library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(gridExtra)
library(relaimpo)
## Loading required package: MASS
## Loading required package: boot
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:boot':
##
## aml
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
# data from
# https://ceoworld.biz/2019/08/05/revealed-countries-with-the-best-health-care-systems-2019/
# Data include
# Health care infrastructure; health care professionals (doctors, nursing staff, and other health workers) competencies; cost (USD p.a.per capita); quality medicine availability, and government readiness
hci = read.csv("~/Dropbox/Temp Files/Health Care Index 2019.csv")
head(hci)
## Rank Country Region HCI Infra Professional Cost MedAvail
## 1 1 Taiwan Asia 78.72 87.16 14.23 83.59 82.30
## 2 2 South Korea Asia 77.70 79.05 13.06 78.39 78.99
## 3 3 Japan Asia 74.11 90.75 30.01 82.59 92.06
## 4 4 Austria Europe 71.32 86.18 20.25 78.99 88.23
## 5 5 Denmark Europe 70.73 78.77 21.60 74.88 74.18
## 6 6 Thailand Asia 67.99 92.58 17.37 96.22 67.51
## GovtReady
## 1 87.89
## 2 65.09
## 3 96.30
## 4 91.80
## 5 93.20
## 6 89.91
ggpairs(data=hci, columns=4:9, ggplot2::aes(colour=Region))
# Regression analysis and relative importance
mod = lm(HCI ~ Infra + Professional + Cost + MedAvail + GovtReady, data=hci)
summary(mod)
##
## Call:
## lm(formula = HCI ~ Infra + Professional + Cost + MedAvail + GovtReady,
## data = hci)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.258 -2.533 0.123 2.515 13.263
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.36645 8.97358 2.270 0.0258 *
## Infra -0.62123 0.14183 -4.380 3.44e-05 ***
## Professional 0.01852 0.11055 0.168 0.8674
## Cost 1.41033 0.11375 12.398 < 2e-16 ***
## MedAvail -0.15703 0.08431 -1.863 0.0661 .
## GovtReady -0.05941 0.11328 -0.524 0.6013
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.374 on 83 degrees of freedom
## Multiple R-squared: 0.7105, Adjusted R-squared: 0.6931
## F-statistic: 40.74 on 5 and 83 DF, p-value: < 2.2e-16
calc.relimp(mod)
## Response variable: HCI
## Total response variance: 132.3905
## Analysis based on 89 observations
##
## 5 Regressors:
## Infra Professional Cost MedAvail GovtReady
## Proportion of variance explained by model: 71.05%
## Metrics are not normalized (rela=FALSE).
##
## Relative importance metrics:
##
## lmg
## Infra 0.105516147
## Professional 0.003741185
## Cost 0.541029121
## MedAvail 0.056283858
## GovtReady 0.003948972
##
## Average coefficients for different model sizes:
##
## 1X 2Xs 3Xs 4Xs 5Xs
## Infra 0.44551737 0.12753968 -0.1500818 -0.39539585 -0.62123327
## Professional 0.07392666 0.05496537 0.1038151 0.09452693 0.01851938
## Cost 0.78952682 1.01299778 1.1940432 1.32699413 1.41033182
## MedAvail 0.29184574 0.08583670 -0.0623709 -0.14754973 -0.15703162
## GovtReady 0.05820162 -0.06519324 -0.1365841 -0.12857408 -0.05941053