packages

library("tidyverse")

abro el df de prueba entrada 11/09

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQhv-T8IPbgVmpQcmLXCxofouUTwoMddmDfINwt-fLbO9GxGp8b5NKQ-udUM4Nb6aAK7fZiQ5u9pDG9/pub?gid=762020931&single=true&output=csv")

calculo n, promedios y desviaciĂłn estandar, agrupo por grupos

histograma

la grafica

Existe diferencia para ajustas las notas ??? No existe, por tanto no ajusto escala de notas en base a valor Z

t.test(df$Puntaje~df$Grupo)

    Welch Two Sample t-test

data:  df$Puntaje by df$Grupo
t = 0.67768, df = 25.718, p-value = 0.504
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.3125345  0.6197241
sample estimates:
mean in group Primero mean in group Segundo 
             6.764706              6.611111 

Datos Prueba Revelado

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vQZhBW4F59r7DTXkL6R5Zs0LfK31AiN7fdwDG7TZV0LmPG2uEvnVraSwF2ibSznUOBiD4ki4AhQpq6H/pub?gid=1814299877&single=true&output=csv")

como se distribuyen las notas ?

Agrupo por sala

grafica por salas

Grafica para evaluadores

test de ANOVA para evaluadores..existen diferencias entre los puntajes por evaluador ????

aov <- aov(df$SUMA~df$Evaluador)

summary, no existen diferencias entre los evaluadores, por lo tanto no ajusto notas.

summary(aov)
             Df Sum Sq Mean Sq F value Pr(>F)
df$Evaluador  4   4.94   1.234   0.825  0.513
Residuals    80 119.65   1.496               
LS0tCnRpdGxlOiAiQW7DoWxpc2lzIGRhdG9zIEltYWdlbm9sb2fDrWEgMjAxOSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojcGFja2FnZXMKYGBge3J9CmxpYnJhcnkoInRpZHl2ZXJzZSIpCmBgYAojYWJybyBlbCBkZiBkZSBwcnVlYmEgZW50cmFkYSAxMS8wOQpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZRaHYtVDhJUGJnVm1wUWNtTFhDeG9mb3VVVHdvTWRkbURmSU53dC1mTGJPOUd4R3A4YjVOS1EtdWRVTTROYjZhQUs3ZlppUTV1OXBERzkvcHViP2dpZD03NjIwMjA5MzEmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojY2FsY3VsbyBuLCBwcm9tZWRpb3MgeSBkZXN2aWFjacOzbiBlc3RhbmRhciwgYWdydXBvIHBvciBncnVwb3MgCmBgYHtyfQpkZiAlPiUgCiAgZ3JvdXBfYnkoR3J1cG8pICU+JSAKc3VtbWFyaXNlKG49bigpLCBQcm9tZWRpbz1tZWFuKFB1bnRhamUpLCBzZD1zZChQdW50YWplKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKI2hpc3RvZ3JhbWEKYGBge3J9Cmhpc3QoZGYkUHVudGFqZSkKYGBgCiNsYSBncmFmaWNhCmBgYHtyfQpkZiAlPiUgCiAgZ2dwbG90KGFlcyh4PUdydXBvLCB5PVB1bnRhamUpKSsKICBnZW9tX2JveHBsb3QoKQpgYGAKI0V4aXN0ZSBkaWZlcmVuY2lhIHBhcmEgYWp1c3RhcyBsYXMgbm90YXMgPz8/IE5vIGV4aXN0ZSwgcG9yIHRhbnRvIG5vIGFqdXN0byBlc2NhbGEgZGUgbm90YXMgZW4gYmFzZSBhIHZhbG9yIFoKYGBge3J9CnQudGVzdChkZiRQdW50YWplfmRmJEdydXBvKSAjTm8gZXhpc3RlLCBwb3IgdGFudG8gbm8gYWp1c3RvIGVzY2FsYSBkZSBub3RhcyBlbiBiYXNlIGEgdmFsb3IgWgpgYGAKI0RhdG9zIFBydWViYSBSZXZlbGFkbwpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZRWmhCVzRGNTlyN0RUWGtMNlI1WnMwTGZLMzFBaU43ZmR3REc3VFpWMExtUEcydUV2blZyYVN3RjJpYlN6blVPQmlENGtpNEFoUXBxNkgvcHViP2dpZD0xODE0Mjk5ODc3JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI2NvbW8gc2UgZGlzdHJpYnV5ZW4gbGFzIG5vdGFzID8gCmBgYHtyfQpoaXN0KGRmJFNVTUEpCmBgYAojQWdydXBvIHBvciBzYWxhCmBgYHtyfQpkZiAlPiUgIwogIGdyb3VwX2J5KFNhbGEpICU+JSAKc3VtbWFyaXNlKG49bigpLCBQcm9tZWRpbz1tZWFuKFNVTUEpLCBzZD1zZChTVU1BKSkgJT4lIAogIHVuZ3JvdXAoKQpgYGAKI2dyYWZpY2EgcG9yIHNhbGFzCmBgYHtyfQpkZiAlPiUgCiAgZ2dwbG90KGFlcyh4PVNhbGEsIHk9U1VNQSkpKwogIGdlb21fYm94cGxvdCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKI0dyYWZpY2EgcGFyYSBldmFsdWFkb3JlcwpgYGB7cn0KZGYgJT4lIAogIGdncGxvdChhZXMoeD1FdmFsdWFkb3IsIHk9U1VNQSkpKwogIGdlb21fYm94cGxvdCgpICsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCiN0ZXN0IGRlIEFOT1ZBIHBhcmEgZXZhbHVhZG9yZXMuLmV4aXN0ZW4gZGlmZXJlbmNpYXMgZW50cmUgbG9zIHB1bnRhamVzIHBvciBldmFsdWFkb3IgPz8/PwpgYGB7cn0KYW92IDwtIGFvdihkZiRTVU1BfmRmJEV2YWx1YWRvcikKYGBgCiNzdW1tYXJ5LCBubyBleGlzdGVuIGRpZmVyZW5jaWFzIGVudHJlIGxvcyBldmFsdWFkb3JlcywgcG9yIGxvIHRhbnRvIG5vIGFqdXN0byBub3Rhcy4gCmBgYHtyfQpzdW1tYXJ5KGFvdikKYGBgCgoKCgoKCgoK