37.94 127.5
## 3002 117 0 119.0 82 20.23 187.5
## 3003 177 0 266.1 91 45.24 225.2
## 3004 95 0 134.4 104 22.85 152.4
## 3005 76 0 171.1 78 29.09 257.2
## 3006 66 0 170.5 103 28.99 254.3
## 3007 110 0 178.5 124 30.35 146.9
## 3008 204 0 205.2 145 34.88 154.8
## 3009 32 31 232.8 97 39.58 183.5
## 3010 133 39 239.9 107 40.78 253.8
## 3011 185 0 55.6 97 9.45 288.7
## 3012 103 37 153.5 78 26.10 241.9
## 3013 91 0 109.8 100 18.67 189.6
## 3014 131 0 196.1 89 33.34 185.5
## 3015 153 0 166.8 127 28.36 143.5
## 3016 132 25 113.2 96 19.24 269.9
## 3017 148 0 203.0 92 34.51 150.9
## 3018 141 0 242.8 90 41.28 234.1
## 3019 105 0 156.5 102 26.61 140.2
## 3020 169 0 266.7 105 45.34 158.2
## 3021 127 23 182.0 80 30.94 216.1
## 3022 57 0 85.9 92 14.60 193.9
## 3023 123 33 146.6 87 24.92 114.8
## 3024 103 35 110.5 101 18.79 208.3
## 3025 101 0 118.6 89 20.16 199.6
## 3026 123 22 197.6 105 33.59 80.0
## 3027 78 32 210.3 116 35.75 192.2
## 3028 101 28 220.3 96 37.45 285.8
## 3029 129 0 150.0 98 25.50 232.4
## 3030 67 34 161.7 114 27.49 207.6
## 3031 37 0 191.4 116 32.54 167.4
## 3032 64 0 146.7 83 24.94 148.3
## 3033 173 0 109.4 103 18.60 101.3
## 3034 135 0 144.1 115 24.50 249.8
## 3035 75 42 248.9 93 42.31 170.8
## 3036 88 0 85.7 112 14.57 221.6
## 3037 112 0 214.8 112 36.52 209.7
## 3038 113 0 158.9 137 27.01 242.8
## 3039 121 28 110.0 94 18.70 141.5
## 3040 70 0 152.8 145 25.98 183.6
## 3041 90 0 145.6 103 24.75 197.1
## 3042 39 0 93.3 83 15.86 199.6
## 3043 142 0 216.8 134 36.86 187.8
## 3044 176 0 201.9 101 34.32 154.7
## 3045 105 0 146.4 81 24.89 225.1
## 3046 57 0 272.7 74 46.36 224.9
## 3047 110 0 18.9 92 3.21 258.4
## 3048 88 0 172.8 81 29.38 193.4
## 3049 95 0 190.2 119 32.33 157.1
## 3050 147 0 130.6 83 22.20 208.1
## 3051 101 0 158.4 92 26.93 188.0
## 3052 115 0 166.5 111 28.31 236.2
## 3053 103 0 129.3 103 21.98 202.8
## 3054 82 0 199.3 112 33.88 193.4
## 3055 141 0 185.1 126 31.47 233.0
## 3056 149 0 175.4 80 29.82 197.4
## 3057 131 0 263.4 123 44.78 151.9
## 3058 119 0 94.2 108 16.01 264.1
## 3059 112 0 189.4 83 32.20 219.0
## 3060 116 35 118.0 103 20.06 167.2
## 3061 94 0 212.1 98 36.06 189.4
## 3062 90 0 222.0 93 37.74 187.0
## 3063 114 31 222.8 98 37.88 180.5
## 3064 63 25 190.0 137 32.30 116.6
## 3065 130 0 271.8 129 46.21 237.2
## 3066 122 29 195.4 83 33.22 268.2
## 3067 166 0 199.6 93 33.93 214.3
## 3068 62 0 100.0 98 17.00 173.5
## 3069 78 21 160.6 85 27.30 223.1
## 3070 148 26 158.7 91 26.98 160.5
## 3071 154 0 154.5 122 26.27 214.2
## 3072 110 34 192.3 114 32.69 129.3
## 3073 75 0 305.1 106 51.87 188.0
## 3074 84 38 193.0 106 32.81 153.6
## 3075 113 0 72.5 88 12.33 204.0
## 3076 181 40 105.2 61 17.88 341.3
## 3077 51 0 180.5 88 30.69 134.7
## 3078 102 29 214.7 86 36.50 314.3
## 3079 107 0 86.8 95 14.76 108.1
## 3080 88 0 131.5 99 22.36 174.8
## 3081 82 0 135.4 102 23.02 237.1
## 3082 204 0 174.3 85 29.63 254.1
## 3083 130 0 203.9 63 34.66 191.8
## 3084 174 0 235.5 108 40.04 142.3
## 3085 129 0 157.0 113 26.69 256.9
## 3086 190 0 111.9 55 19.02 223.0
## 3087 54 0 236.3 91 40.17 152.8
## 3088 78 0 163.6 88 27.81 283.4
## 3089 100 29 213.6 127 36.31 175.9
## 3090 70 30 143.4 72 24.38 170.0
## 3091 111 0 78.3 119 13.31 198.2
## 3092 117 0 97.1 98 16.51 228.0
## 3093 68 0 94.1 93 16.00 147.6
## 3094 27 0 226.3 95 38.47 274.3
## 3095 91 0 133.8 61 22.75 158.8
## 3096 181 27 190.3 93 32.35 249.0
## 3097 118 36 294.9 106 50.13 165.7
## 3098 112 0 185.4 114 31.52 191.4
## 3099 93 0 179.5 121 30.52 191.9
## 3100 102 0 158.0 94 26.86 207.9
## 3101 93 0 173.0 131 29.41 190.4
## 3102 107 32 134.2 101 22.81 211.9
## 3103 100 32 125.2 123 21.28 230.9
## 3104 115 0 195.9 111 33.30 227.0
## 3105 63 13 214.2 61 36.41 181.2
## 3106 57 0 221.1 101 37.59 236.7
## 3107 119 26 132.0 100 22.44 173.3
## 3108 73 0 157.6 92 26.79 198.3
## 3109 98 30 110.3 71 18.75 182.4
## 3110 139 0 161.5 121 27.46 192.9
## 3111 31 28 171.8 116 29.21 240.7
## 3112 129 32 211.0 99 35.87 155.1
## 3113 115 0 139.3 89 23.68 192.3
## 3114 108 0 291.6 99 49.57 221.1
## 3115 139 0 139.0 110 23.63 132.9
## 3116 102 0 234.8 125 39.92 199.2
## 3117 149 0 187.6 83 31.89 201.4
## 3118 113 0 159.8 143 27.17 210.1
## 3119 131 33 177.1 100 30.11 194.0
## 3120 83 0 117.9 101 20.04 160.4
## 3121 96 21 247.6 95 42.09 256.3
## 3122 98 0 169.9 77 28.88 138.3
## 3123 3 0 185.0 120 31.45 203.7
## 3124 77 17 204.9 84 34.83 201.0
## 3125 75 24 225.5 119 38.34 182.0
## 3126 40 0 169.7 115 28.85 141.4
## 3127 108 0 239.3 102 40.68 223.4
## 3128 100 0 113.3 96 19.26 197.9
## 3129 16 0 161.9 100 27.52 230.1
## 3130 115 16 133.3 110 22.66 185.7
## 3131 108 25 170.7 88 29.02 109.9
## 3132 107 0 189.7 76 32.25 156.1
## 3133 161 0 322.3 100 54.79 230.4
## 3134 147 0 124.4 74 21.15 320.9
## 3135 107 0 146.9 94 24.97 114.3
## 3136 120 0 192.6 123 32.74 206.4
## 3137 107 36 96.3 83 16.37 179.6
## 3138 58 0 131.9 96 22.42 167.6
## 3139 91 0 147.2 121 25.02 175.2
## 3140 13 0 143.1 139 24.33 239.6
## 3141 104 0 280.4 127 47.67 179.4
## 3142 93 31 237.2 85 40.32 213.1
## 3143 95 0 184.2 95 31.31 181.6
## 3144 104 0 109.1 141 18.55 187.1
## 3145 35 0 138.1 115 23.48 158.2
## 3146 62 0 186.8 94 31.76 207.6
## 3147 143 0 155.4 112 26.42 290.9
## 3148 62 0 245.3 91 41.70 122.9
## 3149 60 0 205.9 97 35.00 277.4
## 3150 41 0 207.2 138 35.22 214.1
## 3151 34 14 151.5 100 25.76 248.7
## 3152 56 0 221.9 112 37.72 278.2
## 3153 183 0 190.0 100 32.30 246.6
## 3154 94 0 220.8 111 37.54 156.2
## 3155 73 47 173.7 117 29.53 204.0
## 3156 123 0 114.8 94 19.52 150.0
## 3157 64 0 113.8 97 19.35 192.3
## 3158 127 0 143.2 60 24.34 179.5
## 3159 33 0 184.4 111 31.35 203.8
## 3160 27 0 227.4 67 38.66 248.0
## 3161 123 0 224.0 99 38.08 210.7
## 3162 148 0 216.2 95 36.75 185.7
## 3163 81 0 129.9 121 22.08 230.1
## 3164 122 30 230.1 108 39.12 287.6
## 3165 52 0 204.4 97 34.75 273.2
## 3166 91 44 216.6 101 36.82 173.1
## 3167 54 0 247.5 85 42.08 225.4
## 3168 152 0 228.1 93 38.78 136.4
## 3169 201 0 225.9 110 38.40 299.1
## 3170 78 0 103.5 115 17.60 117.9
## 3171 67 0 115.5 70 19.64 252.2
## 3172 100 0 218.8 125 37.20 148.3
## 3173 41 0 223.8 67 38.05 244.8
## 3174 133 0 143.8 71 24.45 184.0
## 3175 36 43 29.9 123 5.08 129.1
## 3176 51 28 276.7 121 47.04 203.7
## 3177 122 0 141.4 128 24.04 146.4
## 3178 84 41 153.9 102 26.16 140.7
## 3179 91 0 190.5 128 32.39 205.5
## 3180 110 0 192.6 102 32.74 178.9
## 3181 91 0 151.8 115 25.81 103.6
## 3182 121 0 215.6 74 36.65 192.9
## 3183 109 0 180.0 100 30.60 229.0
## 3184 95 0 157.3 116 26.74 197.5
## 3185 72 0 196.5 88 33.41 158.6
## 3186 73 0 240.3 130 40.85 162.5
## 3187 108 0 193.3 126 32.86 154.7
## 3188 58 39 211.9 40 36.02 274.4
## 3189 148 0 218.7 111 37.18 155.6
## 3190 76 0 246.8 110 41.96 206.3
## 3191 103 0 174.7 151 29.70 148.0
## 3192 87 0 240.0 83 40.80 134.1
## 3193 35 37 181.2 76 30.80 177.6
## 3194 88 0 113.7 67 19.33 165.1
## 3195 67 41 174.7 86 29.70 160.6
## 3196 77 29 211.1 89 35.89 223.5
## 3197 124 0 169.3 108 28.78 178.6
## 3198 30 0 247.4 107 42.06 175.9
## 3199 53 32 131.2 63 22.30 227.4
## 3200 152 0 161.4 84 27.44 163.6
## 3201 100 0 107.2 98 18.22 86.8
## 3202 59 32 211.9 120 36.02 202.9
## 3203 143 0 160.4 120 27.27 285.9
## 3204 142 40 230.7 101 39.22 256.8
## 3205 105 0 232.6 96 39.54 253.4
## 3206 111 0 294.7 90 50.10 294.6
## 3207 143 0 133.4 107 22.68 223.9
## 3208 93 22 306.2 123 52.05 189.7
## 3209 79 0 236.8 135 40.26 186.4
## 3210 68 24 125.7 92 21.37 275.9
## 3211 93 0 168.4 114 28.63 276.0
## 3212 103 0 70.9 134 12.05 134.5
## 3213 144 38 105.0 86 17.85 121.8
## 3214 93 0 152.1 141 25.86 215.5
## 3215 149 0 180.9 79 30.75 194.9
## 3216 23 31 156.6 84 26.62 161.5
## 3217 221 24 180.5 85 30.69 224.1
## 3218 164 30 238.8 100 40.60 230.0
## 3219 104 18 182.1 66 30.96 213.6
## 3220 150 35 139.6 72 23.73 332.8
## 3221 184 12 200.3 76 34.05 253.6
## 3222 88 0 153.5 94 26.10 251.7
## 3223 61 29 128.2 119 21.79 171.7
## 3224 110 0 159.5 145 27.12 202.3
## 3225 115 0 226.4 101 38.49 276.8
## 3226 33 0 251.9 81 42.82 194.6
## 3227 100 0 264.5 117 44.97 194.0
## 3228 209 0 153.7 105 26.13 188.6
## 3229 27 0 232.1 81 39.46 210.8
## 3230 117 0 201.9 86 34.32 212.3
## 3231 87 0 186.9 79 31.77 182.6
## 3232 129 27 196.6 89 33.42 180.6
## 3233 142 0 232.1 102 39.46 168.2
## 3234 112 0 166.0 79 28.22 74.6
## 3235 75 28 200.6 96 34.10 164.1
## 3236 97 25 141.0 101 23.97 212.0
## 3237 121 34 245.0 95 41.65 216.9
## 3238 142 0 140.8 140 23.94 228.6
## 3239 121 0 255.1 93 43.37 266.9
## 3240 87 33 125.0 99 21.25 235.3
## 3241 34 0 180.6 65 30.70 280.4
## 3242 177 0 248.7 118 42.28 172.3
## 3243 58 30 178.1 111 30.28 236.7
## 3244 113 0 122.2 112 20.77 131.7
## 3245 101 0 231.3 87 39.32 224.7
## 3246 89 0 111.2 101 18.90 122.1
## 3247 77 44 103.2 117 17.54 236.3
## 3248 146 0 138.4 104 23.53 158.9
## 3249 93 0 146.3 85 24.87 216.6
## 3250 160 0 206.3 66 35.07 241.1
## 3251 55 0 132.0 103 22.44 279.6
## 3252 88 0 274.6 105 46.68 161.1
## 3253 63 0 185.3 87 31.50 225.3
## 3254 127 24 154.8 69 26.32 177.2
## 3255 57 30 179.2 105 30.46 283.2
## 3256 138 0 286.2 61 48.65 187.2
## 3257 115 0 268.0 115 45.56 153.6
## 3258 171 0 137.5 110 23.38 198.1
## 3259 148 0 243.0 115 41.31 191.8
## 3260 127 0 134.9 79 22.93 221.5
## 3261 61 0 234.2 76 39.81 216.7
## 3262 131 0 175.1 73 29.77 171.9
## 3263 88 0 142.2 107 24.17 262.4
## 3264 130 0 132.4 81 22.51 200.3
## 3265 89 24 97.8 98 16.63 207.2
## 3266 82 0 266.9 83 45.37 229.7
## 3267 138 33 155.2 139 26.38 268.3
## 3268 115 0 200.2 92 34.03 244.9
## 3269 84 0 289.1 100 49.15 233.8
## 3270 117 0 198.4 121 33.73 249.5
## 3271 60 0 180.3 67 30.65 208.0
## 3272 62 0 86.3 84 14.67 238.7
## 3273 133 0 295.0 141 50.15 223.6
## 3274 131 0 240.9 108 40.95 167.4
## 3275 65 0 207.7 109 35.31 217.5
## 3276 120 27 128.5 115 21.85 163.7
## 3277 142 22 224.4 114 38.15 146.0
## 3278 134 0 164.9 115 28.03 126.5
## 3279 87 0 238.0 97 40.46 164.5
## 3280 139 43 231.0 85 39.27 222.3
## 3281 76 0 107.3 140 18.24 238.2
## 3282 100 0 185.0 122 31.45 182.5
## 3283 99 31 244.1 71 41.50 203.4
## 3284 99 0 238.4 96 40.53 246.5
## 3285 48 27 141.1 109 23.99 224.7
## 3286 57 0 158.1 117 26.88 115.2
## 3287 106 30 220.1 105 37.42 222.2
## 3288 170 42 199.5 119 33.92 135.0
## 3289 78 0 109.5 105 18.62 286.1
## 3290 39 0 187.2 110 31.82 114.7
## 3291 127 0 107.9 128 18.34 187.0
## 3292 119 22 172.1 119 29.26 223.6
## 3293 114 0 203.8 85 34.65 87.8
## 3294 95 0 160.0 133 27.20 215.3
## 3295 116 0 51.1 106 8.69 208.6
## 3296 110 0 227.7 88 38.71 170.0
## 3297 74 0 203.8 77 34.65 205.1
## 3298 148 33 241.7 84 41.09 165.8
## 3299 83 0 78.1 70 13.28 239.3
## 3300 73 0 187.8 95 31.93 149.2
## 3301 111 21 127.1 94 21.61 228.3
## 3302 84 0 280.0 113 47.60 202.2
## 3303 75 0 153.2 78 26.04 210.8
## 3304 114 26 137.1 88 23.31 155.7
## 3305 71 0 186.1 114 31.64 198.6
## 3306 58 22 224.1 127 38.10 238.8
## 3307 106 29 83.6 131 14.21 203.9
## 3308 172 0 203.9 109 34.66 234.0
## 3309 45 0 211.3 87 35.92 165.7
## 3310 100 0 219.4 112 37.30 225.7
## 3311 94 0 190.4 91 32.37 92.0
## 3312 128 0 147.7 94 25.11 283.3
## 3313 181 0 229.9 130 39.08 144.4
## 3314 127 0 102.8 128 17.48 143.7
## 3315 89 0 178.7 81 30.38 233.7
## 3316 149 18 148.5 106 25.25 114.5
## 3317 103 29 164.1 111 27.90 219.1
## 3318 163 0 197.2 90 33.52 188.5
## 3319 52 0 124.9 131 21.23 300.5
## 3320 89 0 115.4 99 19.62 209.9
## 3321 122 0 140.0 101 23.80 196.4
## 3322 60 0 193.9 118 32.96 85.0
## 3323 62 0 321.1 105 54.59 265.5
## 3324 117 0 118.4 126 20.13 249.3
## 3325 159 0 169.8 114 28.87 197.7
## 3326 78 0 193.4 99 32.88 116.9
## 3327 96 0 106.6 128 18.12 284.8
## 3328 79 0 134.7 98 22.90 189.7
## 3329 192 36 156.2 77 26.55 215.5
## 3330 68 0 231.1 57 39.29 153.4
## 3331 28 0 180.8 109 30.74 288.8
## 3332 184 0 213.8 105 36.35 159.6
## 3333 74 25 234.4 113 39.85 265.9
## Eve.Calls Eve.Charge Night.Mins Night.Calls Night.Charge Intl.Mins
## 1 99 16.78 244.7 91 11.01 10.0
## 2 103 16.62 254.4 103 11.45 13.7
## 3 110 10.30 162.6 104 7.32 12.2
## 4 88 5.26 196.9 89 8.86 6.6
## 5 122 12.61 186.9 121 8.41 10.1
## 6 101 18.75 203.9 118 9.18 6.3
## 7 108 29.62 212.6 118 9.57 7.5
## 8 94 8.76 211.8 96 9.53 7.1
## 9 80 29.89 215.8 90 9.71 8.7
## 10 111 18.87 326.4 97 14.69 11.2
## 11 83 19.42 208.8 111 9.40 12.7
## 12 148 13.89 196.0 94 8.82 9.1
## 13 71 8.92 141.1 128 6.35 11.2
## 14 75 21.05 192.3 115 8.65 12.3
## 15 76 26.11 203.0 99 9.14 13.1
## 16 97 27.01 160.6 128 7.23 5.4
## 17 90 23.88 89.3 75 4.02 13.8
## 18 111 18.55 129.6 121 5.83 8.1
## 19 65 18.09 165.7 108 7.46 10.0
## 20 88 13.56 192.8 74 8.68 13.0
## 21 93 20.37 208.8 133 9.40 10.6
## 22 121 14.44 209.6 64 9.43 5.7
## 23 99 6.20 181.8 78 8.18 9.5
## 24 102 11.67 189.6 105 8.53 7.7
## 25 72 20.84 237.0 115 10.67 10.3
## 26 112 23.55 250.7 115 11.28 15.5
## 27 112 16.24 182.7 115 8.22 9.5
## 28 100 13.22 102.1 68 4.59 14.7
## 29 84 21.95 181.5 102 8.17 6.3
## 30 109 18.28 178.7 90 8.04 11.1
## 31 63 11.62 250.5 148 11.27 14.2
## 32 107 17.13 246.2 98 11.08 10.3
## 33 115 2.65 293.3 78 13.20 12.6
## 34 119 21.45 280.2 90 12.61 11.8
## 35 75 16.58 213.5 116 9.61 8.3
## 36 102 18.47 152.8 71 6.88 14.7
## 37 80 13.81 129.3 109 5.82 14.5
## 38 116 19.01 227.8 108 10.25 10.0
## 39 99 15.95 101.7 107 4.58 10.5
## 40 92 23.10 188.3 108 8.47 11.1
## 41 85 14.18 187.8 135 8.45 9.4
## 42 107 17.33 122.2 78 5.50 14.6
## 43 98 23.99 311.5 78 14.02 10.0
## 44 110 14.05 178.5 92 8.03 9.2
## 45 118 19.19 265.3 86 11.94 3.5
## 46 92 18.11 163.1 116 7.34 8.5
## 47 122 13.82 134.7 118 6.06 13.2
## 48 74 11.44 242.2 127 10.90 7.4
## 49 117 19.66 143.2 91 6.44 8.8
## 50 58 18.46 70.6 79 3.18 11.0
## 51 96 22.93 236.8 87 10.66 7.8
## 52 115 17.94 249.0 129 11.21 6.8
## 53 66 16.17 282.8 57 12.73 11.4
## 54 67 22.74 228.5 68 10.28 9.3
## 55 116 18.67 203.9 127 9.18 9.7
## 56 85 21.19 270.2 98 12.16 10.2
## 57 62 15.30 140.8 128 6.34 8.0
## 58 77 6.40 181.2 77 8.15 5.8
## 59 164 20.95 129.8 103 5.84 12.1
## 60 126 15.08 189.3 95 8.52 12.0
## 61 94 14.44 166.6 54 7.50 11.4
## 62 142 15.15 166.3 106 7.48 11.6
## 63 96 20.92 138.0 92 6.21 14.6
## 64 64 15.96 265.5 53 11.95 12.6
## 65 97 13.85 159.0 106 7.15 8.2
## 66 88 14.41 214.1 102 9.63 6.2
## 67 104 18.09 157.8 67 7.10 9.3
## 68 119 17.54 129.3 139 5.82 8.3
## 69 80 18.44 153.5 60 6.91 7.8
## 70 110 14.37 148.6 100 6.69 13.8
## 71 83 14.49 295.3 104 13.29 11.8
## 72 84 16.00 254.6 61 11.46 12.1
## 73 85 12.66 172.5 109 7.76 8.0
## 74 117 19.27 152.4 105 6.86 7.3
## 75 94 13.36 188.2 99 8.47 12.0
## 76 72 18.98 181.4 111 8.16 6.1
## 77 100 15.39 270.1 73 12.15 11.7
## 78 85 6.55 173.0 99 7.79 8.2
## 79 104 13.97 177.5 113 7.99 8.2
## 80 102 13.19 228.6 76 10.29 15.0
## 81 74 25.80 224.0 119 10.08 13.2
## 82 79 17.41 278.5 109 12.53 12.6
## 83 95 11.57 175.7 90 7.91 11.0
## 84 98 22.07 222.7 68 10.02 9.8
## 85 85 21.18 191.4 88 8.61 12.4
## 86 86 19.20 323.0 78 14.54 8.6
## 87 101 13.18 189.6 84 8.53 8.0
## 88 76 17.72 182.4 98 8.21 12.0
## 89 84 10.49 202.1 57 9.09 10.9
## 90 93 21.05 208.9 68 9.40 13.9
## 91 105 16.57 109.6 94 4.93 11.1
## 92 104 16.23 196.0 119 8.82 8.9
## 93 107 14.71 253.2 62 11.39 7.9
## 94 112 15.16 263.9 105 11.88 9.5
## 95 81 16.20 127.7 91 5.75 10.6
## 96 113 6.89 163.2 137 7.34 9.8
## 97 72 18.13 174.1 72 7.83 13.0
## 98 76 17.62 190.9 113 8.59 8.7
## 99 104 17.80 167.2 96 7.52 5.3
## 100 126 17.48 275.2 109 12.38 9.8
## 101 83 21.44 160.2 92 7.21 4.4
## 102 76 16.07 129.1 102 5.81 14.6
## 103 105 10.12 180.0 100 8.10 10.5
## 104 106 15.61 245.3 102 11.04 12.5
## 105 109 14.76 248.6 75 11.19 11.3
## 106 98 15.91 190.0 115 8.55 11.8
## 107 76 17.19 187.2 113 8.42 9.0
## 108 115 13.98 217.0 86 9.76 9.8
## 109 97 11.14 219.4 142 9.87 10.1
## 110 121 12.57 241.4 108 10.86 9.6
## 111 83 26.96 119.2 86 5.36 8.3
## 112 94 18.98 222.8 91 10.03 12.6
## 113 113 16.23 227.7 113 10.25 12.1
## 114 90 17.51 247.8 114 11.15 13.3
## 115 59 14.42 211.4 88 9.51 9.4
## 116 122 21.67 138.3 126 6.22 20.0
## 117 109 12.95 57.5 122 2.59 14.2
## 118 48 18.69 170.0 115 7.65 9.4
## 119 82 13.39 177.6 118 7.99 10.0
## 120 111 18.26 143.3 81 6.45 8.7
## 121 77 19.32 200.1 116 9.00 13.1
## 122 86 12.05 142.2 123 6.40 7.2
## 123 117 15.60 220.8 103 9.94 9.8
## 124 95 11.25 112.9 89 5.08 11.6
## 125 98 9.37 227.4 117 10.23 9.2
## 126 104 19.50 252.5 106 11.36 12.0
## 127 87 13.39 154.8 82 6.97 9.1
## 128 103 12.46 225.7 129 10.16 6.4
## 129 123 16.46 175.0 86 7.88 9.2
## 130 117 13.74 264.7 102 11.91 9.5
## 131 114 18.50 146.9 123 6.61 10.9
## 132 86 13.45 256.7 80 11.55 6.1
## 133 140 19.58 261.4 120 11.76 9.5
## 134 102 17.10 206.1 60 9.27 7.1
## 135 128 17.22 206.4 80 9.29 9.1
## 136 83 14.73 247.2 130 11.12 11.2
## 137 106 18.49 237.5 134 10.69 5.3
## 138 113 17.86 195.6 129 8.80 12.0
## 139 76 10.78 263.3 71 11.85 11.2
## 140 60 12.92 158.6 59 7.14 10.2
## 141 84 23.49 193.6 112 8.71 12.4
## 142 97 18.73 253.8 116 11.42 10.5
## 143 74 16.62 109.7 139 4.94 6.8
## 144 84 16.62 200.5 96 9.02 11.7
## 145 87 15.09 249.4 132 11.22 14.1
## 146 94 13.61 110.4 98 4.97 14.3
## 147 78 17.30 203.4 110 9.15 13.7
## 148 126 18.39 121.1 105 5.45 11.7
## 149 98 18.56 161.6 103 7.27 8.5
## 150 95 13.78 286.9 86 12.91 11.1
## 151 125 18.82 172.3 67 7.75 10.6
## 152 91 17.57 299.0 105 13.46 10.1
## 153 117 13.40 227.3 86 10.23 7.5
## 154 118 21.12 140.5 142 6.32 6.9
## 155 46 12.41 269.5 87 12.13 11.5
## 156 138 24.83 265.9 101 11.97 9.8
## 157 116 19.33 153.9 114 6.93 15.8
## 158 96 21.00 259.2 112 11.66 13.7
## 159 72 21.82 178.6 79 8.04 10.2
## 160 129 15.59 164.8 114 7.42 9.6
## 161 108 14.64 137.5 101 6.19 7.1
## 162 111 20.53 253.5 103 11.41 12.0
## 163 116 20.52 229.5 105 10.33 10.5
## 164 122 11.51 236.6 82 10.65 12.2
## 165 89 12.63 167.2 91 7.52 6.1
## 166 92 18.17 228.7 104 10.29 12.1
## 167 133 13.88 264.8 126 11.92 7.5
## 168 128 20.67 261.3 90 11.76 10.9
## 169 116 16.43 105.9 73 4.77 12.8
## 170 90 15.93 154.0 53 6.93 6.3
## 171 105 19.00 97.4 79 4.38 13.2
## 172 98 14.42 164.7 86 7.41 10.6
## 173 101 17.98 268.9 86 12.10 10.5
## 174 93 15.21 182.4 150 8.21 14.1
## 175 125 12.70 244.7 104 11.01 6.1
## 176 125 14.37 170.9 106 7.69 11.1
## 177 107 16.18 195.2 115 8.78 12.2
## 178 86 19.50 195.2 113 8.78 11.5
## 179 76 16.50 208.0 112 9.36 16.2
## 180 112 24.85 201.2 112 9.05 0.0
## 181 136 18.23 282.2 103 12.70 9.5
## 182 118 11.79 136.8 91 6.16 11.9
## 183 94 20.20 169.9 103 7.65 9.9
## 184 57 21.62 214.0 127 9.63 14.6
## 185 122 20.83 134.4 121 6.05 8.4
## 186 135 22.82 241.2 92 10.85 10.8
## 187 139 5.47 198.5 103 8.93 10.2
## 188 108 19.50 77.3 121 3.48 10.9
## 189 126 13.87 187.1 112 8.42 9.0
## 190 95 15.93 231.2 107 10.40 9.1
## 191 94 15.34 112.2 115 5.05 8.9
## 192 104 7.71 238.0 69 10.71 9.5
## 193 77 16.58 208.2 119 9.37 8.8
## 194 88 17.27 150.0 131 6.75 13.4
## 195 111 14.16 119.1 88 5.36 9.5
## 196 86 15.05 180.5 92 8.12 6.8
## 197 115 15.49 261.5 126 11.77 9.7
## 198 113 14.99 181.7 102 8.18 10.7
## 199 97 16.97 255.3 127 11.49 13.8
## 200 106 15.05 245.7 89 11.06 13.0
## 201 136 18.74 249.9 96 11.25 13.1
## 202 93 27.90 245.0 131 11.03 11.2
## 203 94 15.64 240.5 110 10.82 6.4
## 204 51 15.18 217.0 83 9.76 6.8
## 205 80 21.89 198.1 93 8.91 9.4
## 206 77 17.83 190.4 117 8.57 12.1
## 207 72 7.13 179.8 84 8.09 13.7
## 208 95 15.87 223.3 90 10.05 10.8
## 209 70 12.91 260.1 124 11.70 12.2
## 210 89 20.97 226.1 89 10.17 15.8
## 211 98 13.23 188.2 109 8.47 11.6
## 212 103 21.05 194.3 94 8.74 11.9
## 213 106 20.78 122.4 68 5.51 10.7
## 214 118 9.61 246.9 121 11.11 12.2
## 215 115 19.39 73.2 93 3.29 17.6
## 216 98 15.18 225.2 131 10.13 11.5
## 217 76 15.84 172.5 120 7.76 10.9
## 218 82 19.06 265.4 91 11.94 4.7
## 219 118 22.70 151.0 114 6.80 13.0
## 220 98 9.36 188.7 107 8.49 7.1
## 221 98 12.97 212.2 99 9.55 12.2
## 222 103 14.83 244.9 68 11.02 10.2
## 223 96 23.20 220.2 104 9.91 4.4
## 224 122 20.59 174.3 104 7.84 8.9
## 225 76 14.30 236.0 113 10.62 13.8
## 226 94 19.93 250.1 123 11.25 2.7
## 227 78 20.80 221.5 136 9.97 7.7
## 228 83 16.12 76.5 139 3.44 9.6
## 229 92 18.74 136.9 102 6.16 13.3
## 230 92 26.62 163.3 108 7.35 11.9
## 231 100 11.00 217.6 74 9.79 10.5
## 232 111 24.76 197.6 92 8.89 11.0
## 233 126 18.45 180.9 122 8.14 13.5
## 234 87 18.73 154.3 113 6.94 10.9
## 235 105 20.43 233.2 117 10.49 9.0
## 236 98 17.96 193.6 125 8.71 10.2
## 237 128 10.10 234.9 98 10.57 9.0
## 238 98 17.07 192.2 101 8.65 9.8
## 239 91 10.28 226.6 110 10.20 10.7
## 240 116 14.33 139.8 87 6.29 9.4
## 241 125 7.51 195.3 79 8.79 12.9
## 242 102 11.40 223.1 81 10.04 12.3
## 243 151 15.50 275.8 103 12.41 8.4
## 244 63 15.04 194.3 110 8.74 7.1
## 245 60 22.76 354.9 75 15.97 9.4
## 246 93 14.15 202.3 96 9.10 9.5
## 247 80 8.69 261.8 106 11.78 11.1
## 248 58 12.72 283.4 66 12.75 10.2
## 249 98 17.20 245.9 97 11.07 9.2
## 250 137 23.63 228.4 112 10.28 11.8
## 251 80 10.02 279.2 79 12.56 13.9
## 252 109 14.62 191.8 143 8.63 14.4
## 253 83 19.80 172.4 108 7.76 9.1
## 254 134 19.55 236.9 58 10.66 9.5
## 255 82 23.21 178.3 81 8.02 10.9
## 256 93 18.40 173.1 86 7.79 14.1
## 257 117 14.65 231.6 92 10.42 9.8
## 258 86 21.24 193.4 95 8.70 14.5
## 259 126 15.35 221.7 80 9.98 10.4
## 260 123 20.00 169.4 80 7.62 8.7
## 261 105 17.79 231.2 55 10.40 6.7
## 262 112 12.16 223.9 61 10.08 15.4
## 263 108 17.96 185.2 96 8.33 11.5
## 264 73 18.80 241.0 136 10.85 12.5
## 265 113 16.54 146.5 85 6.59 8.3
## 266 91 22.10 291.6 83 13.12 11.4
## 267 117 16.41 232.4 100 10.46 8.4
## 268 78 14.49 263.9 98 11.88 13.5
## 269 101 11.58 147.4 89 6.63 4.5
## 270 96 14.91 184.8 99 8.32 9.9
## 271 117 19.12 249.9 100 11.25 14.6
## 272 83 15.30 200.9 104 9.04 7.7
## 273 100 19.99 206.2 107 9.28 8.0
## 274 96 19.92 203.2 101 9.14 13.0
## 275 79 16.56 239.2 114 10.76 10.0
## 276 103 19.70 122.5 100 5.51 9.8
## 277 85 17.68 203.3 99 9.15 11.1
## 278 67 10.49 214.2 106 9.64 6.5
## 279 105 19.20 254.2 59 11.44 10.9
## 280 90 18.62 222.7 114 10.02 10.5
## 281 108 14.79 188.2 119 8.47 13.0
## 282 108 17.93 193.3 71 8.70 10.4
## 283 84 13.59 144.1 80 6.48 12.2
## 284 100 24.51 240.3 105 10.81 9.0
## 285 109 15.43 281.4 56 12.66 6.7
## 286 108 14.93 252.1 102 11.34 15.6
## 287 102 10.88 194.5 84 8.75 8.8
## 288 86 17.79 289.9 84 13.05 14.5
## 289 63 11.25 255.2 98 11.48 14.1
## 290 114 22.18 312.1 89 14.04 5.3
## 291 99 18.65 299.3 94 13.47 8.0
## 292 80 10.97 125.1 124 5.63 9.7
## 293 112 16.49 146.7 108 6.60 5.9
## 294 116 10.21 216.1 86 9.72 10.3
## 295 113 11.34 259.5 70 11.68 9.8
## 296 152 15.29 216.8 109 9.76 9.5
## 297 67 21.05 142.4 85 6.41 10.1
## 298 58 15.67 240.4 99 10.82 11.9
## 299 117 18.59 207.1 91 9.32 6.6
## 300 88 16.99 287.7 114 12.95 6.6
## 301 81 9.38 195.4 111 8.79 11.9
## 302 168 22.51 207.2 119 9.32 5.9
## 303 68 29.79 297.0 87 13.37 11.2
## 304 114 24.86 241.1 89 10.85 9.1
## 305 77 21.56 214.1 90 9.63 10.3
## 306 114 21.21 173.1 70 7.79 9.1
## 307 118 22.82 213.8 105 9.62 8.5
## 308 89 18.26 133.9 107 6.03 11.4
## 309 82 16.18 183.4 107 8.25 11.4
## 310 92 21.96 183.5 74 8.26 8.9
## 311 118 18.70 265.7 78 11.96 13.2
## 312 112 16.65 183.5 82 8.26 9.7
## 313 93 14.41 220.1 64 9.90 10.9
## 314 122 23.83 205.0 77 9.23 9.8
## 315 107 17.46 254.4 111 11.45 18.9
## 316 120 26.03 123.9 46 5.58 12.4
## 317 100 22.98 160.5 76 7.22 7.7
## 318 114 21.83 147.6 76 6.64 7.6
## 319 118 18.01 273.0 102 12.29 5.0
## 320 74 16.05 154.9 101 6.97 9.4
## 321 97 22.03 287.4 78 12.93 6.2
## 322 105 15.11 232.4 89 10.46 12.9
## 323 113 21.84 234.9 74 10.57 10.0
## 324 92 20.96 251.6 91 11.32 11.3
## 325 121 13.17 245.1 112 11.03 13.4
## 326 107 18.66 152.3 118 6.85 7.1
## 327 69 17.78 197.4 42 8.88 11.4
## 328 112 20.02 156.3 95 7.03 9.5
## 329 86 18.45 188.4 96 8.48 12.5
## 330 77 20.45 79.7 108 3.59 14.4
## 331 135 26.60 130.2 94 5.86 7.9
## 332 74 21.14 197.4 111 8.88 9.5
## 333 93 16.75 138.4 152 6.23 12.2
## 334 87 22.45 206.3 78 9.28 9.3
## 335 66 12.99 233.2 101 10.49 7.5
## 336 90 11.77 169.1 44 7.61 8.6
## 337 77 23.08 170.2 104 7.66 10.6
## 338 110 15.01 302.8 136 13.63 7.0
## 339 94 22.65 212.7 104 9.57 7.6
## 340 127 16.93 175.5 102 7.90 14.6
## 341 71 15.01 262.6 126 11.82 9.1
## 342 101 21.75 275.0 145 12.38 10.8
## 343 85 13.74 227.7 62 10.25 14.0
## 344 86 14.97 244.8 84 11.02 0.0
## 345 103 7.09 165.9 99 7.47 13.3
## 346 120 15.23 135.0 119 6.08 7.2
## 347 90 10.46 261.3 101 11.76 12.2
## 348 121 13.19 186.7 89 8.40 10.5
## 349 107 13.80 127.6 105 5.74 13.1
## 350 67 8.98 243.1 74 10.94 12.8
## 351 95 17.40 229.9 100 10.35 11.3
## 352 71 19.92 237.3 85 10.68 10.1
## 353 132 15.06 96.4 87 4.34 5.3
## 354 88 17.43 204.0 82 9.18 14.7
## 355 85 18.58 194.1 97 8.73 13.2
## 356 93 6.74 213.7 98 9.62 12.7
## 357 80 16.05 206.0 114 9.27 11.3
## 358 132 19.32 122.4 96 5.51 8.5
## 359 75 17.94 114.3 90 5.14 9.2
## 360 103 22.50 178.4 97 8.03 5.8
## 361 127 26.54 183.0 82 8.24 8.8
## 362 81 15.27 253.0 99 11.39 11.3
## 363 113 19.75 222.1 131 9.99 12.0
## 364 138 8.77 309.6 136 13.93 11.3
## 365 118 18.16 192.1 81 8.64 10.9
## 366 94 18.40 253.9 100 11.43 10.1
## 367 123 22.45 128.6 115 5.79 9.1
## 368 108 21.54 255.0 100 11.48 18.0
## 369 137 19.74 146.7 114 6.60 7.6
## 370 120 22.76 164.9 76 7.42 16.0
## 371 114 19.13 204.4 82 9.20 10.3
## 372 102 18.94 225.3 91 10.14 10.6
## 373 88 9.72 269.2 95 12.11 12.4
## 374 96 19.54 167.3 108 7.53 14.8
## 375 99 17.91 276.9 58 12.46 9.2
## 376 114 15.30 134.5 82 6.05 10.6
## 377 116 10.05 187.9 111 8.46 11.2
## 378 108 18.23 226.1 106 10.17 6.7
## 379 112 24.33 198.9 89 8.95 11.5
## 380 113 13.66 233.1 96 10.49 6.8
## 381 93 16.24 218.6 50 9.84 14.7
## 382 96 13.21 240.0 112 10.80 14.7
## 383 81 12.33 249.5 92 11.23 5.7
## 384 82 27.43 225.6 120 10.15 3.7
## 385 90 21.00 187.9 82 8.46 7.2
## 386 79 18.73 204.7 111 9.21 10.7
## 387 99 23.29 321.3 98 14.46 8.9
## 388 83 17.38 127.8 53 5.75 8.5
## 389 139 22.97 148.2 105 6.67 10.7
## 390 73 20.27 285.1 100 12.83 10.2
## 391 89 20.72 214.7 102 9.66 11.1
## 392 129 21.95 213.1 77 9.59 8.7
## 393 152 14.98 232.8 115 10.48 12.4
## 394 100 17.44 185.7 91 8.36 9.4
## 395 108 17.48 166.2 91 7.48 10.8
## 396 143 7.94 107.6 42 4.84 9.7
## 397 93 16.92 204.1 137 9.18 7.8
## 398 109 23.74 234.2 121 10.54 2.0
## 399 112 11.11 186.5 118 8.39 8.5
## 400 68 19.55 191.7 118 8.63 10.6
## 401 98 18.61 226.7 110 10.20 12.0
## 402 94 9.42 240.1 112 10.80 10.6
## 403 89 16.34 165.1 96 7.43 9.9
## 404 107 13.87 160.6 112 7.23 11.2
## 405 115 20.57 201.4 100 9.06 7.5
## 406 115 13.68 198.6 73 8.94 9.3
## 407 79 9.32 247.4 108 11.13 6.8
## 408 122 15.72 197.2 59 8.87 8.5
## 409 81 21.36 135.0 88 6.08 10.3
## 410 117 16.75 167.0 108 7.52 4.8
## 411 72 12.00 203.0 99 9.14 8.4
## 412 90 15.83 189.0 92 8.50 10.4
## 413 117 20.60 168.8 72 7.60 5.4
## 414 90 16.96 188.3 122 8.47 7.0
## 415 87 10.54 219.4 92 9.87 10.0
## 416 110 24.05 238.4 88 10.73 8.7
## 417 103 13.60 212.4 102 9.56 5.0
## 418 106 14.86 209.5 93 9.43 9.8
## 419 79 16.56 239.3 81 10.77 16.0
## 420 73 27.80 212.5 106 9.56 7.5
## 421 126 22.47 171.8 124 7.73 9.3
## 422 94 14.98 77.2 112 3.47 15.3
## 423 76 24.06 197.3 83 8.88 12.5
## 424 77 11.93 263.6 102 11.86 10.3
## 425 123 11.07 200.0 108 9.00 11.3
## 426 101 15.77 205.2 130 9.23 10.9
## 427 108 9.64 180.2 97 8.11 12.5
## 428 93 18.39 217.4 128 9.78 9.6
## 429 106 16.73 209.3 128 9.42 11.2
## 430 92 23.23 214.4 153 9.65 12.4
## 431 90 22.15 195.0 104 8.78 13.3
## 432 110 24.02 181.0 98 8.15 11.4
## 433 97 15.48 259.2 94 11.66 12.8
## 434 101 14.90 155.6 125 7.00 11.8
## 435 102 17.32 203.2 49 9.14 8.6
## 436 91 10.11 164.2 108 7.39 11.2
## 437 96 25.61 214.6 134 9.66 8.0
## 438 74 15.02 219.5 126 9.88 8.3
## 439 106 28.10 189.4 123 8.52 13.5
## 440 102 16.80 198.5 86 8.93 6.3
## 441 99 13.09 245.8 112 11.06 12.3
## 442 95 22.58 145.7 67 6.56 12.4
## 443 82 18.80 131.6 103 5.92 6.8
## 444 121 15.96 154.5 109 6.95 12.6
## 445 126 16.66 349.2 110 15.71 9.6
## 446 106 21.86 208.3 86 9.37 11.1
## 447 138 20.06 179.1 110 8.06 9.6
## 448 121 11.42 192.9 122 8.68 6.9
## 449 61 17.09 107.9 82 4.86 12.2
## 450 118 17.24 173.4 92 7.80 6.3
## 451 124 23.05 202.2 76 9.10 12.5
## 452 105 20.94 245.7 81 11.06 9.8
## 453 105 20.85 260.0 94 11.70 8.3
## 454 88 23.29 190.7 76 8.58 14.3
## 455 100 23.28 222.7 101 10.02 11.1
## 456 112 20.86 160.5 115 7.22 14.8
## 457 69 15.34 223.6 69 10.06 9.3
## 458 64 22.44 115.7 70 5.21 9.7
## 459 122 18.71 180.3 80 8.11 6.0
## 460 119 10.23 153.7 86 6.92 11.0
## 461 104 18.75 136.6 91 6.15 9.6
## 462 117 19.41 299.7 90 13.49 9.6
## 463 113 9.19 208.4 111 9.38 10.1
## 464 87 16.60 280.5 89 12.62 5.9
## 465 90 18.72 272.4 111 12.26 8.5
## 466 94 14.26 182.1 111 8.19 13.6
## 467 125 15.44 258.8 102 11.65 10.5
## 468 71 17.02 258.3 100 11.62 11.6
## 469 121 14.17 244.9 105 11.02 11.1
## 470 110 21.67 160.2 115 7.21 17.2
## 471 83 13.99 240.7 106 10.83 10.6
## 472 87 21.14 176.0 83 7.92 9.5
## 473 100 11.59 181.7 53 8.18 6.3
## 474 98 26.81 163.3 117 7.35 6.2
## 475 132 19.98 162.8 132 7.33 14.8
## 476 42 12.45 289.2 83 13.01 9.9
## 477 106 13.72 225.1 110 10.13 11.7
## 478 118 13.81 220.3 115 9.91 7.6
## 479 98 13.97 294.7 124 13.26 8.1
## 480 107 13.44 271.5 92 12.22 11.2
## 481 54 21.57 112.3 94 5.05 11.6
## 482 104 15.93 255.4 93 11.49 5.3
## 483 63 14.76 257.4 97 11.58 8.1
## 484 110 21.77 212.7 92 9.57 13.3
## 485 101 19.68 223.5 75 10.06 11.0
## 486 113 11.20 132.7 87 5.97 6.7
## 487 131 18.84 146.9 106 6.61 12.8
## 488 139 24.87 244.3 105 10.99 10.5
## 489 65 17.83 228.4 126 10.28 0.0
## 490 99 19.59 186.3 76 8.38 12.3
## 491 132 21.45 280.2 120 12.61 12.8
## 492 110 21.77 203.7 101 9.17 14.3
## 493 122 22.15 244.2 98 10.99 9.4
## 494 88 23.69 263.4 175 11.85 5.9
## 495 116 9.74 250.6 120 11.28 8.2
## 496 63 15.33 179.6 115 8.08 11.1
## 497 102 15.18 126.8 82 5.71 8.0
## 498 75 24.43 180.5 118 8.12 11.9
## 499 119 8.98 175.9 63 7.92 9.7
## 500 109 20.77 75.8 95 3.41 7.5
## 501 103 16.18 240.4 111 10.82 12.6
## 502 89 19.13 251.9 121 11.34 7.5
## 503 120 17.63 221.7 110 9.98 17.5
## 504 111 12.37 280.7 76 12.63 9.3
## 505 98 13.17 263.6 82 11.86 12.4
## 506 75 10.70 261.9 76 11.79 11.1
## 507 65 20.11 227.8 120 10.25 11.4
## 508 88 28.03 288.0 117 12.96 5.6
## 509 116 18.87 234.9 138 10.57 11.6
## 510 125 16.96 169.7 98 7.64 9.6
## 511 81 17.25 205.1 129 9.23 12.3
## 512 101 23.74 146.2 87 6.58 14.8
## 513 97 17.41 240.8 90 10.84 9.1
## 514 86 18.17 227.2 104 10.22 6.6
## 515 94 18.34 108.1 82 4.86 14.0
## 516 72 16.47 144.9 84 6.52 17.5
## 517 88 26.11 182.5 120 8.21 7.6
## 518 138 13.48 123.4 114 5.55 9.4
## 519 100 19.10 169.5 99 7.63 12.9
## 520 104 13.07 113.5 92 5.11 9.0
## 521 102 13.13 130.9 90 5.89 11.6
## 522 82 13.72 239.6 76 10.78 8.2
## 523 109 19.48 190.5 123 8.57 9.2
## 524 74 12.86 152.9 94 6.88 9.8
## 525 108 14.59 67.7 136 3.05 13.0
## 526 90 14.26 163.1 107 7.34 10.5
## 527 100 15.51 191.7 134 8.63 12.5
## 528 90 11.34 264.2 91 11.89 11.9
## 529 143 13.37 199.3 72 8.97 8.6
## 530 115 28.65 205.2 99 9.23 12.1
## 531 102 17.26 232.0 87 10.44 7.8
## 532 89 18.62 233.4 66 10.50 6.7
## 533 104 21.51 207.7 73 9.35 10.7
## 534 78 3.59 125.7 104 5.66 5.4
## 535 123 5.65 246.5 99 11.09 9.2
## 536 138 23.89 218.5 87 9.83 18.2
## 537 109 12.38 196.8 93 8.86 14.0
## 538 92 15.56 121.0 102 5.44 8.5
## 539 104 16.22 224.7 123 10.11 12.4
## 540 125 18.41 217.5 92 9.79 9.9
## 541 108 14.28 113.5 84 5.11 7.8
## 542 52 13.43 141.9 113 6.39 6.6
## 543 94 21.54 265.2 80 11.93 14.2
## 544 129 18.40 191.6 94 8.62 3.5
## 545 135 20.66 76.4 92 3.44 12.2
## 546 90 21.16 268.0 115 12.06 11.9
## 547 91 21.14 171.0 118 7.69 8.4
## 548 61 17.07 133.7 67 6.02 10.3
## 549 97 20.94 255.0 131 11.48 5.9
## 550 117 17.48 196.7 85 8.85 10.1
## 551 108 15.56 158.8 104 7.15 7.9
## 552 99 17.06 116.6 118 5.25 11.5
## 553 92 21.93 192.4 90 8.66 10.2
## 554 149 16.65 108.0 100 4.86 10.1
## 555 94 22.02 149.5 107 6.73 12.7
## 556 103 10.19 175.5 75 7.90 13.1
## 557 92 25.82 226.9 120 10.21 12.0
## 558 89 18.16 236.6 92 10.65 9.5
## 559 94 21.34 257.6 123 11.59 8.3
## 560 100 11.62 308.2 119 13.87 7.7
## 561 109 20.15 245.1 88 11.03 10.7
## 562 84 26.35 178.7 130 8.04 7.2
## 563 116 22.46 172.7 102 7.77 9.1
## 564 106 8.36 230.8 83 10.39 10.9
## 565 84 21.88 231.5 119 10.42 8.0
## 566 100 16.07 123.0 102 5.54 4.7
## 567 110 23.07 248.7 97 11.19 11.3
## 568 117 16.00 147.1 98 6.62 3.6
## 569 101 13.65 143.9 87 6.48 10.0
## 570 99 22.52 168.9 108 7.60 15.4
## 571 87 16.74 187.2 119 8.42 10.3
## 572 116 15.07 296.3 90 13.33 14.5
## 573 82 23.38 138.7 108 6.24 10.8
## 574 109 21.12 167.1 124 7.52 9.0
## 575 79 23.50 279.8 77 12.59 9.9
## 576 89 17.03 183.5 105 8.26 14.2
## 577 119 19.28 217.5 80 9.79 13.7
## 578 93 15.30 140.0 119 6.30 11.7
## 579 95 19.52 144.1 124 6.48 7.7
## 580 86 28.48 187.2 119 8.42 16.5
## 581 113 29.52 246.0 116 11.07 7.4
## 582 118 15.57 150.8 90 6.79 10.2
## 583 90 13.21 168.9 117 7.60 10.7
## 584 93 16.41 311.6 93 14.02 10.3
## 585 92 24.91 183.9 79 8.28 9.8
## 586 124 14.00 200.7 108 9.03 10.2
## 587 134 17.32 215.8 154 9.71 8.4
## 588 86 5.01 179.3 124 8.07 7.4
## 589 79 22.11 170.1 93 7.65 13.5
## 590 103 18.62 122.6 102 5.52 8.6
## 591 87 25.49 158.6 110 7.14 11.3
## 592 137 17.65 183.1 103 8.24 12.9
## 593 125 7.94 207.2 107 9.32 9.6
## 594 137 21.60 169.3 92 7.62 9.5
## 595 83 13.76 269.7 104 12.14 12.5
## 596 97 12.95 250.1 109 11.25 0.0
## 597 79 11.11 193.4 98 8.70 9.6
## 598 103 8.72 235.3 106 10.59 9.1
## 599 128 14.27 167.6 101 7.54 12.3
## 600 111 17.08 246.8 126 11.11 9.2
## 601 77 20.91 170.5 140 7.67 9.1
## 602 76 16.79 121.6 105 5.47 13.9
## 603 104 14.09 143.9 71 6.48 4.6
## 604 131 22.57 244.3 128 10.99 11.6
## 605 118 19.14 169.7 93 7.64 11.4
## 606 109 18.06 265.0 132 11.93 12.7
## 607 105 24.59 129.4 97 5.82 13.1
## 608 56 10.09 240.1 91 10.80 6.6
## 609 86 21.13 208.8 124 9.40 10.6
## 610 83 22.23 163.2 116 7.34 8.7
## 611 106 12.80 269.2 129 12.11 11.6
## 612 79 13.11 299.0 60 13.46 12.7
## 613 118 19.84 195.7 141 8.81 7.7
## 614 110 18.50 190.5 100 8.57 13.2
## 615 115 18.86 189.1 100 8.51 7.3
## 616 64 17.02 233.1 96 10.49 8.0
## 617 113 23.33 298.9 130 13.45 8.8
## 618 121 24.73 194.8 140 8.77 14.0
## 619 96 13.14 142.8 97 6.43 11.6
## 620 90 16.02 266.9 91 12.01 14.5
## 621 87 16.48 268.4 121 12.08 12.8
## 622 111 12.22 157.0 106 7.07 11.5
## 623 140 12.49 121.0 131 5.44 10.6
## 624 84 12.44 264.6 83 11.91 7.1
## 625 125 18.75 249.2 78 11.21 5.1
## 626 137 19.27 144.6 72 6.51 13.8
## 627 99 15.75 205.1 82 9.23 4.1
## 628 102 13.66 249.4 80 11.22 7.4
## 629 109 18.50 152.1 76 6.84 6.5
## 630 92 19.27 210.7 134 9.48 13.7
## 631 99 14.53 225.1 93 10.13 13.9
## 632 69 19.55 193.6 95 8.71 9.5
## 633 94 24.64 180.0 114 8.10 4.8
## 634 103 7.62 220.0 91 9.90 15.6
## 635 87 19.09 306.3 102 13.78 10.8
## 636 73 16.49 256.5 94 11.54 10.2
## 637 133 16.77 169.0 116 7.61 9.2
## 638 92 10.84 237.4 118 10.68 7.5
## 639 95 12.55 259.3 117 11.67 12.9
## 640 114 11.39 210.6 113 9.48 11.4
## 641 108 14.75 206.2 95 9.28 7.9
## 642 106 16.87 208.5 102 9.38 9.8
## 643 83 17.89 180.6 92 8.13 11.0
## 644 93 22.53 239.8 128 10.79 15.6
## 645 99 18.64 215.9 95 9.72 14.0
## 646 99 15.12 158.4 146 7.13 8.5
## 647 37 19.37 170.3 103 7.66 15.4
## 648 127 10.85 155.6 125 7.00 7.5
## 649 136 8.61 104.8 94 4.72 9.1
## 650 48 17.90 256.7 83 11.55 6.0
## 651 130 21.86 103.1 111 4.64 11.5
## 652 52 17.42 179.7 93 8.09 9.5
## 653 72 10.86 199.2 120 8.96 9.2
## 654 115 8.79 208.1 109 9.36 8.5
## 655 106 16.62 180.1 93 8.10 10.5
## 656 92 16.50 231.5 86 10.42 9.4
## 657 118 13.75 289.5 55 13.03 9.3
## 658 114 8.74 142.4 89 6.41 9.3
## 659 101 11.17 186.6 86 8.40 9.9
## 660 100 13.98 134.9 63 6.07 8.3
## 661 120 25.93 197.4 86 8.88 9.5
## 662 89 12.92 225.5 93 10.15 12.0
## 663 93 20.20 259.2 58 11.66 12.3
## 664 76 11.06 78.1 100 3.51 7.4
## 665 128 14.17 240.6 84 10.83 7.8
## 666 123 19.39 262.7 141 11.82 9.2
## 667 106 12.77 151.8 96 6.83 9.6
## 668 104 10.11 135.9 124 6.12 9.2
## 669 74 16.04 206.9 124 9.31 12.3
## 670 122 16.06 205.1 90 9.23 15.5
## 671 107 19.75 212.8 98 9.58 16.3
## 672 125 18.83 103.9 89 4.68 11.9
## 673 87 12.27 160.2 88 7.21 11.8
## 674 62 21.15 211.3 79 9.51 11.2
## 675 81 19.10 204.6 77 9.21 7.5
## 676 121 11.00 264.8 104 11.92 5.9
## 677 114 9.90 152.2 91 6.85 10.6
## 678 68 20.06 118.3 120 5.32 9.4
## 679 109 15.40 178.5 105 8.03 8.9
## 680 111 27.80 208.0 104 9.36 8.7
## 681 118 16.13 205.8 83 9.26 13.1
## 682 82 13.46 256.1 82 11.52 9.3
## 683 120 12.79 123.0 87 5.54 11.4
## 684 119 20.54 202.4 120 9.11 6.5
## 685 93 19.83 204.4 57 9.20 11.1
## 686 113 15.90 230.8 101 10.39 8.6
## 687 131 18.22 154.4 80 6.95 10.1
## 688 126 16.99 216.1 107 9.72 12.6
## 689 71 17.76 260.1 123 11.70 12.1
## 690 121 11.20 126.9 101 5.71 8.2
## 691 101 16.77 234.5 111 10.55 14.9
## 692 91 16.39 172.7 105 7.77 10.2
## 693 134 23.50 192.1 104 8.64 5.7
## 694 104 16.02 254.9 118 11.47 8.0
## 695 108 22.83 188.8 99 8.50 10.9
## 696 118 8.97 220.2 105 9.91 11.6
## 697 97 15.16 169.2 77 7.61 7.5
## 698 75 23.26 206.6 72 9.30 9.1
## 699 88 15.81 307.1 86 13.82 8.4
## 700 114 16.22 187.5 79 8.44 11.0
## 701 82 10.97 167.1 113 7.52 10.7
## 702 92 13.52 128.2 129 5.77 7.7
## 703 102 13.93 243.6 114 10.96 14.1
## 704 64 16.10 229.9 118 10.35 10.4
## 705 82 16.41 194.1 113 8.73 6.5
## 706 64 19.64 168.9 121 7.60 8.5
## 707 119 16.60 194.4 65 8.75 3.6
## 708 118 19.00 260.8 72 11.74 7.6
## 709 98 13.12 200.4 109 9.02 10.6
## 710 99 12.96 197.8 76 8.90 9.7
## 711 108 18.42 259.9 119 11.70 12.5
## 712 98 25.31 212.6 86 9.57 11.4
## 713 101 6.66 232.7 78 10.47 0.0
## 714 128 17.26 210.6 106 9.48 6.9
## 715 105 17.99 174.5 81 7.85 7.3
## 716 104 20.61 151.7 121 6.83 15.3
## 717 116 16.59 268.8 94 12.10 11.4
## 718 86 18.63 179.7 83 8.09 7.2
## 719 110 14.44 184.0 116 8.28 9.3
## 720 89 16.53 256.5 109 11.54 11.7
## 721 108 13.91 242.7 72 10.92 7.4
## 722 110 14.39 166.7 80 7.50 10.9
## 723 127 16.44 105.4 115 4.74 13.5
## 724 49 20.20 206.7 136 9.30 14.0
## 725 83 15.05 216.5 118 9.74 16.4
## 726 110 17.02 231.7 101 10.43 11.9
## 727 99 14.51 287.7 95 12.95 7.8
## 728 101 16.15 221.4 110 9.96 9.2
## 729 101 18.21 154.9 101 6.97 12.7
## 730 111 14.94 221.8 124 9.98 13.4
## 731 105 17.22 221.6 51 9.97 11.5
## 732 104 24.86 226.3 103 10.18 8.0
## 733 103 11.32 197.4 94 8.88 7.2
## 734 90 11.25 211.9 76 9.54 9.5
## 735 94 14.43 175.3 127 7.89 12.1
## 736 78 16.97 274.7 103 12.36 6.5
## 737 86 13.18 189.7 87 8.54 11.0
## 738 102 14.94 223.7 151 10.07 16.7
## 739 93 20.47 210.3 76 9.46 11.4
## 740 103 17.73 203.8 111 9.17 8.8
## 741 58 16.07 162.2 115 7.30 9.4
## 742 61 23.68 129.6 120 5.83 11.5
## 743 131 20.45 248.1 98 11.16 11.4
## 744 86 13.90 195.4 84 8.79 10.4
## 745 88 20.52 203.5 86 9.16 9.1
## 746 110 21.28 142.4 92 6.41 6.6
## 747 128 10.12 232.9 123 10.48 6.4
## 748 117 16.66 226.5 122 10.19 7.8
## 749 95 22.97 121.6 113 5.47 8.7
## 750 119 16.87 133.1 88 5.99 11.0
## 751 91 15.77 148.2 107 6.67 8.2
## 752 100 15.84 241.7 75 10.88 10.1
## 753 59 13.99 128.8 102 5.80 12.7
## 754 108 11.70 159.7 121 7.19 11.0
## 755 105 10.36 253.7 104 11.42 9.6
## 756 92 20.58 101.2 103 4.55 11.4
## 757 119 20.38 148.7 71 6.69 9.8
## 758 111 20.68 184.6 78 8.31 13.1
## 759 113 18.71 177.9 95 8.01 9.8
## 760 97 15.39 320.7 120 14.43 9.5
## 761 95 23.02 206.4 68 9.29 10.1
## 762 100 19.31 145.8 91 6.56 8.4
## 763 117 22.73 184.5 137 8.30 1.3
## 764 69 22.19 317.8 103 14.30 15.0
## 765 96 18.62 237.4 76 10.68 11.4
## 766 118 17.70 158.9 101 7.15 8.7
## 767 99 20.67 182.4 57 8.21 11.0
## 768 138 10.03 236.0 91 10.62 15.2
## 769 78 18.96 157.8 101 7.10 9.7
## 770 117 21.27 144.9 81 6.52 11.0
## 771 108 16.24 214.6 107 9.66 13.3
## 772 102 14.19 145.2 77 6.53 8.8
## 773 95 17.60 214.1 91 9.63 9.2
## 774 100 14.27 182.2 138 8.20 7.7
## 775 81 16.90 228.4 116 10.28 10.6
## 776 71 16.76 202.2 79 9.10 10.7
## 777 96 13.74 251.4 91 11.31 10.5
## 778 105 18.28 234.3 84 10.54 5.8
## 779 77 18.46 225.7 71 10.16 13.6
## 780 90 20.65 168.9 101 7.60 10.1
## 781 68 15.62 153.8 67 6.92 11.0
## 782 114 17.08 134.0 134 6.03 10.7
## 783 101 12.07 288.9 68 13.00 9.4
## 784 66 14.48 280.2 78 12.61 9.4
## 785 130 12.21 239.4 128 10.77 11.2
## 786 80 22.41 142.6 60 6.42 10.7
## 787 94 16.53 200.4 85 9.02 11.3
## 788 102 17.75 182.5 105 8.21 11.1
## 789 117 10.01 133.7 78 6.02 11.8
## 790 111 18.97 169.5 64 7.63 10.5
## 791 103 16.83 94.3 76 4.24 7.5
## 792 76 24.34 167.0 77 7.52 14.1
## 793 102 21.54 165.4 85 7.44 8.2
## 794 120 18.60 240.2 106 10.81 9.0
## 795 90 20.37 167.5 108 7.54 15.1
## 796 105 22.89 158.9 105 7.15 10.8
## 797 124 11.00 166.9 124 7.51 8.4
## 798 125 18.65 198.5 121 8.93 14.5
## 799 95 22.05 134.7 135 6.06 14.6
## 800 146 11.71 213.5 104 9.61 15.9
## 801 101 18.78 179.4 97 8.07 11.3
## 802 134 17.20 180.1 95 8.10 9.4
## 803 119 27.10 247.3 79 11.13 6.5
## 804 89 21.56 291.0 86 13.10 12.6
## 805 78 18.64 210.8 89 9.49 9.8
## 806 111 17.13 101.7 82 4.58 6.8
## 807 98 13.29 136.5 121 6.14 10.2
## 808 116 14.63 194.6 111 8.76 12.1
## 809 58 20.62 147.7 95 6.65 11.3
## 810 138 20.40 200.9 64 9.04 5.8
## 811 114 20.57 146.3 108 6.58 12.1
## 812 131 9.08 178.5 122 8.03 9.9
## 813 80 8.76 189.4 82 8.52 13.1
## 814 83 23.49 190.8 113 8.59 15.3
## 815 110 17.29 171.7 68 7.73 12.4
## 816 86 14.43 285.1 100 12.83 5.7
## 817 115 17.64 211.7 100 9.53 12.1
## 818 63 13.91 264.2 118 11.89 6.6
## 819 73 17.68 206.1 124 9.27 15.1
## 820 95 17.23 234.7 103 10.56 13.1
## 821 134 6.49 185.1 96 8.33 12.7
## 822 88 3.73 189.6 87 8.53 13.1
## 823 64 13.07 236.6 105 10.65 11.7
## 824 72 10.53 174.3 84 7.84 10.1
## 825 78 11.26 149.4 123 6.72 11.3
## 826 99 17.99 182.2 105 8.20 11.6
## 827 147 18.52 184.2 77 8.29 9.4
## 828 136 24.45 223.0 100 10.04 12.2
## 829 87 14.74 268.7 114 12.09 5.5
## 830 73 19.56 119.8 81 5.39 9.9
## 831 121 7.96 241.3 115 10.86 13.4
## 832 93 18.43 239.4 99 10.77 11.8
## 833 93 17.39 186.2 128 8.38 9.4
## 834 84 18.33 138.4 127 6.23 10.2
## 835 74 9.83 226.3 94 10.18 9.4
## 836 117 17.73 65.8 71 2.96 9.9
## 837 97 19.17 168.7 120 7.59 9.7
## 838 104 13.85 247.4 109 11.13 8.1
## 839 128 25.92 225.6 133 10.15 11.9
## 840 94 18.88 188.3 92 8.47 16.1
## 841 136 22.99 225.3 94 10.14 9.0
## 842 115 12.75 160.8 81 7.24 10.3
## 843 88 19.98 95.1 130 4.28 11.4
## 844 112 11.00 167.6 109 7.54 15.8
## 845 66 13.83 215.5 98 9.70 14.6
## 846 109 16.32 196.3 85 8.83 10.0
## 847 114 16.23 295.6 125 13.30 10.3
## 848 102 16.69 252.7 75 11.37 10.3
## 849 107 16.35 207.4 111 9.33 9.1
## 850 106 22.50 111.4 101 5.01 9.2
## 851 109 4.50 246.1 119 11.07 10.9
## 852 96 17.97 72.4 84 3.26 11.0
## 853 74 23.25 226.9 99 10.21 9.6
## 854 90 20.05 260.2 113 11.71 7.6
## 855 103 21.89 227.8 119 10.25 9.7
## 856 106 15.32 187.3 135 8.43 6.2
## 857 98 10.26 215.1 112 9.68 12.7
## 858 115 16.66 263.9 95 11.88 9.2
## 859 103 14.06 185.0 81 8.32 11.7
## 860 74 18.96 262.7 90 11.82 11.3
## 861 130 14.89 228.6 92 10.29 9.9
## 862 105 16.70 209.5 108 9.43 14.9
## 863 113 12.47 345.8 115 15.56 13.1
## 864 94 12.98 217.8 125 9.80 12.4
## 865 103 15.61 80.2 108 3.61 8.9
## 866 82 14.56 154.6 119 6.96 9.9
## 867 133 22.80 146.5 80 6.59 11.1
## 868 95 13.12 210.6 91 9.48 8.2
## 869 123 20.51 143.2 105 6.44 4.0
## 870 118 17.81 249.9 105 11.25 7.4
## 871 90 21.39 258.0 93 11.61 14.9
## 872 102 16.18 284.7 118 12.81 11.1
## 873 122 14.84 241.5 80 10.87 10.9
## 874 117 20.06 307.6 77 13.84 9.3
## 875 102 11.49 208.2 106 9.37 10.4
## 876 106 20.88 148.6 90 6.69 9.1
## 877 75 27.47 143.9 127 6.48 7.5
## 878 85 17.36 111.7 146 5.03 5.9
## 879 108 13.65 77.9 74 3.51 0.0
## 880 110 18.73 169.9 104 7.65 11.8
## 881 102 15.78 203.3 64 9.15 10.2
## 882 120 17.22 289.6 119 13.03 6.7
## 883 111 24.68 114.9 140 5.17 7.2
## 884 113 21.75 45.0 117 2.03 8.0
## 885 80 12.19 153.9 102 6.93 15.0
## 886 135 20.67 190.8 95 8.59 5.4
## 887 104 16.06 196.2 98 8.83 8.9
## 888 91 22.51 270.0 77 12.15 7.6
## 889 85 20.37 229.8 104 10.34 5.5
## 890 90 3.61 179.2 124 8.06 12.4
## 891 134 19.86 179.4 91 8.07 12.0
## 892 115 13.47 207.5 131 9.34 6.2
## 893 92 18.80 197.3 97 8.88 12.3
## 894 105 5.17 176.7 110 7.95 10.7
## 895 101 14.43 194.1 63 8.73 11.9
## 896 101 17.85 187.2 93 8.42 8.5
## 897 131 13.22 206.2 112 9.28 14.4
## 898 107 17.05 195.4 107 8.79 15.5
## 899 126 17.82 264.1 77 11.88 8.0
## 900 104 21.23 224.2 92 10.09 8.7
## 901 91 11.75 221.0 88 9.95 5.5
## 902 115 21.39 141.1 158 6.35 11.3
## 903 107 18.60 208.3 131 9.37 8.2
## 904 78 16.73 157.9 112 7.11 5.9
## 905 127 17.89 234.7 70 10.56 9.0
## 906 87 6.03 204.8 107 9.22 13.4
## 907 104 16.05 136.2 89 6.13 13.5
## 908 72 9.32 245.5 73 11.05 16.9
## 909 108 14.14 219.8 73 9.89 15.0
## 910 109 13.88 264.9 104 11.92 5.1
## 911 123 15.11 190.4 106 8.57 8.1
## 912 121 26.89 208.6 91 9.39 14.4
## 913 86 10.23 163.0 93 7.34 10.6
## 914 55 24.63 312.5 130 14.06 10.6
## 915 114 24.48 266.0 112 11.97 10.5
## 916 87 12.04 198.5 124 8.93 7.5
## 917 125 23.94 228.1 113 10.26 13.2
## 918 96 9.83 295.8 84 13.31 8.3
## 919 108 18.45 342.8 130 15.43 5.2
## 920 97 10.94 190.5 113 8.57 11.0
## 921 59 14.37 166.7 94 7.50 9.2
## 922 84 18.68 202.0 89 9.09 4.4
## 923 51 12.10 364.3 106 16.39 9.3
## 924 66 9.56 218.7 79 9.84 13.8
## 925 85 17.50 204.0 103 9.18 7.9
## 926 103 6.87 196.1 79 8.82 10.8
## 927 80 9.02 179.6 90 8.08 14.0
## 928 61 16.66 139.3 123 6.27 11.4
## 929 98 13.18 180.7 64 8.13 7.8
## 930 112 12.34 214.5 105 9.65 6.6
## 931 105 19.43 265.3 114 11.94 9.8
## 932 86 16.63 236.5 137 10.64 12.0
## 933 105 26.28 152.1 118 6.84 10.0
## 934 96 17.65 207.4 143 9.33 14.1
## 935 105 11.32 177.6 123 7.99 11.2
## 936 107 18.96 255.6 92 11.50 13.0
## 937 115 19.88 277.4 94 12.48 9.2
## 938 97 12.57 183.8 74 8.27 6.7
## 939 52 16.12 270.1 107 12.15 14.3
## 940 115 15.24 300.7 89 13.53 11.9
## 941 107 20.52 204.8 106 9.22 15.5
## 942 115 24.42 230.2 85 10.36 6.5
## 943 114 11.93 208.9 110 9.40 6.4
## 944 127 17.59 272.0 88 12.24 12.6
## 945 105 16.21 193.0 103 8.69 9.2
## 946 77 12.33 233.7 120 10.52 11.5
## 947 91 22.19 204.4 107 9.20 13.4
## 948 80 14.44 201.6 130 9.07 11.0
## 949 121 13.21 255.7 114 11.51 8.4
## 950 87 18.92 173.3 81 7.80 11.0
## 951 103 20.60 170.2 89 7.66 7.9
## 952 89 19.89 196.3 77 8.83 11.6
## 953 95 13.64 149.5 142 6.73 10.7
## 954 94 15.91 225.5 118 10.15 8.6
## 955 112 19.06 221.0 116 9.95 8.6
## 956 142 18.82 208.5 103 9.38 10.3
## 957 63 15.61 205.5 111 9.25 7.1
## 958 73 24.30 190.6 121 8.58 9.4
## 959 88 15.81 190.5 128 8.57 12.3
## 960 87 9.83 193.8 118 8.72 12.8
## 961 12 15.92 214.0 85 9.63 13.3
## 962 51 27.24 150.7 110 6.78 4.2
## 963 88 12.76 219.8 111 9.89 7.7
## 964 97 14.09 270.0 83 12.15 10.8
## 965 98 17.22 191.2 102 8.60 13.3
## 966 105 21.09 122.4 85 5.51 12.2
## 967 131 22.00 263.2 109 11.84 15.7
## 968 121 15.87 128.4 100 5.78 9.2
## 969 105 21.10 164.6 116 7.41 13.5
## 970 64 22.29 130.0 92 5.85 8.8
## 971 123 19.12 219.6 50 9.88 11.5
## 972 65 21.35 273.4 97 12.30 5.0
## 973 99 13.86 154.1 90 6.93 11.8
## 974 100 15.44 128.1 93 5.76 12.3
## 975 84 23.04 179.1 89 8.06 9.5
## 976 104 16.33 191.0 83 8.59 10.4
## 977 117 11.15 264.7 63 11.91 13.0
## 978 128 13.81 186.6 90 8.40 11.8
## 979 114 22.64 224.1 118 10.08 13.1
## 980 122 18.26 223.6 126 10.06 7.8
## 981 104 17.33 151.8 124 6.83 11.6
## 982 102 20.37 268.3 81 12.07 6.9
## 983 101 12.73 213.4 108 9.60 13.0
## 984 118 19.09 221.3 105 9.96 9.0
## 985 111 26.04 196.5 82 8.84 9.9
## 986 79 21.21 275.4 102 12.39 13.3
## 987 146 12.35 195.2 137 8.78 11.8
## 988 74 22.38 178.1 106 8.01 8.3
## 989 128 9.79 224.5 115 10.10 17.0
## 990 62 15.94 147.1 126 6.62 13.6
## 991 70 21.24 298.9 104 13.45 3.9
## 992 101 11.49 216.2 101 9.73 7.9
## 993 119 12.80 63.3 103 2.85 7.7
## 994 106 12.04 255.9 96 11.52 9.6
## 995 110 19.90 213.4 87 9.60 10.4
## 996 95 12.95 144.7 97 6.51 7.5
## 997 99 17.15 181.9 103 8.19 11.6
## 998 95 18.37 148.1 76 6.66 11.3
## 999 99 19.76 175.8 105 7.91 14.7
## 1000 94 14.01 54.5 91 2.45 7.9
## 1001 117 19.41 117.3 103 5.28 12.8
## 1002 121 14.25 260.6 94 11.73 8.4
## 1003 72 14.22 238.9 115 10.75 6.8
## 1004 97 19.20 172.0 86 7.74 8.2
## 1005 89 12.22 150.2 127 6.76 12.3
## 1006 126 9.90 220.0 110 9.90 9.8
## 1007 85 26.99 133.4 113 6.00 8.3
## 1008 58 16.62 223.3 95 10.05 6.0
## 1009 98 17.31 173.9 124 7.83 11.4
## 1010 92 14.25 168.5 122 7.58 11.3
## 1011 101 21.78 169.0 151 7.61 3.8
## 1012 50 24.60 194.0 100 8.73 9.7
## 1013 120 16.87 258.2 91 11.62 8.0
## 1014 54 16.41 222.7 94 10.02 13.1
## 1015 126 6.96 304.3 101 13.69 12.0
## 1016 120 17.47 213.7 91 9.62 11.9
## 1017 108 12.95 194.4 110 8.75 8.6
## 1018 80 20.75 176.3 120 7.93 9.1
## 1019 69 19.58 170.6 101 7.68 11.4
## 1020 92 12.62 216.7 96 9.75 11.3
## 1021 157 16.53 242.3 138 10.90 14.2
## 1022 69 14.25 110.3 71 4.96 8.4
## 1023 97 13.17 189.4 89 8.52 7.2
## 1024 88 16.63 122.1 117 5.49 7.8
## 1025 93 22.34 214.3 128 9.64 11.2
## 1026 88 24.17 262.8 99 11.83 12.3
## 1027 73 24.75 159.6 114 7.18 10.0
## 1028 105 21.20 254.9 129 11.47 12.9
## 1029 113 18.35 223.5 122 10.06 0.0
## 1030 95 19.68 226.1 130 10.17 16.5
## 1031 104 19.75 215.5 100 9.70 9.3
## 1032 102 14.60 167.5 66 7.54 5.3
## 1033 91 11.98 204.3 93 9.19 9.5
## 1034 115 18.18 171.2 105 7.70 10.6
## 1035 101 18.28 179.7 108 8.09 13.1
## 1036 113 18.33 161.2 111 7.25 10.0
## 1037 126 17.70 171.0 102 7.69 12.0
## 1038 71 14.03 173.1 102 7.79 10.7
## 1039 143 9.69 146.8 79 6.61 14.1
## 1040 104 17.96 261.4 91 11.76 10.7
## 1041 105 18.78 238.7 117 10.74 9.2
## 1042 102 17.15 206.1 112 9.27 16.1
## 1043 128 15.59 240.7 133 10.83 9.9
## 1044 77 17.95 179.3 104 8.07 10.2
## 1045 88 12.50 94.9 99 4.27 7.2
## 1046 128 13.50 306.6 107 13.80 9.3
## 1047 108 20.59 233.3 75 10.50 6.4
## 1048 128 22.65 217.6 59 9.79 7.1
## 1049 103 19.41 163.3 116 7.35 7.7
## 1050 102 14.08 243.2 107 10.94 8.4
## 1051 70 15.21 182.1 84 8.19 12.9
## 1052 69 15.22 214.7 112 9.66 10.3
## 1053 90 21.81 169.4 88 7.62 7.7
## 1054 86 16.35 240.6 100 10.83 10.1
## 1055 118 4.98 202.6 99 9.12 8.7
## 1056 86 12.45 137.6 78 6.19 8.5
## 1057 122 8.30 202.5 119 9.11 7.0
## 1058 119 11.38 138.2 103 6.22 13.3
## 1059 76 16.91 76.4 97 3.44 8.6
## 1060 124 16.02 105.6 116 4.75 8.8
## 1061 99 7.63 172.8 104 7.78 15.3
## 1062 105 20.88 172.8 76 7.78 10.3
## 1063 88 12.40 175.1 103 7.88 9.9
## 1064 104 12.75 241.1 116 10.85 10.7
## 1065 106 10.09 258.4 105 11.63 12.9
## 1066 105 17.32 167.8 70 7.55 9.9
## 1067 69 19.05 267.9 112 12.06 11.8
## 1068 89 15.11 233.4 97 10.50 12.2
## 1069 143 19.82 109.6 115 4.93 10.3
## 1070 88 18.54 192.9 115 8.68 12.5
## 1071 142 17.77 173.0 96 7.79 11.9
## 1072 155 20.44 179.1 107 8.06 5.0
## 1073 99 12.88 50.1 60 2.25 14.3
## 1074 114 14.43 215.8 77 9.71 7.6
## 1075 97 14.89 212.2 77 9.55 12.5
## 1076 89 21.04 155.5 99 7.00 8.9
## 1077 96 17.55 228.1 64 10.26 6.5
## 1078 86 9.55 246.4 75 11.09 15.4
## 1079 95 18.87 162.8 123 7.33 6.7
## 1080 82 18.81 210.0 93 9.45 8.2
## 1081 78 14.89 220.3 118 9.91 0.0
## 1082 123 19.27 219.1 67 9.86 7.5
## 1083 85 18.38 171.3 65 7.71 11.8
## 1084 87 18.16 175.1 86 7.88 12.4
## 1085 129 17.35 171.3 84 7.71 12.3
## 1086 121 18.79 109.9 100 4.95 12.4
## 1087 107 21.04 246.2 123 11.08 6.9
## 1088 142 17.60 268.0 106 12.06 8.2
## 1089 97 18.96 241.6 77 10.87 12.9
## 1090 88 15.69 164.3 131 7.39 13.3
## 1091 81 16.87 164.4 83 7.40 10.4
## 1092 87 20.34 123.2 108 5.54 10.0
## 1093 96 14.48 165.1 104 7.43 9.5
## 1094 71 12.71 255.1 67 11.48 6.5
## 1095 109 13.52 229.9 74 10.35 7.2
## 1096 82 16.88 160.8 62 7.24 6.0
## 1097 129 21.22 248.2 114 11.17 14.2
## 1098 109 18.96 251.7 94 11.33 13.0
## 1099 88 16.63 181.8 129 8.18 5.1
## 1100 119 14.09 151.6 79 6.82 2.2
## 1101 89 23.19 214.5 100 9.65 8.3
## 1102 122 20.74 180.1 89 8.10 9.1
## 1103 56 8.74 213.7 84 9.62 10.5
## 1104 89 17.47 213.6 124 9.61 12.2
## 1105 113 16.12 182.6 91 8.22 10.4
## 1106 117 20.95 154.8 131 6.97 12.9
## 1107 130 15.27 258.5 89 11.63 10.1
## 1108 89 16.08 164.3 76 7.39 12.8
## 1109 91 6.85 212.8 116 9.58 5.8
## 1110 60 15.90 207.9 155 9.36 7.9
## 1111 66 22.00 253.2 113 11.39 7.4
## 1112 99 10.07 248.1 87 11.16 17.1
## 1113 104 13.23 304.4 93 13.70 13.3
## 1114 82 24.89 43.7 121 1.97 10.6
## 1115 93 22.70 250.7 114 11.28 10.9
## 1116 113 17.22 172.3 94 7.75 12.5
## 1117 97 21.77 262.9 103 11.83 11.7
## 1118 114 18.25 150.9 105 6.79 11.8
## 1119 85 16.00 247.0 73 11.12 12.3
## 1120 123 20.12 179.1 120 8.06 11.3
## 1121 124 13.82 150.0 138 6.75 12.1
## 1122 121 14.31 239.9 81 10.80 11.7
## 1123 147 20.92 242.0 106 10.89 10.4
## 1124 111 19.57 283.7 87 12.77 10.0
## 1125 135 20.67 229.2 95 10.31 9.9
## 1126 106 10.44 229.5 94 10.33 12.8
## 1127 86 18.96 182.3 112 8.20 7.3
## 1128 71 16.53 225.6 101 10.15 16.9
## 1129 92 19.06 116.3 91 5.23 12.3
## 1130 79 11.77 164.8 98 7.42 9.0
## 1131 89 15.37 251.6 58 11.32 12.7
## 1132 112 12.02 189.8 109 8.54 13.0
## 1133 101 17.89 179.7 102 8.09 11.8
## 1134 101 14.02 216.0 125 9.72 12.3
## 1135 138 21.79 117.1 91 5.27 9.0
## 1136 118 16.80 209.2 97 9.41 12.2
## 1137 90 18.29 254.0 133 11.43 14.4
## 1138 97 19.06 260.9 135 11.74 11.3
## 1139 113 19.01 173.1 77 7.79 13.6
## 1140 124 16.01 172.7 113 7.77 11.7
## 1141 115 14.38 189.7 117 8.54 10.1
## 1142 96 18.14 196.8 81 8.86 7.9
## 1143 83 20.41 147.7 114 6.65 5.3
## 1144 100 23.41 246.1 105 11.07 10.0
## 1145 125 12.27 135.3 106 6.09 10.8
## 1146 105 12.99 162.9 92 7.33 5.1
## 1147 87 18.65 224.7 68 10.11 4.0
## 1148 82 14.04 194.3 57 8.74 10.6
## 1149 84 7.79 211.7 103 9.53 9.7
## 1150 89 12.53 235.8 113 10.61 9.6
## 1151 94 10.91 162.1 119 7.29 11.6
## 1152 52 11.79 139.3 85 6.27 11.3
## 1153 85 14.69 94.1 102 4.23 8.8
## 1154 101 17.61 136.0 117 6.12 5.6
## 1155 87 17.44 134.6 140 6.06 8.1
## 1156 96 17.96 168.3 97 7.57 11.1
## 1157 129 18.45 81.6 100 3.67 11.8
## 1158 113 15.01 212.6 102 9.57 7.8
## 1159 93 17.57 203.8 119 9.17 11.1
## 1160 123 20.90 161.1 95 7.25 6.4
## 1161 106 13.16 166.7 105 7.50 10.6
## 1162 108 15.22 281.9 89 12.69 8.2
## 1163 91 12.12 102.0 63 4.59 10.9
## 1164 108 20.67 322.2 114 14.50 7.1
## 1165 90 11.03 132.3 113 5.95 12.0
## 1166 78 24.60 174.9 109 7.87 8.0
## 1167 136 14.21 214.2 106 9.64 12.2
## 1168 106 17.50 233.7 75 10.52 12.9
## 1169 89 18.14 237.9 61 10.71 7.6
## 1170 90 18.11 181.7 108 8.18 5.4
## 1171 92 19.06 140.1 57 6.30 15.2
## 1172 132 15.37 132.5 102 5.96 12.8
## 1173 110 14.25 132.0 124 5.94 9.2
## 1174 122 18.57 266.0 88 11.97 10.9
## 1175 115 23.05 167.1 83 7.52 5.8
## 1176 111 8.69 174.0 83 7.83 8.6
## 1177 90 16.52 186.5 104 8.39 9.7
## 1178 63 16.09 271.8 124 12.23 14.1
## 1179 109 20.30 108.8 92 4.90 11.2
## 1180 80 13.35 129.1 100 5.81 7.3
## 1181 110 16.63 184.8 124 8.32 13.1
## 1182 102 12.60 274.0 136 12.33 7.5
## 1183 125 15.16 153.2 98 6.89 14.4
## 1184 134 14.05 205.0 74 9.23 9.0
## 1185 81 20.58 215.8 80 9.71 9.7
## 1186 102 18.45 214.8 104 9.67 9.8
## 1187 102 19.46 195.1 101 8.78 8.7
## 1188 126 20.36 254.3 109 11.44 5.9
## 1189 75 12.33 281.8 92 12.68 9.3
## 1190 147 19.00 175.4 69 7.89 11.2
## 1191 116 4.76 163.3 104 7.35 8.9
## 1192 112 17.71 177.6 98 7.99 9.2
## 1193 79 21.40 285.9 76 12.87 7.2
## 1194 110 17.81 82.3 107 3.70 8.7
## 1195 89 14.10 205.7 71 9.26 13.2
## 1196 118 20.00 174.4 126 7.85 11.0
## 1197 95 11.05 134.3 125 6.04 6.9
## 1198 104 18.16 291.8 89 13.13 11.9
## 1199 118 18.18 132.6 99 5.97 13.4
## 1200 79 19.80 206.9 121 9.31 7.6
## 1201 92 21.92 180.2 157 8.11 11.6
## 1202 134 18.77 249.5 93 11.23 8.0
## 1203 63 18.79 349.7 75 15.74 12.6
## 1204 101 17.43 263.7 90 11.87 5.1
## 1205 101 22.55 152.4 77 6.86 9.5
## 1206 121 16.60 182.7 108 8.22 8.5
## 1207 111 17.51 180.6 118 8.13 9.7
## 1208 96 14.68 104.5 128 4.70 11.3
## 1209 119 17.46 205.7 121 9.26 10.2
## 1210 93 18.67 255.8 90 11.51 12.8
## 1211 108 15.32 159.0 110 7.15 7.9
## 1212 114 20.49 207.8 94 9.35 7.9
## 1213 86 21.22 170.3 128 7.66 12.6
## 1214 99 14.34 223.5 100 10.06 11.8
## 1215 109 20.04 228.6 119 10.29 9.5
## 1216 89 13.41 192.5 89 8.66 11.3
## 1217 108 17.97 103.7 127 4.67 5.9
## 1218 74 20.26 150.7 84 6.78 10.7
## 1219 138 19.31 239.9 92 10.80 7.6
## 1220 103 18.11 198.0 119 8.91 10.9
## 1221 64 19.12 170.8 118 7.69 15.7
## 1222 109 17.20 195.9 100 8.82 12.6
## 1223 85 20.41 156.7 123 7.05 4.9
## 1224 120 18.12 207.8 104 9.35 11.4
## 1225 113 14.31 120.5 93 5.42 9.3
## 1226 104 11.92 90.9 81 4.09 11.4
## 1227 82 20.42 119.0 112 5.36 11.4
## 1228 78 15.57 127.4 106 5.73 12.3
## 1229 79 17.36 231.5 87 10.42 8.9
## 1230 109 21.89 210.5 66 9.47 7.5
## 1231 116 19.56 232.1 110 10.44 10.6
## 1232 110 19.23 178.8 60 8.05 8.8
## 1233 77 15.63 184.3 109 8.29 15.3
## 1234 78 4.09 116.3 80 5.23 8.9
## 1235 112 14.35 154.6 95 6.96 9.8
## 1236 79 18.33 152.7 84 6.87 10.6
## 1237 142 21.68 82.4 73 3.71 10.1
## 1238 87 13.75 167.7 115 7.55 11.7
## 1239 116 17.72 352.5 111 15.86 8.1
## 1240 94 16.35 166.5 98 7.49 10.1
## 1241 117 14.60 259.8 76 11.69 9.6
## 1242 91 16.62 213.3 120 9.60 16.5
## 1243 104 19.56 143.6 82 6.46 9.1
## 1244 119 18.08 193.8 103 8.72 11.0
## 1245 108 21.61 261.8 85 11.78 7.7
## 1246 128 19.67 188.1 127 8.46 11.2
## 1247 97 16.14 232.2 102 10.45 9.0
## 1248 108 18.19 239.5 94 10.78 8.8
## 1249 98 15.86 223.0 100 10.04 11.6
## 1250 108 19.67 180.9 120 8.14 7.8
## 1251 91 10.99 186.4 109 8.39 5.2
## 1252 102 14.44 244.9 106 11.02 9.9
## 1253 111 15.68 168.2 91 7.57 8.8
## 1254 115 17.99 210.1 133 9.45 8.3
## 1255 136 17.09 286.7 103 12.90 11.1
## 1256 73 24.68 236.9 89 10.66 10.8
## 1257 109 15.73 219.5 104 9.88 6.0
## 1258 97 16.93 120.2 113 5.41 18.0
## 1259 84 21.06 245.4 93 11.04 11.2
## 1260 113 10.08 250.2 102 11.26 12.5
## 1261 136 14.34 23.2 102 1.04 9.5
## 1262 112 20.46 197.1 134 8.87 7.1
## 1263 127 10.14 165.1 113 7.43 11.5
## 1264 81 11.43 120.3 104 5.41 7.5
## 1265 103 13.80 162.9 80 7.33 10.5
## 1266 111 18.14 195.6 97 8.80 10.1
## 1267 45 13.95 157.7 128 7.10 9.0
## 1268 81 21.70 228.1 97 10.26 5.4
## 1269 102 22.14 144.2 96 6.49 10.8
## 1270 94 17.71 141.6 114 6.37 11.0
## 1271 105 24.82 183.3 80 8.25 8.7
## 1272 125 22.46 271.3 120 12.21 7.9
## 1273 112 18.50 220.2 68 9.91 13.2
## 1274 112 10.69 261.6 122 11.77 8.3
## 1275 124 17.09 150.4 138 6.77 11.2
## 1276 78 20.74 281.1 93 12.65 11.4
## 1277 104 28.56 192.8 128 8.68 9.6
## 1278 116 23.62 174.7 71 7.86 14.7
## 1279 108 22.91 167.3 82 7.53 9.6
## 1280 68 22.32 245.7 69 11.06 13.1
## 1281 108 17.82 260.9 78 11.74 13.9
## 1282 109 13.09 209.7 118 9.44 11.5
## 1283 99 18.20 289.6 95 13.03 10.4
## 1284 93 10.56 95.6 75 4.30 15.0
## 1285 116 21.36 200.1 112 9.00 8.4
## 1286 84 19.86 163.9 99 7.38 9.0
## 1287 91 16.98 194.7 74 8.76 7.5
## 1288 96 11.63 154.7 87 6.96 7.7
## 1289 116 15.98 142.0 133 6.39 4.4
## 1290 62 20.46 254.8 123 11.47 10.5
## 1291 95 17.98 169.0 116 7.61 9.1
## 1292 104 19.81 297.0 93 13.37 14.5
## 1293 98 22.75 111.5 80 5.02 9.3
## 1294 118 15.11 206.1 102 9.27 12.4
## 1295 111 22.27 184.6 125 8.31 9.2
## 1296 127 13.74 175.9 97 7.92 8.4
## 1297 121 19.97 229.6 157 10.33 8.8
## 1298 100 18.76 236.3 121 10.63 12.9
## 1299 98 27.94 160.5 89 7.22 7.8
## 1300 117 17.66 205.0 98 9.23 14.0
## 1301 83 14.88 210.6 84 9.48 10.2
## 1302 83 11.71 224.0 61 10.08 7.3
## 1303 112 19.55 136.0 111 6.12 9.6
## 1304 125 13.01 227.4 80 10.23 12.9
## 1305 114 22.32 212.5 110 9.56 8.8
## 1306 126 21.17 136.0 73 6.12 10.8
## 1307 117 15.67 255.8 83 11.51 10.6
## 1308 146 15.81 153.0 92 6.89 9.8
## 1309 107 17.43 170.6 114 7.68 13.8
## 1310 115 13.71 260.7 98 11.73 11.4
## 1311 110 15.92 184.2 111 8.29 7.4
## 1312 91 13.97 249.0 98 11.21 8.9
## 1313 87 21.56 215.8 96 9.71 6.4
## 1314 69 14.96 63.6 122 2.86 7.3
## 1315 88 14.03 111.6 104 5.02 6.3
## 1316 104 6.71 153.2 69 6.89 11.8
## 1317 77 18.26 206.4 73 9.29 8.7
## 1318 136 23.36 381.9 147 17.19 7.5
## 1319 96 17.89 109.6 114 4.93 7.7
## 1320 93 14.87 207.2 86 9.32 6.1
## 1321 126 16.80 147.1 110 6.62 14.5
## 1322 64 18.79 168.6 134 7.59 8.9
## 1323 88 11.81 192.6 119 8.67 9.1
## 1324 128 19.36 214.0 101 9.63 9.3
## 1325 105 15.66 217.4 102 9.78 12.6
## 1326 59 15.80 224.3 102 10.09 10.0
## 1327 120 19.64 220.9 80 9.94 6.3
## 1328 103 12.12 210.1 115 9.45 10.9
## 1329 101 23.49 193.7 100 8.72 10.1
## 1330 100 12.51 254.7 75 11.46 8.0
## 1331 88 20.80 154.4 91 6.95 13.8
## 1332 96 19.45 172.4 85 7.76 7.6
## 1333 91 10.68 226.5 90 10.19 10.5
## 1334 116 14.09 247.0 105 11.12 10.8
## 1335 93 14.27 193.6 106 8.71 8.0
## 1336 90 5.10 189.0 129 8.50 11.3
## 1337 98 18.21 186.1 71 8.37 11.1
## 1338 105 13.40 241.0 120 10.85 7.3
## 1339 131 18.42 206.7 116 9.30 9.3
## 1340 111 18.73 134.2 97 6.04 9.2
## 1341 129 22.83 179.9 73 8.10 14.7
## 1342 86 21.29 241.6 125 10.87 11.5
## 1343 80 17.12 159.0 124 7.15 4.1
## 1344 79 7.67 153.4 60 6.90 10.6
## 1345 113 13.35 242.8 91 10.93 8.4
## 1346 130 13.57 167.1 88 7.52 6.8
## 1347 107 15.96 181.9 89 8.19 10.7
## 1348 127 16.31 229.9 97 10.35 10.3
## 1349 92 17.84 266.9 86 12.01 11.9
## 1350 105 13.86 220.0 99 9.90 5.6
## 1351 106 19.63 230.7 140 10.38 14.8
## 1352 64 22.29 159.0 115 7.15 11.9
## 1353 109 17.11 227.1 115 10.22 13.1
## 1354 123 18.41 250.6 102 11.28 11.0
## 1355 78 18.93 163.5 102 7.36 12.8
## 1356 119 20.44 193.9 103 8.73 13.6
## 1357 103 17.36 228.2 90 10.27 11.3
## 1358 86 14.10 191.9 83 8.64 12.8
## 1359 106 16.52 243.4 126 10.95 14.9
## 1360 97 18.75 277.3 89 12.48 10.3
## 1361 115 10.53 135.7 100 6.11 13.1
## 1362 76 19.75 251.6 96 11.32 13.6
## 1363 62 5.70 160.4 121 7.22 9.9
## 1364 125 20.20 263.4 104 11.85 7.7
## 1365 75 21.31 270.2 124 12.16 13.7
## 1366 95 19.04 180.5 82 8.12 11.6
## 1367 104 15.24 225.1 116 10.13 12.3
## 1368 107 16.56 170.6 93 7.68 8.6
## 1369 96 22.30 98.9 63 4.45 11.5
## 1370 109 13.23 150.2 143 6.76 7.3
## 1371 139 13.80 264.5 133 11.90 6.6
## 1372 113 21.55 197.1 93 8.87 8.9
## 1373 77 12.27 225.1 86 10.13 8.2
## 1374 110 16.46 208.9 93 9.40 4.1
## 1375 97 19.20 191.8 95 8.63 8.5
## 1376 107 16.00 333.5 117 15.01 11.3
## 1377 113 20.56 285.3 117 12.84 4.2
## 1378 95 6.04 261.7 120 11.78 13.4
## 1379 100 23.15 193.4 105 8.70 8.9
## 1380 115 19.61 202.0 127 9.09 10.2
## 1381 123 10.46 217.5 101 9.79 12.0
## 1382 103 22.13 192.2 98 8.65 11.0
## 1383 110 24.58 175.4 107 7.89 9.1
## 1384 83 22.11 135.4 118 6.09 8.2
## 1385 83 13.77 223.5 115 10.06 10.1
## 1386 124 18.75 235.7 113 10.61 8.9
## 1387 127 13.01 165.6 125 7.45 7.1
## 1388 80 12.27 302.8 102 13.63 7.6
## 1389 92 13.26 204.1 99 9.18 9.9
## 1390 54 19.31 190.4 115 8.57 15.3
## 1391 113 10.86 107.5 91 4.84 9.3
## 1392 136 16.69 226.7 109 10.20 8.4
## 1393 86 17.65 214.2 107 9.64 4.5
## 1394 124 19.39 166.4 95 7.49 9.1
## 1395 89 22.82 143.3 82 6.45 13.0
## 1396 83 9.82 191.3 103 8.61 12.2
## 1397 102 13.68 197.7 100 8.90 11.5
## 1398 119 16.33 168.8 95 7.60 7.2
## 1399 97 19.36 243.6 84 10.96 11.0
## 1400 112 18.63 215.9 94 9.72 11.7
## 1401 75 16.79 175.8 114 7.91 0.0
## 1402 81 21.07 155.1 108 6.98 11.9
## 1403 77 17.40 256.6 101 11.55 5.7
## 1404 71 8.36 201.9 93 9.09 10.6
## 1405 63 19.07 163.6 88 7.36 9.5
## 1406 94 7.49 233.2 135 10.49 8.8
## 1407 93 22.93 235.8 110 10.61 8.9
## 1408 91 21.77 229.6 98 10.33 11.8
## 1409 115 16.65 118.3 77 5.32 11.8
## 1410 110 19.77 248.3 110 11.17 8.4
## 1411 94 18.03 260.4 78 11.72 12.2
## 1412 91 16.35 167.9 115 7.56 7.7
## 1413 78 19.82 210.6 121 9.48 9.4
## 1414 94 18.33 243.3 91 10.95 9.8
## 1415 106 14.87 234.7 134 10.56 9.7
## 1416 95 17.38 203.1 114 9.14 9.1
## 1417 92 25.23 192.9 106 8.68 7.6
## 1418 104 16.20 150.5 79 6.77 10.7
## 1419 79 15.58 139.8 106 6.29 5.7
## 1420 100 12.05 180.5 105 8.12 6.6
## 1421 98 14.61 214.5 97 9.65 17.9
## 1422 110 18.40 210.7 102 9.48 10.4
## 1423 70 18.83 261.6 109 11.77 5.6
## 1424 131 13.56 152.8 132 6.88 10.4
## 1425 114 16.59 252.9 107 11.38 11.7
## 1426 96 19.70 222.3 113 10.00 4.6
## 1427 125 22.40 254.7 90 11.46 9.8
## 1428 100 14.57 148.6 85 6.69 9.6
## 1429 120 24.61 98.3 95 4.42 11.2
## 1430 84 16.71 233.0 79 10.49 7.0
## 1431 121 23.26 217.9 71 9.81 7.6
## 1432 121 10.96 249.9 110 11.25 11.3
## 1433 118 12.57 252.7 97 11.37 11.2
## 1434 97 16.34 161.0 74 7.25 12.2
## 1435 97 20.73 178.7 112 8.04 13.2
## 1436 132 22.24 123.5 116 5.56 11.1
## 1437 97 19.95 133.6 82 6.01 10.8
## 1438 105 18.67 210.8 136 9.49 9.7
## 1439 131 20.04 224.9 112 10.12 15.1
## 1440 137 20.66 188.9 110 8.50 8.6
## 1441 85 17.76 119.1 99 5.36 5.0
## 1442 118 15.86 245.0 123 11.03 8.8
## 1443 87 17.77 201.1 73 9.05 8.3
## 1444 115 16.05 139.4 97 6.27 9.2
## 1445 82 12.43 275.6 82 12.40 8.9
## 1446 94 14.58 377.5 114 16.99 9.7
## 1447 52 13.37 147.4 76 6.63 10.3
## 1448 107 14.56 220.8 131 9.94 8.3
## 1449 140 13.80 184.1 86 8.28 7.8
## 1450 50 24.24 167.4 83 7.53 12.7
## 1451 103 18.79 126.3 88 5.68 10.9
## 1452 94 15.88 184.5 113 8.30 9.5
## 1453 115 12.86 252.4 73 11.36 12.3
## 1454 110 9.95 221.1 115 9.95 8.1
## 1455 113 17.80 224.1 87 10.08 14.1
## 1456 48 28.23 258.6 108 11.64 6.6
## 1457 85 20.03 150.9 113 6.79 9.9
## 1458 92 10.29 254.7 129 11.46 5.9
## 1459 83 17.83 238.4 114 10.73 8.6
## 1460 68 16.18 211.9 104 9.54 16.1
## 1461 87 13.32 182.1 76 8.19 9.3
## 1462 106 22.47 185.8 90 8.36 10.0
## 1463 110 17.64 83.9 123 3.78 8.1
## 1464 68 18.34 223.3 77 10.05 7.6
## 1465 100 20.20 228.0 94 10.26 9.0
## 1466 101 10.34 197.7 84 8.90 8.6
## 1467 88 18.72 184.0 99 8.28 5.1
## 1468 116 18.35 216.3 106 9.73 16.9
## 1469 127 17.58 194.4 114 8.75 4.2
## 1470 78 13.89 173.8 116 7.82 15.0
## 1471 120 11.67 115.7 74 5.21 5.9
## 1472 83 25.63 158.7 104 7.14 8.1
## 1473 121 22.41 165.2 84 7.43 12.0
## 1474 92 15.47 206.5 103 9.29 10.3
## 1475 65 13.32 249.6 85 11.23 16.3
## 1476 104 6.99 169.4 110 7.62 15.8
## 1477 97 16.80 218.8 95 9.85 5.9
## 1478 117 25.33 194.7 110 8.76 9.8
## 1479 78 17.09 195.3 108 8.79 9.7
## 1480 105 19.73 305.4 98 13.74 8.9
## 1481 64 16.46 205.8 120 9.26 11.0
## 1482 113 11.29 190.1 117 8.55 14.8
## 1483 122 12.93 164.4 98 7.40 9.4
## 1484 105 13.86 282.5 100 12.71 10.0
## 1485 89 15.55 241.1 123 10.85 12.9
## 1486 110 14.14 193.5 139 8.71 15.4
## 1487 70 11.81 312.5 97 14.06 9.7
## 1488 103 19.05 244.0 76 10.98 11.1
## 1489 81 14.96 206.1 120 9.27 6.3
## 1490 120 22.70 222.5 91 10.01 11.8
## 1491 82 25.20 211.5 91 9.52 7.0
## 1492 115 14.10 227.3 106 10.23 12.8
## 1493 100 25.78 154.5 65 6.95 9.7
## 1494 97 12.87 153.8 97 6.92 12.8
## 1495 114 15.89 210.7 109 9.48 4.9
## 1496 80 22.27 191.4 101 8.61 10.8
## 1497 95 20.11 255.0 90 11.48 11.7
## 1498 80 12.55 172.7 121 7.77 10.6
## 1499 108 25.33 210.2 95 9.46 11.1
## 1500 110 17.21 230.7 86 10.38 11.5
## 1501 88 23.59 162.5 117 7.31 12.2
## 1502 125 9.17 185.5 81 8.35 12.7
## 1503 89 19.78 168.8 94 7.60 5.9
## 1504 94 13.86 236.7 117 10.65 12.2
## 1505 122 18.71 280.5 147 12.62 8.5
## 1506 98 19.30 188.3 125 8.47 8.8
## 1507 81 14.27 248.3 110 11.17 10.7
## 1508 113 14.29 239.8 145 10.79 12.0
## 1509 88 23.34 252.2 120 11.35 6.6
## 1510 93 14.95 210.3 110 9.46 9.2
## 1511 75 15.36 211.1 113 9.50 8.6
## 1512 81 25.99 171.0 105 7.69 6.7
## 1513 103 18.85 65.7 91 2.96 4.2
## 1514 109 17.67 212.7 101 9.57 12.0
## 1515 107 13.61 311.8 121 14.03 7.0
## 1516 108 12.19 225.2 107 10.13 10.0
## 1517 100 22.14 233.8 97 10.52 8.4
## 1518 115 17.01 194.2 100 8.74 12.4
## 1519 119 17.22 203.6 102 9.16 11.3
## 1520 105 19.44 194.3 113 8.74 8.9
## 1521 101 14.76 214.6 105 9.66 9.5
## 1522 65 20.77 221.6 66 9.97 9.7
## 1523 99 14.64 263.2 109 11.84 5.6
## 1524 111 16.73 212.4 98 9.56 11.4
## 1525 105 15.26 71.1 95 3.20 12.5
## 1526 120 17.95 129.1 73 5.81 13.1
## 1527 106 11.31 213.7 123 9.62 13.4
## 1528 117 20.01 221.3 108 9.96 9.0
## 1529 128 14.20 203.0 84 9.14 4.5
## 1530 102 14.58 227.3 86 10.23 10.6
## 1531 102 18.33 271.8 96 12.23 8.0
## 1532 114 15.81 167.5 95 7.54 9.6
## 1533 84 14.53 171.5 112 7.72 11.5
## 1534 80 19.22 252.0 96 11.34 13.9
## 1535 125 14.68 293.7 78 13.22 10.7
## 1536 89 15.79 237.7 81 10.70 12.0
## 1537 109 16.22 219.9 102 9.90 8.9
## 1538 125 17.78 158.7 81 7.14 11.1
## 1539 88 7.85 197.4 114 8.88 13.7
## 1540 101 8.63 152.3 116 6.85 10.7
## 1541 104 11.49 199.7 93 8.99 15.7
## 1542 121 14.25 270.0 87 12.15 7.6
## 1543 120 17.98 258.2 113 11.62 11.9
## 1544 86 13.43 235.5 105 10.60 12.7
## 1545 109 17.53 141.6 66 6.37 8.2
## 1546 73 15.34 104.1 91 4.68 11.0
## 1547 119 14.10 182.3 72 8.20 14.3
## 1548 97 23.65 170.6 93 7.68 10.5
## 1549 133 14.62 169.2 105 7.61 10.3
## 1550 125 16.09 227.2 125 10.22 14.4
## 1551 113 18.71 112.3 95 5.05 11.4
## 1552 109 23.26 210.0 93 9.45 8.7
## 1553 97 16.29 135.0 68 6.08 16.4
## 1554 95 18.25 228.7 70 10.29 11.3
## 1555 85 11.64 220.9 97 9.94 13.3
## 1556 121 11.87 205.0 103 9.23 8.6
## 1557 123 21.00 259.9 105 11.70 9.6
## 1558 77 21.01 289.4 87 13.02 13.5
## 1559 78 20.09 256.6 102 11.55 14.8
## 1560 104 15.05 217.2 118 9.77 5.9
## 1561 90 22.70 151.5 101 6.82 8.9
## 1562 65 17.92 203.7 86 9.17 10.0
## 1563 113 10.98 207.5 117 9.34 12.9
## 1564 94 9.58 205.1 121 9.23 7.3
## 1565 82 16.64 288.8 78 13.00 0.0
## 1566 94 10.00 198.4 132 8.93 10.8
## 1567 68 16.79 209.5 102 9.43 9.5
## 1568 91 19.27 279.6 110 12.58 15.6
## 1569 94 14.25 274.4 101 12.35 11.4
## 1570 84 14.96 230.1 110 10.35 11.5
## 1571 90 13.13 281.4 107 12.66 17.3
## 1572 94 13.96 191.4 72 8.61 6.1
## 1573 85 16.72 253.5 97 11.41 10.1
## 1574 91 14.44 221.6 77 9.97 11.6
## 1575 90 21.22 185.9 99 8.37 12.7
## 1576 82 12.85 191.0 131 8.59 8.5
## 1577 57 17.43 172.2 100 7.75 10.4
## 1578 132 16.71 186.7 116 8.40 10.2
## 1579 99 17.79 162.1 80 7.29 8.8
## 1580 73 9.91 109.6 105 4.93 16.5
## 1581 89 27.40 166.8 83 7.51 10.6
## 1582 122 22.30 143.9 76 6.48 5.6
## 1583 95 10.23 271.2 96 12.20 9.0
## 1584 113 25.13 211.7 73 9.53 13.2
## 1585 111 12.21 253.4 82 11.40 12.6
## 1586 113 16.80 309.1 78 13.91 11.4
## 1587 80 14.21 194.7 70 8.76 7.2
## 1588 115 13.06 227.0 74 10.22 12.7
## 1589 126 16.90 217.1 70 9.77 12.4
## 1590 108 14.71 239.1 95 10.76 5.8
## 1591 132 23.83 129.6 73 5.83 11.3
## 1592 113 18.67 152.1 120 6.84 11.1
## 1593 80 13.77 187.7 126 8.45 5.8
## 1594 103 23.68 255.3 90 11.49 10.9
## 1595 108 12.00 168.2 68 7.57 6.3
## 1596 84 14.27 178.9 65 8.05 8.6
## 1597 89 16.85 170.8 139 7.69 8.2
## 1598 102 17.33 159.0 109 7.15 15.1
## 1599 112 11.47 79.3 95 3.57 8.8
## 1600 100 17.42 221.7 93 9.98 13.4
## 1601 133 19.63 261.6 100 11.77 4.5
## 1602 102 29.83 163.1 93 7.34 11.3
## 1603 108 15.32 196.2 129 8.83 8.7
## 1604 112 17.68 150.3 83 6.76 11.3
## 1605 83 22.72 114.2 90 5.14 13.3
## 1606 114 17.92 191.4 120 8.61 11.1
## 1607 144 20.05 325.6 99 14.65 10.1
## 1608 101 17.39 154.7 78 6.96 12.9
## 1609 99 17.88 242.7 88 10.92 13.8
## 1610 112 19.95 285.4 83 12.84 11.2
## 1611 103 24.98 306.6 90 13.80 12.6
## 1612 92 14.27 200.6 79 9.03 11.2
## 1613 120 21.82 270.0 107 12.15 7.0
## 1614 106 19.79 173.4 92 7.80 3.8
## 1615 120 24.42 192.0 94 8.64 13.8
## 1616 36 18.11 280.4 77 12.62 7.6
## 1617 86 14.72 272.8 97 12.28 10.9
## 1618 113 13.75 259.3 103 11.67 11.0
## 1619 111 17.80 172.4 109 7.76 11.9
## 1620 110 14.31 204.7 119 9.21 12.2
## 1621 99 16.32 163.1 100 7.34 9.6
## 1622 109 11.98 179.7 111 8.09 7.9
## 1623 101 21.13 133.1 113 5.99 9.6
## 1624 104 17.09 161.9 123 7.29 11.3
## 1625 133 14.32 169.8 122 7.64 11.1
## 1626 131 24.99 290.0 61 13.05 9.8
## 1627 82 16.86 114.1 83 5.13 8.6
## 1628 110 14.28 132.6 98 5.97 12.7
## 1629 90 9.83 190.5 114 8.57 15.8
## 1630 103 23.23 197.8 71 8.90 8.0
## 1631 122 17.14 130.2 121 5.86 13.2
## 1632 128 12.02 238.2 108 10.72 10.0
## 1633 129 16.42 188.0 91 8.46 11.2
## 1634 80 13.69 285.7 89 12.86 9.5
## 1635 97 20.05 210.1 120 9.45 12.0
## 1636 121 16.91 151.9 100 6.84 9.5
## 1637 81 27.39 210.0 96 9.45 8.9
## 1638 120 18.28 241.8 95 10.88 9.1
## 1639 88 15.26 167.8 71 7.55 9.7
## 1640 90 11.82 174.3 99 7.84 11.7
## 1641 85 14.94 202.0 111 9.09 11.0
## 1642 94 20.44 188.9 75 8.50 10.1
## 1643 103 14.71 195.1 125 8.78 7.5
## 1644 94 14.83 311.1 79 14.00 7.3
## 1645 84 14.88 158.2 95 7.12 10.5
## 1646 86 24.33 261.7 129 11.78 11.3
## 1647 134 18.22 151.2 119 6.80 9.9
## 1648 98 8.99 214.8 78 9.67 13.5
## 1649 136 20.13 270.4 110 12.17 8.5
## 1650 110 16.43 171.5 139 7.72 10.4
## 1651 98 18.32 104.7 114 4.71 9.6
## 1652 87 9.20 139.6 132 6.28 17.3
## 1653 74 13.82 177.7 104 8.00 7.2
## 1654 106 18.67 155.7 103 7.01 11.1
## 1655 73 11.78 165.8 114 7.46 10.7
## 1656 106 21.05 207.7 75 9.35 5.0
## 1657 107 19.69 281.3 120 12.66 10.7
## 1658 113 13.43 177.5 75 7.99 6.0
## 1659 94 11.77 246.0 107 11.07 6.4
## 1660 75 13.29 131.3 92 5.91 13.7
## 1661 60 15.53 143.2 112 6.44 14.7
## 1662 144 13.57 210.0 108 9.45 8.9
## 1663 115 18.90 173.9 95 7.83 13.7
## 1664 120 20.50 210.4 83 9.47 10.9
## 1665 102 20.26 165.7 96 7.46 10.6
## 1666 110 10.49 115.6 101 5.20 12.3
## 1667 67 26.24 235.4 79 10.59 6.4
## 1668 105 14.63 129.6 119 5.83 10.2
## 1669 87 14.86 189.6 130 8.53 7.8
## 1670 74 23.00 209.9 130 9.45 8.1
## 1671 76 15.64 266.6 98 12.00 12.7
## 1672 60 23.63 305.4 74 13.74 14.0
## 1673 61 14.33 173.0 105 7.79 13.7
## 1674 122 23.87 171.7 80 7.73 10.5
## 1675 96 19.70 220.2 67 9.91 9.9
## 1676 100 18.79 227.1 71 10.22 10.2
## 1677 78 14.21 161.5 123 7.27 7.7
## 1678 51 21.20 168.2 77 7.57 9.0
## 1679 110 19.41 273.4 91 12.30 8.9
## 1680 120 17.71 267.1 102 12.02 10.6
## 1681 131 15.84 178.3 106 8.02 12.7
## 1682 106 23.18 192.8 105 8.68 7.1
## 1683 75 13.55 228.1 55 10.26 8.5
## 1684 140 20.52 226.0 118 10.17 12.9
## 1685 96 12.33 149.4 99 6.72 14.1
## 1686 86 12.05 194.0 83 8.73 10.8
## 1687 91 18.00 268.5 74 12.08 12.3
## 1688 105 13.20 175.0 111 7.88 14.2
## 1689 103 15.84 175.3 110 7.89 10.5
## 1690 91 18.62 197.4 65 8.88 11.4
## 1691 115 17.90 221.8 109 9.98 12.4
## 1692 120 19.86 179.3 61 8.07 7.3
## 1693 111 15.77 264.6 88 11.91 6.3
## 1694 105 21.17 173.2 124 7.79 12.5
## 1695 111 18.54 254.9 98 11.47 11.5
## 1696 102 16.63 291.8 120 13.13 13.3
## 1697 81 17.05 153.8 107 6.92 12.4
## 1698 121 17.80 206.1 79 9.27 11.5
## 1699 116 14.40 286.3 80 12.88 6.0
## 1700 140 13.62 161.8 84 7.28 8.4
## 1701 61 9.78 192.7 85 8.67 9.4
## 1702 71 23.16 178.2 76 8.02 11.0
## 1703 84 20.43 216.4 74 9.74 7.7
## 1704 84 17.56 178.0 105 8.01 11.1
## 1705 90 20.46 120.0 90 5.40 11.6
## 1706 114 16.22 129.0 105 5.81 7.2
## 1707 156 10.17 267.6 117 12.04 11.7
## 1708 94 13.64 206.9 88 9.31 5.6
## 1709 129 21.98 116.4 110 5.24 11.2
## 1710 53 21.29 181.2 67 8.15 10.5
## 1711 71 19.63 269.8 115 12.14 9.0
## 1712 88 14.74 145.8 99 6.56 11.7
## 1713 114 18.16 164.7 116 7.41 10.3
## 1714 80 15.09 228.9 87 10.30 7.5
## 1715 104 9.17 233.7 82 10.52 11.4
## 1716 105 22.24 228.6 109 10.29 13.3
## 1717 67 20.64 147.4 74 6.63 9.1
## 1718 133 17.74 231.4 93 10.41 14.3
## 1719 131 12.80 297.9 84 13.41 9.7
## 1720 115 12.61 179.8 88 8.09 15.2
## 1721 111 13.78 210.7 131 9.48 6.1
## 1722 116 17.06 230.1 76 10.35 8.2
## 1723 113 15.29 193.8 134 8.72 12.3
## 1724 75 23.49 241.4 75 10.86 10.9
## 1725 56 9.46 170.2 77 7.66 7.1
## 1726 105 17.33 282.6 131 12.72 14.1
## 1727 103 18.40 196.1 126 8.82 11.0
## 1728 119 13.52 259.2 53 11.66 12.2
## 1729 67 20.04 201.8 76 9.08 9.5
## 1730 105 14.50 166.0 85 7.47 13.4
## 1731 46 21.79 247.2 131 11.12 12.6
## 1732 111 25.79 255.6 104 11.50 12.9
## 1733 115 22.12 222.4 100 10.01 8.3
## 1734 99 23.01 239.5 83 10.78 3.5
## 1735 100 25.38 216.9 99 9.76 13.8
## 1736 88 17.60 157.4 93 7.08 14.8
## 1737 74 17.48 191.4 141 8.61 6.9
## 1738 101 17.48 218.5 60 9.83 8.8
## 1739 64 20.89 300.0 99 13.50 4.8
## 1740 147 25.59 167.0 140 7.52 5.8
## 1741 103 11.41 118.9 105 5.35 9.4
## 1742 83 16.54 276.6 78 12.45 3.7
## 1743 95 17.94 237.9 55 10.71 11.4
## 1744 78 21.94 131.3 123 5.91 5.8
## 1745 88 22.05 238.0 132 10.71 7.7
## 1746 129 14.31 188.7 117 8.49 10.2
## 1747 89 17.76 248.2 98 11.17 13.5
## 1748 103 16.75 154.9 132 6.97 10.0
## 1749 136 22.01 268.4 154 12.08 14.1
## 1750 112 14.26 188.8 102 8.50 8.8
## 1751 95 14.35 262.9 126 11.83 6.9
## 1752 63 20.95 218.0 103 9.81 8.8
## 1753 83 10.57 262.0 98 11.79 14.1
## 1754 102 17.71 228.9 120 10.30 7.5
## 1755 108 22.07 141.5 111 6.37 9.7
## 1756 120 14.50 141.2 82 6.35 11.9
## 1757 111 10.48 117.8 103 5.30 9.2
## 1758 94 14.84 165.3 114 7.44 12.0
## 1759 90 19.12 253.9 108 11.43 12.1
## 1760 93 22.21 209.5 108 9.43 8.9
## 1761 109 19.78 259.9 95 11.70 9.2
## 1762 113 20.13 241.2 127 10.85 7.7
## 1763 128 13.25 186.0 83 8.37 7.4
## 1764 84 23.22 171.0 106 7.69 11.5
## 1765 83 21.60 239.4 91 10.77 7.5
## 1766 67 18.79 127.9 101 5.76 12.7
## 1767 121 11.88 171.6 96 7.72 11.6
## 1768 90 7.54 229.4 120 10.32 10.5
## 1769 100 18.72 179.7 124 8.09 10.8
## 1770 81 21.25 133.3 79 6.00 9.6
## 1771 114 18.70 252.9 106 11.38 9.1
## 1772 113 18.69 229.0 99 10.31 12.7
## 1773 88 17.47 114.5 89 5.15 12.5
## 1774 74 13.35 222.4 124 10.01 11.5
## 1775 117 14.28 281.5 87 12.67 6.6
## 1776 65 24.30 256.7 106 11.55 9.5
## 1777 100 19.59 228.2 109 10.27 11.0
## 1778 97 20.86 219.6 80 9.88 10.0
## 1779 60 13.53 236.4 113 10.64 11.3
## 1780 71 22.04 170.5 120 7.67 11.3
## 1781 85 18.78 218.9 129 9.85 12.0
## 1782 81 20.32 116.1 125 5.22 15.1
## 1783 60 14.39 141.1 99 6.35 8.0
## 1784 102 11.90 165.4 148 7.44 10.9
## 1785 85 19.80 214.2 92 9.64 14.1
## 1786 101 18.91 235.6 92 10.60 7.9
## 1787 106 12.48 287.8 144 12.95 8.2
## 1788 108 20.52 169.6 77 7.63 7.8
## 1789 91 19.30 195.7 103 8.81 12.3
## 1790 135 6.22 114.3 99 5.14 4.7
## 1791 108 17.48 210.2 123 9.46 9.2
## 1792 102 17.99 179.5 91 8.08 10.8
## 1793 107 17.59 231.7 99 10.43 6.1
## 1794 105 22.03 279.8 123 12.59 7.3
## 1795 108 18.97 203.7 107 9.17 11.5
## 1796 108 22.34 123.8 131 5.57 15.2
## 1797 91 11.54 212.4 129 9.56 13.0
## 1798 130 17.67 203.6 95 9.16 10.2
## 1799 123 21.02 214.7 94 9.66 12.0
## 1800 90 14.25 87.5 90 3.94 6.2
## 1801 111 20.76 221.2 93 9.95 10.7
## 1802 130 16.97 263.9 96 11.88 8.5
## 1803 105 19.39 98.0 125 4.41 13.8
## 1804 75 22.27 210.0 93 9.45 8.5
## 1805 111 13.66 263.8 112 11.87 9.6
## 1806 137 19.63 217.1 99 9.77 10.7
## 1807 117 10.79 185.6 92 8.35 11.7
## 1808 123 16.97 135.9 71 6.12 12.9
## 1809 84 17.88 217.4 106 9.78 12.4
## 1810 119 16.69 294.8 111 13.27 13.8
## 1811 116 20.49 227.5 153 10.24 11.9
## 1812 87 19.02 240.3 96 10.81 15.4
## 1813 106 20.26 94.4 96 4.25 8.3
## 1814 88 13.91 169.7 138 7.64 6.1
## 1815 121 18.44 112.8 125 5.08 13.1
## 1816 74 13.57 181.6 100 8.17 9.5
## 1817 125 18.39 141.1 116 6.35 18.4
## 1818 123 12.07 190.7 128 8.58 7.3
## 1819 113 16.27 286.5 125 12.89 11.8
## 1820 100 14.25 262.7 87 11.82 4.4
## 1821 115 14.05 243.9 95 10.98 8.9
## 1822 110 20.83 108.9 113 4.90 15.4
## 1823 112 20.48 127.1 88 5.72 8.8
## 1824 121 11.81 277.8 104 12.50 11.8
## 1825 93 20.46 185.7 125 8.36 15.0
## 1826 66 22.09 115.9 103 5.22 7.8
## 1827 127 12.96 199.4 128 8.97 7.7
## 1828 89 14.96 250.9 113 11.29 13.4
## 1829 103 17.37 141.9 72 6.39 9.9
## 1830 69 16.78 162.1 117 7.29 10.6
## 1831 118 14.20 72.2 89 3.25 10.5
## 1832 102 22.74 266.9 130 12.01 11.3
## 1833 101 18.03 138.4 134 6.23 15.1
## 1834 83 23.42 182.5 122 8.21 8.0
## 1835 123 18.97 256.2 130 11.53 14.2
## 1836 128 15.17 218.3 107 9.82 8.0
## 1837 125 21.49 156.7 95 7.05 9.7
## 1838 84 25.77 171.8 84 7.73 8.6
## 1839 113 15.73 177.7 144 8.00 8.1
## 1840 87 6.62 247.1 105 11.12 13.2
## 1841 106 6.45 224.6 115 10.11 7.1
## 1842 95 9.03 157.4 94 7.08 5.3
## 1843 106 17.09 231.3 73 10.41 8.9
## 1844 106 14.95 243.5 55 10.96 16.2
## 1845 102 20.78 207.5 74 9.34 11.5
## 1846 92 18.97 269.0 116 12.11 13.9
## 1847 70 14.88 161.3 117 7.26 11.5
## 1848 117 17.88 129.2 117 5.81 12.5
## 1849 123 13.57 197.4 62 8.88 8.6
## 1850 99 13.54 216.8 86 9.76 13.9
## 1851 129 18.54 212.3 105 9.55 9.3
## 1852 141 16.15 144.0 116 6.48 10.9
## 1853 105 14.25 240.0 107 10.80 14.5
## 1854 71 21.51 221.6 113 9.97 5.9
## 1855 91 14.20 271.8 94 12.23 5.5
## 1856 76 12.10 91.2 86 4.10 10.9
## 1857 44 25.64 139.4 108 6.27 9.7
## 1858 111 24.31 249.4 117 11.22 12.1
## 1859 90 22.50 111.7 103 5.03 11.2
## 1860 103 23.00 230.4 109 10.37 8.0
## 1861 77 23.09 203.3 108 9.15 7.4
## 1862 96 13.61 184.0 120 8.28 7.7
## 1863 80 21.44 178.1 103 8.01 8.0
## 1864 94 23.10 110.7 78 4.98 8.7
## 1865 57 22.23 203.8 90 9.17 11.4
## 1866 130 15.90 149.8 100 6.74 7.9
## 1867 114 21.57 213.1 125 9.59 8.9
## 1868 120 12.72 227.8 60 10.25 9.8
## 1869 86 19.07 197.4 60 8.88 8.3
## 1870 106 23.21 278.2 93 12.52 13.5
## 1871 126 21.48 227.5 114 10.24 8.0
## 1872 88 18.62 243.6 107 10.96 5.5
## 1873 76 10.53 323.5 88 14.56 8.1
## 1874 115 10.14 194.3 83 8.74 12.0
## 1875 107 21.45 185.4 104 8.34 4.9
## 1876 87 19.63 181.5 86 8.17 11.4
## 1877 153 16.68 236.1 119 10.62 8.1
## 1878 97 14.06 235.4 117 10.59 9.7
## 1879 117 19.73 204.4 123 9.20 11.5
## 1880 143 14.87 201.6 135 9.07 9.4
## 1881 78 12.67 255.5 115 11.50 14.8
## 1882 95 20.09 235.5 105 10.60 7.7
## 1883 67 19.26 198.8 91 8.95 12.9
## 1884 97 14.65 184.5 94 8.30 11.1
## 1885 134 17.05 192.4 98 8.66 12.3
## 1886 92 19.71 164.7 85 7.41 12.7
## 1887 66 14.88 217.2 106 9.77 5.5
## 1888 114 9.10 167.7 95 7.55 14.7
## 1889 56 24.04 84.8 118 3.82 12.0
## 1890 127 11.99 171.5 76 7.72 10.3
## 1891 64 20.64 85.8 80 3.86 10.3
## 1892 77 11.47 310.5 83 13.97 10.3
## 1893 98 15.72 143.2 146 6.44 9.9
## 1894 118 21.63 273.2 98 12.29 8.9
## 1895 109 11.65 256.3 107 11.53 10.2
## 1896 100 14.08 208.0 120 9.36 10.1
## 1897 107 17.87 257.2 93 11.57 9.9
## 1898 112 15.90 281.1 112 12.65 12.9
## 1899 108 16.11 223.9 93 10.08 7.4
## 1900 61 7.53 290.0 96 13.05 10.8
## 1901 80 21.76 211.0 87 9.49 9.9
## 1902 118 17.95 196.2 122 8.83 10.2
## 1903 76 16.64 221.6 82 9.97 11.2
## 1904 122 10.17 193.2 125 8.69 14.0
## 1905 91 17.45 130.0 132 5.85 14.5
## 1906 96 12.94 221.0 93 9.95 7.0
## 1907 116 5.54 144.4 92 6.50 10.9
## 1908 105 20.17 211.6 116 9.52 9.8
## 1909 101 13.03 309.2 123 13.91 12.8
## 1910 88 19.13 201.7 89 9.08 12.1
## 1911 109 19.58 256.7 96 11.55 6.5
## 1912 64 18.48 220.1 100 9.90 8.2
## 1913 126 14.37 221.2 104 9.95 10.4
## 1914 88 11.86 187.4 102 8.43 5.5
## 1915 112 9.62 134.1 118 6.03 9.9
## 1916 101 16.89 301.7 136 13.58 6.5
## 1917 120 11.25 242.9 96 10.93 11.8
## 1918 85 17.01 266.7 105 12.00 11.0
## 1919 117 14.99 225.9 112 10.17 14.2
## 1920 102 18.33 230.8 125 10.39 9.5
## 1921 95 16.21 214.5 106 9.65 8.6
## 1922 99 17.24 136.2 119 6.13 9.4
## 1923 119 10.78 182.4 87 8.21 9.7
## 1924 115 13.00 318.3 115 14.32 11.8
## 1925 119 24.17 305.5 101 13.75 11.3
## 1926 141 16.80 247.5 102 11.14 9.8
## 1927 112 17.36 196.2 92 8.83 9.8
## 1928 118 7.69 150.3 64 6.76 15.3
## 1929 129 23.38 141.1 92 6.35 11.2
## 1930 130 13.56 260.6 96 11.73 11.6
## 1931 98 17.77 214.0 96 9.63 10.9
## 1932 50 15.97 120.3 131 5.41 7.8
## 1933 81 18.21 315.0 106 14.18 8.6
## 1934 68 21.80 229.1 89 10.31 10.0
## 1935 96 25.63 202.8 109 9.13 8.7
## 1936 128 14.20 244.7 80 11.01 13.6
## 1937 134 9.63 188.6 105 8.49 11.4
## 1938 144 13.18 99.0 117 4.46 12.1
## 1939 91 16.01 254.4 85 11.45 6.8
## 1940 67 19.30 178.1 135 8.01 9.2
## 1941 76 13.82 250.3 101 11.26 8.7
## 1942 86 10.71 289.2 135 13.01 7.6
## 1943 93 17.04 279.2 91 12.56 8.8
## 1944 107 14.93 243.3 92 10.95 10.9
## 1945 81 17.45 218.2 90 9.82 6.7
## 1946 80 21.88 107.3 88 4.83 8.5
## 1947 115 17.24 146.4 73 6.59 5.1
## 1948 100 17.99 230.6 100 10.38 8.0
## 1949 106 20.66 255.2 114 11.48 6.8
## 1950 83 22.85 181.5 91 8.17 10.0
## 1951 104 11.34 176.1 84 7.92 7.0
## 1952 114 15.00 154.5 102 6.95 9.6
## 1953 123 15.47 218.2 127 9.82 6.1
## 1954 100 19.15 221.6 130 9.97 11.1
## 1955 94 23.67 193.1 134 8.69 11.8
## 1956 108 17.59 193.9 70 8.73 5.6
## 1957 90 17.60 159.8 76 7.19 12.6
## 1958 91 17.35 156.2 113 7.03 10.2
## 1959 94 10.20 130.3 64 5.86 12.4
## 1960 135 22.76 200.5 62 9.02 12.8
## 1961 78 4.18 163.3 93 7.35 13.9
## 1962 90 21.22 162.2 84 7.30 11.1
## 1963 152 20.56 252.1 92 11.34 10.4
## 1964 116 16.95 142.7 105 6.42 10.1
## 1965 88 16.01 188.3 98 8.47 11.0
## 1966 107 14.44 212.3 118 9.55 11.1
## 1967 144 15.72 234.3 89 10.54 2.0
## 1968 99 20.93 172.1 124 7.74 9.4
## 1969 105 15.70 174.1 94 7.83 8.0
## 1970 123 15.65 272.9 107 12.28 13.5
## 1971 123 18.10 208.2 73 9.37 13.0
## 1972 115 26.40 234.7 92 10.56 9.0
## 1973 112 21.75 136.7 62 6.15 12.5
## 1974 108 20.37 149.5 80 6.73 6.3
## 1975 56 13.73 271.5 100 12.22 8.7
## 1976 90 12.67 171.4 72 7.71 7.0
## 1977 78 16.67 215.4 108 9.69 10.4
## 1978 119 17.76 167.8 86 7.55 15.6
## 1979 61 14.32 164.0 102 7.38 13.3
## 1980 48 15.18 202.7 90 9.12 7.4
## 1981 60 12.12 314.1 144 14.13 12.7
## 1982 99 21.09 214.4 122 9.65 5.3
## 1983 85 21.73 192.9 95 8.68 15.7
## 1984 88 19.58 223.7 85 10.07 9.4
## 1985 94 19.22 159.1 94 7.16 16.4
## 1986 97 19.41 180.1 111 8.10 8.2
## 1987 83 11.59 156.6 89 7.05 12.1
## 1988 123 14.21 138.6 106 6.24 10.2
## 1989 98 15.78 212.5 128 9.56 12.1
## 1990 101 22.30 226.5 82 10.19 12.0
## 1991 98 17.93 229.9 125 10.35 12.4
## 1992 83 18.43 179.4 107 8.07 12.6
## 1993 87 12.62 183.9 100 8.28 7.6
## 1994 77 22.64 214.0 110 9.63 4.5
## 1995 94 13.40 98.2 70 4.42 10.6
## 1996 91 21.94 215.5 130 9.70 11.7
## 1997 92 25.48 185.3 120 8.34 7.6
## 1998 84 11.06 165.8 63 7.46 13.1
## 1999 95 16.47 171.7 88 7.73 9.7
## 2000 95 16.54 159.0 54 7.15 10.9
## 2001 92 13.74 192.4 112 8.66 10.1
## 2002 67 15.15 214.2 152 9.64 10.7
## 2003 128 15.86 258.2 105 11.62 12.9
## 2004 104 13.74 189.9 136 8.55 13.0
## 2005 78 17.43 245.2 100 11.03 17.8
## 2006 71 17.39 196.9 103 8.86 11.1
## 2007 93 11.56 210.5 82 9.47 6.6
## 2008 89 19.82 188.5 121 8.48 6.2
## 2009 94 17.86 95.0 98 4.27 11.9
## 2010 88 15.75 178.7 105 8.04 8.3
## 2011 142 16.12 170.9 67 7.69 12.7
## 2012 95 16.47 192.0 123 8.64 9.3
## 2013 92 10.50 160.7 105 7.23 6.1
## 2014 89 16.15 163.2 99 7.34 10.8
## 2015 103 14.62 183.4 96 8.25 13.7
## 2016 99 12.59 145.2 74 6.53 13.8
## 2017 67 22.12 177.4 112 7.98 9.2
## 2018 94 14.68 192.6 113 8.67 9.5
## 2019 91 20.98 203.9 117 9.18 7.5
## 2020 86 16.41 149.4 93 6.72 11.1
## 2021 109 19.58 217.0 83 9.76 5.2
## 2022 97 15.15 199.3 104 8.97 11.1
## 2023 90 15.55 172.9 92 7.78 10.6
## 2024 122 8.46 189.5 75 8.53 13.4
## 2025 88 18.44 161.3 91 7.26 12.6
## 2026 87 16.46 180.9 145 8.14 13.4
## 2027 105 16.49 256.1 114 11.52 14.1
## 2028 102 15.79 227.6 97 10.24 10.8
## 2029 89 12.89 303.5 114 13.66 8.7
## 2030 141 17.70 180.9 106 8.14 14.4
## 2031 122 23.81 154.2 110 6.94 11.8
## 2032 112 20.91 207.2 121 9.32 11.4
## 2033 65 23.66 194.8 61 8.77 13.2
## 2034 71 23.72 250.7 65 11.28 10.4
## 2035 92 17.77 328.5 112 14.78 14.6
## 2036 69 24.62 212.9 71 9.58 8.7
## 2037 91 15.33 133.4 122 6.00 8.0
## 2038 96 20.42 158.6 108 7.14 6.7
## 2039 101 19.45 257.5 106 11.59 10.1
## 2040 102 17.82 192.5 129 8.66 10.6
## 2041 142 14.95 269.9 85 12.15 9.7
## 2042 74 16.72 151.1 103 6.80 9.9
## 2043 97 22.39 181.1 91 8.15 11.2
## 2044 108 16.39 162.9 84 7.33 6.4
## 2045 109 14.24 212.8 114 9.58 10.0
## 2046 89 23.55 101.8 94 4.58 13.6
## 2047 88 16.46 248.9 119 11.20 11.1
## 2048 113 15.32 220.6 95 9.93 12.2
## 2049 113 14.35 244.1 127 10.98 9.6
## 2050 91 17.80 212.9 67 9.58 7.0
## 2051 116 10.26 244.4 102 11.00 7.5
## 2052 91 14.59 219.0 98 9.86 8.2
## 2053 112 18.17 214.3 112 9.64 9.7
## 2054 117 20.02 102.0 146 4.59 13.0
## 2055 102 18.18 120.0 126 5.40 7.1
## 2056 83 10.85 142.1 103 6.39 13.5
## 2057 110 18.78 196.9 116 8.86 13.3
## 2058 108 15.20 228.7 96 10.29 11.5
## 2059 91 20.60 279.8 105 12.59 12.1
## 2060 144 16.47 257.6 61 11.59 8.9
## 2061 48 22.70 225.1 105 10.13 7.3
## 2062 108 18.89 117.6 102 5.29 10.3
## 2063 106 22.93 220.4 116 9.92 10.3
## 2064 154 10.85 253.1 109 11.39 10.1
## 2065 109 17.76 232.4 82 10.46 9.2
## 2066 105 20.18 148.1 83 6.66 12.2
## 2067 90 21.63 219.6 122 9.88 15.1
## 2068 87 19.63 149.9 91 6.75 9.9
## 2069 94 14.33 95.3 59 4.29 12.3
## 2070 105 21.32 176.0 112 7.92 9.8
## 2071 75 15.16 162.4 113 7.31 13.1
## 2072 109 26.72 246.7 81 11.10 4.2
## 2073 122 9.75 153.6 88 6.91 6.5
## 2074 103 20.44 233.5 121 10.51 11.3
## 2075 98 25.10 195.5 121 8.80 6.6
## 2076 123 11.82 199.1 139 8.96 8.8
## 2077 71 21.73 208.0 120 9.36 10.1
## 2078 100 11.54 277.6 123 12.49 13.1
## 2079 81 14.98 89.7 81 4.04 4.3
## 2080 121 17.02 237.4 89 10.68 13.1
## 2081 120 25.58 236.0 68 10.62 11.9
## 2082 114 8.02 287.6 95 12.94 10.1
## 2083 100 16.12 222.8 75 10.03 9.8
## 2084 79 15.44 155.6 104 7.00 8.3
## 2085 114 15.01 214.4 91 9.65 8.8
## 2086 86 13.02 215.6 103 9.70 11.1
## 2087 98 22.59 228.3 80 10.27 12.6
## 2088 95 18.06 214.7 114 9.66 11.1
## 2089 98 16.12 157.6 99 7.09 16.4
## 2090 78 27.09 224.1 108 10.08 11.1
## 2091 99 19.98 140.1 90 6.30 10.6
## 2092 96 19.73 149.2 82 6.71 7.5
## 2093 144 11.99 205.7 101 9.26 10.8
## 2094 82 20.25 176.4 107 7.94 12.9
## 2095 87 13.34 175.8 82 7.91 11.0
## 2096 110 16.10 153.6 104 6.91 13.3
## 2097 102 9.63 118.0 71 5.31 16.1
## 2098 132 16.02 189.3 87 8.52 9.8
## 2099 126 23.35 184.4 95 8.30 9.8
## 2100 92 21.58 263.3 126 11.85 10.1
## 2101 96 14.10 132.8 99 5.98 13.3
## 2102 98 16.47 206.0 106 9.27 6.9
## 2103 89 18.39 179.6 99 8.08 12.7
## 2104 100 17.11 214.7 88 9.66 9.7
## 2105 111 15.73 157.0 74 7.07 10.9
## 2106 97 19.80 154.0 86 6.93 9.6
## 2107 109 13.65 218.8 102 9.85 13.6
## 2108 88 23.28 227.0 77 10.22 10.1
## 2109 74 18.04 169.3 87 7.62 9.5
## 2110 109 20.54 160.0 112 7.20 12.6
## 2111 83 15.02 188.2 93 8.47 10.2
## 2112 107 10.80 329.3 66 14.82 14.4
## 2113 81 17.80 161.1 78 7.25 12.2
## 2114 115 21.73 242.8 76 10.93 11.7
## 2115 103 14.32 178.3 91 8.02 13.3
## 2116 86 15.00 232.4 108 10.46 15.2
## 2117 74 10.74 148.6 87 6.69 14.2
## 2118 111 13.81 184.9 120 8.32 11.9
## 2119 86 15.56 226.4 100 10.19 9.8
## 2120 106 20.60 231.8 78 10.43 11.6
## 2121 91 18.38 229.8 82 10.34 13.7
## 2122 77 23.48 146.5 111 6.59 12.7
## 2123 89 20.96 271.9 102 12.24 16.4
## 2124 113 13.40 192.5 69 8.66 8.1
## 2125 97 13.68 279.5 96 12.58 10.7
## 2126 111 18.99 257.9 73 11.61 3.8
## 2127 91 15.33 262.9 105 11.83 9.7
## 2128 74 17.50 216.6 112 9.75 11.2
## 2129 97 9.05 221.7 96 9.98 10.2
## 2130 124 20.38 293.5 135 13.21 7.4
## 2131 99 21.40 168.6 112 7.59 10.9
## 2132 97 16.41 253.4 88 11.40 11.0
## 2133 70 15.19 185.7 113 8.36 6.0
## 2134 87 19.11 197.6 91 8.89 10.3
## 2135 115 19.09 256.7 74 11.55 13.0
## 2136 92 18.81 150.4 120 6.77 11.2
## 2137 80 24.51 180.6 103 8.13 11.3
## 2138 108 17.53 163.4 93 7.35 8.9
## 2139 120 19.98 239.7 119 10.79 10.9
## 2140 112 17.60 284.6 95 12.81 12.0
## 2141 126 11.62 244.4 81 11.00 13.2
## 2142 101 18.52 248.1 108 11.16 6.6
## 2143 133 17.87 146.4 106 6.59 12.5
## 2144 87 10.39 189.1 103 8.51 11.3
## 2145 85 14.45 165.9 78 7.47 12.7
## 2146 124 15.57 293.7 72 13.22 10.8
## 2147 105 14.25 155.7 86 7.01 10.9
## 2148 92 22.26 166.8 108 7.51 12.7
## 2149 73 19.10 227.7 91 10.25 10.0
## 2150 84 13.89 146.7 88 6.60 11.6
## 2151 83 25.89 181.2 132 8.15 12.6
## 2152 94 12.20 273.7 110 12.32 9.6
## 2153 123 11.83 146.7 89 6.60 11.1
## 2154 81 15.28 145.7 120 6.56 9.5
## 2155 112 20.95 285.3 104 12.84 12.5
## 2156 111 21.81 168.5 104 7.58 12.0
## 2157 79 16.32 212.2 98 9.55 11.3
## 2158 133 10.51 229.5 99 10.33 10.2
## 2159 95 22.47 235.2 97 10.58 13.2
## 2160 116 15.49 279.8 105 12.59 13.0
## 2161 106 28.89 172.9 76 7.78 7.9
## 2162 111 13.13 196.0 57 8.82 12.1
## 2163 119 25.37 214.2 104 9.64 6.9
## 2164 97 22.69 211.0 118 9.49 7.4
## 2165 96 21.46 118.3 112 5.32 9.9
## 2166 121 20.70 178.2 92 8.02 13.0
## 2167 113 21.34 138.3 85 6.22 11.2
## 2168 106 17.35 238.4 109 10.73 6.7
## 2169 138 14.32 109.3 99 4.92 10.3
## 2170 116 16.78 238.5 86 10.73 10.6
## 2171 104 19.23 254.1 72 11.43 10.9
## 2172 104 17.98 207.4 124 9.33 6.8
## 2173 76 14.06 208.4 97 9.38 11.2
## 2174 123 15.21 152.6 96 6.87 13.3
## 2175 97 7.59 150.7 92 6.78 10.3
## 2176 111 16.09 174.9 82 7.87 8.8
## 2177 86 17.88 229.4 104 10.32 7.8
## 2178 115 12.64 282.5 105 12.71 13.1
## 2179 110 22.37 137.7 74 6.20 7.3
## 2180 98 16.41 99.3 119 4.47 11.6
## 2181 99 10.53 266.3 105 11.98 2.9
## 2182 109 17.51 192.4 117 8.66 15.0
## 2183 103 20.64 243.0 93 10.93 13.0
## 2184 142 24.18 176.0 98 7.92 14.0
## 2185 91 22.63 228.2 90 10.27 11.8
## 2186 72 12.72 191.4 87 8.61 13.0
## 2187 88 27.80 226.5 119 10.19 10.9
## 2188 108 14.73 216.5 64 9.74 12.4
## 2189 125 27.12 237.6 78 10.69 7.3
## 2190 68 15.05 162.2 127 7.30 9.7
## 2191 92 21.42 189.0 104 8.50 10.9
## 2192 100 14.50 137.4 74 6.18 5.4
## 2193 82 21.81 173.6 112 7.81 5.3
## 2194 71 17.99 189.3 104 8.52 9.4
## 2195 85 19.58 243.6 104 10.96 9.0
## 2196 119 15.68 208.3 101 9.37 6.1
## 2197 68 24.85 142.3 116 6.40 11.5
## 2198 133 18.89 192.0 95 8.64 3.1
## 2199 107 15.45 100.9 131 4.54 3.3
## 2200 85 14.82 245.3 59 11.04 8.5
## 2201 88 10.50 213.2 51 9.59 8.4
## 2202 137 15.37 193.1 94 8.69 14.0
## 2203 91 16.81 151.1 92 6.80 10.4
## 2204 93 25.02 239.8 120 10.79 11.0
## 2205 149 10.17 173.9 126 7.83 6.8
## 2206 126 11.73 233.5 112 10.51 11.2
## 2207 138 20.06 152.5 104 6.86 10.6
## 2208 105 10.29 198.0 126 8.91 9.8
## 2209 95 18.75 224.7 104 10.11 9.6
## 2210 86 12.28 157.9 106 7.11 6.8
## 2211 67 16.17 255.2 84 11.48 11.7
## 2212 101 19.23 189.8 99 8.54 11.1
## 2213 59 14.53 177.3 130 7.98 4.8
## 2214 73 25.79 197.1 71 8.87 12.4
## 2215 115 24.24 150.8 122 6.79 13.0
## 2216 86 14.49 227.6 80 10.24 11.5
## 2217 88 15.91 181.1 84 8.15 11.8
## 2218 137 15.22 179.6 126 8.08 11.4
## 2219 126 21.06 219.0 78 9.86 11.3
## 2220 86 10.86 225.6 86 10.15 9.9
## 2221 105 21.16 200.8 87 9.04 8.6
## 2222 86 17.77 169.7 70 7.64 10.2
## 2223 81 13.55 269.1 94 12.11 12.1
## 2224 105 12.16 165.8 84 7.46 11.0
## 2225 65 11.42 215.6 84 9.70 15.5
## 2226 65 16.05 253.2 88 11.39 12.1
## 2227 129 18.04 152.7 92 6.87 10.5
## 2228 155 19.00 217.4 90 9.78 10.2
## 2229 97 18.39 154.2 66 6.94 7.6
## 2230 136 21.31 249.4 86 11.22 17.6
## 2231 93 17.43 119.4 111 5.37 7.8
## 2232 94 9.32 172.7 107 7.77 7.1
## 2233 85 13.23 261.6 105 11.77 12.4
## 2234 63 16.37 255.7 125 11.51 11.0
## 2235 103 15.78 159.4 83 7.17 10.0
## 2236 77 12.98 232.8 95 10.48 9.7
## 2237 126 10.24 220.8 121 9.94 14.4
## 2238 88 15.24 242.7 131 10.92 6.8
## 2239 131 15.33 230.6 106 10.38 17.3
## 2240 148 16.88 206.6 96 9.30 9.3
## 2241 100 16.97 160.7 106 7.23 13.7
## 2242 111 12.25 226.6 101 10.20 4.9
## 2243 98 19.12 212.4 105 9.56 11.4
## 2244 116 14.54 196.1 96 8.82 8.6
## 2245 85 16.63 232.6 104 10.47 10.9
## 2246 77 13.76 128.3 91 5.77 8.8
## 2247 74 17.98 188.5 105 8.48 11.3
## 2248 93 17.84 194.1 100 8.73 12.8
## 2249 111 17.77 268.2 130 12.07 13.3
## 2250 92 15.10 159.8 72 7.19 14.4
## 2251 121 17.98 291.2 123 13.10 7.2
## 2252 86 13.98 94.0 98 4.23 6.4
## 2253 125 13.74 203.1 82 9.14 10.6
## 2254 111 17.25 259.0 58 11.66 8.9
## 2255 84 5.88 257.6 64 11.59 6.7
## 2256 93 15.42 131.4 108 5.91 11.3
## 2257 80 14.23 238.2 117 10.72 2.6
## 2258 88 19.85 221.3 92 9.96 13.5
## 2259 79 16.63 210.3 78 9.46 7.2
## 2260 103 12.55 192.7 97 8.67 10.1
## 2261 74 17.29 228.4 117 10.28 13.0
## 2262 69 27.99 127.1 78 5.72 9.4
## 2263 91 15.65 151.6 75 6.82 14.6
## 2264 108 20.13 173.3 149 7.80 9.0
## 2265 107 17.31 202.0 105 9.09 8.7
## 2266 65 21.52 223.2 114 10.04 8.7
## 2267 77 18.88 118.5 111 5.33 10.0
## 2268 151 18.39 218.4 106 9.83 12.8
## 2269 129 16.24 215.5 82 9.70 11.3
## 2270 147 14.76 162.6 96 7.32 8.2
## 2271 82 19.43 303.5 94 13.66 12.2
## 2272 74 19.65 313.4 108 14.10 8.7
## 2273 101 22.28 268.2 98 12.07 11.7
## 2274 127 13.52 139.5 101 6.28 7.6
## 2275 59 17.81 180.6 75 8.13 9.9
## 2276 108 12.33 245.3 140 11.04 7.7
## 2277 48 17.43 175.8 88 7.91 5.9
## 2278 105 21.12 269.6 78 12.13 13.3
## 2279 84 21.45 255.7 76 11.51 8.4
## 2280 97 15.77 237.3 145 10.68 9.5
## 2281 109 26.66 126.6 117 5.70 13.4
## 2282 92 17.50 286.5 80 12.89 8.3
## 2283 97 18.06 245.9 67 11.07 12.6
## 2284 103 10.24 117.0 102 5.27 4.7
## 2285 87 14.44 207.0 133 9.32 12.6
## 2286 98 15.77 226.7 96 10.20 11.8
## 2287 105 14.22 270.6 105 12.18 10.4
## 2288 96 13.18 199.5 97 8.98 6.6
## 2289 84 10.79 221.2 166 9.95 8.8
## 2290 83 24.88 184.0 90 8.28 10.8
## 2291 140 22.09 204.3 115 9.19 10.7
## 2292 66 20.13 182.3 75 8.20 11.9
## 2293 104 16.58 159.6 139 7.18 10.5
## 2294 79 16.26 226.7 79 10.20 9.1
## 2295 133 9.85 220.6 115 9.93 7.4
## 2296 96 15.12 113.3 117 5.10 6.6
## 2297 94 20.23 198.4 103 8.93 10.2
## 2298 115 18.62 212.6 80 9.57 12.9
## 2299 87 13.57 148.7 115 6.69 8.8
## 2300 70 20.07 192.7 91 8.67 8.0
## 2301 118 23.53 223.5 65 10.06 8.8
## 2302 85 15.34 226.0 94 10.17 17.0
## 2303 90 17.21 233.1 96 10.49 11.5
## 2304 81 12.81 188.2 67 8.47 10.1
## 2305 97 19.75 127.7 112 5.75 11.0
## 2306 95 7.63 326.0 91 14.67 11.1
## 2307 92 13.54 264.4 94 11.90 6.0
## 2308 116 17.06 201.7 102 9.08 10.9
## 2309 96 14.77 178.4 61 8.03 12.1
## 2310 93 25.82 206.1 82 9.27 8.9
## 2311 109 19.87 215.8 90 9.71 13.5
## 2312 114 20.59 304.2 109 13.69 10.8
## 2313 97 16.68 310.1 110 13.95 9.2
## 2314 61 15.93 119.1 81 5.36 11.5
## 2315 88 20.77 207.2 97 9.32 11.6
## 2316 96 20.97 103.8 118 4.67 7.0
## 2317 94 5.61 213.1 105 9.59 12.9
## 2318 69 15.90 128.1 71 5.76 6.3
## 2319 73 18.14 190.8 92 8.59 11.5
## 2320 83 21.51 180.8 123 8.14 8.7
## 2321 99 17.44 166.3 119 7.48 11.7
## 2322 84 22.36 367.7 89 16.55 15.5
## 2323 130 22.59 269.7 69 12.14 10.6
## 2324 107 17.31 201.7 65 9.08 8.2
## 2325 111 19.61 214.3 91 9.64 7.8
## 2326 122 20.15 239.9 122 10.80 9.8
## 2327 123 10.02 248.5 104 11.18 14.0
## 2328 79 11.20 187.4 98 8.43 9.4
## 2329 91 7.45 247.2 87 11.12 8.4
## 2330 144 21.23 192.3 99 8.65 8.9
## 2331 124 20.24 195.6 102 8.80 10.6
## 2332 96 30.75 147.5 132 6.64 7.2
## 2333 117 16.86 181.1 76 8.15 10.5
## 2334 141 14.02 231.5 75 10.42 8.2
## 2335 68 12.49 190.7 105 8.58 10.0
## 2336 114 17.27 168.7 82 7.59 10.0
## 2337 118 26.59 200.0 85 9.00 11.6
## 2338 118 28.53 149.8 64 6.74 8.3
## 2339 116 15.98 235.0 102 10.58 11.2
## 2340 86 22.16 98.6 109 4.44 8.9
## 2341 81 16.13 196.3 97 8.83 12.6
## 2342 102 20.80 276.9 123 12.46 7.1
## 2343 116 13.06 213.3 106 9.60 10.2
## 2344 98 14.45 190.6 89 8.58 13.8
## 2345 95 23.91 105.2 113 4.73 8.2
## 2346 93 11.72 206.5 88 9.29 0.0
## 2347 83 12.74 196.9 119 8.86 4.6
## 2348 96 14.59 204.0 85 9.18 13.5
## 2349 123 18.67 200.4 89 9.02 11.3
## 2350 99 17.90 238.2 88 10.72 9.6
## 2351 84 9.60 56.6 99 2.55 8.7
## 2352 94 22.36 207.1 113 9.32 3.4
## 2353 73 20.74 159.6 81 7.18 12.8
## 2354 96 18.67 210.0 74 9.45 11.7
## 2355 82 17.94 203.7 129 9.17 13.1
## 2356 120 19.20 269.0 105 12.11 12.5
## 2357 106 24.62 269.1 126 12.11 5.8
## 2358 90 23.42 176.7 126 7.95 10.1
## 2359 125 16.75 110.1 123 4.95 14.6
## 2360 78 18.48 239.9 102 10.80 13.1
## 2361 102 16.95 162.4 107 7.31 9.4
## 2362 74 8.13 181.5 94 8.17 10.5
## 2363 128 19.69 185.3 128 8.34 0.0
## 2364 89 13.37 215.5 77 9.70 13.3
## 2365 58 23.21 153.9 76 6.93 13.7
## 2366 114 20.28 289.5 69 13.03 11.5
## 2367 93 12.53 203.5 110 9.16 14.0
## 2368 96 16.91 165.9 90 7.47 6.6
## 2369 88 13.63 170.9 99 7.69 7.6
## 2370 124 11.92 215.4 89 9.69 9.0
## 2371 98 14.35 199.7 97 8.99 9.9
## 2372 101 17.08 271.9 74 12.24 18.2
## 2373 97 13.14 213.9 102 9.63 10.1
## 2374 116 12.98 224.7 92 10.11 10.2
## 2375 98 16.49 227.3 88 10.23 8.4
## 2376 104 19.57 227.5 118 10.24 10.4
## 2377 54 19.74 147.1 76 6.62 5.8
## 2378 106 14.67 280.5 127 12.62 8.8
## 2379 94 13.98 140.3 101 6.31 12.6
## 2380 107 19.86 187.3 104 8.43 11.8
## 2381 123 11.29 227.2 124 10.22 10.1
## 2382 84 11.14 230.7 67 10.38 7.6
## 2383 111 15.56 54.0 134 2.43 10.9
## 2384 91 19.85 199.5 144 8.98 9.6
## 2385 106 22.58 212.8 94 9.58 6.4
## 2386 98 21.39 240.8 88 10.84 13.9
## 2387 78 15.67 176.0 89 7.92 7.4
## 2388 64 9.32 189.7 145 8.54 9.1
## 2389 107 20.24 240.5 93 10.82 8.9
## 2390 137 16.13 170.1 105 7.65 10.6
## 2391 111 24.20 228.2 91 10.27 12.2
## 2392 99 18.12 205.3 114 9.24 10.8
## 2393 83 22.87 238.6 103 10.74 11.0
## 2394 79 6.85 163.7 83 7.37 8.3
## 2395 70 14.87 221.9 117 9.99 11.2
## 2396 102 16.56 298.2 82 13.42 14.3
## 2397 118 9.22 232.0 72 10.44 10.6
## 2398 78 16.39 148.1 87 6.66 13.2
## 2399 83 13.20 179.4 86 8.07 11.5
## 2400 93 12.16 116.3 113 5.23 11.2
## 2401 115 24.96 174.1 91 7.83 8.4
## 2402 92 23.94 183.5 113 8.26 11.4
## 2403 102 18.04 104.9 120 4.72 15.3
## 2404 111 16.86 171.7 125 7.73 13.0
## 2405 96 15.01 149.7 56 6.74 15.5
## 2406 115 17.31 129.9 113 5.85 6.4
## 2407 131 24.47 181.7 121 8.18 9.2
## 2408 72 17.03 214.0 112 9.63 13.4
## 2409 103 13.03 214.6 107 9.66 10.5
## 2410 97 24.24 180.4 133 8.12 8.7
## 2411 114 18.77 104.0 133 4.68 10.9
## 2412 81 23.47 175.9 94 7.92 9.3
## 2413 110 14.03 162.9 97 7.33 7.5
## 2414 88 16.87 304.3 110 13.69 14.8
## 2415 75 12.52 190.5 73 8.57 6.4
## 2416 111 13.69 275.9 106 12.42 9.0
## 2417 72 21.83 175.3 123 7.89 11.9
## 2418 85 15.87 146.7 96 6.60 9.3
## 2419 84 13.01 262.2 79 11.80 11.0
## 2420 88 22.24 207.1 88 9.32 8.9
## 2421 95 15.29 154.4 102 6.95 11.6
## 2422 119 11.38 177.3 94 7.98 10.9
## 2423 83 14.13 184.7 79 8.31 15.2
## 2424 77 20.08 73.2 81 3.29 3.7
## 2425 126 16.69 157.4 113 7.08 6.4
## 2426 109 16.78 187.5 91 8.44 8.6
## 2427 119 20.17 253.5 110 11.41 13.1
## 2428 98 17.20 229.0 73 10.31 9.5
## 2429 108 17.87 212.0 64 9.54 11.3
## 2430 84 17.82 233.0 95 10.49 10.0
## 2431 78 21.05 199.7 121 8.99 15.6
## 2432 74 16.46 196.5 85 8.84 10.2
## 2433 120 22.04 182.1 119 8.19 13.3
## 2434 76 17.65 168.4 137 7.58 12.1
## 2435 121 20.63 176.3 134 7.93 11.3
## 2436 102 26.80 193.9 101 8.73 10.3
## 2437 112 19.47 162.6 131 7.32 13.3
## 2438 119 21.19 321.2 101 14.45 8.3
## 2439 116 20.60 192.0 76 8.64 11.0
## 2440 90 14.33 198.9 110 8.95 14.6
## 2441 137 15.71 176.1 115 7.92 7.0
## 2442 98 9.49 227.4 94 10.23 12.1
## 2443 115 13.02 286.7 77 12.90 4.7
## 2444 100 12.69 188.1 114 8.46 11.0
## 2445 118 23.74 127.1 143 5.72 9.7
## 2446 114 17.09 151.2 111 6.80 11.6
## 2447 138 13.26 210.8 106 9.49 11.6
## 2448 110 10.98 220.6 98 9.93 12.9
## 2449 96 7.75 142.2 87 6.40 13.8
## 2450 101 19.13 198.5 111 8.93 7.6
## 2451 86 19.59 255.8 103 11.51 11.9
## 2452 113 17.27 174.2 101 7.84 10.7
## 2453 84 18.87 64.2 94 2.89 13.7
## 2454 57 17.99 165.0 79 7.43 10.0
## 2455 134 20.98 229.7 92 10.34 9.7
## 2456 116 21.17 157.6 107 7.09 7.1
## 2457 142 15.45 203.1 86 9.14 10.4
## 2458 95 18.49 220.3 67 9.91 12.2
## 2459 89 19.85 293.9 104 13.23 8.8
## 2460 66 15.02 221.5 96 9.97 14.7
## 2461 80 13.01 240.0 102 10.80 9.8
## 2462 121 15.29 188.2 109 8.47 11.5
## 2463 98 13.98 171.0 110 7.69 10.9
## 2464 90 14.76 231.5 89 10.42 10.1
## 2465 109 12.39 174.4 82 7.85 9.4
## 2466 80 14.49 193.8 88 8.72 8.3
## 2467 94 11.93 253.6 79 11.41 10.5
## 2468 82 20.82 180.8 103 8.14 7.7
## 2469 96 24.28 213.6 80 9.61 4.3
## 2470 109 13.76 197.9 109 8.91 8.3
## 2471 112 14.41 201.1 91 9.05 5.6
## 2472 101 17.20 191.1 122 8.60 7.4
## 2473 110 19.19 145.2 95 6.53 10.2
## 2474 89 22.81 241.3 68 10.86 8.5
## 2475 109 12.78 176.2 75 7.93 9.3
## 2476 79 12.89 230.5 109 10.37 5.3
## 2477 73 14.59 234.5 69 10.55 9.9
## 2478 105 24.43 204.8 91 9.22 9.1
## 2479 109 13.30 280.0 81 12.60 13.2
## 2480 79 23.74 192.7 131 8.67 11.7
## 2481 123 24.97 250.7 65 11.28 10.3
## 2482 119 17.59 163.6 109 7.36 11.3
## 2483 98 13.01 249.0 72 11.21 10.2
## 2484 76 24.37 164.3 113 7.39 12.9
## 2485 88 23.50 289.9 125 13.05 12.3
## 2486 56 22.40 259.6 107 11.68 12.0
## 2487 80 11.15 170.9 104 7.69 5.4
## 2488 102 11.66 185.9 97 8.37 9.8
## 2489 108 15.50 180.6 103 8.13 6.7
## 2490 99 17.94 153.5 109 6.91 10.5
## 2491 87 21.31 289.3 74 13.02 9.8
## 2492 107 22.69 214.6 104 9.66 9.8
## 2493 87 12.06 200.7 71 9.03 8.5
## 2494 70 13.76 285.0 78 12.83 11.3
## 2495 96 12.71 140.5 109 6.32 8.1
## 2496 82 13.24 254.3 103 11.44 8.5
## 2497 99 14.22 178.1 130 8.01 7.8
## 2498 87 17.12 146.8 121 6.61 4.2
## 2499 152 13.26 197.5 112 8.89 10.2
## 2500 103 19.22 155.6 83 7.00 13.8
## 2501 92 20.55 147.0 108 6.61 9.6
## 2502 85 21.86 193.2 115 8.69 13.4
## 2503 96 23.04 245.9 94 11.07 16.4
## 2504 73 15.23 292.8 100 13.18 9.9
## 2505 104 11.82 138.4 87 6.23 13.0
## 2506 135 17.00 234.9 65 10.57 12.5
## 2507 120 18.02 174.9 119 7.87 13.2
## 2508 88 13.87 229.8 106 10.34 12.6
## 2509 107 11.57 159.4 147 7.17 8.7
## 2510 114 12.19 170.2 98 7.66 10.9
## 2511 112 19.85 270.9 104 12.19 10.0
## 2512 123 13.76 142.1 103 6.39 7.2
## 2513 94 15.66 231.4 70 10.41 10.2
## 2514 113 17.94 174.6 107 7.86 0.0
## 2515 94 17.44 164.6 84 7.41 10.7
## 2516 84 18.18 184.9 88 8.32 12.0
## 2517 101 13.67 265.0 63 11.93 12.2
## 2518 106 17.81 281.9 126 12.69 12.4
## 2519 82 19.86 208.7 95 9.39 7.9
## 2520 79 12.96 224.8 83 10.12 8.4
## 2521 78 21.28 216.4 128 9.74 7.8
## 2522 118 12.36 186.9 129 8.41 12.1
## 2523 139 19.41 197.9 61 8.91 8.4
## 2524 74 13.29 214.7 90 9.66 7.8
## 2525 87 18.75 236.3 91 10.63 11.8
## 2526 118 23.89 197.2 94 8.87 9.7
## 2527 96 10.40 245.0 75 11.03 6.4
## 2528 77 15.17 229.1 111 10.31 13.1
## 2529 77 19.90 329.2 74 14.81 9.9
## 2530 130 12.74 204.6 131 9.21 9.2
## 2531 102 15.19 174.7 90 7.86 10.7
## 2532 113 15.34 184.2 87 8.29 10.1
## 2533 70 21.48 220.6 97 9.93 7.2
## 2534 73 22.27 239.5 120 10.78 12.3
## 2535 117 19.10 152.5 98 6.86 18.0
## 2536 107 14.38 156.6 61 7.05 9.2
## 2537 53 19.76 195.0 64 8.78 9.0
## 2538 59 14.26 207.0 67 9.32 6.4
## 2539 93 17.74 202.1 103 9.09 14.0
## 2540 98 26.56 178.0 118 8.01 10.7
## 2541 103 15.44 186.9 111 8.41 12.9
## 2542 83 21.52 175.1 86 7.88 14.2
## 2543 109 22.92 175.3 130 7.89 9.5
## 2544 76 24.24 192.1 78 8.64 6.9
## 2545 69 22.79 255.3 62 11.49 13.2
## 2546 125 14.44 238.8 112 10.75 8.2
## 2547 93 19.89 210.0 86 9.45 12.2
## 2548 96 19.01 240.8 93 10.84 12.7
## 2549 110 22.38 135.0 85 6.08 11.9
## 2550 111 27.14 239.9 124 10.80 8.4
## 2551 83 16.35 200.0 96 9.00 6.6
## 2552 118 30.11 145.5 93 6.55 10.9
## 2553 146 18.78 146.8 114 6.61 8.9
## 2554 104 17.70 207.9 115 9.36 10.0
## 2555 79 13.93 185.9 100 8.37 6.7
## 2556 95 18.05 233.0 123 10.49 9.3
## 2557 87 12.76 204.3 115 9.19 10.8
## 2558 149 19.98 256.4 78 11.54 16.9
## 2559 118 14.03 137.9 71 6.21 9.6
## 2560 109 16.18 201.2 87 9.05 11.5
## 2561 106 22.48 210.5 116 9.47 9.0
## 2562 114 15.84 210.0 111 9.45 7.7
## 2563 94 8.08 178.5 129 8.03 8.0
## 2564 109 15.11 255.7 98 11.51 12.1
## 2565 90 19.52 148.2 94 6.67 10.7
## 2566 116 15.61 176.6 109 7.95 13.5
## 2567 107 15.95 216.5 95 9.74 14.4
## 2568 103 25.81 105.4 94 4.74 9.3
## 2569 90 20.68 147.8 66 6.65 12.0
## 2570 77 18.85 243.9 114 10.98 12.8
## 2571 108 12.25 158.1 91 7.11 8.5
## 2572 53 19.26 230.1 96 10.35 7.8
## 2573 100 13.00 123.4 63 5.55 10.4
## 2574 109 15.30 168.6 94 7.59 12.8
## 2575 141 17.26 151.8 120 6.83 13.3
## 2576 109 15.24 251.2 129 11.30 15.5
## 2577 79 19.69 226.2 90 10.18 11.1
## 2578 85 18.11 196.1 85 8.82 8.5
## 2579 150 14.37 225.2 122 10.13 11.8
## 2580 99 16.70 230.1 106 10.35 7.8
## 2581 119 25.87 183.3 103 8.25 8.6
## 2582 117 16.15 170.3 95 7.66 12.9
## 2583 114 11.98 272.6 96 12.27 7.5
## 2584 133 20.47 237.7 121 10.70 12.8
## 2585 115 17.94 179.8 116 8.09 11.4
## 2586 116 18.57 212.4 89 9.56 9.8
## 2587 56 17.51 194.7 124 8.76 11.4
## 2588 128 19.26 193.6 114 8.71 8.9
## 2589 99 16.55 236.7 112 10.65 12.0
## 2590 101 18.46 185.4 52 8.34 13.9
## 2591 102 18.00 240.2 108 10.81 9.3
## 2592 136 22.76 240.3 100 10.81 8.8
## 2593 46 15.18 203.8 116 9.17 12.8
## 2594 85 17.06 181.2 107 8.15 14.3
## 2595 106 17.29 217.5 107 9.79 11.8
## 2596 66 23.90 166.1 80 7.47 8.4
## 2597 114 11.76 224.2 128 10.09 5.8
## 2598 99 22.98 231.5 90 10.42 14.0
## 2599 120 17.55 221.6 96 9.97 10.3
## 2600 127 23.76 233.8 103 10.52 8.8
## 2601 99 14.82 310.7 105 13.98 11.2
## 2602 101 21.01 158.7 104 7.14 11.5
## 2603 102 14.20 128.9 118 5.80 11.4
## 2604 101 15.15 244.2 129 10.99 6.4
## 2605 67 14.40 102.0 90 4.59 15.9
## 2606 109 23.27 282.9 91 12.73 14.1
## 2607 121 26.77 182.9 121 8.23 16.1
## 2608 107 20.34 89.7 89 4.04 9.9
## 2609 103 23.03 222.5 98 10.01 6.7
## 2610 94 12.93 344.3 82 15.49 10.7
## 2611 105 12.10 143.7 117 6.47 5.9
## 2612 90 17.32 158.7 59 7.14 11.8
## 2613 110 16.63 253.4 71 11.40 8.4
## 2614 117 11.99 128.9 137 5.80 7.1
## 2615 142 22.99 107.3 84 4.83 12.2
## 2616 97 20.07 134.3 93 6.04 10.9
## 2617 111 18.13 267.6 115 12.04 16.0
## 2618 103 15.32 179.0 89 8.06 10.7
## 2619 60 17.90 294.8 121 13.27 6.9
## 2620 67 16.12 227.0 76 10.22 11.1
## 2621 102 14.99 297.1 119 13.37 11.0
## 2622 116 17.09 164.5 107 7.40 7.5
## 2623 111 17.53 255.4 117 11.49 11.6
## 2624 114 11.01 193.6 106 8.71 10.9
## 2625 77 15.49 203.9 107 9.18 11.6
## 2626 107 14.55 257.0 106 11.57 12.0
## 2627 118 20.10 123.2 111 5.54 12.6
## 2628 88 25.15 247.2 104 11.12 12.5
## 2629 110 17.38 118.0 98 5.31 6.8
## 2630 107 24.07 209.5 111 9.43 6.7
## 2631 87 22.28 225.5 99 10.15 9.8
## 2632 102 11.81 146.2 109 6.58 12.4
## 2633 100 16.72 127.4 74 5.73 11.8
## 2634 98 19.55 232.5 73 10.46 10.6
## 2635 102 15.47 244.6 75 11.01 12.6
## 2636 80 21.88 170.8 114 7.69 10.0
## 2637 87 10.09 236.6 65 10.65 6.0
## 2638 109 24.45 208.4 80 9.38 5.9
## 2639 95 22.23 241.6 104 10.87 11.4
## 2640 89 26.57 264.0 55 11.88 12.2
## 2641 118 16.45 299.6 109 13.48 10.8
## 2642 89 20.54 302.0 72 13.59 11.3
## 2643 89 12.56 210.4 114 9.47 10.0
## 2644 121 11.31 160.3 85 7.21 10.6
## 2645 66 18.95 188.2 113 8.47 12.4
## 2646 98 15.47 157.6 106 7.09 12.1
## 2647 123 15.84 153.3 122 6.90 11.5
## 2648 90 21.74 233.4 99 10.50 13.4
## 2649 93 20.12 294.5 100 13.25 12.7
## 2650 107 16.79 217.8 104 9.80 9.8
## 2651 58 18.31 164.3 98 7.39 4.9
## 2652 73 20.29 253.6 90 11.41 9.2
## 2653 91 13.44 266.2 123 11.98 9.7
## 2654 110 21.68 225.9 96 10.17 12.4
## 2655 112 16.72 261.7 83 11.78 6.8
## 2656 65 14.20 161.4 119 7.26 10.0
## 2657 111 21.99 169.7 87 7.64 8.9
## 2658 87 20.41 158.7 89 7.14 8.9
## 2659 115 15.71 108.9 109 4.90 13.5
## 2660 86 18.36 235.1 33 10.58 16.1
## 2661 72 21.90 132.9 118 5.98 13.4
## 2662 111 18.61 182.9 109 8.23 9.5
## 2663 102 26.24 161.2 62 7.25 13.7
## 2664 94 15.56 395.0 72 17.77 12.7
## 2665 67 14.16 198.5 118 8.93 14.4
## 2666 127 19.52 204.2 109 9.19 10.1
## 2667 92 11.98 308.9 130 13.90 12.1
## 2668 147 18.79 145.7 110 6.56 10.0
## 2669 84 18.18 88.2 111 3.97 8.6
## 2670 101 15.76 204.7 106 9.21 1.1
## 2671 118 12.84 179.0 80 8.06 9.0
## 2672 96 15.88 227.0 89 10.22 9.5
## 2673 112 13.24 256.9 71 11.56 9.2
## 2674 101 21.25 216.1 73 9.72 6.7
## 2675 124 18.48 188.4 141 8.48 12.8
## 2676 112 10.50 291.6 115 13.12 5.7
## 2677 94 21.85 209.0 63 9.40 12.1
## 2678 94 12.82 198.7 66 8.94 7.3
## 2679 117 17.77 219.7 82 9.89 14.4
## 2680 103 11.74 250.8 109 11.29 3.3
## 2681 88 19.88 170.1 84 7.65 7.7
## 2682 82 17.05 208.8 81 9.40 13.3
## 2683 100 10.50 96.4 92 4.34 12.9
## 2684 125 14.11 210.2 72 9.46 13.2
## 2685 90 18.06 182.1 95 8.19 9.8
## 2686 114 14.16 122.0 78 5.49 14.1
## 2687 73 23.37 162.4 121 7.31 10.0
## 2688 112 13.91 271.7 117 12.23 17.0
## 2689 129 26.95 160.4 121 7.22 10.0
## 2690 84 14.22 223.7 142 10.07 15.2
## 2691 104 16.73 259.7 110 11.69 7.0
## 2692 123 14.76 250.9 131 11.29 9.7
## 2693 115 14.82 193.5 96 8.71 11.6
## 2694 94 21.23 132.6 100 5.97 7.3
## 2695 85 22.90 187.1 74 8.42 10.1
## 2696 112 12.73 168.2 79 7.57 9.8
## 2697 99 18.90 259.0 121 11.66 12.3
## 2698 77 27.60 160.1 112 7.20 11.9
## 2699 119 23.32 226.6 69 10.20 12.4
## 2700 111 17.64 135.0 107 6.08 11.6
## 2701 110 19.60 218.0 69 9.81 8.5
## 2702 88 14.73 264.7 107 11.91 8.3
## 2703 82 8.21 170.7 145 7.68 7.9
## 2704 136 12.23 203.0 97 9.14 12.1
## 2705 96 11.47 227.5 97 10.24 11.2
## 2706 114 20.22 154.3 85 6.94 9.7
## 2707 71 16.84 135.9 116 6.12 13.2
## 2708 83 14.65 145.1 89 6.53 9.0
## 2709 132 19.91 191.7 87 8.63 8.9
## 2710 105 10.60 155.5 108 7.00 11.7
## 2711 135 20.83 202.1 94 9.09 14.7
## 2712 113 22.23 182.3 111 8.20 10.0
## 2713 127 21.72 228.6 68 10.29 11.6
## 2714 90 17.32 166.9 89 7.51 6.0
## 2715 50 16.62 170.1 108 7.65 15.4
## 2716 98 15.76 312.8 78 14.08 6.1
## 2717 106 15.13 215.6 100 9.70 12.1
## 2718 114 11.56 249.1 127 11.21 4.3
## 2719 88 15.55 213.7 121 9.62 13.8
## 2720 100 18.09 226.3 123 10.18 10.0
## 2721 95 7.57 302.2 82 13.60 10.3
## 2722 100 10.83 166.8 105 7.51 9.6
## 2723 118 13.29 158.8 83 7.15 10.1
## 2724 86 13.73 176.3 90 7.93 13.0
## 2725 108 15.34 217.5 104 9.79 9.5
## 2726 69 11.86 197.0 87 8.87 12.0
## 2727 149 11.73 148.7 102 6.69 9.9
## 2728 111 12.13 181.2 101 8.15 11.7
## 2729 91 24.23 166.4 155 7.49 6.2
## 2730 103 19.03 211.9 122 9.54 8.7
## 2731 115 16.99 244.2 112 10.99 14.8
## 2732 92 18.46 243.1 128 10.94 13.9
## 2733 86 30.91 126.7 123 5.70 16.9
## 2734 69 21.81 235.3 104 10.59 0.0
## 2735 116 13.03 233.6 85 10.51 11.1
## 2736 104 16.05 213.3 76 9.60 13.3
## 2737 102 21.59 242.7 156 10.92 9.2
## 2738 105 17.99 243.0 116 10.93 9.9
## 2739 87 12.88 143.0 100 6.44 7.5
## 2740 121 17.85 139.1 65 6.26 10.8
## 2741 85 14.76 257.1 84 11.57 10.3
## 2742 114 18.40 214.7 111 9.66 12.4
## 2743 123 19.13 234.7 109 10.56 10.7
## 2744 100 22.66 243.3 80 10.95 8.0
## 2745 118 16.61 102.4 86 4.61 7.1
## 2746 100 15.35 174.1 115 7.83 10.2
## 2747 110 13.80 155.0 102 6.98 13.4
## 2748 82 19.70 283.6 83 12.76 6.2
## 2749 91 15.44 177.3 67 7.98 7.7
## 2750 110 17.20 171.4 105 7.71 14.2
## 2751 118 15.95 146.4 85 6.59 8.7
## 2752 92 22.98 191.0 88 8.59 7.9
## 2753 117 15.16 246.5 104 11.09 8.1
## 2754 100 14.57 186.5 80 8.39 12.9
## 2755 89 12.53 350.2 108 15.76 11.3
## 2756 117 22.30 149.3 69 6.72 10.7
## 2757 101 13.06 50.1 87 2.25 12.5
## 2758 101 24.08 285.4 83 12.84 5.8
## 2759 104 20.43 237.3 133 10.68 12.0
## 2760 104 14.26 141.8 124 6.38 12.6
## 2761 84 15.02 263.4 81 11.85 14.2
## 2762 119 15.90 220.3 96 9.91 10.5
## 2763 98 13.94 169.4 80 7.62 9.5
## 2764 118 15.76 192.7 116 8.67 8.2
## 2765 105 22.53 239.7 108 10.79 14.9
## 2766 109 13.86 201.1 116 9.05 10.7
## 2767 95 26.64 215.7 82 9.71 10.5
## 2768 109 27.61 79.9 86 3.60 8.2
## 2769 120 12.76 246.8 98 11.11 12.0
## 2770 94 11.31 253.1 77 11.39 9.1
## 2771 108 19.18 188.6 61 8.49 5.7
## 2772 73 16.93 219.8 99 9.89 13.2
## 2773 125 15.11 172.9 90 7.78 5.9
## 2774 133 19.17 186.3 76 8.38 6.1
## 2775 132 20.12 192.2 137 8.65 13.2
## 2776 71 19.97 166.4 128 7.49 9.0
## 2777 141 21.21 157.8 103 7.10 7.4
## 2778 51 21.54 273.1 105 12.29 12.3
## 2779 105 18.00 198.1 101 8.91 10.3
## 2780 104 18.09 178.1 98 8.01 8.5
## 2781 98 18.02 282.3 81 12.70 11.3
## 2782 75 14.42 264.3 94 11.89 9.0
## 2783 86 14.51 237.4 113 10.68 11.6
## 2784 93 20.71 211.9 114 9.54 9.1
## 2785 79 20.70 230.9 92 10.39 10.9
## 2786 97 18.00 137.9 109 6.21 9.2
## 2787 98 22.40 224.7 128 10.11 9.0
## 2788 58 18.26 201.3 147 9.06 10.8
## 2789 111 20.99 200.0 133 9.00 7.2
## 2790 118 10.82 284.4 95 12.80 7.7
## 2791 99 8.78 164.2 73 7.39 9.1
## 2792 103 24.88 224.6 82 10.11 5.5
## 2793 105 21.77 176.6 135 7.95 11.1
## 2794 152 19.05 241.3 63 10.86 14.4
## 2795 117 20.95 173.2 100 7.79 10.9
## 2796 75 17.99 194.9 76 8.77 9.3
## 2797 129 9.85 185.4 136 8.34 16.2
## 2798 110 19.67 131.2 67 5.90 10.0
## 2799 96 15.24 247.2 101 11.12 10.2
## 2800 114 11.14 216.9 104 9.76 9.4
## 2801 80 16.71 192.0 53 8.64 11.0
## 2802 108 21.31 286.2 87 12.88 6.1
## 2803 105 17.74 203.4 98 9.15 14.4
## 2804 75 11.24 177.7 91 8.00 10.6
## 2805 99 17.34 224.2 122 10.09 9.1
## 2806 76 21.56 128.5 72 5.78 11.4
## 2807 79 17.95 259.3 112 11.67 13.6
## 2808 83 12.95 134.3 109 6.04 11.8
## 2809 110 24.65 177.1 110 7.97 11.6
## 2810 112 13.00 215.9 86 9.72 3.5
## 2811 85 22.38 214.4 97 9.65 11.1
## 2812 95 8.82 180.6 106 8.13 10.8
## 2813 128 20.02 268.1 70 12.06 11.0
## 2814 101 12.13 258.3 89 11.62 12.3
## 2815 100 18.16 218.4 72 9.83 10.7
## 2816 84 21.65 250.5 117 11.27 7.2
## 2817 103 15.85 195.3 99 8.79 18.3
## 2818 94 16.52 143.1 80 6.44 11.4
## 2819 110 14.00 111.0 87 5.00 10.1
## 2820 74 12.22 140.1 111 6.30 10.3
## 2821 150 16.60 276.7 86 12.45 13.2
## 2822 105 14.47 209.2 64 9.41 5.7
## 2823 108 24.79 96.4 111 4.34 11.2
## 2824 89 15.90 133.5 96 6.01 16.6
## 2825 82 20.09 187.6 78 8.44 13.1
## 2826 120 18.30 143.7 140 6.47 14.3
## 2827 101 17.04 202.6 125 9.12 10.2
## 2828 68 18.20 214.9 100 9.67 10.3
## 2829 96 10.96 251.9 129 11.34 6.3
## 2830 122 19.07 204.0 118 9.18 12.6
## 2831 70 12.44 169.4 95 7.62 10.5
## 2832 69 18.44 243.7 146 10.97 9.9
## 2833 105 14.74 256.3 109 11.53 7.5
## 2834 131 13.26 136.3 108 6.13 11.6
## 2835 117 12.18 130.6 69 5.88 11.7
## 2836 87 17.12 177.4 84 7.98 10.4
## 2837 67 18.22 179.5 112 8.08 10.3
## 2838 97 19.46 222.2 118 10.00 14.3
## 2839 65 16.15 138.7 94 6.24 10.5
## 2840 94 18.24 306.2 100 13.78 14.2
## 2841 78 11.57 183.4 103 8.25 10.8
## 2842 102 19.18 150.4 106 6.77 14.0
## 2843 120 18.28 238.5 107 10.73 9.4
## 2844 95 16.64 210.1 87 9.45 10.0
## 2845 74 18.16 141.5 69 6.37 11.5
## 2846 121 17.60 182.2 95 8.20 4.5
## 2847 106 13.84 272.1 85 12.24 10.1
## 2848 93 17.80 231.1 91 10.40 12.2
## 2849 87 12.22 198.9 105 8.95 8.0
## 2850 91 15.43 185.7 151 8.36 7.7
## 2851 116 18.45 182.1 86 8.19 10.0
## 2852 107 14.97 189.6 88 8.53 8.2
## 2853 118 10.73 274.2 71 12.34 4.6
## 2854 43 16.77 267.4 93 12.03 8.7
## 2855 101 16.03 278.4 98 12.53 10.6
## 2856 116 22.16 201.0 120 9.05 8.1
## 2857 111 11.69 226.0 100 10.17 10.0
## 2858 117 17.62 228.6 117 10.29 5.6
## 2859 128 21.06 152.9 103 6.88 7.4
## 2860 116 5.74 185.9 136 8.37 11.5
## 2861 94 20.08 240.2 84 10.81 11.8
## 2862 87 20.55 215.7 102 9.71 13.1
## 2863 90 25.97 158.9 73 7.15 12.1
## 2864 87 14.20 280.2 115 12.61 9.7
## 2865 136 13.66 203.1 109 9.14 12.5
## 2866 113 23.49 185.2 107 8.33 8.6
## 2867 74 9.03 197.7 104 8.90 11.1
## 2868 65 13.09 237.0 105 10.67 11.2
## 2869 91 19.52 332.7 94 14.97 13.6
## 2870 91 21.79 334.7 104 15.06 8.9
## 2871 113 22.08 148.0 79 6.66 9.1
## 2872 127 18.31 186.8 73 8.41 11.3
## 2873 119 10.25 152.8 81 6.88 9.2
## 2874 96 11.08 229.8 80 10.34 6.9
## 2875 117 19.24 246.8 98 11.11 12.3
## 2876 78 21.38 208.7 85 9.39 6.6
## 2877 111 15.24 285.5 117 12.85 10.4
## 2878 97 15.94 196.8 88 8.86 6.5
## 2879 94 21.90 190.4 107 8.57 9.6
## 2880 67 14.69 173.8 113 7.82 10.0
## 2881 110 8.70 129.7 148 5.84 9.8
## 2882 104 23.58 137.7 100 6.20 6.2
## 2883 78 12.00 268.2 113 12.07 11.4
## 2884 117 20.18 239.2 98 10.76 9.8
## 2885 144 14.24 260.0 97 11.70 8.7
## 2886 109 13.72 231.9 100 10.44 8.4
## 2887 105 22.49 185.4 94 8.34 9.9
## 2888 104 11.30 136.7 107 6.15 11.1
## 2889 60 17.60 255.7 115 11.51 10.9
## 2890 133 20.18 145.4 103 6.54 8.4
## 2891 92 12.28 125.7 98 5.66 11.6
## 2892 101 16.37 259.0 108 11.66 12.2
## 2893 108 12.07 183.8 77 8.27 11.8
## 2894 80 13.18 251.5 111 11.32 7.2
## 2895 130 21.11 236.2 113 10.63 14.7
## 2896 102 13.01 123.8 104 5.57 6.4
## 2897 54 16.38 141.7 83 6.38 9.1
## 2898 124 16.99 170.8 117 7.69 16.6
## 2899 109 17.64 169.4 96 7.62 5.6
## 2900 78 21.81 214.9 145 9.67 3.8
## 2901 126 17.84 222.6 117 10.02 7.9
## 2902 75 19.82 165.7 116 7.46 9.3
## 2903 69 15.96 259.6 137 11.68 10.0
## 2904 120 22.87 203.5 38 9.16 6.7
## 2905 113 12.06 200.4 122 9.02 10.4
## 2906 84 11.55 184.6 82 8.31 3.8
## 2907 89 15.89 249.7 78 11.24 0.0
## 2908 89 23.27 150.2 88 6.76 12.8
## 2909 87 17.14 280.8 99 12.64 7.9
## 2910 118 8.42 211.6 126 9.52 7.7
## 2911 96 15.69 156.9 92 7.06 9.1
## 2912 101 18.88 156.7 122 7.05 13.0
## 2913 83 15.94 119.5 100 5.38 4.3
## 2914 115 21.27 158.1 79 7.11 10.8
## 2915 106 12.08 214.6 87 9.66 12.5
## 2916 108 21.16 158.6 88 7.14 14.4
## 2917 98 13.48 187.7 87 8.45 10.5
## 2918 96 13.86 268.1 151 12.06 8.3
## 2919 122 22.59 182.4 87 8.21 0.0
## 2920 103 13.96 201.4 68 9.06 9.4
## 2921 124 21.51 195.7 120 8.81 10.7
## 2922 112 15.44 197.3 63 8.88 15.9
## 2923 107 20.57 246.9 96 11.11 10.2
## 2924 86 23.38 212.1 94 9.54 16.7
## 2925 94 20.99 254.4 107 11.45 10.3
## 2926 87 20.41 164.0 147 7.38 11.6
## 2927 126 20.00 292.1 114 13.14 5.0
## 2928 115 19.36 158.5 100 7.13 10.2
## 2929 70 17.42 224.3 133 10.09 9.8
## 2930 129 19.76 191.1 82 8.60 14.9
## 2931 152 12.26 120.4 97 5.42 12.9
## 2932 123 21.39 191.6 100 8.62 10.9
## 2933 0 0.00 175.4 94 7.89 11.8
## 2934 66 26.06 144.2 93 6.49 2.1
## 2935 81 11.14 238.6 69 10.74 8.6
## 2936 95 17.75 224.0 119 10.08 9.8
## 2937 87 14.95 215.4 106 9.69 9.5
## 2938 154 17.54 126.3 118 5.68 13.4
## 2939 78 22.13 88.7 100 3.99 7.0
## 2940 103 22.19 262.7 85 11.82 13.3
## 2941 101 7.65 205.1 116 9.23 7.3
## 2942 117 21.83 249.7 87 11.24 11.5
## 2943 84 22.07 153.2 86 6.89 10.0
## 2944 146 20.51 211.4 109 9.51 7.8
## 2945 97 18.66 73.7 92 3.32 9.8
## 2946 90 22.07 230.0 117 10.35 14.0
## 2947 65 20.94 199.0 114 8.96 4.1
## 2948 91 24.37 240.7 115 10.83 9.0
## 2949 110 18.33 236.7 67 10.65 10.5
## 2950 105 12.96 148.1 104 6.66 10.0
## 2951 105 16.93 244.1 119 10.98 11.8
## 2952 84 16.12 256.2 108 11.53 12.9
## 2953 101 19.22 268.6 121 12.09 8.2
## 2954 119 21.19 249.7 90 11.24 9.8
## 2955 134 17.68 208.1 81 9.36 8.4
## 2956 104 14.41 193.6 97 8.71 10.3
## 2957 112 22.79 140.8 75 6.34 8.6
## 2958 113 16.97 216.5 110 9.74 7.3
## 2959 88 18.38 255.3 96 11.49 6.3
## 2960 93 17.83 210.6 109 9.48 9.1
## 2961 106 11.47 152.3 75 6.85 10.0
## 2962 125 13.87 172.7 120 7.77 8.0
## 2963 103 14.88 184.4 112 8.30 5.4
## 2964 123 15.59 235.0 52 10.58 11.6
## 2965 105 18.23 233.7 75 10.52 7.9
## 2966 85 8.30 181.7 134 8.18 8.4
## 2967 97 13.75 217.0 106 9.76 8.0
## 2968 94 23.53 149.9 110 6.75 10.2
## 2969 134 23.02 219.3 101 9.87 13.9
## 2970 82 18.14 186.2 116 8.38 7.9
## 2971 90 19.69 222.2 108 10.00 6.4
## 2972 71 15.95 122.3 97 5.50 9.6
## 2973 99 11.99 212.1 90 9.54 10.1
## 2974 126 17.18 210.5 97 9.47 10.4
## 2975 90 19.14 195.1 99 8.78 7.0
## 2976 78 11.19 235.3 131 10.59 11.8
## 2977 93 18.59 236.0 97 10.62 11.5
## 2978 95 12.65 224.5 117 10.10 6.7
## 2979 92 18.26 247.9 108 11.16 13.0
## 2980 103 17.71 209.0 95 9.40 8.8
## 2981 105 23.43 201.4 108 9.06 14.3
## 2982 62 14.21 194.8 98 8.77 9.7
## 2983 117 19.08 273.4 152 12.30 8.9
## 2984 89 16.35 242.6 99 10.92 7.9
## 2985 85 14.21 100.3 61 4.51 10.8
## 2986 83 23.89 158.5 77 7.13 11.0
## 2987 107 12.86 201.9 132 9.09 10.5
## 2988 94 10.10 147.9 95 6.66 13.7
## 2989 97 14.89 222.4 36 10.01 12.0
## 2990 70 17.96 136.1 85 6.12 13.8
## 2991 94 11.70 203.8 109 9.17 8.3
## 2992 114 11.08 207.3 109 9.33 7.3
## 2993 127 12.19 191.0 98 8.59 11.6
## 2994 79 14.47 194.3 79 8.74 12.5
## 2995 71 25.72 191.5 82 8.62 5.5
## 2996 90 16.29 153.0 129 6.89 13.2
## 2997 82 11.41 168.4 118 7.58 13.3
## 2998 130 18.34 154.8 88 6.97 7.8
## 2999 122 21.48 225.8 104 10.16 12.3
## 3000 110 19.13 240.3 85 10.81 9.6
## 3001 86 10.84 289.3 83 13.02 14.5
## 3002 108 15.94 189.3 97 8.52 11.5
## 3003 79 19.14 224.7 58 10.11 8.9
## 3004 95 12.95 236.5 80 10.64 9.4
## 3005 83 21.86 91.6 92 4.12 16.2
## 3006 77 21.62 197.3 138 8.88 10.5
## 3007 141 12.49 217.1 102 9.77 9.9
## 3008 95 13.16 191.4 77 8.61 14.1
## 3009 111 15.60 206.8 111 9.31 13.0
## 3010 77 21.57 128.7 85 5.79 6.7
## 3011 83 24.54 111.2 110 5.00 12.1
## 3012 108 20.56 244.7 110 11.01 10.6
## 3013 104 16.12 206.7 85 9.30 11.1
## 3014 87 15.77 250.0 132 11.25 5.2
## 3015 121 12.20 210.7 130 9.48 11.8
## 3016 107 22.94 229.1 87 10.31 7.1
## 3017 125 12.83 245.5 131 11.05 14.6
## 3018 80 19.90 211.5 104 9.52 6.0
## 3019 134 11.92 227.4 111 10.23 12.2
## 3020 88 13.45 287.7 111 12.95 13.8
## 3021 85 18.37 156.9 82 7.06 9.8
## 3022 127 16.48 231.5 93 10.42 10.1
## 3023 59 9.76 220.4 99 9.92 2.9
## 3024 81 17.71 87.4 77 3.93 13.9
## 3025 97 16.97 53.3 61 2.40 11.5
## 3026 86 6.80 120.8 82 5.44 15.6
## 3027 83 16.34 246.1 92 11.07 10.8
## 3028 72 24.29 203.0 111 9.14 9.4
## 3029 101 19.75 261.2 123 11.75 12.5
## 3030 115 17.65 205.7 114 9.26 9.2
## 3031 99 14.23 216.5 112 9.74 14.0
## 3032 91 12.61 238.6 69 10.74 12.5
## 3033 111 8.61 167.3 106 7.53 7.8
## 3034 68 21.23 211.4 82 9.51 13.6
## 3035 108 14.52 104.5 91 4.70 11.2
## 3036 70 18.84 190.6 75 8.58 11.6
## 3037 104 17.82 164.4 97 7.40 9.4
## 3038 109 20.64 247.8 97 11.15 6.5
## 3039 76 12.03 237.3 87 10.68 6.4
## 3040 102 15.61 151.8 75 6.83 10.5
## 3041 137 16.75 294.5 83 13.25 10.5
## 3042 114 16.97 206.2 104 9.28 6.5
## 3043 106 15.96 138.1 108 6.21 8.3
## 3044 78 13.15 164.4 79 7.40 9.0
## 3045 80 19.13 230.1 117 10.35 8.5
## 3046 85 19.12 178.2 104 8.02 10.5
## 3047 81 21.96 109.6 74 4.93 14.8
## 3048 90 16.44 89.6 107 4.03 12.8
## 3049 70 13.35 181.5 120 8.17 14.0
## 3050 144 17.69 204.6 72 9.21 15.6
## 3051 117 15.98 219.7 125 9.89 13.5
## 3052 98 20.08 205.6 92 9.25 15.6
## 3053 89 17.24 233.0 126 10.49 12.9
## 3054 120 16.44 254.4 117 11.45 7.0
## 3055 98 19.81 152.2 106 6.85 9.1
## 3056 127 16.78 188.2 102 8.47 9.7
## 3057 74 12.91 218.5 101 9.83 10.7
## 3058 100 22.45 203.7 79 9.17 7.3
## 3059 89 18.62 168.0 116 7.56 7.1
## 3060 106 14.21 205.7 102 9.26 11.8
## 3061 89 16.10 352.2 95 15.85 8.4
## 3062 103 15.90 282.3 124 12.70 12.4
## 3063 105 15.34 151.3 101 6.81 13.0
## 3064 76 9.91 141.5 110 6.37 12.2
## 3065 128 20.16 210.1 91 9.45 8.7
## 3066 93 22.80 168.0 95 7.56 8.4
## 3067 99 18.22 196.8 110 8.86 7.2
## 3068 95 14.75 218.0 122 9.81 10.1
## 3069 79 18.96 124.0 92 5.58 9.5
## 3070 127 13.64 218.3 88 9.82 9.9
## 3071 71 18.21 178.0 105 8.01 12.0
## 3072 114 10.99 136.3 102 6.13 6.3
## 3073 115 15.98 235.4 116 10.59 8.5
## 3074 106 13.06 260.4 87 11.72 7.4
## 3075 112 17.34 117.9 118 5.31 6.6
## 3076 79 29.01 165.7 97 7.46 6.3
## 3077 102 11.45 170.7 97 7.68 10.0
## 3078 109 26.72 280.2 110 12.61 14.3
## 3079 85 9.19 204.3 87 9.19 13.2
## 3080 128 14.86 184.2 83 8.29 7.9
## 3081 122 20.15 118.3 91 5.32 17.5
## 3082 95 21.60 176.4 96 7.94 5.9
## 3083 93 16.30 132.5 125 5.96 12.1
## 3084 143 12.10 316.7 131 14.25 12.5
## 3085 97 21.84 185.5 126 8.35 12.1
## 3086 124 18.96 243.2 81 10.94 10.0
## 3087 130 12.99 160.3 98 7.21 11.2
## 3088 93 24.09 262.1 108 11.79 8.6
## 3089 82 14.95 207.2 100 9.32 8.9
## 3090 92 14.45 127.9 68 5.76 9.4
## 3091 94 16.85 248.5 94 11.18 12.1
## 3092 131 19.38 240.0 111 10.80 10.6
## 3093 80 12.55 213.5 85 9.61 10.1
## 3094 109 23.32 242.7 119 10.92 8.2
## 3095 96 13.50 189.6 92 8.53 10.5
## 3096 127 21.17 215.7 82 9.71 10.6
## 3097 115 14.08 189.2 63 8.51 9.8
## 3098 119 16.27 144.0 78 6.48 10.0
## 3099 131 16.31 165.5 125 7.45 12.0
## 3100 100 17.67 190.4 120 8.57 10.1
## 3101 108 16.18 290.0 66 13.05 10.4
## 3102 145 18.01 167.6 138 7.54 8.2
## 3103 101 19.63 192.0 106 8.64 12.6
## 3104 108 19.30 313.2 113 14.09 13.2
## 3105 88 15.40 174.0 68 7.83 10.3
## 3106 65 20.12 252.3 137 11.35 9.5
## 3107 121 14.73 203.5 108 9.16 11.6
## 3108 87 16.86 364.9 106 16.42 9.1
## 3109 108 15.50 183.8 88 8.27 11.0
## 3110 137 16.40 168.3 96 7.57 11.2
## 3111 125 20.46 245.5 80 11.05 10.6
## 3112 89 13.18 234.8 96 10.57 11.4
## 3113 95 16.35 151.0 75 6.80 9.3
## 3114 93 18.79 229.2 110 10.31 14.0
## 3115 93 11.30 272.0 120 12.24 12.1
## 3116 99 16.93 163.2 88 7.34 10.0
## 3117 81 17.12 264.2 79 11.89 8.8
## 3118 93 17.86 175.1 86 7.88 13.1
## 3119 85 16.49 253.4 124 11.40 5.2
## 3120 92 13.63 235.3 150 10.59 11.4
## 3121 150 21.79 158.6 72 7.14 10.8
## 3122 155 11.76 142.6 105 6.42 8.5
## 3123 129 17.31 170.5 89 7.67 14.1
## 3124 102 17.09 219.7 97 9.89 11.3
## 3125 108 15.47 270.9 106 12.19 9.4
## 3126 123 12.02 253.0 115 11.39 10.5
## 3127 127 18.99 251.4 104 11.31 10.6
## 3128 89 16.82 284.5 93 12.80 11.7
## 3129 138 19.56 148.8 78 6.70 10.2
## 3130 111 15.78 161.5 113 7.27 5.6
## 3131 113 9.34 165.7 99 7.46 8.7
## 3132 65 13.27 244.0 91 10.98 8.3
## 3133 135 19.58 241.5 104 10.87 7.8
## 3134 78 27.28 157.2 126 7.07 10.4
## 3135 111 9.72 114.5 97 5.15 11.4
## 3136 105 17.54 283.2 93 12.74 10.8
## 3137 91 15.27 166.3 121 7.48 10.3
## 3138 107 14.25 205.9 106 9.27 14.7
## 3139 87 14.89 136.3 80 6.13 13.3
## 3140 88 20.37 221.7 123 9.98 7.1
## 3141 79 15.25 150.6 77 6.78 15.2
## 3142 100 18.11 192.7 87 8.67 10.7
## 3143 101 15.44 143.4 113 6.45 12.8
## 3144 140 15.90 216.6 100 9.75 10.0
## 3145 82 13.45 215.7 118 9.71 10.3
## 3146 92 17.65 195.0 98 8.78 8.8
## 3147 92 24.73 228.4 91 10.28 13.9
## 3148 130 10.45 228.4 102 10.28 8.5
## 3149 117 23.58 202.0 139 9.09 11.0
## 3150 83 18.20 193.0 105 8.69 11.9
## 3151 126 21.14 199.8 120 8.99 10.7
## 3152 122 23.65 288.1 85 12.96 7.1
## 3153 78 20.96 304.2 107 13.69 9.5
## 3154 67 13.28 187.9 89 8.46 10.5
## 3155 114 17.34 174.6 94 7.86 6.3
## 3156 104 12.75 268.6 119 12.09 9.6
## 3157 97 16.35 214.9 89 9.67 10.4
## 3158 159 15.26 171.8 122 7.73 6.2
## 3159 110 17.32 237.4 100 10.68 9.3
## 3160 115 21.08 61.4 109 2.76 7.8
## 3161 80 17.91 231.9 75 10.44 2.1
## 3162 105 15.78 300.0 143 13.50 10.0
## 3163 105 19.56 140.5 123 6.32 13.3
## 3164 76 24.45 177.1 85 7.97 6.9
## 3165 128 23.22 179.6 118 8.08 11.0
## 3166 98 14.71 242.1 95 10.89 9.1
## 3167 93 19.16 244.3 132 10.99 10.2
## 3168 106 11.59 197.3 107 8.88 9.0
## 3169 86 25.42 251.3 81 11.31 11.2
## 3170 102 10.02 201.0 94 9.05 12.0
## 3171 143 21.44 208.9 91 9.40 7.5
## 3172 102 12.61 277.8 97 12.50 9.7
## 3173 74 20.81 223.8 156 10.07 12.3
## 3174 131 15.64 275.5 132 12.40 12.9
## 3175 117 10.97 325.9 105 14.67 8.6
## 3176 99 17.31 246.2 88 11.08 8.3
## 3177 70 12.44 123.0 75 5.54 8.1
## 3178 117 11.96 217.7 101 9.80 12.8
## 3179 103 17.47 130.7 63 5.88 13.8
## 3180 118 15.21 214.6 74 9.66 9.4
## 3181 116 8.81 156.3 86 7.03 12.2
## 3182 98 16.40 144.0 103 6.48 10.1
## 3183 103 19.47 139.4 105 6.27 7.8
## 3184 77 16.79 128.2 111 5.77 8.4
## 3185 129 13.48 269.3 118 12.12 6.8
## 3186 83 13.81 231.9 136 10.44 11.9
## 3187 85 13.15 174.8 98 7.87 9.4
## 3188 76 23.32 210.5 139 9.47 5.4
## 3189 133 13.23 277.4 62 12.48 8.2
## 3190 63 17.54 208.4 123 9.38 13.2
## 3191 56 12.58 168.2 109 7.57 15.8
## 3192 106 11.40 189.1 84 8.51 9.3
## 3193 98 15.10 228.0 136 10.26 5.0
## 3194 127 14.03 141.5 142 6.37 10.8
## 3195 93 13.65 155.3 108 6.99 13.4
## 3196 97 19.00 148.4 106 6.68 9.7
## 3197 91 15.18 242.3 82 10.90 12.2
## 3198 76 14.95 287.4 90 12.93 11.3
## 3199 125 19.33 178.9 105 8.05 12.8
## 3200 88 13.91 153.2 121 6.89 11.8
## 3201 122 7.38 156.2 117 7.03 9.7
## 3202 136 17.25 213.5 95 9.61 8.8
## 3203 104 24.30 182.5 85 8.21 6.9
## 3204 88 21.83 263.9 92 11.88 6.4
## 3205 117 21.54 154.0 101 6.93 10.5
## 3206 72 25.04 260.1 121 11.70 10.8
## 3207 117 19.03 180.4 85 8.12 10.2
## 3208 83 16.12 240.3 107 10.81 11.7
## 3209 87 15.84 126.9 112 5.71 10.4
## 3210 98 23.45 214.5 108 9.65 14.2
## 3211 127 23.46 196.2 48 8.83 11.4
## 3212 112 11.43 168.8 164 7.60 12.0
## 3213 123 10.35 221.5 122 9.97 3.7
## 3214 107 18.32 262.4 111 11.81 12.0
## 3215 83 16.57 197.8 109 8.90 8.8
## 3216 96 13.73 294.6 107 13.26 9.4
## 3217 92 19.05 205.7 103 9.26 2.4
## 3218 121 19.55 206.3 66 9.28 13.2
## 3219 65 18.16 193.0 108 8.69 13.4
## 3220 170 28.29 213.8 105 9.62 8.8
## 3221 105 21.56 149.3 93 6.72 10.2
## 3222 118 21.39 182.2 99 8.20 8.5
## 3223 83 14.59 250.9 114 11.29 11.7
## 3224 101 17.20 256.0 96 11.52 16.7
## 3225 60 23.53 213.4 82 9.60 12.3
## 3226 96 16.54 211.2 87 9.50 8.4
## 3227 111 16.49 262.7 111 11.82 7.5
## 3228 87 16.03 200.8 95 9.04 10.7
## 3229 101 17.92 165.4 87 7.44 15.0
## 3230 96 18.05 176.9 98 7.96 7.8
## 3231 105 15.52 143.1 90 6.44 4.2
## 3232 95 15.35 245.0 83 11.03 6.6
## 3233 110 14.30 197.3 120 8.88 9.9
## 3234 100 6.34 247.9 74 11.16 6.3
## 3235 111 13.95 169.6 153 7.63 2.5
## 3236 85 18.02 175.2 138 7.88 4.9
## 3237 66 18.44 112.4 125 5.06 7.5
## 3238 119 19.43 152.9 88 6.88 10.9
## 3239 97 22.69 197.7 118 8.90 8.8
## 3240 81 20.00 215.3 95 9.69 10.2
## 3241 99 23.83 292.4 105 13.16 5.0
## 3242 73 14.65 191.9 87 8.64 11.3
## 3243 109 20.12 264.0 118 11.88 8.4
## 3244 94 11.19 169.5 106 7.63 10.3
## 3245 88 19.10 214.6 69 9.66 7.2
## 3246 94 10.38 180.8 85 8.14 12.6
## 3247 86 20.09 203.5 101 9.16 11.9
## 3248 122 13.51 47.4 73 2.13 3.9
## 3249 95 18.41 233.0 82 10.49 11.5
## 3250 109 20.49 227.8 102 10.25 11.7
## 3251 114 23.77 180.0 74 8.10 13.5
## 3252 121 13.69 194.4 123 8.75 9.2
## 3253 87 19.15 194.3 93 8.74 11.7
## 3254 105 15.06 207.6 102 9.34 9.0
## 3255 83 24.07 228.1 77 10.26 14.7
## 3256 60 15.91 146.2 114 6.58 11.0
## 3257 106 13.06 232.3 65 10.45 17.0
## 3258 109 16.84 292.7 131 13.17 13.3
## 3259 91 16.30 117.8 93 5.30 13.4
## 3260 114 18.83 113.8 118 5.12 15.0
## 3261 108 18.42 130.6 122 5.88 13.9
## 3262 116 14.61 131.1 94 5.90 7.3
## 3263 84 22.30 139.2 99 6.26 10.1
## 3264 110 17.03 202.5 103 9.11 6.0
## 3265 67 17.61 214.5 126 9.65 5.9
## 3266 74 19.52 251.7 99 11.33 11.0
## 3267 79 22.81 186.4 71 8.39 9.7
## 3268 107 20.82 190.9 96 8.59 8.8
## 3269 97 19.87 223.5 148 10.06 12.7
## 3270 104 21.21 162.8 115 7.33 10.5
## 3271 68 17.68 181.2 101 8.15 12.8
## 3272 99 20.29 238.4 79 10.73 12.5
## 3273 101 19.01 229.4 109 10.32 12.9
## 3274 91 14.23 322.2 109 14.50 14.7
## 3275 117 18.49 125.6 111 5.65 8.0
## 3276 91 13.91 242.9 121 10.93 0.0
## 3277 106 12.41 241.4 98 10.86 8.8
## 3278 96 10.75 238.5 125 10.73 10.0
## 3279 97 13.98 282.5 132 12.71 10.6
## 3280 82 18.90 148.0 105 6.66 8.3
## 3281 133 20.25 271.8 116 12.23 10.0
## 3282 92 15.51 274.9 92 12.37 5.1
## 3283 58 17.29 234.0 115 10.53 7.7
## 3284 130 20.95 198.4 117 8.93 12.4
## 3285 94 19.10 174.3 122 7.84 13.2
## 3286 149 9.79 182.4 92 8.21 11.8
## 3287 109 18.89 158.4 96 7.13 13.1
## 3288 90 11.48 184.6 49 8.31 10.9
## 3289 90 24.32 247.6 113 11.14 4.9
## 3290 116 9.75 104.7 83 4.71 13.2
## 3291 77 15.90 218.5 95 9.83 0.0
## 3292 133 19.01 150.0 94 6.75 13.9
## 3293 110 7.46 166.2 122 7.48 11.7
## 3294 98 18.30 188.9 87 8.50 9.1
## 3295 137 17.73 198.0 92 8.91 12.3
## 3296 96 14.45 128.7 57 5.79 11.7
## 3297 111 17.43 154.9 109 6.97 9.0
## 3298 84 14.09 160.6 80 7.23 11.3
## 3299 115 20.34 144.4 112 6.50 12.3
## 3300 143 12.68 201.4 113 9.06 11.0
## 3301 116 19.41 166.7 108 7.50 7.1
## 3302 90 17.19 156.8 103 7.06 10.4
## 3303 99 17.92 153.5 100 6.91 7.8
## 3304 125 13.23 247.6 94 11.14 11.5
## 3305 140 16.88 206.5 80 9.29 13.8
## 3306 85 20.30 174.2 86 7.84 11.5
## 3307 131 17.33 229.5 73 10.33 8.1
## 3308 123 19.89 160.7 65 7.23 17.8
## 3309 97 14.08 265.9 72 11.97 13.3
## 3310 102 19.18 255.3 95 11.49 12.0
## 3311 107 7.82 224.8 108 10.12 13.6
## 3312 83 24.08 188.3 124 8.47 6.9
## 3313 93 12.27 262.4 110 11.81 14.2
## 3314 95 12.21 191.4 97 8.61 10.0
## 3315 74 19.86 131.9 120 5.94 9.1
## 3316 106 9.73 178.3 98 8.02 6.5
## 3317 96 18.62 220.3 108 9.91 12.3
## 3318 113 16.02 211.1 94 9.50 7.8
## 3319 118 25.54 192.5 106 8.66 11.6
## 3320 115 17.84 280.9 112 12.64 15.9
## 3321 77 16.69 120.1 133 5.40 9.7
## 3322 110 7.23 210.1 134 9.45 13.2
## 3323 122 22.57 180.5 72 8.12 11.5
## 3324 97 21.19 227.0 56 10.22 13.6
## 3325 105 16.80 193.7 82 8.72 11.6
## 3326 88 9.94 243.3 109 10.95 9.3
## 3327 87 24.21 178.9 92 8.05 14.9
## 3328 68 16.12 221.4 128 9.96 11.8
## 3329 126 18.32 279.1 83 12.56 9.9
## 3330 55 13.04 191.3 123 8.61 9.6
## 3331 58 24.55 191.9 91 8.64 14.1
## 3332 84 13.57 139.2 137 6.26 5.0
## 3333 82 22.60 241.4 77 10.86 13.7
## Intl.Calls Intl.Charge CustServ.Calls
## 1 3 2.70 1
## 2 3 3.70 1
## 3 5 3.29 0
## 4 7 1.78 2
## 5 3 2.73 3
## 6 6 1.70 0
## 7 7 2.03 3
## 8 6 1.92 0
## 9 4 2.35 1
## 10 5 3.02 0
## 11 6 3.43 4
## 12 5 2.46 0
## 13 2 3.02 1
## 14 5 3.32 3
## 15 6 3.54 4
## 16 9 1.46 4
## 17 4 3.73 1
## 18 3 2.19 3
## 19 5 2.70 1
## 20 2 3.51 1
## 21 4 2.86 0
## 22 6 1.54 5
## 23 19 2.57 0
## 24 6 2.08 2
## 25 2 2.78 0
## 26 5 4.19 3
## 27 3 2.57 0
## 28 4 3.97 3
## 29 6 1.70 0
## 30 1 3.00 1
## 31 6 3.83 2
## 32 5 2.78 1
## 33 10 3.40 3
## 34 3 3.19 1
## 35 4 2.24 0
## 36 6 3.97 3
## 37 6 3.92 0
## 38 5 2.70 1
## 39 6 2.84 3
## 40 9 3.00 1
## 41 2 2.54 3
## 42 15 3.94 0
## 43 4 2.70 2
## 44 4 2.48 3
## 45 3 0.95 1
## 46 5 2.30 2
## 47 5 3.56 3
## 48 5 2.00 2
## 49 3 2.38 5
## 50 3 2.97 1
## 51 5 2.11 3
## 52 3 1.84 1
## 53 6 3.08 2
## 54 5 2.51 2
## 55 3 2.62 5
## 56 3 2.75 1
## 57 2 2.16 1
## 58 3 1.57 3
## 59 3 3.27 3
## 60 8 3.24 1
## 61 4 3.08 1
## 62 3 3.13 2
## 63 3 3.94 2
## 64 3 3.40 3
## 65 6 2.21 2
## 66 5 1.67 2
## 67 4 2.51 0
## 68 8 2.24 0
## 69 1 2.11 1
## 70 3 3.73 4
## 71 7 3.19 3
## 72 2 3.27 0
## 73 4 2.16 3
## 74 4 1.97 1
## 75 3 3.24 0
## 76 2 1.65 1
## 77 4 3.16 0
## 78 7 2.21 4
## 79 3 2.21 2
## 80 2 4.05 1
## 81 2 3.56 1
## 82 5 3.40 3
## 83 2 2.97 3
## 84 4 2.65 1
## 85 1 3.35 2
## 86 7 2.32 0
## 87 5 2.16 4
## 88 2 3.24 1
## 89 9 2.94 2
## 90 4 3.75 1
## 91 2 3.00 1
## 92 4 2.40 0
## 93 9 2.13 1
## 94 7 2.57 3
## 95 7 2.86 3
## 96 5 2.65 1
## 97 4 3.51 0
## 98 3 2.35 4
## 99 5 1.43 1
## 100 7 2.65 2
## 101 8 1.19 4
## 102 5 3.94 0
## 103 6 2.84 0
## 104 9 3.38 1
## 105 2 3.05 1
## 106 4 3.19 4
## 107 6 2.43 2
## 108 3 2.65 1
## 109 1 2.73 1
## 110 7 2.59 3
## 111 8 2.24 1
## 112 2 3.40 2
## 113 4 3.27 4
## 114 7 3.59 1
## 115 3 2.54 1
## 116 6 5.40 0
## 117 3 3.83 1
## 118 4 2.54 1
## 119 3 2.70 2
## 120 5 2.35 2
## 121 7 3.54 1
## 122 3 1.94 0
## 123 4 2.65 3
## 124 3 3.13 1
## 125 5 2.48 2
## 126 3 3.24 1
## 127 3 2.46 4
## 128 6 1.73 4
## 129 4 2.48 2
## 130 4 2.57 3
## 131 2 2.94 3
## 132 5 1.65 1
## 133 3 2.57 1
## 134 1 1.92 4
## 135 10 2.46 1
## 136 3 3.02 3
## 137 4 1.43 5
## 138 3 3.24 3
## 139 8 3.02 1
## 140 5 2.75 2
## 141 3 3.35 1
## 142 4 2.84 0
## 143 5 1.84 3
## 144 4 3.16 1
## 145 7 3.81 2
## 146 6 3.86 3
## 147 3 3.70 1
## 148 4 3.16 1
## 149 5 2.30 1
## 150 4 3.00 2
## 151 6 2.86 1
## 152 7 2.73 1
## 153 6 2.03 1
## 154 11 1.86 1
## 155 4 3.11 5
## 156 4 2.65 0
## 157 7 4.27 0
## 158 2 3.70 0
## 159 2 2.75 1
## 160 4 2.59 1
## 161 5 1.92 0
## 162 6 3.24 0
## 163 5 2.84 3
## 164 1 3.29 1
## 165 3 1.65 1
## 166 2 3.27 2
## 167 3 2.03 1
## 168 3 2.94 1
## 169 4 3.46 1
## 170 2 1.70 0
## 171 2 3.56 1
## 172 5 2.86 2
## 173 4 2.84 3
## 174 2 3.81 1
## 175 5 1.65 0
## 176 7 3.00 2
## 177 3 3.29 0
## 178 3 3.11 2
## 179 10 4.37 3
## 180 0 0.00 3
## 181 5 2.57 4
## 182 1 3.21 5
## 183 12 2.67 2
## 184 7 3.94 2
## 185 3 2.27 3
## 186 13 2.92 1
## 187 4 2.75 1
## 188 3 2.94 2
## 189 3 2.43 1
## 190 3 2.46 1
## 191 4 2.40 0
## 192 2 2.57 1
## 193 4 2.38 2
## 194 2 3.62 0
## 195 4 2.57 1
## 196 6 1.84 1
## 197 8 2.62 0
## 198 6 2.89 2
## 199 7 3.73 4
## 200 3 3.51 0
## 201 5 3.54 3
## 202 1 3.02 2
## 203 8 1.73 3
## 204 3 1.84 2
## 205 4 2.54 1
## 206 2 3.27 1
## 207 8 3.70 2
## 208 5 2.92 3
## 209 5 3.29 3
## 210 7 4.27 3
## 211 10 3.13 1
## 212 11 3.21 0
## 213 3 2.89 1
## 214 6 3.29 1
## 215 4 4.75 2
## 216 6 3.11 3
## 217 3 2.94 0
## 218 7 1.27 3
## 219 2 3.51 1
## 220 12 1.92 0
## 221 6 3.29 3
## 222 6 2.75 1
## 223 2 1.19 1
## 224 6 2.40 2
## 225 1 3.73 2
## 226 4 0.73 1
## 227 2 2.08 3
## 228 3 2.59 2
## 229 3 3.59 4
## 230 3 3.21 0
## 231 2 2.84 0
## 232 6 2.97 1
## 233 2 3.65 3
## 234 2 2.94 0
## 235 5 2.43 1
## 236 2 2.75 5
## 237 9 2.43 2
## 238 7 2.65 3
## 239 9 2.89 0
## 240 6 2.54 1
## 241 5 3.48 0
## 242 2 3.32 2
## 243 2 2.27 1
## 244 2 1.92 3
## 245 3 2.54 0
## 246 5 2.57 0
## 247 3 3.00 0
## 248 5 2.75 0
## 249 2 2.48 4
## 250 4 3.19 2
## 251 11 3.75 4
## 252 7 3.89 4
## 253 8 2.46 3
## 254 3 2.57 0
## 255 3 2.94 0
## 256 8 3.81 4
## 257 3 2.65 1
## 258 8 3.92 1
## 259 2 2.81 1
## 260 4 2.35 1
## 261 9 1.81 1
## 262 1 4.16 1
## 263 3 3.11 1
## 264 1 3.38 1
## 265 6 2.24 2
## 266 6 3.08 1
## 267 9 2.27 4
## 268 6 3.65 3
## 269 4 1.22 0
## 270 3 2.67 2
## 271 3 3.94 0
## 272 3 2.08 1
## 273 13 2.16 3
## 274 3 3.51 3
## 275 3 2.70 1
## 276 5 2.65 3
## 277 4 3.00 0
## 278 2 1.76 2
## 279 6 2.94 2
## 280 6 2.84 3
## 281 4 3.51 2
## 282 6 2.81 2
## 283 1 3.29 1
## 284 2 2.43 1
## 285 5 1.81 3
## 286 3 4.21 2
## 287 5 2.38 2
## 288 4 3.92 2
## 289 5 3.81 0
## 290 3 1.43 1
## 291 2 2.16 0
## 292 3 2.62 0
## 293 4 1.59 1
## 294 5 2.78 5
## 295 3 2.65 1
## 296 5 2.57 1
## 297 5 2.73 2
## 298 1 3.21 0
## 299 9 1.78 4
## 300 5 1.78 1
## 301 4 3.21 2
## 302 2 1.59 1
## 303 3 3.02 0
## 304 4 2.46 1
## 305 10 2.78 1
## 306 5 2.46 2
## 307 10 2.30 1
## 308 3 3.08 4
## 309 2 3.08 0
## 310 4 2.40 3
## 311 2 3.56 1
## 312 6 2.62 1
## 313 3 2.94 0
## 314 4 2.65 0
## 315 2 5.10 0
## 316 3 3.35 1
## 317 4 2.08 2
## 318 3 2.05 3
## 319 5 1.35 3
## 320 2 2.54 2
## 321 3 1.67 0
## 322 3 3.48 1
## 323 3 2.70 0
## 324 4 3.05 1
## 325 5 3.62 3
## 326 3 1.92 0
## 327 4 3.08 1
## 328 4 2.57 1
## 329 3 3.38 0
## 330 12 3.89 0
## 331 2 2.13 3
## 332 2 2.57 1
## 333 5 3.29 7
## 334 4 2.51 0
## 335 4 2.03 1
## 336 4 2.32 1
## 337 2 2.86 0
## 338 7 1.89 2
## 339 3 2.05 2
## 340 2 3.94 0
## 341 1 2.46 1
## 342 11 2.92 1
## 343 7 3.78 0
## 344 0 0.00 2
## 345 3 3.59 1
## 346 8 1.94 3
## 347 5 3.29 1
## 348 11 2.84 1
## 349 5 3.54 3
## 350 3 3.46 4
## 351 8 3.05 4
## 352 4 2.73 4
## 353 3 1.43 1
## 354 9 3.97 2
## 355 2 3.56 2
## 356 2 3.43 1
## 357 4 3.05 1
## 358 2 2.30 2
## 359 4 2.48 1
## 360 4 1.57 1
## 361 6 2.38 1
## 362 6 3.05 0
## 363 5 3.24 1
## 364 3 3.05 2
## 365 2 2.94 0
## 366 9 2.73 1
## 367 3 2.46 4
## 368 3 4.86 1
## 369 5 2.05 1
## 370 2 4.32 0
## 371 6 2.78 1
## 372 6 2.86 2
## 373 1 3.35 0
## 374 2 4.00 2
## 375 6 2.48 2
## 376 5 2.86 0
## 377 7 3.02 2
## 378 18 1.81 1
## 379 2 3.11 1
## 380 4 1.84 2
## 381 2 3.97 3
## 382 4 3.97 1
## 383 4 1.54 0
## 384 5 1.00 1
## 385 4 1.94 2
## 386 7 2.89 4
## 387 1 2.40 3
## 388 5 2.30 1
## 389 3 2.89 1
## 390 6 2.75 3
## 391 2 3.00 1
## 392 3 2.35 0
## 393 5 3.35 5
## 394 3 2.54 2
## 395 2 2.92 0
## 396 5 2.62 0
## 397 4 2.11 0
## 398 2 0.54 1
## 399 4 2.30 1
## 400 5 2.86 1
## 401 1 3.24 1
## 402 3 2.86 0
## 403 2 2.67 1
## 404 6 3.02 1
## 405 3 2.03 4
## 406 5 2.51 0
## 407 7 1.84 0
## 408 5 2.30 4
## 409 3 2.78 1
## 410 4 1.30 2
## 411 5 2.27 2
## 412 6 2.81 2
## 413 1 1.46 0
## 414 5 1.89 3
## 415 3 2.70 0
## 416 3 2.35 2
## 417 2 1.35 1
## 418 2 2.65 0
## 419 6 4.32 1
## 420 6 2.03 2
## 421 11 2.51 2
## 422 1 4.13 1
## 423 3 3.38 0
## 424 2 2.78 3
## 425 3 3.05 1
## 426 4 2.94 1
## 427 7 3.38 1
## 428 9 2.59 1
## 429 5 3.02 3
## 430 7 3.35 2
## 431 2 3.59 2
## 432 4 3.08 1
## 433 2 3.46 1
## 434 5 3.19 2
## 435 3 2.32 0
## 436 3 3.02 1
## 437 3 2.16 1
## 438 4 2.24 0
## 439 3 3.65 1
## 440 2 1.70 2
## 441 6 3.32 1
## 442 4 3.35 0
## 443 3 1.84 1
## 444 5 3.40 1
## 445 7 2.59 2
## 446 6 3.00 0
## 447 4 2.59 3
## 448 5 1.86 2
## 449 3 3.29 1
## 450 3 1.70 4
## 451 5 3.38 0
## 452 2 2.65 0
## 453 3 2.24 0
## 454 9 3.86 1
## 455 1 3.00 1
## 456 2 4.00 1
## 457 2 2.51 2
## 458 7 2.62 2
## 459 3 1.62 3
## 460 3 2.97 0
## 461 5 2.59 1
## 462 9 2.59 3
## 463 5 2.73 1
## 464 2 1.59 0
## 465 5 2.30 0
## 466 3 3.67 3
## 467 5 2.84 3
## 468 4 3.13 1
## 469 5 3.00 3
## 470 9 4.64 2
## 471 2 2.86 1
## 472 6 2.57 3
## 473 3 1.70 1
## 474 4 1.67 4
## 475 12 4.00 0
## 476 6 2.67 3
## 477 5 3.16 1
## 478 2 2.05 3
## 479 2 2.19 1
## 480 4 3.02 2
## 481 6 3.13 1
## 482 3 1.43 1
## 483 4 2.19 0
## 484 13 3.59 2
## 485 2 2.97 3
## 486 2 1.81 0
## 487 3 3.46 0
## 488 2 2.84 0
## 489 0 0.00 1
## 490 4 3.32 1
## 491 7 3.46 0
## 492 6 3.86 1
## 493 2 2.54 2
## 494 2 1.59 2
## 495 4 2.21 1
## 496 9 3.00 2
## 497 4 2.16 2
## 498 3 3.21 2
## 499 4 2.62 4
## 500 2 2.03 1
## 501 7 3.40 3
## 502 5 2.03 1
## 503 5 4.73 1
## 504 3 2.51 0
## 505 12 3.35 0
## 506 5 3.00 1
## 507 5 3.08 2
## 508 2 1.51 3
## 509 5 3.13 1
## 510 5 2.59 5
## 511 3 3.32 1
## 512 8 4.00 3
## 513 8 2.46 2
## 514 3 1.78 0
## 515 12 3.78 0
## 516 5 4.73 1
## 517 1 2.05 2
## 518 4 2.54 2
## 519 3 3.48 1
## 520 3 2.43 3
## 521 2 3.13 1
## 522 3 2.21 4
## 523 5 2.48 7
## 524 6 2.65 2
## 525 6 3.51 1
## 526 8 2.84 2
## 527 3 3.38 0
## 528 7 3.21 0
## 529 4 2.32 2
## 530 9 3.27 0
## 531 4 2.11 2
## 532 3 1.81 2
## 533 5 2.89 2
## 534 3 1.46 1
## 535 10 2.48 4
## 536 1 4.91 1
## 537 6 3.78 1
## 538 3 2.30 0
## 539 8 3.35 0
## 540 3 2.67 2
## 541 2 2.11 1
## 542 1 1.78 0
## 543 3 3.83 9
## 544 6 0.95 3
## 545 8 3.29 3
## 546 3 3.21 1
## 547 10 2.27 2
## 548 9 2.78 5
## 549 3 1.59 0
## 550 5 2.73 4
## 551 3 2.13 4
## 552 2 3.11 2
## 553 4 2.75 3
## 554 6 2.73 2
## 555 6 3.43 2
## 556 2 3.54 2
## 557 4 3.24 0
## 558 2 2.57 1
## 559 5 2.24 2
## 560 6 2.08 2
## 561 1 2.89 1
## 562 7 1.94 0
## 563 5 2.46 1
## 564 5 2.94 1
## 565 1 2.16 2
## 566 4 1.27 3
## 567 5 3.05 2
## 568 7 0.97 2
## 569 6 2.70 2
## 570 4 4.16 2
## 571 2 2.78 1
## 572 3 3.92 2
## 573 3 2.92 1
## 574 1 2.43 3
## 575 5 2.67 2
## 576 2 3.83 1
## 577 6 3.70 3
## 578 4 3.16 2
## 579 3 2.08 1
## 580 4 4.46 1
## 581 2 2.00 1
## 582 3 2.75 3
## 583 8 2.89 1
## 584 2 2.78 1
## 585 6 2.65 0
## 586 5 2.75 1
## 587 4 2.27 1
## 588 8 2.00 1
## 589 11 3.65 5
## 590 2 2.32 1
## 591 4 3.05 2
## 592 2 3.48 1
## 593 1 2.59 2
## 594 5 2.57 2
## 595 6 3.38 2
## 596 0 0.00 1
## 597 4 2.59 3
## 598 5 2.46 2
## 599 5 3.32 1
## 600 6 2.48 0
## 601 4 2.46 2
## 602 6 3.75 0
## 603 4 1.24 1
## 604 6 3.13 3
## 605 7 3.08 1
## 606 8 3.43 2
## 607 8 3.54 0
## 608 8 1.78 1
## 609 5 2.86 0
## 610 3 2.35 3
## 611 7 3.13 3
## 612 3 3.43 1
## 613 6 2.08 4
## 614 6 3.56 1
## 615 1 1.97 2
## 616 5 2.16 1
## 617 7 2.38 2
## 618 6 3.78 3
## 619 6 3.13 1
## 620 4 3.92 0
## 621 4 3.46 1
## 622 3 3.11 1
## 623 3 2.86 2
## 624 1 1.92 3
## 625 2 1.38 0
## 626 4 3.73 3
## 627 2 1.11 0
## 628 2 2.00 4
## 629 5 1.76 1
## 630 4 3.70 0
## 631 4 3.75 0
## 632 2 2.57 0
## 633 4 1.30 3
## 634 4 4.21 2
## 635 6 2.92 2
## 636 7 2.75 5
## 637 15 2.48 1
## 638 3 2.03 0
## 639 1 3.48 1
## 640 2 3.08 0
## 641 4 2.13 2
## 642 3 2.65 1
## 643 13 2.97 0
## 644 7 4.21 0
## 645 4 3.78 1
## 646 4 2.30 3
## 647 9 4.16 0
## 648 5 2.03 1
## 649 4 2.46 0
## 650 3 1.62 3
## 651 4 3.11 2
## 652 6 2.57 1
## 653 1 2.48 3
## 654 3 2.30 3
## 655 5 2.84 1
## 656 10 2.54 5
## 657 4 2.51 0
## 658 2 2.51 2
## 659 7 2.67 0
## 660 2 2.24 1
## 661 9 2.57 1
## 662 4 3.24 1
## 663 2 3.32 0
## 664 4 2.00 3
## 665 4 2.11 1
## 666 4 2.48 2
## 667 1 2.59 2
## 668 3 2.48 0
## 669 1 3.32 1
## 670 4 4.19 0
## 671 4 4.40 1
## 672 6 3.21 2
## 673 5 3.19 0
## 674 3 3.02 3
## 675 15 2.03 1
## 676 3 1.59 1
## 677 4 2.86 0
## 678 4 2.54 1
## 679 4 2.40 0
## 680 9 2.35 1
## 681 2 3.54 1
## 682 5 2.51 0
## 683 3 3.08 3
## 684 1 1.76 1
## 685 8 3.00 3
## 686 7 2.32 1
## 687 2 2.73 3
## 688 8 3.40 1
## 689 3 3.27 3
## 690 2 2.21 1
## 691 3 4.02 2
## 692 4 2.75 1
## 693 7 1.54 4
## 694 4 2.16 3
## 695 4 2.94 6
## 696 9 3.13 1
## 697 3 2.03 1
## 698 4 2.46 0
## 699 11 2.27 0
## 700 9 2.97 0
## 701 3 2.89 0
## 702 3 2.08 0
## 703 3 3.81 1
## 704 7 2.81 1
## 705 4 1.76 3
## 706 5 2.30 1
## 707 5 0.97 1
## 708 7 2.05 3
## 709 6 2.86 2
## 710 3 2.62 2
## 711 4 3.38 3
## 712 8 3.08 4
## 713 0 0.00 2
## 714 2 1.86 2
## 715 5 1.97 2
## 716 6 4.13 1
## 717 4 3.08 2
## 718 6 1.94 1
## 719 3 2.51 1
## 720 5 3.16 2
## 721 2 2.00 0
## 722 5 2.94 6
## 723 3 3.65 1
## 724 11 3.78 3
## 725 5 4.43 1
## 726 3 3.21 2
## 727 5 2.11 1
## 728 2 2.48 1
## 729 5 3.43 2
## 730 5 3.62 0
## 731 3 3.11 3
## 732 1 2.16 2
## 733 5 1.94 2
## 734 8 2.57 2
## 735 4 3.27 1
## 736 6 1.76 3
## 737 9 2.97 5
## 738 3 4.51 2
## 739 3 3.08 1
## 740 8 2.38 1
## 741 2 2.54 1
## 742 3 3.11 0
## 743 3 3.08 5
## 744 6 2.81 1
## 745 5 2.46 1
## 746 8 1.78 1
## 747 2 1.73 1
## 748 1 2.11 1
## 749 5 2.35 1
## 750 6 2.97 1
## 751 4 2.21 3
## 752 6 2.73 0
## 753 4 3.43 3
## 754 5 2.97 2
## 755 4 2.59 1
## 756 4 3.08 2
## 757 14 2.65 2
## 758 5 3.54 1
## 759 6 2.65 2
## 760 4 2.57 2
## 761 5 2.73 1
## 762 3 2.27 2
## 763 6 0.35 1
## 764 5 4.05 0
## 765 4 3.08 0
## 766 6 2.35 2
## 767 2 2.97 0
## 768 4 4.10 2
## 769 2 2.62 3
## 770 3 2.97 1
## 771 4 3.59 1
## 772 3 2.38 5
## 773 7 2.48 0
## 774 2 2.08 1
## 775 4 2.86 1
## 776 4 2.89 1
## 777 4 2.84 0
## 778 4 1.57 2
## 779 5 3.67 6
## 780 4 2.73 2
## 781 9 2.97 2
## 782 4 2.89 1
## 783 4 2.54 1
## 784 4 2.54 3
## 785 9 3.02 1
## 786 5 2.89 3
## 787 3 3.05 0
## 788 6 3.00 2
## 789 2 3.19 2
## 790 3 2.84 3
## 791 3 2.03 0
## 792 3 3.81 2
## 793 2 2.21 1
## 794 3 2.43 2
## 795 2 4.08 1
## 796 4 2.92 1
## 797 2 2.27 1
## 798 7 3.92 1
## 799 5 3.94 2
## 800 5 4.29 1
## 801 2 3.05 1
## 802 5 2.54 1
## 803 4 1.76 0
## 804 3 3.40 1
## 805 4 2.65 0
## 806 4 1.84 0
## 807 5 2.75 0
## 808 3 3.27 1
## 809 3 3.05 0
## 810 3 1.57 1
## 811 4 3.27 1
## 812 6 2.67 0
## 813 4 3.54 1
## 814 5 4.13 0
## 815 4 3.35 1
## 816 3 1.54 2
## 817 5 3.27 1
## 818 6 1.78 2
## 819 3 4.08 1
## 820 3 3.54 1
## 821 3 3.43 2
## 822 5 3.54 0
## 823 4 3.16 1
## 824 6 2.73 1
## 825 3 3.05 2
## 826 6 3.13 1
## 827 9 2.54 1
## 828 4 3.29 0
## 829 2 1.49 2
## 830 3 2.67 2
## 831 1 3.62 3
## 832 2 3.19 2
## 833 4 2.54 2
## 834 3 2.75 0
## 835 3 2.54 3
## 836 3 2.67 1
## 837 4 2.62 0
## 838 13 2.19 0
## 839 8 3.21 1
## 840 5 4.35 1
## 841 6 2.43 3
## 842 2 2.78 5
## 843 11 3.08 2
## 844 6 4.27 1
## 845 6 3.94 1
## 846 4 2.70 1
## 847 4 2.78 1
## 848 4 2.78 1
## 849 9 2.46 0
## 850 2 2.48 2
## 851 5 2.94 0
## 852 4 2.97 3
## 853 3 2.59 3
## 854 6 2.05 3
## 855 13 2.62 2
## 856 7 1.67 2
## 857 2 3.43 1
## 858 4 2.48 1
## 859 8 3.16 1
## 860 3 3.05 3
## 861 6 2.67 2
## 862 3 4.02 1
## 863 3 3.54 3
## 864 13 3.35 1
## 865 4 2.40 3
## 866 9 2.67 4
## 867 3 3.00 0
## 868 5 2.21 1
## 869 7 1.08 0
## 870 4 2.00 2
## 871 5 4.02 0
## 872 6 3.00 4
## 873 3 2.94 1
## 874 1 2.51 1
## 875 3 2.81 5
## 876 4 2.46 1
## 877 2 2.03 1
## 878 4 1.59 1
## 879 0 0.00 1
## 880 8 3.19 4
## 881 7 2.75 1
## 882 8 1.81 3
## 883 3 1.94 1
## 884 12 2.16 1
## 885 7 4.05 2
## 886 3 1.46 2
## 887 3 2.40 0
## 888 7 2.05 1
## 889 4 1.49 2
## 890 5 3.35 0
## 891 2 3.24 0
## 892 5 1.67 1
## 893 4 3.32 1
## 894 3 2.89 2
## 895 3 3.21 4
## 896 3 2.30 2
## 897 7 3.89 2
## 898 7 4.19 0
## 899 2 2.16 1
## 900 7 2.35 1
## 901 6 1.49 0
## 902 3 3.05 2
## 903 6 2.21 7
## 904 8 1.59 0
## 905 3 2.43 1
## 906 4 3.62 4
## 907 3 3.65 0
## 908 2 4.56 1
## 909 4 4.05 6
## 910 6 1.38 0
## 911 5 2.19 0
## 912 11 3.89 5
## 913 3 2.86 2
## 914 4 2.86 1
## 915 4 2.84 0
## 916 3 2.03 2
## 917 5 3.56 2
## 918 6 2.24 0
## 919 2 1.40 1
## 920 4 2.97 1
## 921 2 2.48 1
## 922 14 1.19 1
## 923 5 2.51 1
## 924 3 3.73 1
## 925 4 2.13 1
## 926 2 2.92 1
## 927 6 3.78 0
## 928 5 3.08 0
## 929 5 2.11 2
## 930 5 1.78 1
## 931 4 2.65 0
## 932 2 3.24 1
## 933 2 2.70 1
## 934 4 3.81 1
## 935 2 3.02 1
## 936 3 3.51 4
## 937 4 2.48 0
## 938 2 1.81 2
## 939 2 3.86 1
## 940 8 3.21 2
## 941 4 4.19 0
## 942 5 1.76 2
## 943 2 1.73 0
## 944 2 3.40 1
## 945 6 2.48 4
## 946 6 3.11 2
## 947 5 3.62 2
## 948 4 2.97 1
## 949 3 2.27 1
## 950 3 2.97 1
## 951 3 2.13 1
## 952 2 3.13 4
## 953 2 2.89 3
## 954 3 2.32 2
## 955 8 2.32 2
## 956 5 2.78 0
## 957 3 1.92 2
## 958 15 2.54 0
## 959 3 3.32 3
## 960 5 3.46 2
## 961 3 3.59 3
## 962 3 1.13 0
## 963 2 2.08 3
## 964 5 2.92 1
## 965 2 3.59 1
## 966 4 3.29 0
## 967 5 4.24 2
## 968 3 2.48 0
## 969 3 3.65 1
## 970 4 2.38 0
## 971 1 3.11 1
## 972 5 1.35 3
## 973 3 3.19 1
## 974 2 3.32 0
## 975 7 2.57 6
## 976 6 2.81 0
## 977 6 3.51 0
## 978 2 3.19 4
## 979 4 3.54 4
## 980 5 2.11 0
## 981 8 3.13 3
## 982 4 1.86 1
## 983 18 3.51 1
## 984 4 2.43 1
## 985 1 2.67 1
## 986 9 3.59 1
## 987 9 3.19 1
## 988 2 2.24 1
## 989 4 4.59 3
## 990 3 3.67 1
## 991 2 1.05 0
## 992 2 2.13 2
## 993 5 2.08 1
## 994 2 2.59 0
## 995 6 2.81 3
## 996 5 2.03 1
## 997 5 3.13 0
## 998 3 3.05 2
## 999 3 3.97 0
## 1000 3 2.13 0
## 1001 4 3.46 2
## 1002 4 2.27 1
## 1003 3 1.84 2
## 1004 3 2.21 0
## 1005 3 3.32 1
## 1006 4 2.65 2
## 1007 4 2.24 2
## 1008 7 1.62 1
## 1009 2 3.08 2
## 1010 3 3.05 3
## 1011 4 1.03 0
## 1012 6 2.62 2
## 1013 5 2.16 2
## 1014 5 3.54 1
## 1015 4 3.24 0
## 1016 2 3.21 0
## 1017 3 2.32 1
## 1018 4 2.46 2
## 1019 5 3.08 1
## 1020 3 3.05 1
## 1021 3 3.83 2
## 1022 12 2.27 1
## 1023 5 1.94 0
## 1024 8 2.11 2
## 1025 3 3.02 1
## 1026 1 3.32 1
## 1027 2 2.70 2
## 1028 1 3.48 1
## 1029 0 0.00 1
## 1030 5 4.46 0
## 1031 4 2.51 2
## 1032 9 1.43 1
## 1033 5 2.57 1
## 1034 6 2.86 2
## 1035 9 3.54 2
## 1036 1 2.70 2
## 1037 2 3.24 3
## 1038 5 2.89 0
## 1039 3 3.81 5
## 1040 2 2.89 2
## 1041 5 2.48 4
## 1042 6 4.35 0
## 1043 3 2.67 0
## 1044 8 2.75 3
## 1045 4 1.94 4
## 1046 3 2.51 4
## 1047 5 1.73 0
## 1048 7 1.92 0
## 1049 3 2.08 0
## 1050 9 2.27 1
## 1051 10 3.48 2
## 1052 2 2.78 0
## 1053 9 2.08 1
## 1054 3 2.73 2
## 1055 3 2.35 1
## 1056 2 2.30 1
## 1057 3 1.89 0
## 1058 4 3.59 1
## 1059 6 2.32 0
## 1060 3 2.38 1
## 1061 3 4.13 1
## 1062 9 2.78 1
## 1063 3 2.67 1
## 1064 2 2.89 1
## 1065 3 3.48 2
## 1066 6 2.67 0
## 1067 4 3.19 0
## 1068 6 3.29 1
## 1069 5 2.78 0
## 1070 4 3.38 1
## 1071 9 3.21 1
## 1072 9 1.35 1
## 1073 6 3.86 1
## 1074 4 2.05 1
## 1075 7 3.38 2
## 1076 8 2.40 0
## 1077 7 1.76 1
## 1078 4 4.16 4
## 1079 8 1.81 0
## 1080 3 2.21 1
## 1081 0 0.00 0
## 1082 2 2.03 1
## 1083 1 3.19 3
## 1084 6 3.35 3
## 1085 5 3.32 3
## 1086 4 3.35 2
## 1087 6 1.86 3
## 1088 4 2.21 1
## 1089 2 3.48 0
## 1090 4 3.59 2
## 1091 3 2.81 0
## 1092 3 2.70 2
## 1093 13 2.57 1
## 1094 8 1.76 2
## 1095 8 1.94 0
## 1096 3 1.62 1
## 1097 4 3.83 1
## 1098 2 3.51 1
## 1099 4 1.38 1
## 1100 4 0.59 3
## 1101 4 2.24 1
## 1102 4 2.46 2
## 1103 2 2.84 4
## 1104 6 3.29 0
## 1105 5 2.81 4
## 1106 4 3.48 2
## 1107 5 2.73 3
## 1108 7 3.46 3
## 1109 2 1.57 3
## 1110 1 2.13 0
## 1111 9 2.00 2
## 1112 6 4.62 0
## 1113 2 3.59 0
## 1114 4 2.86 1
## 1115 4 2.94 1
## 1116 7 3.38 1
## 1117 3 3.16 3
## 1118 7 3.19 1
## 1119 4 3.32 3
## 1120 5 3.05 3
## 1121 6 3.27 1
## 1122 4 3.16 5
## 1123 5 2.81 1
## 1124 3 2.70 2
## 1125 5 2.67 1
## 1126 9 3.46 2
## 1127 4 1.97 2
## 1128 3 4.56 0
## 1129 10 3.32 2
## 1130 2 2.43 2
## 1131 2 3.43 1
## 1132 5 3.51 1
## 1133 4 3.19 1
## 1134 2 3.32 5
## 1135 3 2.43 1
## 1136 3 3.29 2
## 1137 7 3.89 1
## 1138 1 3.05 1
## 1139 6 3.67 1
## 1140 3 3.16 2
## 1141 3 2.73 1
## 1142 6 2.13 1
## 1143 4 1.43 6
## 1144 5 2.70 0
## 1145 1 2.92 2
## 1146 2 1.38 0
## 1147 5 1.08 1
## 1148 5 2.86 0
## 1149 7 2.62 3
## 1150 8 2.59 2
## 1151 4 3.13 5
## 1152 4 3.05 0
## 1153 4 2.38 1
## 1154 5 1.51 1
## 1155 2 2.19 1
## 1156 4 3.00 4
## 1157 7 3.19 1
## 1158 5 2.11 1
## 1159 6 3.00 1
## 1160 7 1.73 0
## 1161 2 2.86 0
## 1162 9 2.21 3
## 1163 2 2.94 0
## 1164 5 1.92 1
## 1165 3 3.24 2
## 1166 3 2.16 0
## 1167 3 3.29 3
## 1168 1 3.48 1
## 1169 11 2.05 1
## 1170 5 1.46 1
## 1171 2 4.10 0
## 1172 3 3.46 1
## 1173 5 2.48 2
## 1174 5 2.94 1
## 1175 7 1.57 1
## 1176 2 2.32 0
## 1177 2 2.62 4
## 1178 4 3.81 3
## 1179 2 3.02 3
## 1180 14 1.97 1
## 1181 4 3.54 0
## 1182 6 2.03 1
## 1183 2 3.89 3
## 1184 1 2.43 2
## 1185 3 2.62 2
## 1186 7 2.65 3
## 1187 5 2.35 0
## 1188 9 1.59 2
## 1189 2 2.51 1
## 1190 5 3.02 0
## 1191 8 2.40 0
## 1192 3 2.48 2
## 1193 2 1.94 4
## 1194 5 2.35 5
## 1195 2 3.56 1
## 1196 3 2.97 1
## 1197 2 1.86 1
## 1198 3 3.21 4
## 1199 3 3.62 2
## 1200 4 2.05 1
## 1201 4 3.13 1
## 1202 5 2.16 2
## 1203 3 3.40 0
## 1204 7 1.38 1
## 1205 2 2.57 1
## 1206 3 2.30 1
## 1207 4 2.62 0
## 1208 5 3.05 2
## 1209 3 2.75 3
## 1210 3 3.46 0
## 1211 2 2.13 1
## 1212 1 2.13 1
## 1213 8 3.40 1
## 1214 4 3.19 1
## 1215 3 2.57 2
## 1216 6 3.05 1
## 1217 6 1.59 3
## 1218 4 2.89 4
## 1219 3 2.05 3
## 1220 5 2.94 1
## 1221 5 4.24 2
## 1222 5 3.40 2
## 1223 5 1.32 3
## 1224 4 3.08 1
## 1225 9 2.51 1
## 1226 3 3.08 1
## 1227 4 3.08 2
## 1228 6 3.32 0
## 1229 4 2.40 1
## 1230 5 2.03 2
## 1231 2 2.86 1
## 1232 5 2.38 0
## 1233 6 4.13 0
## 1234 3 2.40 0
## 1235 7 2.65 2
## 1236 2 2.86 4
## 1237 4 2.73 0
## 1238 5 3.16 3
## 1239 4 2.19 3
## 1240 3 2.73 2
## 1241 3 2.59 4
## 1242 7 4.46 5
## 1243 10 2.46 3
## 1244 2 2.97 1
## 1245 2 2.08 1
## 1246 5 3.02 2
## 1247 3 2.43 5
## 1248 5 2.38 1
## 1249 8 3.13 0
## 1250 4 2.11 2
## 1251 4 1.40 1
## 1252 10 2.67 3
## 1253 3 2.38 2
## 1254 4 2.24 4
## 1255 3 3.00 2
## 1256 3 2.92 0
## 1257 3 1.62 2
## 1258 5 4.86 1
## 1259 7 3.02 2
## 1260 4 3.38 2
## 1261 4 2.57 3
## 1262 4 1.92 3
## 1263 7 3.11 4
## 1264 5 2.03 1
## 1265 4 2.84 1
## 1266 5 2.73 1
## 1267 3 2.43 0
## 1268 7 1.46 1
## 1269 7 2.92 0
## 1270 5 2.97 4
## 1271 6 2.35 0
## 1272 3 2.13 1
## 1273 2 3.56 4
## 1274 2 2.24 6
## 1275 2 3.02 0
## 1276 2 3.08 2
## 1277 1 2.59 1
## 1278 7 3.97 1
## 1279 7 2.59 0
## 1280 5 3.54 2
## 1281 1 3.75 0
## 1282 4 3.11 0
## 1283 6 2.81 4
## 1284 4 4.05 2
## 1285 2 2.27 5
## 1286 3 2.43 4
## 1287 8 2.03 1
## 1288 3 2.08 2
## 1289 4 1.19 1
## 1290 4 2.84 0
## 1291 3 2.46 0
## 1292 5 3.92 1
## 1293 7 2.51 0
## 1294 9 3.35 1
## 1295 5 2.48 1
## 1296 3 2.27 0
## 1297 3 2.38 2
## 1298 4 3.48 2
## 1299 6 2.11 1
## 1300 2 3.78 2
## 1301 2 2.75 3
## 1302 4 1.97 3
## 1303 5 2.59 1
## 1304 4 3.48 1
## 1305 2 2.38 3
## 1306 2 2.92 2
## 1307 5 2.86 3
## 1308 1 2.65 3
## 1309 4 3.73 0
## 1310 3 3.08 2
## 1311 5 2.00 1
## 1312 7 2.40 1
## 1313 2 1.73 1
## 1314 1 1.97 2
## 1315 4 1.70 3
## 1316 2 3.19 2
## 1317 6 2.35 2
## 1318 5 2.03 2
## 1319 2 2.08 2
## 1320 3 1.65 3
## 1321 4 3.92 2
## 1322 5 2.40 1
## 1323 1 2.46 2
## 1324 11 2.51 0
## 1325 5 3.40 2
## 1326 1 2.70 6
## 1327 9 1.70 2
## 1328 5 2.94 2
## 1329 9 2.73 1
## 1330 7 2.16 2
## 1331 2 3.73 2
## 1332 2 2.05 3
## 1333 4 2.84 3
## 1334 12 2.92 1
## 1335 4 2.16 1
## 1336 2 3.05 0
## 1337 6 3.00 3
## 1338 2 1.97 0
## 1339 3 2.51 2
## 1340 1 2.48 4
## 1341 1 3.97 1
## 1342 2 3.11 1
## 1343 5 1.11 2
## 1344 8 2.86 0
## 1345 8 2.27 0
## 1346 1 1.84 4
## 1347 2 2.89 1
## 1348 3 2.78 0
## 1349 5 3.21 1
## 1350 3 1.51 2
## 1351 7 4.00 0
## 1352 5 3.21 1
## 1353 4 3.54 0
## 1354 3 2.97 0
## 1355 3 3.46 2
## 1356 14 3.67 3
## 1357 4 3.05 1
## 1358 6 3.46 3
## 1359 2 4.02 0
## 1360 6 2.78 1
## 1361 8 3.54 2
## 1362 2 3.67 1
## 1363 2 2.67 3
## 1364 6 2.08 3
## 1365 8 3.70 1
## 1366 3 3.13 1
## 1367 1 3.32 3
## 1368 4 2.32 1
## 1369 6 3.11 4
## 1370 9 1.97 1
## 1371 2 1.78 1
## 1372 5 2.40 1
## 1373 6 2.21 1
## 1374 4 1.11 4
## 1375 7 2.30 0
## 1376 10 3.05 0
## 1377 5 1.13 4
## 1378 10 3.62 1
## 1379 4 2.40 1
## 1380 2 2.75 3
## 1381 2 3.24 1
## 1382 1 2.97 1
## 1383 4 2.46 2
## 1384 2 2.21 2
## 1385 3 2.73 3
## 1386 3 2.40 0
## 1387 3 1.92 0
## 1388 3 2.05 1
## 1389 6 2.67 4
## 1390 4 4.13 1
## 1391 6 2.51 1
## 1392 5 2.27 3
## 1393 15 1.22 3
## 1394 8 2.46 0
## 1395 4 3.51 1
## 1396 4 3.29 0
## 1397 5 3.11 4
## 1398 4 1.94 1
## 1399 4 2.97 1
## 1400 2 3.16 4
## 1401 0 0.00 3
## 1402 4 3.21 0
## 1403 4 1.54 1
## 1404 1 2.86 0
## 1405 1 2.57 3
## 1406 7 2.38 4
## 1407 8 2.40 1
## 1408 2 3.19 6
## 1409 3 3.19 1
## 1410 2 2.27 0
## 1411 5 3.29 1
## 1412 6 2.08 1
## 1413 4 2.54 1
## 1414 6 2.65 0
## 1415 4 2.62 1
## 1416 1 2.46 0
## 1417 3 2.05 3
## 1418 7 2.89 1
## 1419 7 1.54 2
## 1420 12 1.78 2
## 1421 3 4.83 3
## 1422 7 2.81 0
## 1423 1 1.51 1
## 1424 3 2.81 1
## 1425 5 3.16 0
## 1426 2 1.24 2
## 1427 7 2.65 2
## 1428 6 2.59 2
## 1429 5 3.02 2
## 1430 7 1.89 1
## 1431 4 2.05 1
## 1432 5 3.05 1
## 1433 2 3.02 0
## 1434 2 3.29 1
## 1435 6 3.56 2
## 1436 2 3.00 0
## 1437 7 2.92 1
## 1438 6 2.62 4
## 1439 6 4.08 2
## 1440 4 2.32 0
## 1441 10 1.35 1
## 1442 2 2.38 1
## 1443 3 2.24 1
## 1444 7 2.48 1
## 1445 4 2.40 3
## 1446 2 2.62 1
## 1447 2 2.78 2
## 1448 2 2.24 0
## 1449 3 2.11 4
## 1450 6 3.43 4
## 1451 9 2.94 0
## 1452 2 2.57 2
## 1453 3 3.32 2
## 1454 3 2.19 2
## 1455 7 3.81 2
## 1456 7 1.78 1
## 1457 4 2.67 1
## 1458 4 1.59 1
## 1459 4 2.32 1
## 1460 8 4.35 0
## 1461 3 2.51 3
## 1462 6 2.70 0
## 1463 4 2.19 2
## 1464 6 2.05 1
## 1465 5 2.43 3
## 1466 2 2.32 1
## 1467 3 1.38 0
## 1468 4 4.56 0
## 1469 7 1.13 3
## 1470 1 4.05 0
## 1471 3 1.59 1
## 1472 5 2.19 0
## 1473 7 3.24 1
## 1474 4 2.78 1
## 1475 6 4.40 0
## 1476 7 4.27 3
## 1477 4 1.59 0
## 1478 5 2.65 1
## 1479 7 2.62 2
## 1480 2 2.40 1
## 1481 5 2.97 0
## 1482 9 4.00 2
## 1483 4 2.54 3
## 1484 3 2.70 1
## 1485 2 3.48 3
## 1486 3 4.16 1
## 1487 2 2.62 0
## 1488 2 3.00 0
## 1489 4 1.70 2
## 1490 2 3.19 2
## 1491 2 1.89 1
## 1492 3 3.46 1
## 1493 5 2.62 1
## 1494 4 3.46 4
## 1495 10 1.32 2
## 1496 4 2.92 0
## 1497 6 3.16 3
## 1498 5 2.86 1
## 1499 3 3.00 0
## 1500 1 3.11 3
## 1501 6 3.29 1
## 1502 2 3.43 0
## 1503 4 1.59 8
## 1504 3 3.29 2
## 1505 3 2.30 2
## 1506 5 2.38 1
## 1507 3 2.89 2
## 1508 6 3.24 1
## 1509 5 1.78 3
## 1510 3 2.48 3
## 1511 2 2.32 1
## 1512 6 1.81 1
## 1513 1 1.13 1
## 1514 2 3.24 2
## 1515 3 1.89 1
## 1516 5 2.70 2
## 1517 3 2.27 1
## 1518 2 3.35 1
## 1519 5 3.05 2
## 1520 3 2.40 2
## 1521 7 2.57 2
## 1522 2 2.62 3
## 1523 4 1.51 1
## 1524 3 3.08 2
## 1525 3 3.38 2
## 1526 6 3.54 1
## 1527 11 3.62 2
## 1528 2 2.43 0
## 1529 4 1.22 0
## 1530 2 2.86 3
## 1531 6 2.16 1
## 1532 4 2.59 4
## 1533 7 3.11 0
## 1534 5 3.75 2
## 1535 6 2.89 1
## 1536 8 3.24 2
## 1537 5 2.40 0
## 1538 3 3.00 4
## 1539 3 3.70 5
## 1540 5 2.89 0
## 1541 10 4.24 3
## 1542 4 2.05 3
## 1543 3 3.21 0
## 1544 6 3.43 1
## 1545 2 2.21 1
## 1546 1 2.97 2
## 1547 4 3.86 1
## 1548 10 2.84 1
## 1549 5 2.78 1
## 1550 3 3.89 1
## 1551 2 3.08 2
## 1552 3 2.35 0
## 1553 3 4.43 2
## 1554 7 3.05 0
## 1555 10 3.59 1
## 1556 5 2.32 2
## 1557 2 2.59 0
## 1558 5 3.65 2
## 1559 4 4.00 2
## 1560 3 1.59 2
## 1561 4 2.40 0
## 1562 2 2.70 2
## 1563 1 3.48 0
## 1564 4 1.97 1
## 1565 0 0.00 1
## 1566 5 2.92 0
## 1567 10 2.57 2
## 1568 16 4.21 0
## 1569 2 3.08 1
## 1570 3 3.11 0
## 1571 3 4.67 2
## 1572 4 1.65 1
## 1573 9 2.73 1
## 1574 1 3.13 1
## 1575 4 3.43 1
## 1576 2 2.30 1
## 1577 6 2.81 3
## 1578 10 2.75 1
## 1579 5 2.38 2
## 1580 4 4.46 2
## 1581 6 2.86 0
## 1582 11 1.51 1
## 1583 2 2.43 1
## 1584 2 3.56 0
## 1585 5 3.40 1
## 1586 7 3.08 2
## 1587 4 1.94 1
## 1588 4 3.43 1
## 1589 3 3.35 1
## 1590 6 1.57 1
## 1591 7 3.05 1
## 1592 5 3.00 2
## 1593 10 1.57 3
## 1594 7 2.94 1
## 1595 2 1.70 3
## 1596 4 2.32 3
## 1597 5 2.21 0
## 1598 4 4.08 2
## 1599 2 2.38 2
## 1600 3 3.62 1
## 1601 4 1.22 0
## 1602 3 3.05 0
## 1603 4 2.35 3
## 1604 4 3.05 2
## 1605 5 3.59 3
## 1606 4 3.00 1
## 1607 3 2.73 0
## 1608 7 3.48 3
## 1609 8 3.73 2
## 1610 4 3.02 0
## 1611 5 3.40 4
## 1612 2 3.02 0
## 1613 1 1.89 2
## 1614 2 1.03 3
## 1615 4 3.73 1
## 1616 3 2.05 2
## 1617 4 2.94 0
## 1618 4 2.97 0
## 1619 6 3.21 1
## 1620 6 3.29 4
## 1621 2 2.59 0
## 1622 1 2.13 0
## 1623 8 2.59 1
## 1624 5 3.05 1
## 1625 2 3.00 2
## 1626 6 2.65 0
## 1627 4 2.32 1
## 1628 7 3.43 2
## 1629 9 4.27 1
## 1630 3 2.16 2
## 1631 5 3.56 2
## 1632 8 2.70 2
## 1633 6 3.02 0
## 1634 3 2.57 0
## 1635 5 3.24 2
## 1636 3 2.57 4
## 1637 6 2.40 1
## 1638 2 2.46 2
## 1639 2 2.62 6
## 1640 1 3.16 2
## 1641 3 2.97 3
## 1642 3 2.73 1
## 1643 3 2.03 1
## 1644 3 1.97 3
## 1645 6 2.84 1
## 1646 3 3.05 3
## 1647 2 2.67 0
## 1648 4 3.65 1
## 1649 5 2.30 0
## 1650 4 2.81 0
## 1651 2 2.59 1
## 1652 9 4.67 1
## 1653 6 1.94 1
## 1654 2 3.00 1
## 1655 2 2.89 1
## 1656 3 1.35 3
## 1657 5 2.89 1
## 1658 11 1.62 2
## 1659 3 1.73 2
## 1660 5 3.70 0
## 1661 2 3.97 3
## 1662 1 2.40 1
## 1663 5 3.70 5
## 1664 7 2.94 1
## 1665 1 2.86 2
## 1666 4 3.32 3
## 1667 4 1.73 2
## 1668 1 2.75 0
## 1669 6 2.11 1
## 1670 10 2.19 1
## 1671 3 3.43 1
## 1672 6 3.78 2
## 1673 3 3.70 2
## 1674 8 2.84 5
## 1675 1 2.67 1
## 1676 3 2.75 0
## 1677 5 2.08 2
## 1678 10 2.43 1
## 1679 8 2.40 1
## 1680 6 2.86 0
## 1681 1 3.43 2
## 1682 4 1.92 1
## 1683 3 2.30 1
## 1684 4 3.48 2
## 1685 4 3.81 2
## 1686 5 2.92 3
## 1687 3 3.32 2
## 1688 5 3.83 3
## 1689 4 2.84 3
## 1690 5 3.08 1
## 1691 9 3.35 1
## 1692 4 1.97 2
## 1693 7 1.70 1
## 1694 5 3.38 1
## 1695 7 3.11 7
## 1696 5 3.59 2
## 1697 6 3.35 1
## 1698 2 3.11 1
## 1699 4 1.62 0
## 1700 3 2.27 4
## 1701 5 2.54 2
## 1702 10 2.97 2
## 1703 3 2.08 4
## 1704 2 3.00 2
## 1705 5 3.13 1
## 1706 2 1.94 3
## 1707 3 3.16 1
## 1708 9 1.51 5
## 1709 3 3.02 4
## 1710 3 2.84 3
## 1711 7 2.43 2
## 1712 4 3.16 0
## 1713 5 2.78 4
## 1714 3 2.03 5
## 1715 2 3.08 3
## 1716 4 3.59 0
## 1717 2 2.46 1
## 1718 3 3.86 1
## 1719 8 2.62 2
## 1720 5 4.10 2
## 1721 1 1.65 1
## 1722 3 2.21 1
## 1723 1 3.32 1
## 1724 7 2.94 2
## 1725 4 1.92 1
## 1726 4 3.81 2
## 1727 5 2.97 1
## 1728 2 3.29 1
## 1729 5 2.57 4
## 1730 4 3.62 2
## 1731 3 3.40 2
## 1732 7 3.48 0
## 1733 5 2.24 3
## 1734 6 0.95 0
## 1735 3 3.73 1
## 1736 1 4.00 0
## 1737 6 1.86 1
## 1738 6 2.38 0
## 1739 3 1.30 0
## 1740 1 1.57 2
## 1741 6 2.54 0
## 1742 5 1.00 3
## 1743 5 3.08 1
## 1744 2 1.57 1
## 1745 3 2.08 0
## 1746 1 2.75 0
## 1747 6 3.65 1
## 1748 5 2.70 1
## 1749 7 3.81 1
## 1750 3 2.38 3
## 1751 2 1.86 1
## 1752 2 2.38 1
## 1753 3 3.81 0
## 1754 2 2.03 2
## 1755 2 2.62 2
## 1756 5 3.21 1
## 1757 6 2.48 1
## 1758 6 3.24 2
## 1759 7 3.27 0
## 1760 6 2.40 0
## 1761 6 2.48 2
## 1762 2 2.08 1
## 1763 3 2.00 0
## 1764 1 3.11 1
## 1765 4 2.03 0
## 1766 2 3.43 4
## 1767 7 3.13 2
## 1768 3 2.84 2
## 1769 2 2.92 2
## 1770 2 2.59 2
## 1771 3 2.46 0
## 1772 8 3.43 2
## 1773 10 3.38 1
## 1774 3 3.11 1
## 1775 1 1.78 1
## 1776 4 2.57 0
## 1777 5 2.97 0
## 1778 3 2.70 3
## 1779 10 3.05 2
## 1780 7 3.05 1
## 1781 7 3.24 1
## 1782 3 4.08 1
## 1783 1 2.16 1
## 1784 3 2.94 1
## 1785 4 3.81 0
## 1786 6 2.13 2
## 1787 5 2.21 0
## 1788 2 2.11 1
## 1789 5 3.32 1
## 1790 7 1.27 0
## 1791 3 2.48 2
## 1792 3 2.92 1
## 1793 6 1.65 0
## 1794 4 1.97 1
## 1795 5 3.11 1
## 1796 4 4.10 1
## 1797 4 3.51 1
## 1798 11 2.75 0
## 1799 4 3.24 1
## 1800 10 1.67 1
## 1801 4 2.89 0
## 1802 6 2.30 2
## 1803 7 3.73 5
## 1804 5 2.30 1
## 1805 2 2.59 0
## 1806 9 2.89 3
## 1807 6 3.16 0
## 1808 1 3.48 3
## 1809 2 3.35 3
## 1810 2 3.73 1
## 1811 5 3.21 0
## 1812 8 4.16 3
## 1813 3 2.24 1
## 1814 3 1.65 0
## 1815 4 3.54 0
## 1816 3 2.57 0
## 1817 3 4.97 2
## 1818 4 1.97 2
## 1819 3 3.19 3
## 1820 4 1.19 0
## 1821 2 2.40 1
## 1822 7 4.16 1
## 1823 4 2.38 2
## 1824 3 3.19 2
## 1825 3 4.05 1
## 1826 2 2.11 3
## 1827 2 2.08 3
## 1828 6 3.62 2
## 1829 2 2.67 2
## 1830 10 2.86 1
## 1831 6 2.84 1
## 1832 5 3.05 7
## 1833 11 4.08 1
## 1834 3 2.16 2
## 1835 6 3.83 0
## 1836 3 2.16 4
## 1837 3 2.62 0
## 1838 2 2.32 1
## 1839 9 2.19 1
## 1840 4 3.56 1
## 1841 3 1.92 2
## 1842 3 1.43 2
## 1843 4 2.40 0
## 1844 3 4.37 2
## 1845 3 3.11 4
## 1846 3 3.75 2
## 1847 4 3.11 1
## 1848 8 3.38 2
## 1849 3 2.32 2
## 1850 1 3.75 2
## 1851 8 2.51 1
## 1852 3 2.94 5
## 1853 3 3.92 1
## 1854 6 1.59 0
## 1855 4 1.49 1
## 1856 5 2.94 2
## 1857 5 2.62 1
## 1858 4 3.27 1
## 1859 7 3.02 0
## 1860 3 2.16 0
## 1861 7 2.00 0
## 1862 2 2.08 0
## 1863 3 2.16 0
## 1864 4 2.35 1
## 1865 5 3.08 0
## 1866 4 2.13 7
## 1867 1 2.40 2
## 1868 3 2.65 0
## 1869 2 2.24 3
## 1870 8 3.65 1
## 1871 5 2.16 0
## 1872 5 1.49 0
## 1873 3 2.19 2
## 1874 1 3.24 1
## 1875 3 1.32 2
## 1876 7 3.08 1
## 1877 1 2.19 1
## 1878 4 2.62 1
## 1879 2 3.11 1
## 1880 7 2.54 2
## 1881 1 4.00 4
## 1882 2 2.08 0
## 1883 3 3.48 2
## 1884 9 3.00 1
## 1885 7 3.32 2
## 1886 6 3.43 1
## 1887 6 1.49 3
## 1888 3 3.97 0
## 1889 4 3.24 2
## 1890 15 2.78 1
## 1891 3 2.78 4
## 1892 2 2.78 3
## 1893 1 2.67 0
## 1894 6 2.40 2
## 1895 5 2.75 3
## 1896 9 2.73 0
## 1897 5 2.67 1
## 1898 3 3.48 1
## 1899 5 2.00 2
## 1900 6 2.92 1
## 1901 1 2.67 1
## 1902 6 2.75 1
## 1903 7 3.02 1
## 1904 7 3.78 1
## 1905 4 3.92 4
## 1906 3 1.89 2
## 1907 4 2.94 1
## 1908 1 2.65 2
## 1909 3 3.46 2
## 1910 2 3.27 0
## 1911 4 1.76 0
## 1912 7 2.21 4
## 1913 8 2.81 8
## 1914 4 1.49 2
## 1915 3 2.67 3
## 1916 9 1.76 1
## 1917 3 3.19 1
## 1918 3 2.97 2
## 1919 2 3.83 1
## 1920 1 2.57 6
## 1921 6 2.32 1
## 1922 6 2.54 3
## 1923 8 2.62 4
## 1924 6 3.19 1
## 1925 2 3.05 1
## 1926 6 2.65 2
## 1927 4 2.65 2
## 1928 3 4.13 3
## 1929 5 3.02 1
## 1930 4 3.13 0
## 1931 1 2.94 1
## 1932 5 2.11 1
## 1933 5 2.32 1
## 1934 2 2.70 1
## 1935 3 2.35 0
## 1936 5 3.67 3
## 1937 3 3.08 2
## 1938 4 3.27 1
## 1939 6 1.84 1
## 1940 4 2.48 2
## 1941 4 2.35 1
## 1942 3 2.05 1
## 1943 3 2.38 2
## 1944 7 2.94 0
## 1945 3 1.81 1
## 1946 3 2.30 1
## 1947 5 1.38 1
## 1948 4 2.16 0
## 1949 2 1.84 1
## 1950 8 2.70 0
## 1951 4 1.89 4
## 1952 7 2.59 1
## 1953 6 1.65 1
## 1954 5 3.00 0
## 1955 10 3.19 0
## 1956 4 1.51 0
## 1957 4 3.40 3
## 1958 2 2.75 1
## 1959 2 3.35 3
## 1960 3 3.46 2
## 1961 11 3.75 0
## 1962 4 3.00 3
## 1963 3 2.81 3
## 1964 5 2.73 0
## 1965 6 2.97 1
## 1966 2 3.00 1
## 1967 7 0.54 1
## 1968 10 2.54 3
## 1969 6 2.16 1
## 1970 2 3.65 1
## 1971 3 3.51 5
## 1972 4 2.43 1
## 1973 4 3.38 2
## 1974 1 1.70 5
## 1975 2 2.35 5
## 1976 2 1.89 2
## 1977 2 2.81 1
## 1978 6 4.21 2
## 1979 3 3.59 3
## 1980 3 2.00 1
## 1981 2 3.43 4
## 1982 5 1.43 1
## 1983 4 4.24 0
## 1984 3 2.54 3
## 1985 5 4.43 3
## 1986 5 2.21 2
## 1987 1 3.27 0
## 1988 4 2.75 0
## 1989 2 3.27 1
## 1990 7 3.24 2
## 1991 4 3.35 2
## 1992 3 3.40 1
## 1993 3 2.05 2
## 1994 3 1.22 0
## 1995 7 2.86 0
## 1996 1 3.16 1
## 1997 3 2.05 1
## 1998 6 3.54 3
## 1999 3 2.62 2
## 2000 9 2.94 0
## 2001 3 2.73 3
## 2002 14 2.89 1
## 2003 5 3.48 3
## 2004 6 3.51 1
## 2005 3 4.81 4
## 2006 7 3.00 1
## 2007 2 1.78 3
## 2008 6 1.67 3
## 2009 4 3.21 3
## 2010 4 2.24 0
## 2011 7 3.43 0
## 2012 7 2.51 3
## 2013 2 1.65 1
## 2014 2 2.92 2
## 2015 3 3.70 3
## 2016 4 3.73 0
## 2017 5 2.48 3
## 2018 4 2.57 3
## 2019 11 2.03 1
## 2020 4 3.00 1
## 2021 1 1.40 2
## 2022 4 3.00 1
## 2023 7 2.86 1
## 2024 3 3.62 1
## 2025 3 3.40 2
## 2026 3 3.62 2
## 2027 6 3.81 1
## 2028 3 2.92 1
## 2029 3 2.35 1
## 2030 10 3.89 0
## 2031 1 3.19 1
## 2032 9 3.08 5
## 2033 10 3.56 2
## 2034 4 2.81 2
## 2035 2 3.94 1
## 2036 3 2.35 3
## 2037 6 2.16 3
## 2038 8 1.81 1
## 2039 8 2.73 1
## 2040 2 2.86 1
## 2041 1 2.62 2
## 2042 4 2.67 2
## 2043 8 3.02 1
## 2044 5 1.73 3
## 2045 10 2.70 0
## 2046 4 3.67 4
## 2047 5 3.00 1
## 2048 4 3.29 3
## 2049 9 2.59 3
## 2050 2 1.89 2
## 2051 4 2.03 1
## 2052 6 2.21 1
## 2053 6 2.62 2
## 2054 4 3.51 0
## 2055 2 1.92 1
## 2056 3 3.65 1
## 2057 7 3.59 3
## 2058 3 3.11 2
## 2059 9 3.27 0
## 2060 2 2.40 3
## 2061 5 1.97 0
## 2062 3 2.78 0
## 2063 4 2.78 1
## 2064 5 2.73 2
## 2065 3 2.48 2
## 2066 6 3.29 1
## 2067 5 4.08 0
## 2068 3 2.67 4
## 2069 4 3.32 1
## 2070 2 2.65 0
## 2071 5 3.54 1
## 2072 9 1.13 2
## 2073 6 1.76 3
## 2074 4 3.05 1
## 2075 5 1.78 2
## 2076 1 2.38 2
## 2077 2 2.73 4
## 2078 3 3.54 0
## 2079 4 1.16 1
## 2080 9 3.54 2
## 2081 5 3.21 0
## 2082 7 2.73 1
## 2083 4 2.65 0
## 2084 6 2.24 3
## 2085 5 2.38 2
## 2086 7 3.00 1
## 2087 2 3.40 1
## 2088 8 3.00 4
## 2089 3 4.43 2
## 2090 7 3.00 1
## 2091 5 2.86 2
## 2092 2 2.03 2
## 2093 4 2.92 2
## 2094 3 3.48 0
## 2095 6 2.97 0
## 2096 4 3.59 0
## 2097 4 4.35 0
## 2098 4 2.65 2
## 2099 4 2.65 1
## 2100 5 2.73 3
## 2101 7 3.59 0
## 2102 6 1.86 0
## 2103 3 3.43 2
## 2104 4 2.62 2
## 2105 4 2.94 2
## 2106 7 2.59 0
## 2107 2 3.67 0
## 2108 6 2.73 2
## 2109 4 2.57 0
## 2110 1 3.40 3
## 2111 6 2.75 2
## 2112 1 3.89 0
## 2113 2 3.29 4
## 2114 4 3.16 2
## 2115 5 3.59 3
## 2116 1 4.10 0
## 2117 4 3.83 1
## 2118 7 3.21 4
## 2119 1 2.65 0
## 2120 4 3.13 0
## 2121 3 3.70 1
## 2122 2 3.43 1
## 2123 3 4.43 0
## 2124 3 2.19 1
## 2125 3 2.89 3
## 2126 10 1.03 1
## 2127 6 2.62 1
## 2128 5 3.02 3
## 2129 6 2.75 2
## 2130 4 2.00 2
## 2131 10 2.94 1
## 2132 4 2.97 1
## 2133 3 1.62 3
## 2134 8 2.78 2
## 2135 1 3.51 1
## 2136 2 3.02 0
## 2137 7 3.05 1
## 2138 3 2.40 0
## 2139 1 2.94 3
## 2140 5 3.24 3
## 2141 5 3.56 4
## 2142 3 1.78 2
## 2143 3 3.38 1
## 2144 5 3.05 3
## 2145 2 3.43 1
## 2146 5 2.92 1
## 2147 4 2.94 0
## 2148 4 3.43 3
## 2149 7 2.70 1
## 2150 5 3.13 0
## 2151 4 3.40 2
## 2152 6 2.59 2
## 2153 3 3.00 1
## 2154 4 2.57 2
## 2155 8 3.38 2
## 2156 5 3.24 2
## 2157 11 3.05 3
## 2158 2 2.75 2
## 2159 3 3.56 0
## 2160 2 3.51 1
## 2161 1 2.13 1
## 2162 5 3.27 0
## 2163 4 1.86 1
## 2164 10 2.00 1
## 2165 1 2.67 3
## 2166 3 3.51 2
## 2167 2 3.02 2
## 2168 8 1.81 1
## 2169 3 2.78 1
## 2170 2 2.86 0
## 2171 4 2.94 0
## 2172 1 1.84 1
## 2173 4 3.02 0
## 2174 7 3.59 0
## 2175 5 2.78 1
## 2176 5 2.38 3
## 2177 4 2.11 2
## 2178 1 3.54 2
## 2179 5 1.97 0
## 2180 3 3.13 2
## 2181 7 0.78 2
## 2182 5 4.05 1
## 2183 4 3.51 0
## 2184 6 3.78 3
## 2185 5 3.19 1
## 2186 3 3.51 1
## 2187 2 2.94 3
## 2188 4 3.35 4
## 2189 4 1.97 2
## 2190 4 2.62 3
## 2191 1 2.94 1
## 2192 9 1.46 1
## 2193 6 1.43 2
## 2194 2 2.54 2
## 2195 3 2.43 2
## 2196 10 1.65 1
## 2197 4 3.11 0
## 2198 1 0.84 2
## 2199 5 0.89 0
## 2200 4 2.30 2
## 2201 6 2.27 1
## 2202 3 3.78 2
## 2203 3 2.81 1
## 2204 2 2.97 4
## 2205 3 1.84 2
## 2206 8 3.02 3
## 2207 4 2.86 1
## 2208 5 2.65 0
## 2209 3 2.59 1
## 2210 3 1.84 3
## 2211 7 3.16 0
## 2212 3 3.00 4
## 2213 12 1.30 1
## 2214 2 3.35 0
## 2215 7 3.51 1
## 2216 3 3.11 0
## 2217 3 3.19 2
## 2218 5 3.08 2
## 2219 5 3.05 5
## 2220 4 2.67 3
## 2221 7 2.32 3
## 2222 6 2.75 2
## 2223 9 3.27 0
## 2224 4 2.97 6
## 2225 5 4.19 2
## 2226 5 3.27 1
## 2227 2 2.84 1
## 2228 6 2.75 2
## 2229 5 2.05 2
## 2230 5 4.75 2
## 2231 3 2.11 2
## 2232 9 1.92 3
## 2233 5 3.35 0
## 2234 5 2.97 1
## 2235 1 2.70 2
## 2236 3 2.62 1
## 2237 6 3.89 2
## 2238 7 1.84 4
## 2239 4 4.67 1
## 2240 3 2.51 2
## 2241 7 3.70 0
## 2242 3 1.32 1
## 2243 3 3.08 2
## 2244 4 2.32 2
## 2245 3 2.94 1
## 2246 5 2.38 2
## 2247 6 3.05 1
## 2248 3 3.46 0
## 2249 3 3.59 5
## 2250 4 3.89 3
## 2251 4 1.94 1
## 2252 6 1.73 1
## 2253 6 2.86 1
## 2254 8 2.40 1
## 2255 3 1.81 1
## 2256 4 3.05 0
## 2257 6 0.70 1
## 2258 3 3.65 1
## 2259 3 1.94 1
## 2260 7 2.73 3
## 2261 5 3.51 1
## 2262 5 2.54 4
## 2263 1 3.94 1
## 2264 9 2.43 1
## 2265 3 2.35 3
## 2266 4 2.35 0
## 2267 4 2.70 1
## 2268 4 3.46 2
## 2269 7 3.05 0
## 2270 13 2.21 0
## 2271 4 3.29 3
## 2272 10 2.35 1
## 2273 2 3.16 2
## 2274 3 2.05 2
## 2275 2 2.67 4
## 2276 7 2.08 0
## 2277 2 1.59 3
## 2278 4 3.59 0
## 2279 4 2.27 1
## 2280 5 2.57 1
## 2281 6 3.62 2
## 2282 4 2.24 0
## 2283 4 3.40 3
## 2284 4 1.27 5
## 2285 5 3.40 2
## 2286 3 3.19 1
## 2287 7 2.81 0
## 2288 4 1.78 3
## 2289 4 2.38 0
## 2290 7 2.92 1
## 2291 2 2.89 3
## 2292 1 3.21 0
## 2293 2 2.84 2
## 2294 3 2.46 1
## 2295 4 2.00 0
## 2296 4 1.78 0
## 2297 6 2.75 1
## 2298 4 3.48 2
## 2299 5 2.38 1
## 2300 4 2.16 0
## 2301 3 2.38 0
## 2302 6 4.59 2
## 2303 6 3.11 2
## 2304 4 2.73 2
## 2305 9 2.97 0
## 2306 3 3.00 3
## 2307 5 1.62 1
## 2308 3 2.94 3
## 2309 3 3.27 1
## 2310 4 2.40 0
## 2311 2 3.65 3
## 2312 2 2.92 1
## 2313 3 2.48 0
## 2314 4 3.11 3
## 2315 4 3.13 3
## 2316 4 1.89 2
## 2317 4 3.48 1
## 2318 3 1.70 3
## 2319 7 3.11 0
## 2320 6 2.35 3
## 2321 4 3.16 1
## 2322 2 4.19 1
## 2323 6 2.86 5
## 2324 1 2.21 1
## 2325 2 2.11 4
## 2326 5 2.65 2
## 2327 2 3.78 0
## 2328 1 2.54 6
## 2329 6 2.27 1
## 2330 2 2.40 1
## 2331 2 2.86 1
## 2332 2 1.94 1
## 2333 4 2.84 1
## 2334 4 2.21 2
## 2335 4 2.70 3
## 2336 2 2.70 3
## 2337 5 3.13 1
## 2338 6 2.24 4
## 2339 3 3.02 2
## 2340 4 2.40 1
## 2341 7 3.40 0
## 2342 7 1.92 0
## 2343 2 2.75 2
## 2344 2 3.73 1
## 2345 8 2.21 1
## 2346 0 0.00 0
## 2347 4 1.24 2
## 2348 9 3.65 1
## 2349 3 3.05 2
## 2350 5 2.59 0
## 2351 4 2.35 0
## 2352 4 0.92 2
## 2353 4 3.46 0
## 2354 4 3.16 1
## 2355 7 3.54 2
## 2356 8 3.38 2
## 2357 3 1.57 2
## 2358 2 2.73 1
## 2359 8 3.94 0
## 2360 4 3.54 1
## 2361 3 2.54 2
## 2362 3 2.84 3
## 2363 0 0.00 3
## 2364 3 3.59 0
## 2365 4 3.70 0
## 2366 5 3.11 1
## 2367 5 3.78 1
## 2368 5 1.78 3
## 2369 7 2.05 1
## 2370 6 2.43 4
## 2371 4 2.67 4
## 2372 3 4.91 1
## 2373 3 2.73 2
## 2374 2 2.75 0
## 2375 5 2.27 0
## 2376 4 2.81 2
## 2377 3 1.57 1
## 2378 4 2.38 1
## 2379 7 3.40 3
## 2380 1 3.19 2
## 2381 2 2.73 9
## 2382 5 2.05 1
## 2383 8 2.94 0
## 2384 2 2.59 2
## 2385 3 1.73 0
## 2386 2 3.75 0
## 2387 2 2.00 2
## 2388 6 2.46 6
## 2389 5 2.40 1
## 2390 4 2.86 0
## 2391 5 3.29 0
## 2392 6 2.92 2
## 2393 7 2.97 1
## 2394 8 2.24 0
## 2395 5 3.02 3
## 2396 2 3.86 4
## 2397 3 2.86 2
## 2398 5 3.56 1
## 2399 3 3.11 1
## 2400 5 3.02 1
## 2401 4 2.27 0
## 2402 1 3.08 1
## 2403 4 4.13 5
## 2404 7 3.51 2
## 2405 4 4.19 1
## 2406 6 1.73 1
## 2407 4 2.48 2
## 2408 6 3.62 1
## 2409 2 2.84 1
## 2410 2 2.35 2
## 2411 6 2.94 0
## 2412 5 2.51 1
## 2413 1 2.03 1
## 2414 9 4.00 0
## 2415 7 1.73 0
## 2416 3 2.43 5
## 2417 5 3.21 2
## 2418 4 2.51 2
## 2419 5 2.97 0
## 2420 4 2.40 2
## 2421 2 3.13 2
## 2422 3 2.94 4
## 2423 6 4.10 2
## 2424 2 1.00 0
## 2425 3 1.73 1
## 2426 6 2.32 2
## 2427 6 3.54 1
## 2428 3 2.57 2
## 2429 3 3.05 6
## 2430 5 2.70 2
## 2431 3 4.21 0
## 2432 4 2.75 1
## 2433 3 3.59 4
## 2434 3 3.27 2
## 2435 4 3.05 0
## 2436 6 2.78 1
## 2437 2 3.59 1
## 2438 4 2.24 4
## 2439 5 2.97 2
## 2440 4 3.94 1
## 2441 6 1.89 0
## 2442 4 3.27 1
## 2443 3 1.27 3
## 2444 5 2.97 0
## 2445 4 2.62 5
## 2446 5 3.13 1
## 2447 6 3.13 2
## 2448 4 3.48 1
## 2449 3 3.73 3
## 2450 6 2.05 3
## 2451 6 3.21 1
## 2452 4 2.89 2
## 2453 6 3.70 1
## 2454 8 2.70 1
## 2455 4 2.62 1
## 2456 6 1.92 1
## 2457 6 2.81 4
## 2458 2 3.29 1
## 2459 4 2.38 1
## 2460 7 3.97 4
## 2461 5 2.65 2
## 2462 5 3.11 0
## 2463 4 2.94 2
## 2464 4 2.73 2
## 2465 2 2.54 1
## 2466 5 2.24 3
## 2467 2 2.84 0
## 2468 6 2.08 1
## 2469 2 1.16 1
## 2470 2 2.24 3
## 2471 4 1.51 3
## 2472 3 2.00 0
## 2473 6 2.75 1
## 2474 7 2.30 0
## 2475 1 2.51 0
## 2476 3 1.43 1
## 2477 3 2.67 1
## 2478 7 2.46 1
## 2479 7 3.56 1
## 2480 2 3.16 3
## 2481 7 2.78 3
## 2482 4 3.05 1
## 2483 6 2.75 2
## 2484 3 3.48 2
## 2485 2 3.32 0
## 2486 4 3.24 1
## 2487 3 1.46 0
## 2488 3 2.65 0
## 2489 2 1.81 0
## 2490 6 2.84 4
## 2491 9 2.65 1
## 2492 10 2.65 2
## 2493 6 2.30 0
## 2494 3 3.05 5
## 2495 4 2.19 1
## 2496 3 2.30 1
## 2497 3 2.11 1
## 2498 4 1.13 2
## 2499 5 2.75 1
## 2500 3 3.73 1
## 2501 3 2.59 1
## 2502 4 3.62 0
## 2503 5 4.43 2
## 2504 5 2.67 2
## 2505 1 3.51 1
## 2506 9 3.38 3
## 2507 4 3.56 1
## 2508 3 3.40 0
## 2509 3 2.35 2
## 2510 3 2.94 2
## 2511 1 2.70 2
## 2512 6 1.94 3
## 2513 3 2.75 0
## 2514 0 0.00 2
## 2515 5 2.89 0
## 2516 2 3.24 5
## 2517 3 3.29 2
## 2518 4 3.35 0
## 2519 5 2.13 2
## 2520 5 2.27 2
## 2521 8 2.11 1
## 2522 4 3.27 1
## 2523 9 2.27 2
## 2524 10 2.11 3
## 2525 4 3.19 1
## 2526 2 2.62 0
## 2527 1 1.73 0
## 2528 8 3.54 2
## 2529 9 2.67 3
## 2530 5 2.48 2
## 2531 9 2.89 2
## 2532 4 2.73 1
## 2533 9 1.94 2
## 2534 6 3.32 2
## 2535 2 4.86 1
## 2536 5 2.48 2
## 2537 1 2.43 0
## 2538 8 1.73 3
## 2539 7 3.78 1
## 2540 2 2.89 3
## 2541 1 3.48 1
## 2542 2 3.83 2
## 2543 3 2.57 1
## 2544 3 1.86 1
## 2545 4 3.56 3
## 2546 5 2.21 0
## 2547 5 3.29 2
## 2548 4 3.43 2
## 2549 7 3.21 1
## 2550 4 2.27 2
## 2551 4 1.78 1
## 2552 3 2.94 1
## 2553 2 2.40 1
## 2554 2 2.70 6
## 2555 5 1.81 2
## 2556 4 2.51 2
## 2557 4 2.92 2
## 2558 6 4.56 0
## 2559 5 2.59 0
## 2560 2 3.11 1
## 2561 6 2.43 1
## 2562 6 2.08 1
## 2563 11 2.16 1
## 2564 4 3.27 1
## 2565 8 2.89 1
## 2566 2 3.65 0
## 2567 8 3.89 2
## 2568 2 2.51 2
## 2569 8 3.24 3
## 2570 4 3.46 3
## 2571 6 2.30 1
## 2572 3 2.11 2
## 2573 7 2.81 1
## 2574 4 3.46 1
## 2575 2 3.59 1
## 2576 3 4.19 1
## 2577 11 3.00 2
## 2578 5 2.30 2
## 2579 4 3.19 0
## 2580 2 2.11 1
## 2581 4 2.32 0
## 2582 5 3.48 4
## 2583 4 2.03 2
## 2584 6 3.46 1
## 2585 5 3.08 3
## 2586 1 2.65 3
## 2587 2 3.08 1
## 2588 7 2.40 3
## 2589 9 3.24 2
## 2590 4 3.75 1
## 2591 7 2.51 3
## 2592 5 2.38 1
## 2593 3 3.46 5
## 2594 9 3.86 0
## 2595 8 3.19 1
## 2596 4 2.27 1
## 2597 5 1.57 1
## 2598 2 3.78 2
## 2599 8 2.78 1
## 2600 4 2.38 0
## 2601 4 3.02 1
## 2602 5 3.11 1
## 2603 2 3.08 2
## 2604 5 1.73 2
## 2605 4 4.29 3
## 2606 8 3.81 2
## 2607 3 4.35 1
## 2608 3 2.67 3
## 2609 2 1.81 4
## 2610 6 2.89 1
## 2611 4 1.59 1
## 2612 3 3.19 0
## 2613 8 2.27 2
## 2614 9 1.92 1
## 2615 2 3.29 0
## 2616 4 2.94 1
## 2617 3 4.32 0
## 2618 2 2.89 2
## 2619 5 1.86 1
## 2620 2 3.00 3
## 2621 7 2.97 1
## 2622 16 2.03 4
## 2623 2 3.13 4
## 2624 7 2.94 2
## 2625 2 3.13 0
## 2626 5 3.24 2
## 2627 6 3.40 2
## 2628 1 3.38 1
## 2629 3 1.84 4
## 2630 3 1.81 1
## 2631 3 2.65 2
## 2632 2 3.35 2
## 2633 3 3.19 1
## 2634 3 2.86 0
## 2635 7 3.40 2
## 2636 4 2.70 1
## 2637 6 1.62 2
## 2638 9 1.59 3
## 2639 9 3.08 2
## 2640 4 3.29 1
## 2641 3 2.92 3
## 2642 5 3.05 1
## 2643 4 2.70 1
## 2644 7 2.86 3
## 2645 2 3.35 0
## 2646 2 3.27 2
## 2647 6 3.11 5
## 2648 4 3.62 0
## 2649 1 3.43 1
## 2650 3 2.65 1
## 2651 4 1.32 2
## 2652 5 2.48 3
## 2653 9 2.62 0
## 2654 5 3.35 1
## 2655 3 1.84 1
## 2656 5 2.70 1
## 2657 1 2.40 2
## 2658 5 2.40 3
## 2659 7 3.65 0
## 2660 5 4.35 2
## 2661 2 3.62 4
## 2662 3 2.57 0
## 2663 6 3.70 2
## 2664 7 3.43 2
## 2665 3 3.89 1
## 2666 3 2.73 3
## 2667 2 3.27 1
## 2668 4 2.70 3
## 2669 4 2.32 0
## 2670 2 0.30 2
## 2671 6 2.43 2
## 2672 5 2.57 2
## 2673 10 2.48 0
## 2674 5 1.81 3
## 2675 6 3.46 0
## 2676 9 1.54 0
## 2677 8 3.27 0
## 2678 3 1.97 4
## 2679 6 3.89 2
## 2680 3 0.89 1
## 2681 3 2.08 2
## 2682 9 3.59 0
## 2683 3 3.48 0
## 2684 4 3.56 1
## 2685 7 2.65 2
## 2686 3 3.81 3
## 2687 1 2.70 2
## 2688 6 4.59 1
## 2689 2 2.70 1
## 2690 8 4.10 0
## 2691 7 1.89 3
## 2692 4 2.62 2
## 2693 4 3.13 1
## 2694 3 1.97 3
## 2695 3 2.73 0
## 2696 7 2.65 2
## 2697 5 3.32 3
## 2698 5 3.21 0
## 2699 4 3.35 1
## 2700 5 3.13 0
## 2701 5 2.30 3
## 2702 3 2.24 3
## 2703 5 2.13 1
## 2704 13 3.27 1
## 2705 3 3.02 2
## 2706 7 2.62 4
## 2707 3 3.56 0
## 2708 2 2.43 2
## 2709 3 2.40 1
## 2710 3 3.16 0
## 2711 4 3.97 0
## 2712 3 2.70 1
## 2713 2 3.13 0
## 2714 3 1.62 2
## 2715 6 4.16 1
## 2716 8 1.65 1
## 2717 4 3.27 2
## 2718 6 1.16 0
## 2719 2 3.73 1
## 2720 6 2.70 1
## 2721 3 2.78 1
## 2722 6 2.59 1
## 2723 5 2.73 2
## 2724 9 3.51 2
## 2725 11 2.57 2
## 2726 3 3.24 0
## 2727 1 2.67 2
## 2728 3 3.16 0
## 2729 3 1.67 2
## 2730 4 2.35 2
## 2731 8 4.00 1
## 2732 6 3.75 0
## 2733 2 4.56 5
## 2734 0 0.00 2
## 2735 3 3.00 1
## 2736 3 3.59 0
## 2737 5 2.48 3
## 2738 2 2.67 1
## 2739 3 2.03 1
## 2740 9 2.92 0
## 2741 1 2.78 0
## 2742 2 3.35 1
## 2743 1 2.89 2
## 2744 7 2.16 2
## 2745 7 1.92 1
## 2746 2 2.75 2
## 2747 1 3.62 3
## 2748 1 1.67 0
## 2749 10 2.08 2
## 2750 6 3.83 1
## 2751 6 2.35 1
## 2752 4 2.13 0
## 2753 1 2.19 3
## 2754 2 3.48 2
## 2755 7 3.05 1
## 2756 3 2.89 0
## 2757 1 3.38 2
## 2758 7 1.57 2
## 2759 3 3.24 0
## 2760 9 3.40 1
## 2761 4 3.83 0
## 2762 7 2.84 1
## 2763 4 2.57 3
## 2764 2 2.21 3
## 2765 3 4.02 2
## 2766 3 2.89 1
## 2767 6 2.84 1
## 2768 4 2.21 3
## 2769 2 3.24 1
## 2770 2 2.46 1
## 2771 3 1.54 2
## 2772 6 3.56 1
## 2773 2 1.59 4
## 2774 5 1.65 2
## 2775 3 3.56 0
## 2776 13 2.43 1
## 2777 7 2.00 0
## 2778 6 3.32 2
## 2779 3 2.78 1
## 2780 4 2.30 0
## 2781 4 3.05 3
## 2782 3 2.43 2
## 2783 3 3.13 3
## 2784 2 2.46 1
## 2785 3 2.94 3
## 2786 3 2.48 5
## 2787 6 2.43 6
## 2788 6 2.92 1
## 2789 2 1.94 0
## 2790 4 2.08 2
## 2791 3 2.46 0
## 2792 3 1.49 0
## 2793 4 3.00 1
## 2794 7 3.89 2
## 2795 3 2.94 0
## 2796 2 2.51 1
## 2797 2 4.37 0
## 2798 4 2.70 2
## 2799 8 2.75 1
## 2800 3 2.54 3
## 2801 2 2.97 0
## 2802 3 1.65 4
## 2803 2 3.89 2
## 2804 8 2.86 3
## 2805 4 2.46 1
## 2806 5 3.08 1
## 2807 8 3.67 2
## 2808 4 3.19 2
## 2809 5 3.13 1
## 2810 3 0.95 1
## 2811 4 3.00 0
## 2812 5 2.92 2
## 2813 6 2.97 2
## 2814 4 3.32 3
## 2815 6 2.89 1
## 2816 5 1.94 2
## 2817 6 4.94 1
## 2818 9 3.08 1
## 2819 4 2.73 1
## 2820 3 2.78 0
## 2821 2 3.56 4
## 2822 5 1.54 0
## 2823 3 3.02 0
## 2824 4 4.48 2
## 2825 5 3.54 0
## 2826 9 3.86 2
## 2827 11 2.75 2
## 2828 4 2.78 5
## 2829 6 1.70 4
## 2830 4 3.40 1
## 2831 6 2.84 1
## 2832 3 2.67 1
## 2833 5 2.03 3
## 2834 9 3.13 2
## 2835 7 3.16 1
## 2836 15 2.81 3
## 2837 5 2.78 2
## 2838 3 3.86 1
## 2839 3 2.84 2
## 2840 2 3.83 2
## 2841 7 2.92 0
## 2842 8 3.78 0
## 2843 2 2.54 0
## 2844 6 2.70 1
## 2845 4 3.11 1
## 2846 4 1.22 0
## 2847 4 2.73 1
## 2848 4 3.29 0
## 2849 2 2.16 0
## 2850 4 2.08 1
## 2851 5 2.70 2
## 2852 3 2.21 2
## 2853 4 1.24 1
## 2854 3 2.35 2
## 2855 4 2.86 1
## 2856 2 2.19 1
## 2857 4 2.70 0
## 2858 2 1.51 1
## 2859 3 2.00 1
## 2860 3 3.11 0
## 2861 6 3.19 2
## 2862 3 3.54 4
## 2863 6 3.27 0
## 2864 3 2.62 3
## 2865 2 3.38 0
## 2866 6 2.32 2
## 2867 4 3.00 2
## 2868 6 3.02 1
## 2869 3 3.67 0
## 2870 2 2.40 1
## 2871 9 2.46 2
## 2872 2 3.05 2
## 2873 2 2.48 2
## 2874 5 1.86 2
## 2875 10 3.32 0
## 2876 2 1.78 3
## 2877 6 2.81 3
## 2878 3 1.76 2
## 2879 6 2.59 0
## 2880 2 2.70 1
## 2881 5 2.65 1
## 2882 3 1.67 1
## 2883 2 3.08 2
## 2884 11 2.65 1
## 2885 4 2.35 1
## 2886 2 2.27 1
## 2887 3 2.67 1
## 2888 4 3.00 2
## 2889 2 2.94 1
## 2890 6 2.27 1
## 2891 1 3.13 0
## 2892 5 3.29 0
## 2893 7 3.19 1
## 2894 6 1.94 0
## 2895 2 3.97 3
## 2896 4 1.73 0
## 2897 4 2.46 1
## 2898 3 4.48 0
## 2899 5 1.51 2
## 2900 4 1.03 1
## 2901 5 2.13 1
## 2902 7 2.51 4
## 2903 3 2.70 2
## 2904 4 1.81 5
## 2905 9 2.81 2
## 2906 9 1.03 3
## 2907 0 0.00 1
## 2908 1 3.46 0
## 2909 2 2.13 2
## 2910 2 2.08 2
## 2911 2 2.46 2
## 2912 3 3.51 1
## 2913 3 1.16 0
## 2914 4 2.92 1
## 2915 4 3.38 4
## 2916 2 3.89 4
## 2917 6 2.84 2
## 2918 3 2.24 0
## 2919 0 0.00 4
## 2920 5 2.54 0
## 2921 4 2.89 1
## 2922 2 4.29 2
## 2923 2 2.75 2
## 2924 3 4.51 2
## 2925 3 2.78 1
## 2926 2 3.13 2
## 2927 3 1.35 4
## 2928 3 2.75 1
## 2929 3 2.65 2
## 2930 4 4.02 3
## 2931 12 3.48 1
## 2932 6 2.94 2
## 2933 6 3.19 1
## 2934 4 0.57 1
## 2935 3 2.32 2
## 2936 2 2.65 0
## 2937 2 2.57 0
## 2938 4 3.62 0
## 2939 5 1.89 1
## 2940 5 3.59 0
## 2941 5 1.97 1
## 2942 1 3.11 4
## 2943 3 2.70 1
## 2944 2 2.11 0
## 2945 5 2.65 0
## 2946 2 3.78 0
## 2947 4 1.11 1
## 2948 13 2.43 1
## 2949 5 2.84 1
## 2950 5 2.70 2
## 2951 4 3.19 0
## 2952 7 3.48 2
## 2953 3 2.21 5
## 2954 4 2.65 7
## 2955 4 2.27 3
## 2956 5 2.78 1
## 2957 18 2.32 1
## 2958 1 1.97 1
## 2959 2 1.70 6
## 2960 4 2.46 1
## 2961 3 2.70 5
## 2962 2 2.16 6
## 2963 5 1.46 1
## 2964 7 3.13 0
## 2965 1 2.13 3
## 2966 3 2.27 1
## 2967 5 2.16 1
## 2968 6 2.75 0
## 2969 2 3.75 1
## 2970 2 2.13 2
## 2971 12 1.73 1
## 2972 2 2.59 0
## 2973 4 2.73 2
## 2974 5 2.81 0
## 2975 6 1.89 1
## 2976 4 3.19 0
## 2977 5 3.11 1
## 2978 2 1.81 0
## 2979 5 3.51 1
## 2980 3 2.38 7
## 2981 3 3.86 3
## 2982 6 2.62 1
## 2983 5 2.40 2
## 2984 4 2.13 1
## 2985 6 2.92 1
## 2986 5 2.97 3
## 2987 3 2.84 2
## 2988 3 3.70 3
## 2989 5 3.24 3
## 2990 3 3.73 2
## 2991 6 2.24 1
## 2992 5 1.97 1
## 2993 3 3.13 1
## 2994 3 3.38 1
## 2995 7 1.49 1
## 2996 2 3.56 2
## 2997 3 3.59 1
## 2998 2 2.11 0
## 2999 3 3.32 0
## 3000 5 2.59 1
## 3001 4 3.92 3
## 3002 3 3.11 1
## 3003 8 2.40 3
## 3004 3 2.54 1
## 3005 3 4.37 1
## 3006 2 2.84 2
## 3007 7 2.67 1
## 3008 5 3.81 3
## 3009 2 3.51 0
## 3010 3 1.81 5
## 3011 3 3.27 2
## 3012 3 2.86 1
## 3013 3 3.00 1
## 3014 6 1.40 2
## 3015 4 3.19 0
## 3016 7 1.92 2
## 3017 9 3.94 1
## 3018 3 1.62 5
## 3019 2 3.29 2
## 3020 3 3.73 3
## 3021 4 2.65 1
## 3022 2 2.73 0
## 3023 7 0.78 0
## 3024 2 3.75 4
## 3025 5 3.11 1
## 3026 12 4.21 2
## 3027 4 2.92 6
## 3028 6 2.54 4
## 3029 6 3.38 1
## 3030 4 2.48 0
## 3031 5 3.78 3
## 3032 3 3.38 3
## 3033 7 2.11 1
## 3034 3 3.67 1
## 3035 8 3.02 1
## 3036 3 3.13 4
## 3037 5 2.54 3
## 3038 4 1.76 0
## 3039 3 1.73 2
## 3040 2 2.84 1
## 3041 4 2.84 0
## 3042 4 1.76 0
## 3043 2 2.24 0
## 3044 2 2.43 1
## 3045 2 2.30 1
## 3046 3 2.84 2
## 3047 4 4.00 1
## 3048 5 3.46 2
## 3049 6 3.78 0
## 3050 3 4.21 3
## 3051 4 3.65 4
## 3052 2 4.21 1
## 3053 2 3.48 2
## 3054 10 1.89 0
## 3055 7 2.46 0
## 3056 2 2.62 2
## 3057 2 2.89 2
## 3058 3 1.97 1
## 3059 8 1.92 3
## 3060 2 3.19 2
## 3061 5 2.27 3
## 3062 6 3.35 2
## 3063 4 3.51 0
## 3064 2 3.29 1
## 3065 2 2.35 4
## 3066 6 2.27 3
## 3067 5 1.94 3
## 3068 4 2.73 0
## 3069 1 2.57 2
## 3070 3 2.67 1
## 3071 2 3.24 3
## 3072 12 1.70 1
## 3073 5 2.30 0
## 3074 5 2.00 2
## 3075 3 1.78 1
## 3076 3 1.70 2
## 3077 3 2.70 2
## 3078 2 3.86 0
## 3079 3 3.56 1
## 3080 2 2.13 5
## 3081 4 4.73 0
## 3082 3 1.59 6
## 3083 4 3.27 3
## 3084 5 3.38 0
## 3085 2 3.27 2
## 3086 7 2.70 3
## 3087 8 3.02 3
## 3088 9 2.32 0
## 3089 3 2.40 1
## 3090 4 2.54 3
## 3091 4 3.27 1
## 3092 3 2.86 1
## 3093 2 2.73 0
## 3094 3 2.21 2
## 3095 2 2.84 1
## 3096 4 2.86 1
## 3097 5 2.65 3
## 3098 11 2.70 2
## 3099 4 3.24 0
## 3100 10 2.73 0
## 3101 2 2.81 0
## 3102 5 2.21 1
## 3103 9 3.40 3
## 3104 1 3.56 2
## 3105 2 2.78 0
## 3106 1 2.57 0
## 3107 5 3.13 1
## 3108 4 2.46 1
## 3109 8 2.97 2
## 3110 13 3.02 0
## 3111 7 2.86 1
## 3112 5 3.08 1
## 3113 3 2.51 7
## 3114 9 3.78 2
## 3115 1 3.27 0
## 3116 1 2.70 4
## 3117 1 2.38 1
## 3118 7 3.54 2
## 3119 5 1.40 1
## 3120 10 3.08 0
## 3121 6 2.92 2
## 3122 7 2.30 1
## 3123 3 3.81 3
## 3124 5 3.05 0
## 3125 2 2.54 3
## 3126 3 2.84 4
## 3127 6 2.86 0
## 3128 2 3.16 4
## 3129 11 2.75 3
## 3130 4 1.51 2
## 3131 1 2.35 3
## 3132 3 2.24 5
## 3133 5 2.11 2
## 3134 4 2.81 2
## 3135 5 3.08 3
## 3136 3 2.92 1
## 3137 2 2.78 1
## 3138 5 3.97 3
## 3139 3 3.59 2
## 3140 5 1.92 2
## 3141 6 4.10 5
## 3142 4 2.89 1
## 3143 4 3.46 2
## 3144 4 2.70 3
## 3145 2 2.78 5
## 3146 4 2.38 3
## 3147 5 3.75 1
## 3148 4 2.30 4
## 3149 2 2.97 0
## 3150 4 3.21 1
## 3151 5 2.89 2
## 3152 5 1.92 0
## 3153 4 2.57 1
## 3154 4 2.84 2
## 3155 3 1.70 2
## 3156 4 2.59 2
## 3157 1 2.81 3
## 3158 4 1.67 4
## 3159 5 2.51 3
## 3160 6 2.11 1
## 3161 5 0.57 0
## 3162 5 2.70 2
## 3163 3 3.59 0
## 3164 3 1.86 2
## 3165 5 2.97 1
## 3166 3 2.46 1
## 3167 2 2.75 2
## 3168 2 2.43 1
## 3169 4 3.02 1
## 3170 3 3.24 4
## 3171 6 2.03 0
## 3172 6 2.62 1
## 3173 5 3.32 3
## 3174 4 3.48 3
## 3175 6 2.32 2
## 3176 3 2.24 0
## 3177 4 2.19 0
## 3178 5 3.46 1
## 3179 5 3.73 0
## 3180 4 2.54 1
## 3181 4 3.29 1
## 3182 4 2.73 5
## 3183 8 2.11 3
## 3184 4 2.27 2
## 3185 3 1.84 0
## 3186 3 3.21 0
## 3187 6 2.54 3
## 3188 4 1.46 1
## 3189 5 2.21 1
## 3190 5 3.56 0
## 3191 3 4.27 6
## 3192 2 2.51 0
## 3193 3 1.35 2
## 3194 3 2.92 1
## 3195 1 3.62 0
## 3196 9 2.62 2
## 3197 3 3.29 1
## 3198 2 3.05 0
## 3199 2 3.46 2
## 3200 5 3.19 1
## 3201 4 2.62 1
## 3202 5 2.38 1
## 3203 4 1.86 3
## 3204 3 1.73 1
## 3205 9 2.84 1
## 3206 3 2.92 1
## 3207 13 2.75 1
## 3208 2 3.16 0
## 3209 5 2.81 2
## 3210 6 3.83 3
## 3211 3 3.08 1
## 3212 6 3.24 2
## 3213 4 1.00 0
## 3214 7 3.24 1
## 3215 9 2.38 3
## 3216 6 2.54 1
## 3217 3 0.65 0
## 3218 8 3.56 1
## 3219 9 3.62 2
## 3220 2 2.38 2
## 3221 5 2.75 0
## 3222 6 2.30 1
## 3223 6 3.16 3
## 3224 2 4.51 2
## 3225 4 3.32 3
## 3226 3 2.27 2
## 3227 4 2.03 2
## 3228 2 2.89 0
## 3229 6 4.05 5
## 3230 10 2.11 1
## 3231 14 1.13 1
## 3232 5 1.78 1
## 3233 3 2.67 1
## 3234 7 1.70 0
## 3235 5 0.68 1
## 3236 2 1.32 3
## 3237 8 2.03 0
## 3238 7 2.94 1
## 3239 3 2.38 3
## 3240 7 2.75 2
## 3241 3 1.35 1
## 3242 2 3.05 1
## 3243 2 2.27 0
## 3244 9 2.78 5
## 3245 7 1.94 1
## 3246 2 3.40 3
## 3247 2 3.21 0
## 3248 9 1.05 4
## 3249 3 3.11 0
## 3250 6 3.16 0
## 3251 4 3.65 0
## 3252 4 2.48 2
## 3253 3 3.16 0
## 3254 4 2.43 1
## 3255 5 3.97 1
## 3256 4 2.97 2
## 3257 1 4.59 3
## 3258 5 3.59 2
## 3259 5 3.62 2
## 3260 2 4.05 1
## 3261 2 3.75 1
## 3262 6 1.97 1
## 3263 5 2.73 1
## 3264 1 1.62 2
## 3265 2 1.59 0
## 3266 6 2.97 3
## 3267 4 2.62 3
## 3268 3 2.38 1
## 3269 2 3.43 2
## 3270 5 2.84 1
## 3271 6 3.46 2
## 3272 1 3.38 2
## 3273 4 3.48 2
## 3274 8 3.97 3
## 3275 5 2.16 1
## 3276 0 0.00 1
## 3277 2 2.38 1
## 3278 9 2.70 2
## 3279 6 2.86 2
## 3280 5 2.24 2
## 3281 3 2.70 4
## 3282 8 1.38 1
## 3283 4 2.08 3
## 3284 4 3.35 3
## 3285 2 3.56 1
## 3286 7 3.19 0
## 3287 8 3.54 0
## 3288 3 2.94 4
## 3289 9 1.32 1
## 3290 5 3.56 1
## 3291 0 0.00 0
## 3292 20 3.75 1
## 3293 4 3.16 1
## 3294 4 2.46 0
## 3295 3 3.32 1
## 3296 5 3.16 1
## 3297 2 2.43 1
## 3298 3 3.05 1
## 3299 4 3.32 1
## 3300 4 2.97 2
## 3301 3 1.92 1
## 3302 4 2.81 0
## 3303 3 2.11 1
## 3304 7 3.11 2
## 3305 5 3.73 4
## 3306 7 3.11 2
## 3307 3 2.19 1
## 3308 4 4.81 4
## 3309 6 3.59 1
## 3310 4 3.24 4
## 3311 17 3.67 2
## 3312 5 1.86 2
## 3313 4 3.83 2
## 3314 5 2.70 1
## 3315 4 2.46 1
## 3316 4 1.76 0
## 3317 9 3.32 0
## 3318 8 2.11 1
## 3319 4 3.13 2
## 3320 6 4.29 3
## 3321 4 2.62 4
## 3322 8 3.56 3
## 3323 2 3.11 4
## 3324 3 3.67 5
## 3325 4 3.13 1
## 3326 4 2.51 2
## 3327 7 4.02 1
## 3328 5 3.19 2
## 3329 6 2.67 2
## 3330 4 2.59 3
## 3331 6 3.81 2
## 3332 10 1.35 2
## 3333 4 3.70 0
names(data2)
## [1] "Account.Length" "EMail.Message" "Day.Mins" "Day.Calls"
## [5] "Day.Charge" "Eve.Mins" "Eve.Calls" "Eve.Charge"
## [9] "Night.Mins" "Night.Calls" "Night.Charge" "Intl.Mins"
## [13] "Intl.Calls" "Intl.Charge" "CustServ.Calls"
str(data2)
## 'data.frame': 3333 obs. of 15 variables:
## $ Account.Length: int 128 107 137 84 75 118 121 147 117 141 ...
## $ EMail.Message : int 25 26 0 0 0 0 24 0 0 37 ...
## $ Day.Mins : num 265 162 243 299 167 ...
## $ Day.Calls : int 110 123 114 71 113 98 88 79 97 84 ...
## $ Day.Charge : num 45.1 27.5 41.4 50.9 28.3 ...
## $ Eve.Mins : num 197.4 195.5 121.2 61.9 148.3 ...
## $ Eve.Calls : int 99 103 110 88 122 101 108 94 80 111 ...
## $ Eve.Charge : num 16.78 16.62 10.3 5.26 12.61 ...
## $ Night.Mins : num 245 254 163 197 187 ...
## $ Night.Calls : int 91 103 104 89 121 118 118 96 90 97 ...
## $ Night.Charge : num 11.01 11.45 7.32 8.86 8.41 ...
## $ Intl.Mins : num 10 13.7 12.2 6.6 10.1 6.3 7.5 7.1 8.7 11.2 ...
## $ Intl.Calls : int 3 3 5 7 3 6 7 6 4 5 ...
## $ Intl.Charge : num 2.7 3.7 3.29 1.78 2.73 1.7 2.03 1.92 2.35 3.02 ...
## $ CustServ.Calls: int 1 1 0 2 3 0 3 0 1 0 ...
res.pca <- PCA(data2, graph = FALSE)
res.pca
## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 3333 individuals, described by 15 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
eig.val <- get_eigenvalue(res.pca)
eig.val
## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 2.045647e+00 1.363765e+01 13.63765
## Dim.2 2.028103e+00 1.352069e+01 27.15834
## Dim.3 1.986949e+00 1.324633e+01 40.40467
## Dim.4 1.950073e+00 1.300049e+01 53.40515
## Dim.5 1.060473e+00 7.069818e+00 60.47497
## Dim.6 1.031340e+00 6.875598e+00 67.35057
## Dim.7 1.009173e+00 6.727822e+00 74.07839
## Dim.8 9.946030e-01 6.630687e+00 80.70908
## Dim.9 9.751220e-01 6.500814e+00 87.20989
## Dim.10 9.681823e-01 6.454548e+00 93.66444
## Dim.11 9.503256e-01 6.335504e+00 99.99994
## Dim.12 7.246244e-06 4.830829e-05 99.99999
## Dim.13 7.833170e-07 5.222113e-06 100.00000
## Dim.14 2.235158e-07 1.490106e-06 100.00000
## Dim.15 4.773454e-08 3.182303e-07 100.00000
fviz_eig(res.pca, addlabels = TRUE, ylim = c(0, 50))
### varaiance in components
var <- get_pca_var(res.pca)
var
## Principal Component Analysis Results for variables
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the variables"
## 2 "$cor" "Correlations between variables and dimensions"
## 3 "$cos2" "Cos2 for the variables"
## 4 "$contrib" "contributions of the variables"
head(var$coord)
## Dim.1 Dim.2 Dim.3 Dim.4
## Account.Length -0.02038016 0.001911351 0.027572141 -0.007214476
## EMail.Message 0.01305650 0.016636832 -0.006623335 0.034015756
## Day.Mins 0.50032634 0.160205925 0.848604736 -0.051767484
## Day.Calls -0.01730868 -0.058087925 0.039868269 0.028809990
## Day.Charge 0.50033016 0.160210649 0.848601835 -0.051764423
## Eve.Mins 0.28550290 0.738197932 -0.265889674 0.549181813
## Dim.5
## Account.Length 0.63135232
## EMail.Message -0.05361438
## Day.Mins -0.01539789
## Day.Calls 0.57019763
## Day.Charge -0.01539674
## Eve.Mins 0.01906337
head(var$cos2)
## Dim.1 Dim.2 Dim.3 Dim.4
## Account.Length 0.0004153508 3.653262e-06 7.602230e-04 5.204866e-05
## EMail.Message 0.0001704722 2.767842e-04 4.386857e-05 1.157072e-03
## Day.Mins 0.2503264482 2.566594e-02 7.201300e-01 2.679872e-03
## Day.Calls 0.0002995905 3.374207e-03 1.589479e-03 8.300155e-04
## Day.Charge 0.2503302660 2.566745e-02 7.201251e-01 2.679555e-03
## Eve.Mins 0.0815119079 5.449362e-01 7.069732e-02 3.016007e-01
## Dim.5
## Account.Length 0.3986057550
## EMail.Message 0.0028745023
## Day.Mins 0.0002370949
## Day.Calls 0.3251253343
## Day.Charge 0.0002370595
## Eve.Mins 0.0003634120
head(var$contrib)
## Dim.1 Dim.2 Dim.3 Dim.4
## Account.Length 0.020304129 1.801319e-04 0.038260810 0.002669062
## EMail.Message 0.008333414 1.364744e-02 0.002207835 0.059334784
## Day.Mins 12.237029366 1.265514e+00 36.242995288 0.137424200
## Day.Calls 0.014645267 1.663726e-01 0.079995939 0.042563302
## Day.Charge 12.237216001 1.265589e+00 36.242747471 0.137407947
## Eve.Mins 3.984651314 2.686925e+01 3.558083398 15.466120727
## Dim.5
## Account.Length 37.58755286
## EMail.Message 0.27105857
## Day.Mins 0.02235747
## Day.Calls 30.65852797
## Day.Charge 0.02235414
## Eve.Mins 0.03426887
fviz_pca_var(res.pca, col.var = "black")
library("corrplot")
## Warning: package 'corrplot' was built under R version 3.6.1
## corrplot 0.84 loaded
corrplot(var$cos2, is.corr=FALSE)
fviz_contrib(res.pca, choice = "var", axes = 1, top = 10)
fviz_contrib(res.pca, choice = "var", axes = 2, top = 10)
fviz_contrib(res.pca, choice = "var", axes = 1:2,addlabels = TRUE, top = 10)
S <- cov(data2)
S
## Account.Length EMail.Message Day.Mins Day.Calls
## Account.Length 1585.8001206 -2.52262489 13.4825867 30.7448682
## EMail.Message -2.5226249 187.37134656 0.5802574 -2.6229779
## Day.Mins 13.4825867 0.58025745 2966.6964865 7.3789491
## Day.Calls 30.7448682 -2.62297790 7.3789491 402.7681409
## Day.Charge 2.2913390 0.09829490 504.3372015 1.2548919
## Eve.Mins -13.6462651 12.19138210 19.4531809 -21.8328227
## Eve.Calls 15.2801047 -1.59925653 17.1114609 2.5837394
## Eve.Charge -1.1578976 1.03719438 1.6503529 -1.8556004
## Night.Mins -18.0353722 5.31744529 11.9092554 23.2812431
## Night.Calls -10.2677868 1.90799983 24.4852161 -7.6804910
## Night.Charge -0.8120031 0.23873433 0.5330759 1.0471669
## Intl.Mins 1.0577265 0.10915158 -1.5441490 1.2082682
## Intl.Calls 2.0250418 0.47022274 1.0769190 0.2259429
## Intl.Charge 0.2865307 0.02975334 -0.4143364 0.3277544
## CustServ.Calls -0.1988526 -0.23881830 -0.9617896 -0.5000802
## Day.Charge Eve.Mins Eve.Calls Eve.Charge
## Account.Length 2.29133903 -13.6462651 15.28010466 -1.15789757
## EMail.Message 0.09829490 12.1913821 -1.59925653 1.03719438
## Day.Mins 504.33720153 19.4531809 17.11146094 1.65035290
## Day.Calls 1.25489193 -21.8328227 2.58373944 -1.85560042
## Day.Charge 85.73712826 3.3103653 2.90899488 0.28084258
## Eve.Mins 3.31036528 2571.8940164 -11.54844316 218.61047926
## Eve.Calls 2.90899488 -11.5484432 396.91099860 -0.98099606
## Eve.Charge 0.28084258 218.6104793 -0.98099606 18.58185553
## Night.Mins 2.02480883 -32.2745443 -2.10859729 -2.74514917
## Night.Calls 4.16247050 7.5279877 3.00569094 0.64073800
## Night.Charge 0.09063331 -1.4534397 -0.09322113 -0.12362390
## Intl.Mins -0.26256356 -1.5623491 0.48406095 -0.13289408
## Intl.Calls 0.18303513 0.3171980 0.85484104 0.02696354
## Intl.Charge -0.07045295 -0.4230405 0.13025644 -0.03598396
## CustServ.Calls -0.16354993 -0.8662464 0.06349092 -0.07364697
## Night.Mins Night.Calls Night.Charge Intl.Mins
## Account.Length -18.0353722 -10.26778677 -0.81200306 1.05772646
## EMail.Message 5.3174453 1.90799983 0.23873433 0.10915158
## Day.Mins 11.9092554 24.48521608 0.53307592 -1.54414905
## Day.Calls 23.2812431 -7.68049101 1.04716693 1.20826816
## Day.Charge 2.0248088 4.16247050 0.09063331 -0.26256356
## Eve.Mins -32.2745443 7.52798771 -1.45343974 -1.56234912
## Eve.Calls -2.1085973 3.00569094 -0.09322113 0.48406095
## Eve.Charge -2.7451492 0.64073800 -0.12362390 -0.13289408
## Night.Mins 2557.7140018 11.08800680 115.09955435 -2.14718014
## Night.Calls 11.0880068 382.93047174 0.49825701 -0.74327384
## Night.Charge 115.0995543 0.49825701 5.17959717 -0.09666479
## Intl.Mins -2.1471801 -0.74327384 -0.09666479 7.79436806
## Intl.Calls -1.5376697 0.01466932 -0.06906100 0.22197017
## Intl.Charge -0.5786738 -0.20104884 -0.02605168 2.10439692
## CustServ.Calls -0.6178997 -0.32955144 -0.02777418 -0.03540307
## Intl.Calls Intl.Charge CustServ.Calls
## Account.Length 2.02504179 0.286530734 -0.198852628
## EMail.Message 0.47022274 0.029753337 -0.238818300
## Day.Mins 1.07691902 -0.414336356 -0.961789594
## Day.Calls 0.22594285 0.327754419 -0.500080230
## Day.Charge 0.18303513 -0.070452951 -0.163549929
## Eve.Mins 0.31719803 -0.423040491 -0.866246373
## Eve.Calls 0.85484104 0.130256442 0.063490923
## Eve.Charge 0.02696354 -0.035983962 -0.073646970
## Night.Mins -1.53766970 -0.578673772 -0.617899698
## Night.Calls 0.01466932 -0.201048843 -0.329551443
## Night.Charge -0.06906100 -0.026051678 -0.027774182
## Intl.Mins 0.22197017 2.104396916 -0.035403072
## Intl.Calls 6.05757569 0.060056672 -0.056856046
## Intl.Charge 0.06005667 0.568173152 -0.009593282
## CustServ.Calls -0.05685605 -0.009593282 1.730516689
sum(diag(S))
## [1] 11177.73
s.eigen <- eigen(S)
s.eigen
## eigen() decomposition
## $values
## [1] 3.053995e+03 2.612209e+03 2.541335e+03 1.586211e+03 4.042798e+02
## [6] 3.971430e+02 3.791923e+02 1.872380e+02 8.374213e+00 6.029173e+00
## [11] 1.727636e+00 8.294309e-06 8.192148e-06 7.868126e-06 7.627084e-06
##
## $vectors
## [,1] [,2] [,3] [,4]
## [1,] -0.0087116705 2.064977e-03 -0.0242837629 0.9992044815
## [2,] -0.0004123265 -2.982429e-03 0.0047846328 -0.0016765701
## [3,] -0.9846938783 2.128731e-02 -0.0401262046 -0.0096756639
## [4,] -0.0027547869 1.421577e-02 0.0028305049 0.0260691153
## [5,] -0.1673976059 3.617824e-03 -0.0068206225 -0.0016452535
## [6,] -0.0406161089 -8.273079e-01 0.5534881531 0.0151653133
## [7,] -0.0063926635 4.015725e-03 -0.0043141762 0.0125515214
## [8,] -0.0034513087 -7.032142e-02 0.0470458230 0.0012903295
## [9,] -0.0218834707 5.561405e-01 0.8292848233 0.0185933713
## [10,] -0.0094600028 1.427080e-04 0.0058489123 -0.0085997989
## [11,] -0.0009838163 2.502716e-02 0.0373184158 0.0008364881
## [12,] 0.0005472492 3.544451e-05 -0.0010342565 0.0006670220
## [13,] -0.0003590245 -4.175473e-04 -0.0004715396 0.0012687242
## [14,] 0.0001469065 1.021162e-05 -0.0002792145 0.0001806989
## [15,] 0.0003372423 1.340193e-04 -0.0003766449 -0.0001407188
## [,5] [,6] [,7] [,8]
## [1,] -2.891107e-02 -8.792497e-03 -1.922848e-03 -1.327672e-03
## [2,] -1.431857e-02 -4.225629e-03 -5.972543e-03 -9.998487e-01
## [3,] -5.093591e-04 -8.208175e-03 8.052054e-03 1.612113e-04
## [4,] 9.413402e-01 -6.016445e-02 -3.304874e-01 -1.131827e-02
## [5,] -8.531863e-05 -1.395280e-03 1.368500e-03 2.933342e-05
## [6,] 1.093989e-02 3.769188e-03 9.904501e-04 4.929901e-03
## [7,] 1.315496e-01 9.709003e-01 1.993888e-01 -7.222826e-03
## [8,] 9.297276e-04 3.223778e-04 8.212439e-05 4.140444e-04
## [9,] -8.472816e-03 4.493236e-04 8.369174e-03 2.354675e-03
## [10,] -3.087476e-01 2.314076e-01 -9.224112e-01 8.999049e-03
## [11,] -3.813644e-04 2.402449e-05 3.796253e-04 1.088334e-04
## [12,] 3.537163e-03 5.712884e-04 9.377802e-04 -8.280681e-04
## [13,] 6.835720e-04 2.023915e-03 1.930580e-04 -2.669072e-03
## [14,] 9.585768e-04 1.526403e-04 2.525977e-04 -2.252036e-04
## [15,] -8.829856e-04 5.727226e-05 1.244257e-03 1.269740e-03
## [,9] [,10] [,11] [,12]
## [1,] -7.185919e-04 1.184251e-03 -9.431278e-05 -8.936479e-07
## [2,] -1.051526e-03 2.572108e-03 -1.229057e-03 -2.570525e-06
## [3,] 4.842359e-04 3.870355e-04 -3.053383e-04 4.889332e-02
## [4,] -3.160149e-03 2.252894e-04 -1.241241e-03 1.068957e-06
## [5,] 7.481178e-05 7.126643e-05 -2.548914e-05 -2.875998e-01
## [6,] 5.813300e-04 1.819009e-04 -3.394408e-04 -6.489959e-02
## [7,] -1.465427e-03 1.996142e-03 2.100594e-04 -3.630998e-06
## [8,] 3.711739e-05 1.454445e-05 -1.963580e-05 7.635329e-01
## [9,] 9.449315e-04 -5.081540e-04 -2.383108e-04 -2.530793e-02
## [10,] 1.896935e-03 2.408468e-04 -8.638436e-04 -8.418924e-07
## [11,] 3.878408e-05 -4.587811e-05 -2.798693e-05 5.623998e-01
## [12,] 9.608545e-01 9.368046e-02 -4.999024e-03 2.705740e-02
## [13,] 9.695075e-02 -9.952020e-01 -1.263417e-02 -1.232258e-05
## [14,] 2.594218e-01 2.527198e-02 -1.332049e-03 -1.001758e-01
## [15,] -6.371635e-03 1.206933e-02 -9.999047e-01 -1.193517e-05
## [,13] [,14] [,15]
## [1,] -7.928759e-07 8.250714e-07 2.411684e-07
## [2,] -4.031349e-06 4.045673e-06 -5.050550e-08
## [3,] -8.146647e-02 -1.290045e-01 4.917929e-02
## [4,] -1.828715e-06 1.173898e-06 3.199844e-06
## [5,] 4.792163e-01 7.588560e-01 -2.892881e-01
## [6,] -5.354004e-02 9.658062e-03 1.169087e-03
## [7,] 1.486094e-06 -2.467213e-06 2.804534e-07
## [8,] 6.298746e-01 -1.136362e-01 -1.375566e-02
## [9,] 2.708716e-02 -2.154675e-02 1.351031e-02
## [10,] -2.511088e-06 8.159378e-07 -1.379256e-06
## [11,] -6.019146e-01 4.788061e-01 -3.002150e-01
## [12,] -8.525378e-03 1.058113e-01 2.365174e-01
## [13,] 1.640487e-05 2.059238e-06 2.295436e-05
## [14,] 3.160618e-02 -3.918844e-01 -8.760429e-01
## [15,] 2.917907e-05 3.757448e-06 -1.830569e-05
for (s in s.eigen$values) {
print(s / sum(s.eigen$values))
}
## [1] 0.2732213
## [1] 0.2336975
## [1] 0.2273569
## [1] 0.1419081
## [1] 0.03616831
## [1] 0.03552983
## [1] 0.03392389
## [1] 0.01675098
## [1] 0.0007491869
## [1] 0.0005393913
## [1] 0.0001545605
## [1] 7.420385e-10
## [1] 7.328988e-10
## [1] 7.039106e-10
## [1] 6.823461e-10
plot(s.eigen$values, xlab = 'Eigenvalue Number', ylab = 'Eigenvalue Size', main = 'Scree Graph')
lines(s.eigen$values)
s.eigen$vectors
## [,1] [,2] [,3] [,4]
## [1,] -0.0087116705 2.064977e-03 -0.0242837629 0.9992044815
## [2,] -0.0004123265 -2.982429e-03 0.0047846328 -0.0016765701
## [3,] -0.9846938783 2.128731e-02 -0.0401262046 -0.0096756639
## [4,] -0.0027547869 1.421577e-02 0.0028305049 0.0260691153
## [5,] -0.1673976059 3.617824e-03 -0.0068206225 -0.0016452535
## [6,] -0.0406161089 -8.273079e-01 0.5534881531 0.0151653133
## [7,] -0.0063926635 4.015725e-03 -0.0043141762 0.0125515214
## [8,] -0.0034513087 -7.032142e-02 0.0470458230 0.0012903295
## [9,] -0.0218834707 5.561405e-01 0.8292848233 0.0185933713
## [10,] -0.0094600028 1.427080e-04 0.0058489123 -0.0085997989
## [11,] -0.0009838163 2.502716e-02 0.0373184158 0.0008364881
## [12,] 0.0005472492 3.544451e-05 -0.0010342565 0.0006670220
## [13,] -0.0003590245 -4.175473e-04 -0.0004715396 0.0012687242
## [14,] 0.0001469065 1.021162e-05 -0.0002792145 0.0001806989
## [15,] 0.0003372423 1.340193e-04 -0.0003766449 -0.0001407188
## [,5] [,6] [,7] [,8]
## [1,] -2.891107e-02 -8.792497e-03 -1.922848e-03 -1.327672e-03
## [2,] -1.431857e-02 -4.225629e-03 -5.972543e-03 -9.998487e-01
## [3,] -5.093591e-04 -8.208175e-03 8.052054e-03 1.612113e-04
## [4,] 9.413402e-01 -6.016445e-02 -3.304874e-01 -1.131827e-02
## [5,] -8.531863e-05 -1.395280e-03 1.368500e-03 2.933342e-05
## [6,] 1.093989e-02 3.769188e-03 9.904501e-04 4.929901e-03
## [7,] 1.315496e-01 9.709003e-01 1.993888e-01 -7.222826e-03
## [8,] 9.297276e-04 3.223778e-04 8.212439e-05 4.140444e-04
## [9,] -8.472816e-03 4.493236e-04 8.369174e-03 2.354675e-03
## [10,] -3.087476e-01 2.314076e-01 -9.224112e-01 8.999049e-03
## [11,] -3.813644e-04 2.402449e-05 3.796253e-04 1.088334e-04
## [12,] 3.537163e-03 5.712884e-04 9.377802e-04 -8.280681e-04
## [13,] 6.835720e-04 2.023915e-03 1.930580e-04 -2.669072e-03
## [14,] 9.585768e-04 1.526403e-04 2.525977e-04 -2.252036e-04
## [15,] -8.829856e-04 5.727226e-05 1.244257e-03 1.269740e-03
## [,9] [,10] [,11] [,12]
## [1,] -7.185919e-04 1.184251e-03 -9.431278e-05 -8.936479e-07
## [2,] -1.051526e-03 2.572108e-03 -1.229057e-03 -2.570525e-06
## [3,] 4.842359e-04 3.870355e-04 -3.053383e-04 4.889332e-02
## [4,] -3.160149e-03 2.252894e-04 -1.241241e-03 1.068957e-06
## [5,] 7.481178e-05 7.126643e-05 -2.548914e-05 -2.875998e-01
## [6,] 5.813300e-04 1.819009e-04 -3.394408e-04 -6.489959e-02
## [7,] -1.465427e-03 1.996142e-03 2.100594e-04 -3.630998e-06
## [8,] 3.711739e-05 1.454445e-05 -1.963580e-05 7.635329e-01
## [9,] 9.449315e-04 -5.081540e-04 -2.383108e-04 -2.530793e-02
## [10,] 1.896935e-03 2.408468e-04 -8.638436e-04 -8.418924e-07
## [11,] 3.878408e-05 -4.587811e-05 -2.798693e-05 5.623998e-01
## [12,] 9.608545e-01 9.368046e-02 -4.999024e-03 2.705740e-02
## [13,] 9.695075e-02 -9.952020e-01 -1.263417e-02 -1.232258e-05
## [14,] 2.594218e-01 2.527198e-02 -1.332049e-03 -1.001758e-01
## [15,] -6.371635e-03 1.206933e-02 -9.999047e-01 -1.193517e-05
## [,13] [,14] [,15]
## [1,] -7.928759e-07 8.250714e-07 2.411684e-07
## [2,] -4.031349e-06 4.045673e-06 -5.050550e-08
## [3,] -8.146647e-02 -1.290045e-01 4.917929e-02
## [4,] -1.828715e-06 1.173898e-06 3.199844e-06
## [5,] 4.792163e-01 7.588560e-01 -2.892881e-01
## [6,] -5.354004e-02 9.658062e-03 1.169087e-03
## [7,] 1.486094e-06 -2.467213e-06 2.804534e-07
## [8,] 6.298746e-01 -1.136362e-01 -1.375566e-02
## [9,] 2.708716e-02 -2.154675e-02 1.351031e-02
## [10,] -2.511088e-06 8.159378e-07 -1.379256e-06
## [11,] -6.019146e-01 4.788061e-01 -3.002150e-01
## [12,] -8.525378e-03 1.058113e-01 2.365174e-01
## [13,] 1.640487e-05 2.059238e-06 2.295436e-05
## [14,] 3.160618e-02 -3.918844e-01 -8.760429e-01
## [15,] 2.917907e-05 3.757448e-06 -1.830569e-05
pilots.pca <- prcomp(data2)
pilots.pca
## Standard deviations (1, .., p=15):
## [1] 55.262963516 51.109775064 50.411659912 39.827263625 20.106710718
## [6] 19.928446254 19.472860166 13.683495483 2.893823221 2.455437370
## [11] 1.314395663 0.002879984 0.002862193 0.002805018 0.002761718
##
## Rotation (n x k) = (15 x 15):
## PC1 PC2 PC3 PC4
## Account.Length -0.0087116705 2.064977e-03 -0.0242837629 -0.9992044815
## EMail.Message -0.0004123265 -2.982429e-03 0.0047846328 0.0016765701
## Day.Mins -0.9846938783 2.128731e-02 -0.0401262046 0.0096756639
## Day.Calls -0.0027547869 1.421577e-02 0.0028305049 -0.0260691153
## Day.Charge -0.1673976059 3.617824e-03 -0.0068206225 0.0016452535
## Eve.Mins -0.0406161089 -8.273079e-01 0.5534881531 -0.0151653133
## Eve.Calls -0.0063926635 4.015725e-03 -0.0043141762 -0.0125515214
## Eve.Charge -0.0034513087 -7.032142e-02 0.0470458230 -0.0012903295
## Night.Mins -0.0218834707 5.561405e-01 0.8292848233 -0.0185933713
## Night.Calls -0.0094600028 1.427080e-04 0.0058489123 0.0085997989
## Night.Charge -0.0009838163 2.502716e-02 0.0373184158 -0.0008364881
## Intl.Mins 0.0005472492 3.544451e-05 -0.0010342565 -0.0006670220
## Intl.Calls -0.0003590245 -4.175473e-04 -0.0004715396 -0.0012687242
## Intl.Charge 0.0001469065 1.021162e-05 -0.0002792145 -0.0001806989
## CustServ.Calls 0.0003372423 1.340193e-04 -0.0003766449 0.0001407188
## PC5 PC6 PC7 PC8
## Account.Length -2.891107e-02 -8.792497e-03 1.922848e-03 -1.327672e-03
## EMail.Message -1.431857e-02 -4.225629e-03 5.972543e-03 -9.998487e-01
## Day.Mins -5.093591e-04 -8.208175e-03 -8.052054e-03 1.612113e-04
## Day.Calls 9.413402e-01 -6.016445e-02 3.304874e-01 -1.131827e-02
## Day.Charge -8.531863e-05 -1.395280e-03 -1.368500e-03 2.933342e-05
## Eve.Mins 1.093989e-02 3.769188e-03 -9.904501e-04 4.929901e-03
## Eve.Calls 1.315496e-01 9.709003e-01 -1.993888e-01 -7.222826e-03
## Eve.Charge 9.297276e-04 3.223778e-04 -8.212439e-05 4.140444e-04
## Night.Mins -8.472816e-03 4.493236e-04 -8.369174e-03 2.354675e-03
## Night.Calls -3.087476e-01 2.314076e-01 9.224112e-01 8.999049e-03
## Night.Charge -3.813644e-04 2.402449e-05 -3.796253e-04 1.088334e-04
## Intl.Mins 3.537163e-03 5.712884e-04 -9.377802e-04 -8.280681e-04
## Intl.Calls 6.835720e-04 2.023915e-03 -1.930580e-04 -2.669072e-03
## Intl.Charge 9.585768e-04 1.526403e-04 -2.525977e-04 -2.252036e-04
## CustServ.Calls -8.829856e-04 5.727226e-05 -1.244257e-03 1.269740e-03
## PC9 PC10 PC11 PC12
## Account.Length -7.185919e-04 1.184251e-03 9.431278e-05 8.936480e-07
## EMail.Message -1.051526e-03 2.572108e-03 1.229057e-03 2.570525e-06
## Day.Mins 4.842359e-04 3.870355e-04 3.053383e-04 -4.889331e-02
## Day.Calls -3.160149e-03 2.252894e-04 1.241241e-03 -1.068957e-06
## Day.Charge 7.481178e-05 7.126643e-05 2.548914e-05 2.875997e-01
## Eve.Mins 5.813300e-04 1.819009e-04 3.394408e-04 6.489959e-02
## Eve.Calls -1.465427e-03 1.996142e-03 -2.100594e-04 3.630998e-06
## Eve.Charge 3.711739e-05 1.454445e-05 1.963580e-05 -7.635330e-01
## Night.Mins 9.449315e-04 -5.081540e-04 2.383108e-04 2.530792e-02
## Night.Calls 1.896935e-03 2.408468e-04 8.638436e-04 8.418926e-07
## Night.Charge 3.878408e-05 -4.587811e-05 2.798693e-05 -5.623998e-01
## Intl.Mins 9.608545e-01 9.368046e-02 4.999024e-03 -2.705740e-02
## Intl.Calls 9.695075e-02 -9.952020e-01 1.263417e-02 1.232258e-05
## Intl.Charge 2.594218e-01 2.527198e-02 1.332049e-03 1.001758e-01
## CustServ.Calls -6.371635e-03 1.206933e-02 9.999047e-01 1.193517e-05
## PC13 PC14 PC15
## Account.Length -7.928756e-07 8.250716e-07 2.411685e-07
## EMail.Message -4.031348e-06 4.045674e-06 -5.050506e-08
## Day.Mins -8.146652e-02 -1.290045e-01 4.917926e-02
## Day.Calls -1.828715e-06 1.173898e-06 3.199844e-06
## Day.Charge 4.792165e-01 7.588559e-01 -2.892879e-01
## Eve.Mins -5.354002e-02 9.658079e-03 1.169084e-03
## Eve.Calls 1.486093e-06 -2.467213e-06 2.804530e-07
## Eve.Charge 6.298744e-01 -1.136364e-01 -1.375563e-02
## Night.Mins 2.708716e-02 -2.154676e-02 1.351031e-02
## Night.Calls -2.511087e-06 8.159388e-07 -1.379256e-06
## Night.Charge -6.019145e-01 4.788063e-01 -3.002149e-01
## Intl.Mins -8.525368e-03 1.058113e-01 2.365174e-01
## Intl.Calls 1.640487e-05 2.059229e-06 2.295436e-05
## Intl.Charge 3.160614e-02 -3.918842e-01 -8.760430e-01
## CustServ.Calls 2.917908e-05 3.757443e-06 -1.830568e-05
summary(pilots.pca)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6
## Standard deviation 55.2630 51.1098 50.4117 39.8273 20.10671 19.92845
## Proportion of Variance 0.2732 0.2337 0.2274 0.1419 0.03617 0.03553
## Cumulative Proportion 0.2732 0.5069 0.7343 0.8762 0.91235 0.94788
## PC7 PC8 PC9 PC10 PC11 PC12
## Standard deviation 19.47286 13.68350 2.89382 2.45544 1.31440 0.00288
## Proportion of Variance 0.03392 0.01675 0.00075 0.00054 0.00015 0.00000
## Cumulative Proportion 0.98181 0.99856 0.99931 0.99985 1.00000 1.00000
## PC13 PC14 PC15
## Standard deviation 0.002862 0.002805 0.002762
## Proportion of Variance 0.000000 0.000000 0.000000
## Cumulative Proportion 1.000000 1.000000 1.000000
2.I n the above model daily in mins ,initial charge ,customer sevice calls playing vital role in the Prediction of the model.
1.Giving discount for the loyal and old customers in the initial ,night and evening charges .That makes customer to be happy and continue with the service of the company . 2. Attending Customer service calls and giving solution immediatly with out taking second or third call. it will be helpfull for the company to make happy other wise chances is more to loose .