Synopsis
The paper of Mendez (2019) studies efficiency convergence across provinces in Indonesia over the 1990-2010 period. Results from the distributional convergence framework indicate the existence of two separate convergence clusters within the pure technical efficiency distribution. Moreover, since scale efficiency is characterized by only one convergence cluster, the two clusters of pure technical efficiency appear to be driving the overall efficiency dynamics of Indonesia.
Pure technical efficiency clusters

Interactive version:
Scale efficiency clusters

Interactive version:
Overall efficiency clusters

Interactive version:
LS0tCnRpdGxlOiAiUmVnaW9uYWwgRWZmaWNpZW5jeSBEaXNwZXJzaW9uIGFuZCBDb252ZXJnZW5jZSBDbHVzdGVyczogIgpzdWJ0aXRsZTogIkV2aWRlbmNlIGZyb20gdGhlIFByb3ZpbmNlcyBvZiBJbmRvbmVzaWEgMTk5MC0yMDEwIgphdXRob3I6ICJDYXJsb3MgTWVuZGV6IgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDoKICAgICAgY29sbGFwc2VkOiBmYWxzZQogICAgICBzbW9vdGhfc2Nyb2xsOiBmYWxzZQogICAgdG9jX2RlcHRoOiA0CiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIGNvZGVfZm9sZGluZzogImhpZGUiCiAgICB0aGVtZTogImNvc21vIgogICAgaGlnaGxpZ2h0OiAibW9ub2Nocm9tZSIKICAgIGRmX3ByaW50OiAia2FibGUiCiAgZ2l0aHViX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKPHN0eWxlPgoKaDEudGl0bGUgeyAKICBmb250LXNpemU6IDE4cHQ7IAogIGNvbG9yOiBEYXJrQmx1ZTsgCn0gCgpib2R5LCBoMSwgaDIsIGgzLCBoNCB7CiAgICBmb250LWZhbWlseTogIlBhbGF0aW5vIiwgc2VyaWY7Cn0KCmJvZHkgewogICAgZm9udC1zaXplOiAxMnB0Owp9CgovKiBIZWFkZXJzICovCmgxLGgyLGgzLGg0LGg1LGg2ewogIGZvbnQtc2l6ZTogMTRwdDsKICBjb2xvcjogIzAwMDA4QjsKfQoKYm9keSB7CiAgICBjb2xvcjogIzMzMzMzMzsKfQphLCBhOmhvdmVyIHsKICAgIGNvbG9yOiAjOEIzQTYyOwp9CnByZSB7CiAgICBmb250LXNpemU6IDEycHg7Cn0KPC9zdHlsZT4KCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1UUlVFfQprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgZWNobyA9IFRSVUUsCiAgbWVzc2FnZSA9IEZBTFNFLAogIHdhcm5pbmcgPSBGQUxTRQopCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHBsb3RseSkgICAgICAgICMgaW50ZXJhY3RpdmUgZmlndXJlcwpsaWJyYXJ5KGthYmxlRXh0cmEpICAgICMgaHRtbCB0YWJsZXMgCmxpYnJhcnkoZ2dyZXBlbCkKCiMgQ2hhbmdlIHRoZSBwcmVzZW50YXRpb24gb2YgZGVjaW1hbCBudW1iZXJzIHRvIDQgYW5kIGF2b2lkIHNjaWVudGlmaWMgbm90YXRpb24Kb3B0aW9ucyhwcm9tcHQ9IlI+ICIsIGRpZ2l0cz0yLCBzY2lwZW49OTk5KQpgYGAKCgojIFN5bm9wc2lzIAoKVGhlIHBhcGVyIG9mIFtNZW5kZXogKDIwMTkpXShodHRwczovL21wcmEudWIudW5pLW11ZW5jaGVuLmRlLzk1OTcyLzEvTVBSQV9wYXBlcl85NTk3Mi5wZGYpIHN0dWRpZXMgZWZmaWNpZW5jeSBjb252ZXJnZW5jZSBhY3Jvc3MgcHJvdmluY2VzIGluIEluZG9uZXNpYSBvdmVyIHRoZSAxOTkwLTIwMTAgcGVyaW9kLiAgUmVzdWx0cyBmcm9tIHRoZSBkaXN0cmlidXRpb25hbCBjb252ZXJnZW5jZSBmcmFtZXdvcmsgaW5kaWNhdGUgdGhlIGV4aXN0ZW5jZSBvZiB0d28gc2VwYXJhdGUgY29udmVyZ2VuY2UgY2x1c3RlcnMgd2l0aGluIHRoZSBwdXJlIHRlY2huaWNhbCBlZmZpY2llbmN5IGRpc3RyaWJ1dGlvbi4gTW9yZW92ZXIsIHNpbmNlIHNjYWxlIGVmZmljaWVuY3kgaXMgY2hhcmFjdGVyaXplZCBieSBvbmx5IG9uZSBjb252ZXJnZW5jZSBjbHVzdGVyLCB0aGUgdHdvIGNsdXN0ZXJzIG9mIHB1cmUgdGVjaG5pY2FsIGVmZmljaWVuY3kgYXBwZWFyIHRvIGJlIGRyaXZpbmcgdGhlIG92ZXJhbGwgZWZmaWNpZW5jeSBkeW5hbWljcyBvZiBJbmRvbmVzaWEuCgoKIyBEYXRhCgpgYGB7cn0KZGF0IDwtIHJlYWRfY3N2KCJGaWdzVGFicy9hcHBlbmRpeEZVTEwuY3N2IikKZGF0CmBgYAoKClNvdXJjZTogRWZmaWNpZW5jeSBzY29yZXMgYXJlIGZyb20gW0thdGFva2EgKDIwMTgpXSgoaHR0cHM6Ly9saW5rLnNwcmluZ2VyLmNvbS9hcnRpY2xlLzEwLjEwMDcvczQxNjg1LTAxNy0wMDUxLTMpKS4gRWZmaWNpZW5jeSBjbHVzdGVycyBhcmUgZnJvbSBbTWVuZGV6ICgyMDE5KV0oaHR0cHM6Ly9tcHJhLnViLnVuaS1tdWVuY2hlbi5kZS85NTk3Mi8xL01QUkFfcGFwZXJfOTU5NzIucGRmKQoKIyBQdXJlIHRlY2huaWNhbCBlZmZpY2llbmN5IGNsdXN0ZXJzCgoKCgpgYGB7cn0KUEUgPC0gZGF0ICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBQRTE5OTAsIAogICAgICAgICAgICAgeSA9IFBFMjAxMCwKICAgICAgICAgICAgIHNoYXBlID0gQ2x1c3RlclBFLAogICAgICAgICAgICAgY29sb3IgPSBDbHVzdGVyUEUsCiAgICAgICAgICAgICBsYWJlbCA9IHJlZ2lvbiwKICAgICAgICAgICAgICkKICAgICAgICAgKSArCiAgZ2VvbV9wb2ludChzaXplPTMpICsKICBnZW9tX3RleHRfcmVwZWwoKQoKUEUKCmBgYAoKCkludGVyYWN0aXZlIHZlcnNpb246IAoKYGBge3J9CmdncGxvdGx5KFBFKQpgYGAKCgojIFNjYWxlIGVmZmljaWVuY3kgY2x1c3RlcnMKCgpgYGB7cn0KU0UgPC0gZGF0ICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBTRTE5OTAsIAogICAgICAgICAgICAgeSA9IFNFMjAxMCwKICAgICAgICAgICAgIHNoYXBlID0gQ2x1c3RlclNFLAogICAgICAgICAgICAgY29sb3IgPSBDbHVzdGVyU0UsCiAgICAgICAgICAgICBsYWJlbCA9IHJlZ2lvbiwKICAgICAgICAgICAgICkKICAgICAgICAgKSArCiAgZ2VvbV9wb2ludChzaXplPTMpICsKICBnZW9tX3RleHRfcmVwZWwoKQoKU0UKCmBgYAoKSW50ZXJhY3RpdmUgdmVyc2lvbjoKCmBgYHtyfQoKZ2dwbG90bHkoU0UpCmBgYAoKCiMgT3ZlcmFsbCBlZmZpY2llbmN5IGNsdXN0ZXJzCgoKCmBgYHtyfQpPRSA8LSBkYXQgJT4lIAogIGdncGxvdChhZXMoeCA9IE9FMTk5MCwgCiAgICAgICAgICAgICB5ID0gT0UyMDEwLAogICAgICAgICAgICAgc2hhcGUgPSBDbHVzdGVyT0UsCiAgICAgICAgICAgICBjb2xvciA9IENsdXN0ZXJPRSwKICAgICAgICAgICAgIGxhYmVsID0gcmVnaW9uLAogICAgICAgICAgICAgKQogICAgICAgICApICsKICBnZW9tX3BvaW50KHNpemU9MykgKwogIGdlb21fdGV4dF9yZXBlbCgpCgpPRQoKYGBgCgoKSW50ZXJhY3RpdmUgdmVyc2lvbjoKCmBgYHtyfQpnZ3Bsb3RseShPRSkKYGBgCgoKIyBSZWZlcmVuY2VzCgotIFtLYXRhb2thLCBNLiAoMjAxOCkuIEluZXF1YWxpdHkgY29udmVyZ2VuY2UgaW4gaW5lZmZpY2llbmN5IGFuZCBpbnRlcnByb3ZpbmNpYWwgaW5jb21lIGluZXF1YWxpdHkgaW4gSW5kb25lc2lhIGZvciAxOTkw4oCTMjAxMC4gQXNpYS1QYWNpZmljIEpvdXJuYWwgb2YgUmVnaW9uYWwgU2NpZW5jZSwgMigyKSwgMjk3LTMxMy5dKGh0dHBzOi8vbGluay5zcHJpbmdlci5jb20vYXJ0aWNsZS8xMC4xMDA3L3M0MTY4NS0wMTctMDA1MS0zKQoKLSBbTWVuZGV6LCBDLiAoMjAxOSkuIFJlZ2lvbmFsIEVmZmljaWVuY3kgRGlzcGVyc2lvbiwgQ29udmVyZ2VuY2UsIGFuZCBFZmZpY2llbmN5IENsdXN0ZXJzOiBFdmlkZW5jZSBmcm9tIHRoZSBQcm92aW5jZXMgb2YgSW5kb25lc2lhIDE5OTAtMjAxMC4gTVBSQSBXb3JraW5nIFBhcGVyIE5vLiA5NTk3MiwgVW5pdmVyc2l0eSBMaWJyYXJ5IG9mIE11bmljaCwgR2VybWFueV0oaHR0cHM6Ly9tcHJhLnViLnVuaS1tdWVuY2hlbi5kZS85NTk3Mi8xL01QUkFfcGFwZXJfOTU5NzIucGRmKQoKCgo=