Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("TSLA", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 927 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 231. 231. 219 223. 6827100 223.
## 2 2016-01-05 226. 227. 220 223. 3186800 223.
## 3 2016-01-06 220 220. 216. 219. 3779100 219.
## 4 2016-01-07 214. 218. 214. 216. 3554300 216.
## 5 2016-01-08 218. 220. 211. 211 3628100 211
## 6 2016-01-11 214. 214. 203 208. 4089700 208.
## 7 2016-01-12 212. 214. 205. 210. 3091900 210.
## 8 2016-01-13 212. 213. 200 200. 4126400 200.
## 9 2016-01-14 202. 210 193. 206. 6490700 206.
## 10 2016-01-15 199. 205. 197. 205. 5578600 205.
## # … with 917 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
One example of charater data would be the labels for our numerical data such as date, high, low, and close. An example of logical data would be the code being shown due to echo equaling true.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Since the beginning of 2019 Tesla stock has being on a steady recession. They will soon hit a trough and hopefully go back up with an expansion. Until then Tesla’s stock is becoming cheaper to buy.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## # A tibble: 927 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 231. 231. 219 223. 6827100 223.
## 2 2016-01-05 226. 227. 220 223. 3186800 223.
## 3 2016-01-06 220 220. 216. 219. 3779100 219.
## 4 2016-01-07 214. 218. 214. 216. 3554300 216.
## 5 2016-01-08 218. 220. 211. 211 3628100 211
## 6 2016-01-11 214. 214. 203 208. 4089700 208.
## 7 2016-01-12 212. 214. 205. 210. 3091900 210.
## 8 2016-01-13 212. 213. 200 200. 4126400 200.
## 9 2016-01-14 202. 210 193. 206. 6490700 206.
## 10 2016-01-15 199. 205. 197. 205. 5578600 205.
## # … with 917 more rows
## # A tibble: 927 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 109 110 105. 110. 20794800 110.
## 2 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 917 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.