Use the given code below to answer the questions.

## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis

## Import data
stocks <- tq_get("TSLA", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 928 x 7
##    date        open  high   low close  volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>   <dbl>    <dbl>
##  1 2016-01-04  231.  231.  219   223. 6827100     223.
##  2 2016-01-05  226.  227.  220   223. 3186800     223.
##  3 2016-01-06  220   220.  216.  219. 3779100     219.
##  4 2016-01-07  214.  218.  214.  216. 3554300     216.
##  5 2016-01-08  218.  220.  211.  211  3628100     211 
##  6 2016-01-11  214.  214.  203   208. 4089700     208.
##  7 2016-01-12  212.  214.  205.  210. 3091900     210.
##  8 2016-01-13  212.  213.  200   200. 4126400     200.
##  9 2016-01-14  202.  210   193.  206. 6490700     206.
## 10 2016-01-15  199.  205.  197.  205. 5578600     205.
## # … with 918 more rows
## Visualize
stocks %>%
  ggplot(aes(x = date, y = adjusted)) +
  geom_line()

Q1 Import Tesla stock prices, instead of Apple.

Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance

## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis

## Import data
stocks <- tq_get("TSLA", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 928 x 7
##    date        open  high   low close  volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>   <dbl>    <dbl>
##  1 2016-01-04  231.  231.  219   223. 6827100     223.
##  2 2016-01-05  226.  227.  220   223. 3186800     223.
##  3 2016-01-06  220   220.  216.  219. 3779100     219.
##  4 2016-01-07  214.  218.  214.  216. 3554300     216.
##  5 2016-01-08  218.  220.  211.  211  3628100     211 
##  6 2016-01-11  214.  214.  203   208. 4089700     208.
##  7 2016-01-12  212.  214.  205.  210. 3091900     210.
##  8 2016-01-13  212.  213.  200   200. 4126400     200.
##  9 2016-01-14  202.  210   193.  206. 6490700     206.
## 10 2016-01-15  199.  205.  197.  205. 5578600     205.
## # … with 918 more rows
## Visualize
stocks %>%
  ggplot(aes(x = date, y = adjusted)) +
  geom_line()

Q2 How many shares of the stock were traded on January 13, 2016?

4126400

Q3 Stock prices in this data would be a good example of numeric data. Character and logical are two other basic data types in R. List one example of character data and one example of logical data.

Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.

Anything writtin in letters is Character data and Logical data are the options True or False

Q4 Plot the closing price in a line chart.

Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.

For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.

## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis

## Import data
stocks <- tq_get("TSLA", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 928 x 7
##    date        open  high   low close  volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>   <dbl>    <dbl>
##  1 2016-01-04  231.  231.  219   223. 6827100     223.
##  2 2016-01-05  226.  227.  220   223. 3186800     223.
##  3 2016-01-06  220   220.  216.  219. 3779100     219.
##  4 2016-01-07  214.  218.  214.  216. 3554300     216.
##  5 2016-01-08  218.  220.  211.  211  3628100     211 
##  6 2016-01-11  214.  214.  203   208. 4089700     208.
##  7 2016-01-12  212.  214.  205.  210. 3091900     210.
##  8 2016-01-13  212.  213.  200   200. 4126400     200.
##  9 2016-01-14  202.  210   193.  206. 6490700     206.
## 10 2016-01-15  199.  205.  197.  205. 5578600     205.
## # … with 918 more rows
## Visualize
stocks %>%
  ggplot(aes(x = date, y = close)) +
  geom_line()

Q5 From the chart you created in Q4, briefly describe how the Tesla stock has performed since the beginning of 2019.

The stocks has plummeted since the begining of 2019. Lower than usual

Q6 Import two stocks: Tesla and Netflix for the same time period.

Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.

## # A tibble: 928 x 7
##    date        open  high   low close  volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>   <dbl>    <dbl>
##  1 2016-01-04  231.  231.  219   223. 6827100     223.
##  2 2016-01-05  226.  227.  220   223. 3186800     223.
##  3 2016-01-06  220   220.  216.  219. 3779100     219.
##  4 2016-01-07  214.  218.  214.  216. 3554300     216.
##  5 2016-01-08  218.  220.  211.  211  3628100     211 
##  6 2016-01-11  214.  214.  203   208. 4089700     208.
##  7 2016-01-12  212.  214.  205.  210. 3091900     210.
##  8 2016-01-13  212.  213.  200   200. 4126400     200.
##  9 2016-01-14  202.  210   193.  206. 6490700     206.
## 10 2016-01-15  199.  205.  197.  205. 5578600     205.
## # … with 918 more rows
## # A tibble: 928 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04  109   110   105.  110. 20794800     110.
##  2 2016-01-05  110.  111.  106.  108. 17664600     108.
##  3 2016-01-06  105.  118.  105.  118. 33045700     118.
##  4 2016-01-07  116.  122.  112.  115. 33636700     115.
##  5 2016-01-08  116.  118.  111.  111. 18067100     111.
##  6 2016-01-11  112.  117.  111.  115. 21920400     115.
##  7 2016-01-12  116.  118.  115.  117. 15133500     117.
##  8 2016-01-13  114.  114.  105.  107. 24921600     107.
##  9 2016-01-14  106.  109.  101.  107. 23664800     107.
## 10 2016-01-15  102.  106.  102.  104. 19775100     104.
## # … with 918 more rows

Q7 Hide the messages, but display the code and results of the code from the webpage.

Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.

## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis

## Import data
stocks <- tq_get("TSLA", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 928 x 7
##    date        open  high   low close  volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>   <dbl>    <dbl>
##  1 2016-01-04  231.  231.  219   223. 6827100     223.
##  2 2016-01-05  226.  227.  220   223. 3186800     223.
##  3 2016-01-06  220   220.  216.  219. 3779100     219.
##  4 2016-01-07  214.  218.  214.  216. 3554300     216.
##  5 2016-01-08  218.  220.  211.  211  3628100     211 
##  6 2016-01-11  214.  214.  203   208. 4089700     208.
##  7 2016-01-12  212.  214.  205.  210. 3091900     210.
##  8 2016-01-13  212.  213.  200   200. 4126400     200.
##  9 2016-01-14  202.  210   193.  206. 6490700     206.
## 10 2016-01-15  199.  205.  197.  205. 5578600     205.
## # … with 918 more rows
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 928 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04  109   110   105.  110. 20794800     110.
##  2 2016-01-05  110.  111.  106.  108. 17664600     108.
##  3 2016-01-06  105.  118.  105.  118. 33045700     118.
##  4 2016-01-07  116.  122.  112.  115. 33636700     115.
##  5 2016-01-08  116.  118.  111.  111. 18067100     111.
##  6 2016-01-11  112.  117.  111.  115. 21920400     115.
##  7 2016-01-12  116.  118.  115.  117. 15133500     117.
##  8 2016-01-13  114.  114.  105.  107. 24921600     107.
##  9 2016-01-14  106.  109.  101.  107. 23664800     107.
## 10 2016-01-15  102.  106.  102.  104. 19775100     104.
## # … with 918 more rows
## Visualize
stocks %>%
  ggplot(aes(x = date, y = adjusted)) +
  geom_line()

Q8 Hide the code in Q6 but display its results.

Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.