library(Matrix)
library(matrixcalc)
library(matlib)
##
## Attaching package: 'matlib'
## The following object is masked from 'package:matrixcalc':
##
## vec
\[\mathbf{A} =\left[\begin{array} {rrr} 1 & 2 & 3 & 4\\ -1 & 0 & 1 & 3\\ 0 & 1 & -2 & 1\\ 5 & 4 & -2 & -3 \end{array}\right]\]
A <- matrix(c(1, 2, 3, 4, -1, 0, 1, 3, 0, 1, -2, 1, 5, 4, -2, -3), 4, 4, byrow = T)
Using Row Echelon form
#echelon
echelon(A, reduced = F)
## [,1] [,2] [,3] [,4]
## [1,] 1 0.8 -0.400000 -0.6000000
## [2,] 0 1.0 2.833333 3.8333333
## [3,] 0 0.0 1.000000 0.5862069
## [4,] 0 0.0 0.000000 1.0000000
Counting all non-zero rows tells the rank of the matrix. In this case it is 4
.
To confirm this using R’s built in function:
rankMatrix(A)
## [1] 4
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
## [1] 8.881784e-16
The rank is 4
.
Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?
What is the rank of matrix B?
\[\mathbf{B} =\left[\begin{array} {rrr} 1 & 2 & 1\\ 3 & 6 & 3\\ 2 & 4 & 2\\ \end{array}\right]\]
B <- matrix(c(1, 2, 1, 3, 6, 3, 2, 4, 2), 3, 3, byrow = T)
echelon(B, reduced = F)
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
The rank is 1
.
\[\mathbf{A} =\left[\begin{array} {rrr} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6\\ \end{array}\right]\]
A <- matrix(c(1, 2, 3, 0, 4, 5, 0, 0, 6), 3, 3, byrow = T)
I <- diag(3)
To obtain the eigenvalues of A, we find the determinant >> \(det(A - \lambda I) = 0\) to satisfy the characteristic equation of the matrix A.
[ \[\begin{aligned} \mathbf{A - \lambda I} &=\left[\begin{array} {rrr} 1 & 2 & 3\\ 0 & 4 & 5\\ 0 & 0 & 6\\ \end{array}\right] - \left[\begin{array} {rrr} \lambda & 0 & 0\\ 0 & \lambda & 0\\ 0 & 0 & \lambda\\ \end{array}\right] =\left[\begin{array} {rrr} 1 - \lambda & 2 & 3\\ 0 & 4 - \lambda & 5\\ 0 & 0 & 6 - \lambda\\ \end{array}\right]\\ \\ \\ \mathbf{det(A - \lambda I)} &= (1- \lambda) \begin{vmatrix} 4 - \lambda & 5\\ 0 & 6 - \lambda \end{vmatrix} - (2)\begin{vmatrix} 0 & 5\\ 0 & 6 - \lambda \end{vmatrix} +(3)\begin{vmatrix} 0 & 4 - \lambda\\ 0 & 0 \end{vmatrix}\\ \\ &= (1 - \lambda)\begin{vmatrix}(4 - \lambda)(6-\lambda) - (0)(5)\end{vmatrix} - (2) \begin{vmatrix}(0)(6- \lambda) - (0)(5)\end{vmatrix} + (3) \begin{vmatrix}(0)(0)- (0)(4- \lambda)\end{vmatrix}\\ \\ &= (1 - \lambda)(4 - \lambda)(6-\lambda) - 0 + 0\\ \\ &= (1 - \lambda)(4 - \lambda)(6-\lambda)\end{aligned}\]]
The characteristic polynomial is \(-\lambda^3 + 11 \lambda^2 - 34\lambda + 24\)
Therefore the eigenvalues of \(A\) are \(\lambda\) = 1
, 4
and 6
Eigenvectors:
\(-A + I_3\)
-A + I
## [,1] [,2] [,3]
## [1,] 0 -2 -3
## [2,] 0 -3 -5
## [3,] 0 0 -5
echelon((-A + I))
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\[\left[\begin{array} {rrr} 1\\0\\0\\ \end{array}\right]\]
\(-A + 4I_3\)
-A + (4*I)
## [,1] [,2] [,3]
## [1,] 3 -2 -3
## [2,] 0 0 -5
## [3,] 0 0 -2
echelon((-A + (4*I)))
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\[\left[\begin{array} {rrr} \frac{2}3\\1\\0\\ \end{array}\right] = \left[\begin{array} {rrr} 2\\3\\0\\ \end{array}\right]\]
\(-A + 6I_3\)
-A + (6*I)
## [,1] [,2] [,3]
## [1,] 5 -2 -3
## [2,] 0 2 -5
## [3,] 0 0 0
echelon((-A + (6*I)))
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\[\left[\begin{array} {rrr} \frac{8}5\\\frac{5}2\\1\\ \end{array}\right] = \left[\begin{array} {rrr} 16\\25\\10\\ \end{array}\right]\]