\[\mathbf{A} = \left[\begin{array} {rrr} 0 & 4 & -1 & 1\\ -2 & 6 & -1 & 1\\ -2 & 8 & -1 & -1\\ -2 & 8 & -3 & 1 \end{array}\right]\]
library(matlib)
library(pracma)
##
## Attaching package: 'pracma'
## The following objects are masked from 'package:matlib':
##
## angle, inv
A <- matrix(c(0, 4, -1, 1, -2, 6, -1, 1, -2, 8, -1, -1, -2, 8, -3, 1), 4, 4, byrow = T)
I <- diag(4)
\(A+2I\)
A + (2*I)
## [,1] [,2] [,3] [,4]
## [1,] 2 4 -1 1
## [2,] -2 8 -1 1
## [3,] -2 8 1 -1
## [4,] -2 8 -3 3
#Reduced Row Echelon Form
rref((A + (2*I)))
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 -1
## [4,] 0 0 0 0
Eigenvector for \(\lambda = -2\):
\[\left[\begin{array} {rrr} 0\\0\\1\\1 \end{array}\right]\]
\(A-2I_4\)
A - (2*I)
## [,1] [,2] [,3] [,4]
## [1,] -2 4 -1 1
## [2,] -2 4 -1 1
## [3,] -2 8 -3 -1
## [4,] -2 8 -3 -1
#Reduced Row Echelon Form
rref((A - (2*I)))
## [,1] [,2] [,3] [,4]
## [1,] 1 0 -0.5 -1.5
## [2,] 0 1 -0.5 -0.5
## [3,] 0 0 0.0 0.0
## [4,] 0 0 0.0 0.0
Eigenvectors for \(\lambda = 2\):
\[\left[\begin{array} {rrr} 1\\1\\2\\0 \end{array}\right] \left[\begin{array} {rrr} 3\\1\\0\\2 \end{array}\right]\]
\(A-4I_4\)
A - (4*I)
## [,1] [,2] [,3] [,4]
## [1,] -4 4 -1 1
## [2,] -2 2 -1 1
## [3,] -2 8 -5 -1
## [4,] -2 8 -3 -3
#Reduced Row Echelon Form
rref((A - (4*I)))
## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 -1
## [2,] 0 1 0 -1
## [3,] 0 0 1 -1
## [4,] 0 0 0 0
Eigenvector for \(\lambda = 4\):
\[\left[\begin{array} {rrr} 1\\1\\1\\1 \end{array}\right]\]