Problem Set 1

Question 1

What is the rank of the matrix A?

\[\mathbf{A} = \left[\begin{array} {rrr} 1 & 2 & 3 & 4\\ -1 & 0 & 1 & 3\\ 0 & 1 & -2 & -3\\ 5 & 4 & -2 & -3\\ \end{array}\right] \]

Answer 1

In order to find the rank of the matrix A, we need to look at he column space and find the linear independence.

\[C(A)=span(C(A))=span(a_{1}, a_{2}, a_{3}, a_{4}, a_{5})\]

In order to see the linear independence, we need to look at the reduced row echelon of matrix A.

# creating the matrix A

A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow = 4, byrow = TRUE)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
install.packages('pcarma', repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/Anil Akyildirim/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## Warning: package 'pcarma' is not available (for R version 3.6.1)
library('pracma')
# finding the reduced row echelon with rref() function from pracma package
rref(A)
##      [,1] [,2] [,3] [,4]
## [1,]    1    0    0    0
## [2,]    0    1    0    0
## [3,]    0    0    1    0
## [4,]    0    0    0    1

We can see that there is a linear independence on all the vectors and basis dimension is 4. Dimension of the column space is 4. The rank of the Matrix is 4.

Question 2

Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

Answer 2

mxn -> m representing the row numbers and n representing the column numbers

m>n rows are greater than the columns so the maximum rank is n(columns)

The matrix is non-zero, meaning there are elements in the matrix, so the rank of the matrix can not be 0. The rank must be at least 1.

Question 3

What is the rank of matrix B?

\[\mathbf{B} = \left[\begin{array} {rrr} 1 & 2 & 1\\ 3 & 6 & 3\\ 2 & 4 & 2\\ \end{array}\right] \]

Answer 3

Same approach as answer 1 (matrix A). Find the row echelon with rref() function to see the rank of the matrix.

# creating matrix B
B <- matrix(c(1,2,1,3,6,3,2,4,2), nrow = 3, byrow = TRUE)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
rref(B)
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    0    0    0
## [3,]    0    0    0

We can see that there is a linear independence on one row (row 1) and basis dimension is 1. Dimension of the column space is 1. The rank of the Matrix is 1.

# qr() function that displays the rank of the matrix ($rank)
qr(B)
## $qr
##            [,1]      [,2]      [,3]
## [1,] -3.7416574 -7.483315 -3.741657
## [2,]  0.8017837  0.000000  0.000000
## [3,]  0.5345225  0.000000  0.000000
## 
## $rank
## [1] 1
## 
## $qraux
## [1] 1.267261 0.000000 0.000000
## 
## $pivot
## [1] 1 2 3
## 
## attr(,"class")
## [1] "qr"

Problem Set 2

Question 1

Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.

\[\mathbf{A} = \left[\begin{array} {rrr} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6\\ \end{array}\right] \]

Answer

\[A : Matrix\]

\[\vec{V} : Eigen Vector of A\]

\[\lambda : Eigen Value of A\] \[ I = Identity Matrix\]

\[A\vec{V}=\lambda V\]

\[\vec{V}\neq0\]

\[\vec{0}=\lambda \vec{V} - A \vec{V}\]

\[(\lambda I -A) \vec{V} = \vec{0}\]

\[det(\lambda I - A)=0\]

\[det(\lambda \left[\begin{array}{rrr}1 & 0 & 0\\0 & 1 & 5\\0 & 0 & 1\\\end{array}\right]-\left[\begin{array}{rrr}1 & 2 & 3\\0 & 4 & 5\\0 & 0 & 6\\\end{array}\right])=0\]

\[det(\left[\begin{array}{rrr}\lambda - 1 & \lambda -2 & \lambda -3\\0 & \lambda-4 & -5\\0 & 0 & \lambda-6\\\end{array}\right])\]

\[(\lambda -1)((\lambda-4)(\lambda-6))-0+0+0\]

\[(\lambda -1)(\lambda^2 -10 \lambda +24)\]

The characteristic polynomial is outlined below.

\[\lambda^3 - 11 \lambda^2 + 34 \lambda -24\]

We can confirm this with charpoly() function.

library('pracma')
c <- matrix(c(1,2,3,0,4,5,0,0,6), nrow = 3, byrow = TRUE)
charpoly(c, info=FALSE)
## [1]   1 -11  34 -24

We can also find the

\[\lambda\]

values and vectors of matrix A by using eigen() function

eigen(c)
## eigen() decomposition
## $values
## [1] 6 4 1
## 
## $vectors
##           [,1]      [,2] [,3]
## [1,] 0.5108407 0.5547002    1
## [2,] 0.7981886 0.8320503    0
## [3,] 0.3192754 0.0000000    0

We can also confirm this;

\[E=N(\lambda I - A)\]

\[E=N\left[\begin{array}{rrr}\lambda - 1 & \lambda -2 & \lambda -3\\0 & \lambda-4 & -5\\0 & 0 & \lambda-6\\\end{array}\right]\]

We can look at;

\[\lambda = 4\]

\[E = N \left[\begin{array} {rrr} 3 & -2 & -3\\ 0 & 0 & -5\\ 0 & 0 & -2\\ \end{array}\right] \]

Finding the reduced row echelon form of this matrix;

# creating the matrix inside
d <- matrix(c(3,-2,-3,0,0,-5,0,0,-2), nrow = 3, byrow = TRUE)
rref(d)
##      [,1]       [,2] [,3]
## [1,]    1 -0.6666667    0
## [2,]    0  0.0000000    1
## [3,]    0  0.0000000    0

\[\left[\begin{array}{rrr}1 & -0.6 & 0\\0 & 0 & 1\\0 & 0 & 0\\\end{array}\right] \left[\begin{array}{rrr}V1\\V2\\V3\\\end{array}\right] = \left[\begin{array}{rrr}0\\0\\0\\\end{array}\right]\]

\[V1=0.6V2\]

We can look at;

\[\lambda = 1\]

\[E = N \left[\begin{array} {rrr} 0 & -1 & -2\\ 0 & -3 & -5\\ 0 & 0 & -5\\ \end{array}\right] \]

# creating the matrix inside and finding the reduced row echelon
e <- matrix(c(0,-1,-2,0,-3,-5,0,0,-5), nrow = 3, byrow = TRUE)
rref(e)
##      [,1] [,2] [,3]
## [1,]    0    1    0
## [2,]    0    0    1
## [3,]    0    0    0

\[\left[\begin{array}{rrr}1 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0\\\end{array}\right] \left[\begin{array}{rrr}V1\\V2\\V3\\\end{array}\right] = \left[\begin{array}{rrr}0\\0\\0\\\end{array}\right]\]

We can look at;

\[\lambda = 6\]

\[\left[\begin{array}{rrr}5 & 4 & 3\\0 & 2 & -5\\0 & 0 & 0\\\end{array}\right] \left[\begin{array}{rrr}V1\\V2\\V3\\\end{array}\right] = \left[\begin{array}{rrr}0\\0\\0\\\end{array}\right]\]

# creating the matrix inside and finding the reduced row echelon
f <- matrix(c(5,4,3,0,-2,-5,0,0,0), nrow = 3, byrow = TRUE)
rref(f)
##      [,1] [,2] [,3]
## [1,]    1    0 -1.4
## [2,]    0    1  2.5
## [3,]    0    0  0.0

\[\left[\begin{array}{rrr}1 & 0 & -1.4\\0 & 0 & 1\\0 & 0 & 0\\\end{array}\right] \left[\begin{array}{rrr}V1\\V2\\V3\\\end{array}\right] = \left[\begin{array}{rrr}0\\0\\0\\\end{array}\right]\]

\[1.4V1=V3\]