R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Step 1: Importation of BP and Survey Datasets, adding libraries for further use.

setwd("C:/Users/Hiroshi/Desktop/BPProject")

library(data.table)
## Warning: package 'data.table' was built under R version 3.5.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
## 
##     between, first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(dtplyr)
## Warning: package 'dtplyr' was built under R version 3.5.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.3
library(reshape2)
## 
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
## 
##     dcast, melt
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.5.3
## 
## Attaching package: 'tidyr'
## The following object is masked from 'package:reshape2':
## 
##     smiths
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.5.3
library(RColorBrewer)
## Warning: package 'RColorBrewer' was built under R version 3.5.2
bp_dataset <- tbl_dt(fread('BP1.csv'))
fp_survey <- tbl_dt(fread('FP.csv'))

Step 2: Initial formatting pass. Formatted all “Date” fields as a date. Formatted Categorical Values as factors.

#Step 2A Format Date Variables to be as Date
dater <- function(x) {
  x <- as.Date(x, format = "%m/%d/%Y")
 return(x) 
}

dater(bp_dataset$Start_Date)
##   [1] "2018-11-09" "2018-09-27" "2018-09-27" "2018-09-27" "2018-09-27"
##   [6] "2018-09-28" "2018-10-26" "2018-10-12" "2018-09-28" "2018-09-28"
##  [11] "2018-09-28" "2018-10-19" "2018-09-28" "2018-09-28" "2018-09-28"
##  [16] "2018-10-19" "2018-10-19" "2018-10-12" "2018-09-28" "2018-10-26"
##  [21] "2018-10-26" "2018-10-26" "2018-11-02" "2018-11-09" "2018-11-09"
##  [26] "2018-11-16" "2018-12-07" "2018-08-02" "2018-07-19" "2018-01-11"
##  [31] "2018-07-19" "2018-07-19" "2018-02-01" "2017-10-19" "2018-06-21"
##  [36] "2017-09-21" "2019-08-16" "2018-07-19" "2017-09-21" "2018-08-16"
##  [41] "2017-09-28" "2017-09-07" "2017-09-21" "2018-04-05" "2018-08-02"
##  [46] "2018-11-01" "2017-09-27" "2018-08-30" "2017-10-19" "2018-02-01"
##  [51] "2018-01-11" "2018-01-18" "2017-09-07" "2018-02-15" "2017-09-28"
##  [56] "2017-09-07" "2017-09-14" "2017-09-07" "2018-09-20" "2018-09-20"
##  [61] "2018-11-01" "2018-11-08" "2018-09-13" "2018-09-20" "2018-11-08"
##  [66] "2018-10-04" "2018-09-13" "2018-09-20" "2018-11-01" "2018-10-25"
##  [71] "2018-10-11" "2018-11-01" "2018-10-25" "2018-10-11" "2018-09-27"
##  [76] "2018-10-11" "2018-10-11" "2018-09-27" "2018-09-27" "2018-09-20"
##  [81] "2018-10-11" "2018-10-04" "2018-09-20" "2018-10-18" "2018-10-25"
##  [86] "2018-10-04" "2017-08-09" "2017-07-05" "2017-07-05" "2017-07-19"
##  [91] "2017-07-19" "2017-07-12" "2017-07-19" "2017-07-27" "2017-07-12"
##  [96] "2017-07-05" "2017-07-05" "2017-07-12" "2017-07-12" "2017-08-02"
## [101] "2017-07-12" "2017-07-05" "2017-07-05" "2017-07-05" "2017-08-02"
## [106] "2017-07-05" "2017-08-16" "2017-07-19" "2017-07-19" "2017-07-26"
## [111] "2017-07-26" "2017-08-09" "2017-08-16" "2017-08-23" "2017-09-20"
## [116] "2017-09-20" "2017-09-27" "2017-09-27" "2017-11-01" "2017-11-29"
## [121] "2017-11-29" "2017-12-06" "2017-12-06" "2017-12-06" "2017-12-20"
## [126] "2017-12-20" "2017-12-20" "2018-01-03" "2018-01-03" "2018-01-03"
## [131] "2018-01-10" "2018-01-10" "2018-01-24" "2018-02-07" "2018-02-14"
## [136] "2018-02-14" "2018-02-28" "2018-03-17" "2018-03-21" "2018-04-18"
## [141] "2018-04-25" "2018-04-25" "2018-05-16" "2018-07-18" "2018-08-01"
## [146] "2018-08-08" "2018-08-29" "2018-08-29" "2018-09-19" "2018-09-26"
## [151] "2018-09-26" "2018-10-24" "2018-11-21"
dater(bp_dataset$End_Date)
##   [1] "2018-12-14" "2018-12-07" "2018-11-09" "2019-01-25" "2019-01-25"
##   [6] "2018-11-02" "2018-12-21" "2018-12-21" "2018-12-21" "2019-01-25"
##  [11] "2018-12-21" "2019-01-25" "2019-01-25" "2019-01-25" "2018-12-14"
##  [16] "2018-12-14" "2018-11-16" "2018-12-14" "2018-12-14" "2018-11-30"
##  [21] "2019-01-25" "2018-12-21" "2018-12-07" "2018-12-14" "2018-12-21"
##  [26] "2019-01-25" "2019-01-25" "2018-12-20" "2018-12-20" "2019-01-03"
##  [31] "2019-01-31" "2018-12-06" "2019-01-03" "2018-09-06" "2019-01-31"
##  [36] "2018-11-29" "2019-01-31" "2018-12-20" "2019-01-31" "2019-01-31"
##  [41] "2018-11-15" "2019-01-03" "2019-01-31" "2019-01-31" "2018-11-15"
##  [46] "2019-01-03" "2019-01-31" "2018-12-06" "2019-01-31" "2019-01-31"
##  [51] "2018-02-15" "2018-04-05" "2018-01-18" "2018-04-19" "2018-05-17"
##  [56] "2018-02-01" "2018-04-19" "2019-01-31" "2019-01-29" "2018-11-29"
##  [61] "2018-12-06" "2018-11-29" "2018-11-29" "2018-12-06" "2018-12-06"
##  [66] "2018-10-18" "2018-11-15" "2018-11-15" "2018-11-15" "2018-11-29"
##  [71] "2018-12-06" "2018-12-06" "2018-12-06" "2019-01-29" "2019-01-29"
##  [76] "2018-11-15" "2018-12-06" "2018-12-06" "2019-01-29" "2019-01-29"
##  [81] "2018-11-01" "2019-01-29" "2018-12-06" "2018-11-15" "2018-12-06"
##  [86] "2018-12-06" "2019-01-09" "2017-12-20" "2017-08-30" "2019-01-23"
##  [91] "2018-12-19" "2017-08-30" "2018-03-07" "2018-11-28" "2018-12-19"
##  [96] "2018-06-13" "2018-02-21" "2019-01-30" "2017-09-27" "2018-12-19"
## [101] "2019-01-30" "2018-11-21" "2018-10-31" "2019-01-30" "2017-10-04"
## [106] "2018-02-21" "2018-10-17" "2019-01-30" "2019-01-30" "2017-09-20"
## [111] "2019-01-30" "2019-01-23" "2017-11-22" "2017-11-22" "2017-11-22"
## [116] "2018-05-30" "2019-01-23" "2018-02-28" "2018-11-28" "2018-08-22"
## [121] "2018-03-14" "2019-01-23" "2018-06-13" "2019-01-23" "2018-11-14"
## [126] "2018-06-27" "2018-06-27" "2019-01-30" "2018-03-28" "2018-12-12"
## [131] "2018-02-21" "2018-02-07" "2018-08-08" "2019-01-30" "2018-03-21"
## [136] "2018-12-19" "2019-01-15" "2018-10-31" "2019-01-30" "2019-01-23"
## [141] "2018-12-26" "2018-06-27" "2018-07-11" "2018-12-12" "2018-11-28"
## [146] "2018-11-07" "2019-01-30" "2018-11-07" "2019-01-30" "2019-01-30"
## [151] "2018-10-31" "2018-12-12" "2018-12-26"
dater(bp_dataset$Before_Date1)
##   [1] "2019-08-09" "2018-06-29" "2018-06-21" "2018-02-15" "2017-05-19"
##   [6] "2018-08-24" "2018-07-10" "2018-08-21" "2018-07-13" "2018-09-07"
##  [11] "2018-07-17" "2018-08-07" NA           "2018-08-29" "2018-05-11"
##  [16] "2018-08-17" "2018-10-18" "2018-09-05" "2018-09-26" "2018-10-15"
##  [21] "2018-08-21" "2018-10-05" "2018-10-19" "2018-10-05" NA          
##  [26] "2018-10-16" NA           "2018-07-25" "2018-05-24" "2017-10-18"
##  [31] "2018-06-26" "2018-07-18" "2018-01-29" "2017-08-24" "2018-06-11"
##  [36] "2017-09-19" "2018-01-24" "2018-06-19" "2017-08-31" "2018-09-12"
##  [41] "2017-09-26" "2017-08-25" "2017-09-13" "2018-03-07" "2018-08-01"
##  [46] "2018-11-01" "2017-08-28" "2018-08-10" "2017-08-10" "2018-01-22"
##  [51] "2017-12-15" "2017-09-14" "2017-07-05" "2018-01-31" "2016-10-02"
##  [56] "2017-09-01" "2017-08-29" "2017-08-28" "2018-09-19" "2018-09-19"
##  [61] "2018-10-15" "2018-11-06" "2018-09-04" "2018-09-13" "2018-09-18"
##  [66] "2018-09-20" "2018-09-10" "2018-08-06" NA           "2018-08-28"
##  [71] "2018-06-05" "2018-10-15" "2018-10-16" "2018-10-10" "2018-09-13"
##  [76] "2018-10-09" "2018-10-05" "2018-08-23" "2018-09-14" "2018-09-18"
##  [81] "2018-09-24" "2018-09-19" "2018-09-06" "2018-10-10" "2018-10-15"
##  [86] "2018-10-02" "2017-07-28" "2017-06-19" "2016-10-24" "2017-07-11"
##  [91] "2017-06-21" "2017-06-26" "2017-05-11" "2017-04-27" "2017-04-11"
##  [96] "2017-06-19" "2017-06-27" "2017-07-21" "2017-07-12" "2017-02-13"
## [101] "2017-06-29" "2017-05-24" "2017-06-29" "2017-05-02" "2017-05-01"
## [106] "2017-06-06" "2017-06-16" "2017-07-17" "2017-06-23" "2017-07-17"
## [111] "2017-07-17" "2017-03-07" "2017-08-14" "2017-07-18" "2017-09-12"
## [116] "2017-04-06" "2017-09-19" "2017-06-02" NA           "2017-10-02"
## [121] "2017-11-28" "2017-02-01" "2017-12-01" "2017-02-03" "2017-12-08"
## [126] "2017-11-03" "2017-12-18" "2017-12-19" "2018-12-15" "2017-12-27"
## [131] "2018-01-05" "2017-12-29" "2018-01-24" "2017-11-27" "2017-08-04"
## [136] "2017-01-25" "2017-05-26" "2017-03-01" "2018-03-16" "2018-04-12"
## [141] "2017-12-01" "2018-04-12" NA           "2018-02-09" "2018-07-13"
## [146] "2018-06-20" "2018-08-13" "2018-08-03" "2018-09-17" "2018-08-09"
## [151] "2018-09-18" "2018-10-15" "2018-11-20"
dater(bp_dataset$Before_Date2)
##   [1] "2019-09-27" "2018-08-09" "2018-08-15" "2018-06-12" NA          
##   [6] "2018-07-20" "2018-05-29" "2018-07-11" "2018-08-31" "2018-06-14"
##  [11] "2018-06-05" "2018-04-03" NA           "2018-07-11" "2018-10-26"
##  [16] "2018-07-23" "2018-08-30" "2018-06-27" "2018-08-15" "2018-08-16"
##  [21] "2018-04-12" "2018-09-06" "2018-07-17" "2018-07-24" NA          
##  [26] "2018-08-24" NA           "2018-01-23" "2018-03-30" "2017-09-22"
##  [31] "2018-05-16" "2018-05-24" "2017-11-28" "2017-09-21" "2018-03-20"
##  [36] "2017-07-17" "2017-11-10" "2018-05-24" "2017-05-15" "2018-06-12"
##  [41] "2017-09-12" "2017-07-26" "2017-03-09" "2018-01-26" "2018-06-26"
##  [46] "2018-05-07" "2017-05-22" "2018-05-18" "2017-06-01" "2017-11-16"
##  [51] "2017-10-13" "2017-08-17" "2017-03-06" "2017-11-06" "2016-09-13"
##  [56] "2017-06-29" "2017-07-25" "2017-05-22" "2018-08-24" "2018-08-16"
##  [61] "2018-08-06" "2018-10-02" "2018-06-05" "2018-05-02" "2018-08-01"
##  [66] "2018-08-22" "2018-08-07" "2018-06-05" NA           "2018-07-07"
##  [71] "2018-01-31" "2018-08-15" "2018-08-29" "2018-09-11" "2018-08-08"
##  [76] "2018-07-13" "2018-08-31" "2018-07-17" "2018-07-20" "2018-08-14"
##  [81] "2018-08-20" "2018-08-08" "2018-07-31" "2018-08-29" "2018-08-13"
##  [86] "2018-08-27" "2017-06-29" "2017-04-24" "2016-08-09" "2017-03-21"
##  [91] "2016-11-03" "2017-05-03" "2017-02-09" "2017-02-15" "2016-09-15"
##  [96] "2016-12-12" "2017-05-23" "2017-06-05" "2017-05-22" "2017-01-05"
## [101] "2017-05-05" "2017-04-06" "2017-05-30" "2017-01-13" "2017-03-31"
## [106] "2017-01-17" "2017-04-18" "2017-06-19" "2017-06-07" "2017-06-05"
## [111] "2017-06-21" "2016-09-16" "2017-07-17" "2017-05-31" "2017-08-15"
## [116] "2016-12-22" "2017-07-25" "2016-08-25" NA           "2017-08-22"
## [121] "2017-10-18" "2016-11-16" "2017-09-21" "2017-01-13" "2017-11-09"
## [126] "2017-06-21" "2017-07-26" "2017-10-16" "2017-11-06" "2017-11-17"
## [131] "2017-10-20" "2017-11-21" "2018-01-02" "2017-08-28" "2017-08-08"
## [136] "2017-10-19" "2017-03-17" "2018-02-22" "2018-01-05" "2017-12-31"
## [141] "2017-10-17" "2018-02-22" NA           "2019-07-20" "2018-01-26"
## [146] "2018-05-24" "2018-05-14" NA           "2018-08-17" NA          
## [151] "2018-04-30" "2018-08-27" "2018-09-12"
dater(bp_dataset$Before_Date3)
##   [1] "2019-11-09" "2018-09-11" "2018-09-21" "2018-09-04" NA          
##   [6] "2018-06-19" "2018-03-20" "2018-06-15" "2018-09-27" "2018-05-31"
##  [11] "2018-05-07" "2018-02-02" NA           "2018-06-06" "2017-08-01"
##  [16] "2018-06-22" "2018-08-01" "2018-05-02" "2018-07-10" "2018-07-24"
##  [21] "2018-02-02" "2018-08-02" "2018-06-12" "2018-06-20" NA          
##  [26] "2018-04-30" NA           "2016-10-13" "2017-09-28" "2017-08-09"
##  [31] "2018-01-31" "2018-04-26" "2017-10-30" "2016-12-15" "2017-09-19"
##  [36] "2017-08-09" "2017-10-13" "2018-04-12" "2017-06-26" "2018-05-04"
##  [41] "2017-04-05" "2017-06-08" "2017-07-06" "2017-09-28" "2018-05-30"
##  [46] "2018-02-07" "2017-02-23" "2018-03-02" "2017-05-17" "2017-10-06"
##  [51] "2017-11-03" "2017-06-26" "2016-12-12" "2017-10-18" "2015-08-31"
##  [56] "2017-07-20" "2016-09-09" "2017-02-23" "2018-07-27" "2018-07-18"
##  [61] "2018-05-25" "2018-08-30" "2018-04-07" "2018-01-04" "2018-06-11"
##  [66] "2018-07-25" "2018-06-27" "2018-04-24" NA           "2018-05-04"
##  [71] "2017-11-29" "2018-07-25" "2018-06-08" "2018-07-25" "2018-07-11"
##  [76] "2017-10-19" "2018-03-07" "2018-05-15" "2018-05-25" "2018-07-12"
##  [81] "2018-06-05" "2018-06-27" "2018-06-07" "2018-06-20" "2018-06-22"
##  [86] "2018-06-18" "2017-03-27" "2017-03-17" "2015-04-06" "2017-04-14"
##  [91] "2016-09-28" "2017-04-11" "2016-12-27" "2016-10-13" "2015-12-18"
##  [96] "2016-11-16" "2017-04-24" "2017-03-06" "2017-04-24" "2017-07-20"
## [101] "2017-03-23" "2016-06-24" "2017-02-08" "2016-09-23" "2017-07-20"
## [106] "2016-10-07" "2017-01-17" "2015-02-25" "2017-05-11" "2017-04-11"
## [111] "2017-05-02" "2015-10-02" "2017-05-13" "2017-03-29" "2017-07-19"
## [116] "2016-10-19" "2017-05-13" "2016-07-08" NA           "2017-06-02"
## [121] "2017-10-16" "2017-04-11" "2016-04-22" "2017-01-05" "2017-10-05"
## [126] "2017-04-07" "2017-09-26" "2017-09-12" "2017-08-31" "2017-10-12"
## [131] "2017-11-13" "2017-10-17" "2017-11-15" "2017-10-02" "2018-02-08"
## [136] "2017-07-06" "2017-08-11" NA           "2017-03-27" "2017-11-30"
## [141] "2017-08-15" "2018-01-16" NA           "2017-06-21" "2016-08-24"
## [146] "2016-04-28" "2017-11-06" NA           "2018-07-24" NA          
## [151] "2017-11-02" "2018-07-23" "2017-12-15"
dater(bp_dataset$After_Date1)
##   [1] "2018-12-17" "2019-01-02" "2019-11-21" "2019-02-06" "2019-01-29"
##   [6] "2018-11-05" "2019-03-22" "2018-12-22" "2019-04-12" "2019-02-13"
##  [11] "2019-02-05" "2019-02-05" NA           "2019-03-18" NA          
##  [16] "2019-02-04" "2019-01-25" "2019-05-08" "2018-12-31" "2018-12-28"
##  [21] NA           "2019-01-11" "2018-12-11" "2019-01-16" NA          
##  [26] "2019-03-22" NA           "2019-01-28" "2019-03-13" "2019-01-20"
##  [31] "2019-02-14" "2019-01-10" "2019-01-03" "2018-09-06" "2019-02-26"
##  [36] "2019-01-25" "2019-03-06" "2019-01-31" "2019-03-20" "2019-02-27"
##  [41] "2018-12-03" "2019-01-25" "2019-03-28" "2019-02-07" "2018-11-20"
##  [46] "2019-01-11" "2019-04-19" "2018-12-14" "2019-02-12" "2019-02-11"
##  [51] "2018-02-28" "2019-03-06" "2018-01-29" "2018-07-30" "2018-08-14"
##  [56] "2018-04-10" "2018-08-16" "2019-04-19" "2019-01-30" "2019-12-19"
##  [61] "2019-02-08" "2019-01-31" "2018-12-12" "2019-04-08" "2019-01-23"
##  [66] "2018-10-31" "2019-12-12" "2018-12-18" NA           "2019-03-04"
##  [71] "2019-01-09" "2019-01-07" "2018-12-13" "2019-02-20" "2019-02-22"
##  [76] "2019-02-26" "2019-06-05" "2018-12-13" "2019-05-20" "2019-02-11"
##  [81] "2019-07-24" "2019-01-30" "2019-01-24" "2019-11-28" "2019-01-23"
##  [86] "2018-12-11" "2019-02-14" "2018-01-04" "2017-09-21" "2019-02-05"
##  [91] "2019-06-12" "2017-10-30" "2018-04-10" "2018-12-18" "2019-03-04"
##  [96] "2018-12-03" "2018-03-02" "2019-02-19" "2017-09-29" "2019-01-31"
## [101] "2019-02-28" "2019-04-02" "2019-05-11" "2019-02-12" "2018-02-16"
## [106] "2018-05-17" "2018-10-30" "2019-05-09" "2019-02-13" "2017-11-30"
## [111] "2019-04-26" NA           "2017-12-19" "2017-12-08" "2018-02-13"
## [116] "2018-06-13" "2019-02-01" "2018-09-20" NA           "2018-12-26"
## [121] "2018-05-02" "2019-04-30" "2018-06-19" NA           "2018-12-28"
## [126] "2018-11-29" "2018-08-28" "2019-02-26" "2018-04-09" "2018-12-13"
## [131] "2018-02-23" "2018-02-13" "2018-11-20" "2019-02-04" "2019-04-24"
## [136] "2018-12-21" "2019-01-24" NA           "2019-04-23" "2019-01-10"
## [141] "2019-01-07" "2018-07-27" NA           "2018-12-20" "2018-02-04"
## [146] "2018-12-06" "2019-03-04" NA           "2019-02-25" "2019-02-08"
## [151] "2018-11-21" NA           "2018-12-26"
dater(bp_dataset$After_Date2)
##   [1] "2019-01-24" "2019-02-05" "2019-01-16" NA           "2019-03-26"
##   [6] "2018-12-04" "2019-04-24" "2019-04-11" NA           "2019-05-10"
##  [11] "2019-03-26" "2019-03-06" NA           "2019-06-26" NA          
##  [16] "2019-03-08" "2019-03-08" NA           "2019-02-20" "2018-01-22"
##  [21] NA           "2019-03-20" "2019-01-08" "2019-02-20" NA          
##  [26] "2019-06-07" NA           "2019-03-25" NA           "2019-02-15"
##  [31] "2019-04-14" "2019-03-06" "2019-02-21" "2019-02-14" "2019-05-21"
##  [36] NA           "2019-04-30" "2019-04-12" "2019-04-11" "2019-03-18"
##  [41] "2019-04-29" "2019-02-22" NA           "2019-03-13" NA          
##  [46] "2019-02-08" "2019-07-18" "2019-01-29" "2019-06-04" "2019-03-11"
##  [51] "2018-06-05" "2018-04-05" "2019-03-25" "2018-08-28" "2019-03-29"
##  [56] "2018-06-03" "2018-09-20" "2019-07-18" "2019-02-26" "2019-01-30"
##  [61] "2019-04-12" "2019-05-10" "2019-03-12" "2019-07-15" "2019-04-11"
##  [66] "2019-03-01" "2019-01-30" "2019-01-22" NA           NA          
##  [71] "2019-02-07" "2019-02-20" "2019-01-18" "2019-03-18" "2019-03-28"
##  [76] "2019-05-01" NA           "2018-01-02" NA           "2019-03-15"
##  [81] NA           "2019-02-27" "2019-04-16" "2019-02-22" "2019-02-22"
##  [86] "2019-01-11" "2019-03-19" "2018-02-02" "2018-06-04" "2019-05-10"
##  [91] NA           "2018-02-05" "2018-05-17" "2019-02-04" "2019-04-16"
##  [96] "2019-06-13" "2018-04-05" "2019-03-21" "2017-11-06" "2019-03-04"
## [101] "2019-04-11" "2019-05-02" NA           "2019-03-18" "2018-08-31"
## [106] NA           "2018-12-11" "2019-05-08" "2019-03-14" NA          
## [111] "2019-06-20" NA           "2018-03-26" "2018-02-13" "2018-04-19"
## [116] "2018-08-07" "2019-03-05" "2019-01-29" NA           "2019-01-28"
## [121] "2018-08-01" NA           "2018-11-06" NA           "2019-05-07"
## [126] "2019-03-19" "2018-10-30" NA           "2018-07-18" "2019-01-14"
## [131] "2018-03-30" "2018-03-13" "2018-12-20" "2019-03-18" NA          
## [136] "2019-01-22" "2019-06-11" NA           NA           NA          
## [141] "2019-02-22" "2018-10-20" NA           NA           "2019-02-19"
## [146] "2019-02-07" "2019-04-15" NA           "2019-03-25" "2019-03-08"
## [151] "2018-12-17" NA           NA
dater(bp_dataset$After_Date3)
##   [1] "2019-03-14" "2019-03-21" "2019-04-11" NA           "2019-04-25"
##   [6] "2019-02-01" "2019-07-24" "2019-05-16" NA           "2019-06-26"
##  [11] "2019-06-04" "2019-06-13" NA           NA           NA          
##  [16] "2019-04-12" "2019-04-15" NA           "2019-04-07" "2019-02-19"
##  [21] NA           "2019-05-30" "2019-03-04" "2019-03-20" NA          
##  [26] NA           NA           "2019-05-20" NA           NA          
##  [31] "2019-05-23" "2019-04-18" "2019-03-27" "2019-03-14" NA          
##  [36] NA           NA           "2019-05-24" NA           NA          
##  [41] "2019-05-28" "2019-04-05" NA           NA           NA          
##  [46] "2019-03-15" NA           "2019-03-22" NA           "2019-04-16"
##  [51] "2018-12-21" "2019-04-10" NA           "2018-09-24" "2019-04-30"
##  [56] "2018-07-10" "2018-10-31" "2019-07-25" "2019-03-30" "2019-03-13"
##  [61] "2019-05-22" "2019-06-18" "2019-04-23" NA           "2019-06-12"
##  [66] "2019-04-15" "2019-03-26" "2019-02-26" NA           NA          
##  [71] "2019-04-10" "2019-03-19" "2019-04-08" "2019-04-17" "2019-04-29"
##  [76] "2019-07-19" NA           "2018-02-11" NA           "2019-04-25"
##  [81] NA           "2019-03-27" "2019-07-11" "2019-03-22" "2019-05-03"
##  [86] "2019-03-22" "2019-07-10" "2018-03-13" "2018-09-04" NA          
##  [91] NA           "2018-04-23" "2018-06-19" "2019-04-24" "2019-05-20"
##  [96] NA           "2018-05-03" "2019-04-18" "2017-12-11" "2019-04-18"
## [101] "2019-05-17" "2019-06-25" NA           "2019-04-17" "2018-10-09"
## [106] NA           "2019-04-16" NA           "2019-04-28" NA          
## [111] NA           NA           "2018-06-15" "2018-03-15" "2018-06-29"
## [116] "2018-11-14" "2019-05-01" "2019-06-18" NA           "2019-02-28"
## [121] "2018-10-24" NA           "2019-05-24" NA           "2019-07-10"
## [126] "2019-04-15" "2018-02-08" NA           "2018-09-18" "2019-02-11"
## [131] "2018-04-27" "2018-04-05" "2019-05-14" "2019-04-22" NA          
## [136] "2019-03-05" NA           NA           NA           NA          
## [141] "2019-03-27" NA           NA           NA           "2019-03-19"
## [146] "2019-05-02" "2019-07-01" NA           "2019-06-11" NA          
## [151] "2019-05-01" NA           NA
dater(bp_dataset$BMI_Before_Date1)
##   [1] "2019-08-09" "2019-06-29" "2018-06-21" "2018-02-15" NA          
##   [6] "2018-08-24" "2018-07-10" "2018-08-21" "2018-09-27" "2018-09-07"
##  [11] "2018-07-17" "2018-08-07" NA           "2014-08-22" "2018-05-11"
##  [16] "2018-08-17" "2018-10-18" "2018-09-05" "2018-07-10" "2018-07-24"
##  [21] "2018-08-21" "2018-10-05" "2018-10-17" "2018-10-05" NA          
##  [26] "2018-10-16" NA           "2018-07-25" "2018-05-24" "2017-10-18"
##  [31] "2018-06-26" "2018-07-19" "2017-10-30" "2016-12-15" "2018-06-11"
##  [36] "2017-08-09" NA           "2018-06-19" "2017-05-15" "2018-09-12"
##  [41] "2017-09-26" "2017-08-25" "2017-09-07" "2018-03-07" "2018-08-01"
##  [46] "2018-11-01" "2017-09-27" "2018-08-10" "2017-08-10" "2018-01-22"
##  [51] "2017-11-17" "2017-09-14" "2017-07-05" "2017-11-06" "2016-10-02"
##  [56] "2017-07-20" "2017-08-29" "2017-08-28" "2018-09-19" "2018-09-19"
##  [61] "2018-10-15" "2018-11-06" "2018-09-07" "2018-09-13" "2018-09-18"
##  [66] "2018-09-20" "2018-08-07" "2018-08-07" NA           "2018-08-28"
##  [71] "2018-06-05" "2018-09-26" "2018-08-15" "2018-10-10" "2018-09-13"
##  [76] "2018-10-09" "2018-10-05" "2018-08-23" "2018-09-14" "2018-09-18"
##  [81] "2018-09-24" "2018-09-12" "2018-09-06" NA           "2018-09-28"
##  [86] "2018-10-02" "2019-07-28" "2016-12-30" "2016-10-24" "2017-03-21"
##  [91] "2017-06-21" "2017-07-27" "2017-05-11" "2017-04-27" "2017-04-11"
##  [96] "2017-06-19" "2017-06-26" "2017-06-05" "2017-07-12" "2017-07-20"
## [101] "2017-06-29" "2017-05-04" "2017-06-29" "2017-05-02" "2017-07-20"
## [106] "2017-06-06" "2017-06-16" "2017-07-17" "2017-06-23" "2017-07-17"
## [111] "2017-07-17" "2017-03-07" "2017-08-14" "2017-07-18" "2017-09-12"
## [116] "2017-04-06" "2017-09-19" "2017-06-02" NA           "2017-08-22"
## [121] "2017-11-28" "2017-04-11" "2017-12-01" "2017-02-03" "2017-12-08"
## [126] "2017-11-03" "2017-12-18" "2017-12-19" "2018-12-15" "2017-12-27"
## [131] "2018-01-05" "2017-12-22" "2018-01-24" "2017-11-27" "2017-08-04"
## [136] "2017-01-25" "2017-05-26" "2018-02-22" "2018-03-16" "2018-04-12"
## [141] "2017-12-01" "2018-04-12" NA           "2018-02-09" "2016-08-24"
## [146] "2018-06-20" "2018-08-13" "2018-08-03" "2018-09-17" "2018-08-09"
## [151] "2018-09-18" "2018-06-28" "2018-09-12"
dater(bp_dataset$BMI_Before_Date2)
##   [1] "2019-09-27" "2019-08-09" "2018-08-15" "2018-06-12" NA          
##   [6] "2018-07-20" "2018-05-29" "2018-06-15" "2018-08-31" "2018-05-25"
##  [11] "2018-05-29" "2018-04-03" NA           "2018-06-06" "2018-10-26"
##  [16] "2018-07-23" "2018-08-16" "2018-06-27" NA           "2018-06-26"
##  [21] "2018-04-12" "2018-09-06" "2018-07-17" "2018-07-24" NA          
##  [26] "2018-08-24" NA           "2018-01-23" "2018-03-30" "2017-08-09"
##  [31] "2018-05-16" "2018-05-24" "2019-11-27" "2017-08-24" "2017-01-04"
##  [36] "2017-09-19" NA           "2018-05-24" "2017-08-24" "2018-06-12"
##  [41] "2017-09-12" "2017-06-08" "2017-07-06" "2017-09-28" "2018-06-26"
##  [46] "2018-05-07" "2017-05-22" "2018-05-18" "2017-06-12" "2017-11-16"
##  [51] "2017-10-13" "2017-08-17" "2017-03-06" "2017-10-18" "2016-09-13"
##  [56] "2017-02-10" "2017-07-25" "2017-05-22" "2018-08-24" "2018-08-16"
##  [61] "2018-08-06" "2018-10-02" "2018-06-06" "2018-05-02" "2018-08-01"
##  [66] "2018-09-20" "2018-01-30" "2018-06-05" NA           "2018-07-27"
##  [71] "2018-01-31" "2018-08-01" "2018-06-08" "2018-09-11" "2018-08-08"
##  [76] "2018-07-03" "2018-08-31" "2018-07-17" "2018-07-20" "2018-08-14"
##  [81] "2018-08-20" "2018-08-08" "2018-07-31" NA           "2018-08-13"
##  [86] "2018-09-18" "2017-01-19" "2016-10-24" "2016-08-09" "2017-07-11"
##  [91] "2016-11-03" "2017-05-03" "2017-02-09" "2017-02-15" "2016-09-15"
##  [96] "2016-12-12" "2017-05-23" "2017-03-06" "2016-07-15" "2017-02-13"
## [101] "2017-05-05" "2017-04-04" "2017-05-30" "2017-01-13" "2017-05-01"
## [106] "2017-01-17" "2017-04-18" "2017-06-19" "2017-06-07" "2017-06-05"
## [111] "2017-06-21" "2016-09-16" "2017-07-17" "2017-05-31" "2017-08-15"
## [116] "2016-10-19" "2017-07-06" "2016-08-25" NA           "2017-05-16"
## [121] "2017-10-18" "2017-02-01" "2017-09-21" "2017-01-13" "2017-11-09"
## [126] "2017-06-21" "2017-07-26" "2017-09-12" "2017-11-06" "2017-11-17"
## [131] "2017-10-20" "2017-11-21" "2018-01-02" "2017-08-28" "2017-08-08"
## [136] "2017-10-19" "2017-03-17" "2017-03-01" "2018-01-05" "2018-10-27"
## [141] "2017-10-05" "2018-02-22" NA           "2019-07-20" "2016-07-21"
## [146] "2018-05-24" "2018-05-14" NA           "2018-07-24" NA          
## [151] "2018-04-30" "2017-12-21" "2017-12-15"
dater(bp_dataset$BMI_Before_Date3)
##   [1] "2019-11-09" "2019-09-11" "2018-09-21" "2018-09-04" NA          
##   [6] "2018-06-19" "2018-02-14" "2018-02-14" "2018-07-13" "2018-04-13"
##  [11] "2018-05-07" "2018-02-02" NA           "2018-02-28" "2017-08-01"
##  [16] "2018-06-22" "2018-07-17" "2018-05-02" NA           "2018-05-29"
##  [21] "2018-02-02" "2018-08-02" "2018-06-12" "2018-06-20" NA          
##  [26] "2018-02-09" NA           "2016-10-31" "2017-09-28" "2017-07-10"
##  [31] "2018-01-31" "2018-04-26" "2018-01-29" "2017-09-21" "2016-10-24"
##  [36] "2017-07-17" NA           "2018-04-12" "2017-04-07" "2018-05-04"
##  [41] "2017-03-28" "2017-06-08" "2017-03-09" "2018-01-26" "2018-05-30"
##  [46] "2018-02-05" "2017-02-23" "2018-03-02" "2017-05-17" "2017-09-25"
##  [51] "2017-09-01" "2017-06-26" "2016-12-12" "2017-09-06" "2015-08-31"
##  [56] "2016-09-29" "2016-09-09" "2017-02-23" "2018-07-27" "2018-07-18"
##  [61] "2018-05-28" "2018-08-30" "2018-04-17" "2018-01-04" "2018-05-15"
##  [66] "2018-07-25" "2017-07-20" "2018-04-24" NA           "2018-05-24"
##  [71] "2017-11-29" "2018-07-25" "2018-05-01" "2018-07-25" "2018-07-11"
##  [76] "2017-11-22" "2018-03-07" "2018-05-15" "2018-05-25" "2018-07-12"
##  [81] "2018-06-05" "2018-06-27" "2018-06-07" NA           "2018-06-26"
##  [86] "2018-06-18" "2016-06-03" NA           "2015-04-16" "2017-04-14"
##  [91] "2016-09-28" "2017-03-20" "2016-12-27" "2016-10-13" "2015-12-18"
##  [96] "2016-10-28" "2017-04-25" "2016-12-05" "2016-06-17" "2017-01-05"
## [101] "2017-03-23" "2016-06-24" "2017-02-08" "2016-09-23" "2017-03-31"
## [106] "2016-10-07" "2017-01-17" "2015-02-25" "2017-05-11" "2017-04-13"
## [111] "2017-05-02" "2016-03-25" "2017-05-13" "2017-03-29" "2017-07-19"
## [116] "2016-05-23" "2017-05-13" "2016-07-08" NA           "2017-03-27"
## [121] "2017-10-16" "2016-10-31" "2016-04-22" "2017-01-05" "2017-10-05"
## [126] "2017-04-07" "2017-05-02" "2017-05-10" "2017-08-31" "2017-10-12"
## [131] "2017-06-06" "2017-10-02" "2017-12-05" "2017-05-01" "2018-02-08"
## [136] "2017-07-06" "2017-05-26" NA           NA           "2017-09-28"
## [141] "2017-07-26" "2018-01-16" NA           "2017-06-21" "2016-06-10"
## [146] "2016-04-28" "2017-11-06" NA           "2018-03-20" NA          
## [151] "2017-11-02" NA           NA
dater(bp_dataset$BMI_After_Date1)
##   [1] "2019-12-17" "2019-01-02" "2019-11-21" "2019-02-06" "2019-01-29"
##   [6] "2018-11-05" "2019-03-22" "2018-12-22" "2019-04-12" "2019-05-10"
##  [11] "2019-02-12" "2019-02-22" NA           "2019-03-18" NA          
##  [16] "2019-03-08" "2019-02-11" "2019-05-08" "2019-02-20" "2018-12-28"
##  [21] NA           "2019-01-11" "2018-12-11" "2019-01-16" NA          
##  [26] "2019-03-22" NA           "2019-01-28" "2019-03-13" "2019-01-20"
##  [31] "2019-02-14" "2018-01-10" "2019-01-03" "2018-09-06" "2019-02-26"
##  [36] "2018-10-25" NA           "2019-01-31" "2019-01-25" "2019-02-27"
##  [41] "2018-12-03" "2019-01-25" "2019-03-28" "2019-03-13" "2018-11-20"
##  [46] "2019-05-06" NA           "2019-01-29" "2019-02-12" "2019-02-11"
##  [51] "2018-02-28" "2019-03-06" "2018-01-29" "2018-08-06" "2018-08-14"
##  [56] "2018-06-03" "2018-08-30" "2019-07-25" "2019-01-30" "2018-12-19"
##  [61] "2019-02-06" "2019-01-31" "2018-12-12" "2019-04-08" "2019-01-23"
##  [66] "2018-10-31" "2018-12-12" "2018-12-18" NA           "2019-03-04"
##  [71] "2019-01-09" "2019-01-07" "2019-01-18" "2019-02-20" "2019-02-22"
##  [76] "2019-02-06" "2019-06-05" "2018-01-02" "2019-05-20" "2019-02-11"
##  [81] "2019-07-24" "2019-02-04" "2019-01-24" NA           "2019-01-23"
##  [86] "2018-12-11" "2019-02-14" "2018-09-18" "2018-06-04" "2019-05-10"
##  [91] NA           "2017-10-30" "2018-04-10" "2018-12-19" "2019-03-04"
##  [96] "2018-12-03" "2018-03-02" "2019-03-21" "2018-08-17" "2019-01-31"
## [101] "2019-02-28" "2019-04-02" "2019-05-11" "2019-02-12" "2018-02-16"
## [106] "2018-05-17" "2018-10-30" "2018-12-26" "2019-02-13" "2017-11-30"
## [111] "2019-06-20" NA           "2017-12-19" "2017-12-08" "2018-02-13"
## [116] "2018-06-13" "2019-02-01" "2018-09-20" NA           "2018-12-26"
## [121] "2018-05-02" "2019-04-30" "2018-06-19" NA           "2018-12-20"
## [126] "2019-03-19" "2018-08-28" "2019-02-26" "2018-04-09" "2018-12-13"
## [131] "2018-02-23" "2018-02-13" "2018-11-20" "2019-03-25" "2019-04-24"
## [136] "2018-12-21" "2019-01-24" NA           "2019-04-25" "2019-01-10"
## [141] "2019-01-07" "2018-07-27" NA           "2018-12-20" NA          
## [146] "2018-12-06" "2019-03-04" NA           "2019-02-25" "2019-02-08"
## [151] "2018-12-07" NA           NA
dater(bp_dataset$BMI_After_Date2)
##   [1] "2019-01-24" "2019-02-05" "2019-01-16" NA           NA          
##   [6] "2018-12-04" "2019-04-24" "2019-04-11" NA           "2019-02-13"
##  [11] "2019-03-26" "2019-03-06" NA           "2019-06-26" NA          
##  [16] "2019-04-12" "2019-04-15" NA           "2019-04-07" "2018-01-22"
##  [21] NA           "2019-03-20" "2019-01-08" "2019-02-20" NA          
##  [26] "2019-06-07" NA           NA           NA           NA          
##  [31] "2019-04-23" "2019-03-06" "2019-02-21" "2019-02-14" NA          
##  [36] NA           NA           "2019-04-12" NA           "2019-03-18"
##  [41] "2019-04-29" "2019-02-22" NA           NA           NA          
##  [46] "2019-07-18" NA           "2019-03-22" "2019-06-04" "2019-03-11"
##  [51] "2018-12-21" "2018-04-05" "2019-03-25" "2018-08-28" "2019-03-29"
##  [56] "2018-08-30" "2018-10-31" NA           "2019-03-30" "2019-01-30"
##  [61] "2019-04-12" "2019-05-10" "2019-03-12" "2019-07-15" "2019-04-11"
##  [66] "2019-03-01" "2019-01-30" "2019-01-22" NA           NA          
##  [71] "2019-02-07" "2019-02-20" "2019-04-08" "2019-03-18" "2019-04-29"
##  [76] "2019-05-01" NA           "2018-03-05" NA           "2019-03-15"
##  [81] NA           "2019-03-13" "2019-04-16" NA           "2019-05-03"
##  [86] "2019-01-11" "2019-03-19" "2018-11-15" "2018-09-04" NA          
##  [91] NA           "2018-02-05" "2018-05-17" "2019-02-04" "2019-04-16"
##  [96] "2019-06-13" "2018-04-05" "2019-04-18" NA           "2019-03-04"
## [101] "2019-04-11" NA           NA           "2019-03-18" "2018-08-31"
## [106] NA           "2018-12-11" NA           "2019-03-14" NA          
## [111] NA           NA           "2018-03-26" "2018-02-13" "2018-04-19"
## [116] "2018-08-07" "2019-03-05" "2019-01-29" NA           "2019-01-28"
## [121] "2018-08-01" NA           "2018-11-09" NA           "2019-05-07"
## [126] "2019-04-15" "2018-10-30" NA           "2018-09-18" "2019-01-14"
## [131] "2018-03-30" "2018-04-05" "2018-12-20" "2019-07-15" NA          
## [136] "2019-01-22" "2019-06-11" NA           NA           NA          
## [141] "2019-02-22" "2018-10-20" NA           NA           NA          
## [146] "2019-02-07" "2019-04-15" NA           "2019-03-25" "2019-03-08"
## [151] "2018-12-17" NA           NA
dater(bp_dataset$BMI_After_Date3)
##   [1] "2019-03-14" "2019-03-21" "2019-04-11" NA           NA          
##   [6] "2019-02-19" "2019-07-24" "2019-05-16" NA           "2019-06-26"
##  [11] "2019-06-04" "2019-06-13" NA           NA           NA          
##  [16] "2019-04-26" "2019-06-07" NA           NA           "2019-02-19"
##  [21] NA           "2019-05-30" "2019-03-04" "2019-03-20" NA          
##  [26] NA           NA           NA           NA           NA          
##  [31] "2019-05-23" "2019-04-24" "2019-07-11" "2019-06-06" NA          
##  [36] NA           NA           "2019-05-24" NA           NA          
##  [41] "2019-05-28" "2019-04-05" NA           NA           NA          
##  [46] NA           NA           "2019-06-04" NA           "2019-04-16"
##  [51] "2019-04-07" "2019-04-10" NA           "2018-10-02" "2019-04-30"
##  [56] "2019-02-21" "2018-12-06" NA           "2019-05-21" "2018-03-13"
##  [61] "2019-05-22" "2019-07-11" "2019-04-23" NA           "2019-06-12"
##  [66] "2019-04-15" "2019-03-26" "2019-02-26" NA           NA          
##  [71] "2019-04-10" "2019-03-19" NA           "2019-04-17" NA          
##  [76] "2019-07-19" NA           "2018-04-02" NA           "2019-04-25"
##  [81] NA           "2019-04-24" "2019-07-11" NA           "2019-06-21"
##  [86] "2019-03-22" "2019-07-10" "2019-04-01" "2019-04-18" NA          
##  [91] NA           "2018-05-14" "2018-06-19" "2019-04-24" "2019-05-20"
##  [96] NA           "2018-05-03" "2019-07-01" NA           "2019-04-18"
## [101] "2019-05-21" NA           NA           "2019-04-23" "2018-10-09"
## [106] NA           "2019-04-16" NA           "2019-04-28" NA          
## [111] NA           NA           "2018-06-15" "2018-03-20" "2018-06-29"
## [116] "2019-02-07" "2019-05-01" "2019-06-18" NA           "2019-03-21"
## [121] "2018-12-19" NA           "2019-05-24" NA           "2019-07-10"
## [126] "2019-05-01" "2019-02-08" NA           "2018-11-09" "2019-02-11"
## [131] "2018-04-23" "2018-07-24" "2019-05-14" NA           NA          
## [136] "2019-03-05" NA           NA           NA           NA          
## [141] "2019-03-27" NA           NA           NA           NA          
## [146] "2019-05-02" "2019-07-01" NA           "2019-06-11" NA          
## [151] "2019-05-01" NA           NA
dater(bp_dataset$A1C_After_Date1)
##   [1] "2019-02-07" NA           "2019-04-11" "2019-04-12" NA          
##   [6] "2019-02-19" NA           NA           "2018-12-07" "2019-07-31"
##  [11] "2019-06-05" "2018-12-27" NA           "2019-06-26" "2019-06-18"
##  [16] NA           NA           NA           "2019-03-02" "2019-06-06"
##  [21] NA           "2019-01-11" "2019-03-04" NA           NA          
##  [26] "2019-03-25" NA           NA           "2019-03-13" NA          
##  [31] NA           "2018-11-14" "2019-03-14" NA           NA          
##  [36] NA           NA           NA           "2019-06-21" NA          
##  [41] "2019-04-29" "2019-05-21" "2019-01-25" "2019-07-19" NA          
##  [46] "2019-07-18" "2018-09-25" "2018-12-14" "2019-06-04" "2019-01-07"
##  [51] "2019-04-19" NA           NA           NA           "2019-03-29"
##  [56] NA           "2019-04-18" "2019-07-25" "2019-07-24" NA          
##  [61] NA           NA           NA           NA           "2019-04-17"
##  [66] NA           "2019-06-19" "2019-02-26" NA           NA          
##  [71] NA           "2019-06-26" "2019-01-18" NA           "2019-07-10"
##  [76] "2019-05-01" "2019-06-05" NA           "2019-05-20" NA          
##  [81] "2019-07-24" "2019-05-08" NA           NA           NA          
##  [86] "2019-02-01" "2019-07-10" "2018-07-17" "2019-03-25" "2019-05-07"
##  [91] NA           "2017-11-06" NA           "2019-06-27" "2019-05-20"
##  [96] "2019-05-30" NA           "2019-07-01" "2018-05-04" NA          
## [101] "2019-02-28" "2019-03-14" "2018-02-27" "2019-04-23" NA          
## [106] "2018-05-10" "2019-04-16" "2018-12-05" NA           NA          
## [111] NA           NA           "2018-08-16" "2019-04-03" "2019-01-31"
## [116] "2019-02-12" "2019-03-05" "2018-09-20" NA           "2019-06-13"
## [121] "2019-01-31" "2019-03-01" NA           NA           NA          
## [126] NA           NA           "2019-03-26" "2018-12-13" "2018-12-31"
## [131] "2018-03-30" "2018-06-15" "2019-05-14" "2019-02-04" "2019-04-23"
## [136] NA           NA           NA           "2019-01-24" NA          
## [141] NA           NA           NA           NA           NA          
## [146] "2019-05-02" NA           NA           "2019-06-13" "2019-02-01"
## [151] NA           NA           NA
dater(bp_dataset$A1C_After_Date2)
##   [1] "2019-07-18" NA           "2019-01-23" "2019-01-14" NA          
##   [6] NA           NA           NA           NA           NA          
##  [11] "2019-02-05" NA           NA           NA           NA          
##  [16] NA           NA           NA           NA           "2019-01-08"
##  [21] NA           "2019-03-22" NA           NA           NA          
##  [26] "2019-02-01" NA           NA           NA           NA          
##  [31] NA           NA           NA           NA           NA          
##  [36] NA           NA           NA           NA           NA          
##  [41] NA           NA           NA           "2019-02-27" NA          
##  [46] "2019-02-20" NA           NA           NA           NA          
##  [51] NA           NA           NA           NA           NA          
##  [56] NA           "2018-08-30" NA           NA           NA          
##  [61] NA           NA           NA           NA           "2019-01-23"
##  [66] NA           "2018-12-12" NA           NA           NA          
##  [71] NA           NA           NA           NA           "2019-03-13"
##  [76] "2019-02-06" NA           NA           NA           NA          
##  [81] NA           "2019-02-13" NA           NA           NA          
##  [86] NA           "2019-02-03" "2018-09-27" "2018-07-30" NA          
##  [91] NA           "2018-05-14" NA           NA           "2019-02-04"
##  [96] "2018-12-20" NA           "2019-03-15" "2018-08-17" NA          
## [101] NA           NA           NA           NA           NA          
## [106] NA           NA           NA           NA           NA          
## [111] NA           NA           NA           NA           "2018-05-04"
## [116] NA           NA           NA           NA           "2019-02-25"
## [121] NA           NA           NA           NA           NA          
## [126] NA           NA           NA           "2018-06-15" NA          
## [131] "2018-09-28" "2018-12-28" NA           NA           NA          
## [136] NA           NA           NA           NA           NA          
## [141] NA           NA           NA           NA           NA          
## [146] "2018-12-06" NA           NA           NA           NA          
## [151] NA           NA           NA
dater(bp_dataset$A1C_Before_Date1)
##   [1] "2017-12-27" NA           "2018-01-15" "2018-05-21" NA          
##   [6] "2018-06-04" "2017-12-12" "2018-02-14" "2018-08-24" "2018-07-25"
##  [11] "2017-12-21" "2017-10-07" NA           "2018-06-06" "2018-06-20"
##  [16] NA           NA           "2018-03-16" "2018-07-03" "2018-08-07"
##  [21] "2018-02-02" "2018-07-03" "2018-02-27" "2018-08-31" NA          
##  [26] "2018-08-24" NA           NA           "2018-05-11" NA          
##  [31] NA           "2018-04-20" "2017-10-30" NA           NA          
##  [36] NA           NA           NA           "2017-08-25" NA          
##  [41] "2016-09-29" "2017-08-21" "2017-07-06" "2018-03-07" NA          
##  [46] "2018-11-01" "2017-08-28" "2018-08-09" "2016-11-28" "2017-07-05"
##  [51] "2017-01-27" NA           NA           NA           "2016-09-13"
##  [56] NA           "2016-06-03" "2017-08-28" "2018-07-05" NA          
##  [61] NA           NA           NA           "2018-09-20" "2018-08-01"
##  [66] NA           "2018-06-12" "2018-08-07" NA           "2018-05-04"
##  [71] "2018-10-16" "2018-07-11" "2018-08-15" "2018-09-11" "2018-07-11"
##  [76] "2018-07-03" "2018-08-31" NA           "2018-06-22" "2018-08-14"
##  [81] "2018-02-05" "2018-09-12" NA           NA           NA          
##  [86] "2018-09-18" "2017-04-13" "2017-03-10" "2016-06-30" "2017-06-23"
##  [91] NA           "2017-06-26" NA           "2017-02-13" "2016-08-26"
##  [96] "2017-06-19" NA           "2017-06-06" "2017-03-20" NA          
## [101] "2017-02-27" "2017-03-30" "2017-08-15" "2017-08-08" NA          
## [106] "2017-06-23" "2017-04-18" "2017-07-17" NA           "2017-03-27"
## [111] NA           NA           "2017-05-30" "2016-07-11" "2017-07-26"
## [116] "2016-05-23" "2017-06-06" "2014-08-07" NA           "2017-08-08"
## [121] "2017-10-16" "2017-02-01" NA           NA           "2017-10-03"
## [126] NA           NA           "2017-12-19" "2017-12-07" "2017-12-05"
## [131] "2017-12-18" "2017-12-29" "2017-12-05" "2017-11-20" "2017-08-04"
## [136] NA           "2017-03-08" NA           "2018-01-05" NA          
## [141] "2017-06-16" "2018-01-16" "2017-11-29" "2017-07-20" "2018-07-23"
## [146] "2017-03-10" "2016-07-25" NA           "2018-06-18" "2018-07-31"
## [151] "2016-12-28" NA           "2018-09-12"
dater(bp_dataset$A1C_After_Date2)
##   [1] "2019-07-18" NA           "2019-01-23" "2019-01-14" NA          
##   [6] NA           NA           NA           NA           NA          
##  [11] "2019-02-05" NA           NA           NA           NA          
##  [16] NA           NA           NA           NA           "2019-01-08"
##  [21] NA           "2019-03-22" NA           NA           NA          
##  [26] "2019-02-01" NA           NA           NA           NA          
##  [31] NA           NA           NA           NA           NA          
##  [36] NA           NA           NA           NA           NA          
##  [41] NA           NA           NA           "2019-02-27" NA          
##  [46] "2019-02-20" NA           NA           NA           NA          
##  [51] NA           NA           NA           NA           NA          
##  [56] NA           "2018-08-30" NA           NA           NA          
##  [61] NA           NA           NA           NA           "2019-01-23"
##  [66] NA           "2018-12-12" NA           NA           NA          
##  [71] NA           NA           NA           NA           "2019-03-13"
##  [76] "2019-02-06" NA           NA           NA           NA          
##  [81] NA           "2019-02-13" NA           NA           NA          
##  [86] NA           "2019-02-03" "2018-09-27" "2018-07-30" NA          
##  [91] NA           "2018-05-14" NA           NA           "2019-02-04"
##  [96] "2018-12-20" NA           "2019-03-15" "2018-08-17" NA          
## [101] NA           NA           NA           NA           NA          
## [106] NA           NA           NA           NA           NA          
## [111] NA           NA           NA           NA           "2018-05-04"
## [116] NA           NA           NA           NA           "2019-02-25"
## [121] NA           NA           NA           NA           NA          
## [126] NA           NA           NA           "2018-06-15" NA          
## [131] "2018-09-28" "2018-12-28" NA           NA           NA          
## [136] NA           NA           NA           NA           NA          
## [141] NA           NA           NA           NA           NA          
## [146] "2018-12-06" NA           NA           NA           NA          
## [151] NA           NA           NA
dater(fp_survey$date_completed)
##   [1] "2017-07-05" "2017-07-05" "2017-07-05" "2017-07-05" "2017-07-05"
##   [6] "2017-07-05" "2017-07-05" "2017-07-05" "2017-07-05" "2017-07-11"
##  [11] "2017-07-12" "2017-07-12" "2017-07-12" "2017-07-12" "2017-07-12"
##  [16] "2017-07-12" "2017-07-12" "2017-07-15" "2017-07-18" "2017-07-19"
##  [21] "2017-07-19" "2017-07-19" "2017-07-19" "2017-07-19" "2017-07-26"
##  [26] "2017-08-02" "2017-08-02" "2017-08-09" "2017-08-16" "2017-08-16"
##  [31] "2017-08-23" "2017-08-23" "2017-08-23" "2017-09-20" "2017-09-20"
##  [36] "2017-09-27" "2017-09-27" "2017-09-20" NA           NA          
##  [41] "2017-09-07" "2017-09-07" "2017-09-07" "2017-09-07" "2017-09-07"
##  [46] "2017-09-07" "2017-09-07" "2017-09-07" "2017-09-18" "2017-09-21"
##  [51] "2017-09-21" "2017-09-21" "2017-09-21" "2017-09-21" "2017-09-21"
##  [56] "2017-09-28" "2017-09-28" "2017-09-28" "2017-09-28" "2017-09-28"
##  [61] "2017-09-28" "2017-09-29" "2017-10-05" "2017-10-05" "2017-10-05"
##  [66] "2017-10-12" "2017-10-26" "2017-10-26" "2017-10-26" "2017-10-26"
##  [71] "2018-01-11" "2018-01-11" NA           "2018-01-18" NA          
##  [76] NA           "2018-01-18" NA           NA           NA          
##  [81] NA           NA           NA           NA           NA          
##  [86] NA           NA           "2017-09-08" NA           "2017-09-08"
##  [91] NA           NA           "2017-09-09" "2017-09-08" "2017-09-15"
##  [96] "2017-09-08" "2017-09-08" "2017-09-08" NA           NA          
## [101] NA           NA           "2017-09-08" "2017-09-08" NA          
## [106] "2017-09-15" "2017-09-15" NA           "2017-09-09" NA          
## [111] "2017-11-01" "2017-10-18" "2017-12-06" NA           NA          
## [116] "2018-01-24" "2017-11-29" NA           NA           "2018-01-17"
## [121] "2018-02-01" "2018-01-26" NA           "2018-02-09" "2018-01-26"
## [126] "2018-02-01" "2018-08-01" "2017-09-08" NA           NA          
## [131] "2018-06-15" "2017-09-15" NA           "2018-02-02" "2018-02-01"
## [136] "2018-02-15" "2018-04-25" "2018-05-23" "2018-02-15" "2018-02-16"
## [141] "2018-05-16" "2018-07-19" "2018-03-30" "2018-02-09" "2018-03-27"
## [146] "2018-04-25" "2018-06-27" NA           "2018-04-13" "2017-09-28"
## [151] "2018-02-16" "2018-07-18" "2018-08-02" "2017-09-08" NA          
## [156] "2018-02-16" "2018-02-16" "2018-03-13" NA           NA          
## [161] "2018-02-15" "2018-02-01" NA           "2018-04-13" "2018-06-15"
## [166] "2018-08-02" "2018-05-17" "2018-04-13" "2018-04-25" NA          
## [171] "2018-02-15" NA           "2018-09-27" "2019-01-29" "2018-09-13"
## [176] "2018-09-27" NA           "2018-10-11" NA           "2018-11-01"
## [181] "2018-09-09" NA           "2018-11-17" "2018-01-03" "2018-08-29"
## [186] "2018-08-22" "2018-08-08" "2018-08-18" "2018-08-29" "2018-08-29"
## [191] "2018-10-24" "2018-10-24" "2018-08-30" "2018-10-03" "2018-09-26"
## [196] "2018-09-19" "2018-09-26" "2018-09-27" "2018-09-27" "2018-09-27"
## [201] "2018-09-27" "2018-09-27" "2018-09-29" "2018-11-07" "2018-09-13"
## [206] "2018-11-01" "2018-04-13" "2018-10-04" "2018-10-04" "2018-10-04"
## [211] NA           "2018-10-05" "2018-09-27" "2018-10-11" "2018-10-11"
## [216] "2018-10-11" "2018-10-25" "2018-10-05" "2018-10-25" "2018-10-25"
## [221] "2018-10-25" "2018-09-20" "2018-09-20" "2018-09-20" "2018-09-20"
## [226] "2018-09-20" "2018-09-20" NA           "2018-09-13" "2019-01-16"
## [231] "2019-02-22" "2019-02-22" "2019-02-22" NA           NA          
## [236] "2019-01-29" "2019-01-29" "2019-02-05" "2019-02-27" "2019-02-13"
## [241] "2019-02-20" "2019-02-06" "2019-02-06" NA           "2019-03-26"
## [246] "2019-03-26" "2019-03-26" "2019-03-26" "2019-03-26" "2019-04-02"
## [251] NA           "2019-03-19" "2019-04-16" "2019-02-26" NA          
## [256] NA           NA           "2019-04-17" NA           "2019-01-17"
## [261] "2019-01-17" NA           "2018-06-07" "2018-01-03" "2017-12-20"
## [266] "2017-12-06" "2018-01-10" "2018-11-01" NA           "2018-11-01"
## [271] "2018-11-01" "2018-11-01" "2018-10-25" "2018-10-17" "2018-10-18"
## [276] "2018-10-18" "2018-10-11" "2018-10-11" "2019-01-23" "2017-12-14"
## [281] NA           "2019-06-25" "2019-06-25" "2019-06-25" "2019-06-11"
## [286] "2019-06-25" "2019-06-25" "2019-02-26" "2019-02-26" NA          
## [291] NA           "2018-03-05" NA           NA           "2019-03-05"
## [296] NA           "2019-02-01" "2019-03-12" "2019-03-12" NA          
## [301] "2019-03-12" "2019-03-12" NA           "2019-02-15" NA          
## [306] NA           "2019-03-27" "2019-03-27" "2019-03-20" "2019-03-13"
## [311] "2019-03-13" "2019-02-20" "2019-04-09" NA           "2019-05-07"
## [316] "2019-05-07" "2019-05-28" "2018-05-23" "2019-05-21" "2019-05-28"
## [321] "2019-05-24" NA           "2019-05-24" "2019-04-17" "2019-02-06"
## [326] "2019-01-17" "2018-03-28" NA           NA           "2018-02-07"
## [331] "1973-07-26" "2019-07-23" NA           "2018-04-18" "2018-03-07"
## [336] "2019-07-09" NA           NA           "2019-07-09" "2018-02-28"
## [341] NA           "2019-06-25"
dater(fp_survey$date_completed2)
##   [1] NA           NA           "2017-10-18" NA           "2017-09-13"
##   [6] NA           NA           NA           "2017-09-20" NA          
##  [11] NA           NA           NA           NA           NA          
##  [16] NA           NA           "2018-10-31" NA           NA          
##  [21] NA           "2018-03-14" NA           NA           "2017-11-01"
##  [26] NA           NA           "2017-12-06" NA           NA          
##  [31] NA           NA           NA           "2017-12-16" "2018-02-04"
##  [36] NA           "2017-12-16" NA           NA           NA          
##  [41] "2017-12-07" NA           NA           NA           "2017-11-30"
##  [46] "2017-11-30" NA           "2017-11-30" NA           NA          
##  [51] NA           NA           NA           NA           NA          
##  [56] NA           NA           NA           NA           "2017-11-30"
##  [61] NA           NA           NA           NA           NA          
##  [66] NA           NA           NA           NA           NA          
##  [71] NA           NA           NA           NA           NA          
##  [76] NA           NA           NA           NA           NA          
##  [81] "2017-11-30" NA           "2017-11-30" NA           NA          
##  [86] NA           NA           NA           "2018-04-13" "2017-11-17"
##  [91] "2017-11-16" NA           NA           "2017-11-17" NA          
##  [96] NA           NA           "2018-04-03" "2017-11-17" "1967-01-19"
## [101] "2017-11-17" NA           NA           NA           NA          
## [106] NA           NA           NA           NA           NA          
## [111] NA           NA           NA           "2018-04-18" NA          
## [116] "2018-08-08" NA           NA           "2018-07-18" NA          
## [121] NA           NA           NA           NA           NA          
## [126] NA           NA           NA           NA           NA          
## [131] NA           NA           NA           NA           NA          
## [136] NA           "2018-09-26" NA           NA           NA          
## [141] NA           NA           NA           NA           NA          
## [146] "2018-06-20" NA           NA           "2018-04-13" NA          
## [151] NA           NA           NA           "2017-11-16" NA          
## [156] NA           NA           NA           NA           NA          
## [161] NA           NA           NA           NA           "2018-08-03"
## [166] NA           NA           NA           NA           NA          
## [171] NA           NA           "2018-11-01" NA           "2018-11-01"
## [176] "2018-11-01" "2019-04-16" "2018-11-15" "2018-11-15" "2018-11-29"
## [181] "2018-11-01" "2018-01-24" NA           "2018-07-25" NA          
## [186] NA           NA           NA           NA           NA          
## [191] NA           NA           NA           "2019-01-29" NA          
## [196] NA           NA           NA           NA           NA          
## [201] NA           NA           NA           NA           NA          
## [206] NA           NA           NA           NA           NA          
## [211] NA           NA           NA           NA           NA          
## [216] NA           NA           NA           NA           NA          
## [221] NA           NA           NA           NA           NA          
## [226] NA           NA           NA           NA           NA          
## [231] NA           NA           NA           NA           NA          
## [236] NA           NA           NA           NA           NA          
## [241] NA           NA           NA           NA           NA          
## [246] NA           NA           NA           NA           NA          
## [251] NA           NA           NA           "2019-04-16" "2019-04-19"
## [256] "2019-04-19" "2019-04-19" NA           "2019-04-10" NA          
## [261] NA           NA           NA           NA           NA          
## [266] NA           NA           NA           NA           NA          
## [271] NA           NA           NA           NA           NA          
## [276] NA           NA           NA           NA           NA          
## [281] NA           NA           NA           NA           NA          
## [286] NA           NA           NA           NA           NA          
## [291] NA           NA           NA           NA           NA          
## [296] NA           NA           NA           NA           NA          
## [301] NA           NA           NA           NA           NA          
## [306] NA           NA           NA           NA           NA          
## [311] NA           NA           NA           NA           NA          
## [316] NA           NA           NA           NA           NA          
## [321] NA           NA           NA           NA           NA          
## [326] NA           "2018-05-20" "2018-05-02" "2018-06-27" NA          
## [331] NA           NA           NA           NA           NA          
## [336] NA           NA           NA           NA           "2019-02-06"
## [341] NA           NA
dater(fp_survey$date_of_birth3)
##   [1] "1969-03-01" NA           "1959-03-17" NA           "1956-07-07"
##   [6] NA           NA           NA           NA           NA          
##  [11] NA           NA           "1962-01-05" NA           NA          
##  [16] "1946-07-07" NA           "1958-08-02" NA           NA          
##  [21] NA           "1963-07-03" NA           NA           "1961-02-18"
##  [26] NA           NA           "1948-05-02" NA           NA          
##  [31] NA           NA           NA           "1965-05-26" "1958-05-29"
##  [36] NA           "1953-11-02" NA           NA           "1978-03-22"
##  [41] NA           NA           NA           NA           "1946-11-22"
##  [46] "1946-03-05" NA           "1967-09-03" NA           NA          
##  [51] NA           NA           NA           NA           NA          
##  [56] NA           NA           NA           NA           "1958-02-10"
##  [61] NA           NA           NA           NA           NA          
##  [66] NA           NA           NA           NA           NA          
##  [71] NA           NA           NA           NA           NA          
##  [76] NA           NA           NA           NA           NA          
##  [81] "1953-04-12" NA           "1953-04-12" NA           NA          
##  [86] NA           NA           NA           "1969-10-31" "1968-01-05"
##  [91] "1962-03-11" NA           NA           "1963-04-04" NA          
##  [96] NA           NA           "1958-08-15" "1961-11-02" NA          
## [101] "1954-12-27" NA           NA           NA           NA          
## [106] "1947-03-26" NA           NA           NA           NA          
## [111] NA           NA           NA           "1972-04-12" "1954-04-21"
## [116] "1974-09-01" NA           NA           "1987-09-29" NA          
## [121] NA           NA           "1958-04-14" NA           NA          
## [126] NA           NA           NA           NA           NA          
## [131] NA           NA           NA           NA           NA          
## [136] NA           NA           NA           NA           NA          
## [141] NA           NA           NA           NA           NA          
## [146] "1971-02-13" NA           "1954-09-03" "1951-02-10" NA          
## [151] NA           NA           NA           "1962-11-12" NA          
## [156] NA           NA           NA           NA           NA          
## [161] NA           NA           NA           NA           "1954-01-15"
## [166] NA           NA           NA           NA           NA          
## [171] NA           "1964-06-20" "1963-02-25" NA           "1955-09-02"
## [176] "1956-09-09" "1956-09-09" "1959-11-19" "1957-02-25" "1977-07-16"
## [181] "1951-03-13" "1963-11-09" NA           "1954-03-28" NA          
## [186] NA           NA           NA           NA           NA          
## [191] NA           NA           NA           "1938-01-07" NA          
## [196] NA           NA           NA           NA           NA          
## [201] NA           NA           NA           NA           NA          
## [206] NA           NA           NA           NA           NA          
## [211] NA           NA           NA           NA           NA          
## [216] NA           NA           NA           NA           NA          
## [221] NA           NA           NA           NA           NA          
## [226] NA           NA           NA           NA           NA          
## [231] NA           NA           NA           NA           NA          
## [236] NA           NA           NA           NA           NA          
## [241] NA           NA           NA           NA           NA          
## [246] NA           NA           NA           NA           NA          
## [251] NA           NA           NA           "1944-08-07" "1960-03-07"
## [256] "1949-09-01" NA           NA           "1964-02-10" NA          
## [261] NA           NA           NA           NA           NA          
## [266] NA           NA           NA           NA           NA          
## [271] NA           NA           NA           NA           NA          
## [276] NA           NA           NA           NA           NA          
## [281] NA           NA           NA           NA           NA          
## [286] NA           NA           NA           NA           NA          
## [291] NA           NA           NA           NA           NA          
## [296] NA           NA           NA           NA           NA          
## [301] NA           NA           NA           NA           NA          
## [306] NA           NA           NA           NA           NA          
## [311] NA           NA           NA           NA           NA          
## [316] NA           NA           NA           NA           NA          
## [321] NA           NA           NA           NA           NA          
## [326] NA           "1943-05-20" "1959-01-21" "1953-07-11" NA          
## [331] NA           NA           NA           NA           NA          
## [336] NA           NA           NA           NA           "1991-01-03"
## [341] NA           NA
#Step 2B: Format Categorical Variables as Factors
bp_dataset$Clinic <- as.factor(bp_dataset$Clinic)
bp_dataset$six<- as.factor(bp_dataset$six)
bp_dataset$GtMSS <- as.factor(bp_dataset$GtMSS)
bp_dataset$GTMO <- as.factor(bp_dataset$GTMO)
bp_dataset$Gt3SS <- as.factor(bp_dataset$Gt3SS)
bp_dataset$Gt3O <- as.factor(bp_dataset$Gt3O)
bp_dataset$Consis <- as.factor(bp_dataset$Consis)
bp_dataset$Hypertension <- as.factor(bp_dataset$Hypertension)
bp_dataset$`Diabetic_ Status` <- as.factor(bp_dataset$`Diabetic_ Status`)
fp_survey$clinic <- as.factor(fp_survey$clinic)
fp_survey$n_children <- as.factor(fp_survey$n_children)
fp_survey$n_adults <- as.factor(fp_survey$n_adults)
fp_survey$race_ethnicity <- as.factor(fp_survey$race_ethnicity)
fp_survey$primary_language <- as.factor(fp_survey$primary_language)
fp_survey$highest_education <- as.factor(fp_survey$highest_education)
fp_survey$health_status_pre <- as.factor(fp_survey$health_status_pre)

Step 3: Merge Both Survey and BP Datasets into One datset. Prune dataset into analysis chunks

mega <- merge(bp_dataset, fp_survey, by = "ID")
mega <- as.data.frame(mega)

Step 4: Population Description

#Segmenting attendance, changing it from an integer to a factor
df6 <- mega %>% select(Clinic, ID, Num_Visits, Average_SYS, Average_SYS2, Average_DIA, Average_DIA2, Delta_Sys, Delta_Dia)
df6$Visit <- cut(df6$Num_Visits, c(1, 5, 10, 15, 30, Inf), right = 1)
summary(df6$Visit)
##    (1,5]   (5,10]  (10,15]  (15,30] (30,Inf] 
##       43       30       15       13       12
pl13 <- ggplot(df6, aes(Visit)) + geom_bar(aes(fill = Visit)) + xlab("Visit Count") + ylab("Patient Count") + theme_minimal()
pl13

#Further Segmenting it by Clinical Location
pl14 <- pl13 + facet_grid(~Clinic)
pl14

df4 <- mega %>% select(ID, race_ethnicity, Average_SYS, Average_SYS2, Average_DIA, Average_DIA2, Delta_Sys, Delta_Dia)

summary(df4$race_ethnicity)
##                                                                   asian 
##                                  13                                   4 
##            Asian or Pacific Ilander                               black 
##                                   0                                  66 
##                        black, asian                       black, native 
##                                   1                                   4 
##                        black, white                  black,native,white 
##                                   1                                   0 
##                     hispanic, other                              latino 
##                                   1                                   6 
##                       latino, asian                       latino, black 
##                                   0                                   1 
##                      latino, native                       latino, white 
##                                   0                                   0 
## latino, white, black, native, asian                              native 
##                                   2                                   1 
##                               other                               white 
##                                   5                                   6 
##                        white, black                white, black, native 
##                                   1                                   1
eth_black <- 1 + 1 + 2 + 1 + 66 + 4 + 1 + 1
eth_black
## [1] 77
count(df4, vars = "ID")
## # A tibble: 1 x 2
##   vars      n
##   <chr> <int>
## 1 ID      113
eth_black_percentage = 77/113
eth_black_percentage
## [1] 0.6814159
eth_black_strict <- 66/113
eth_black_strict
## [1] 0.5840708

68 percent of all of our participants identified as African American, at least in part. 58 Percent identified as only African American.

Let’s take a look at Age Demographics next.

df5 <- mega %>% select(Clinic, age_calculated, ID, Num_Visits, Average_SYS, Average_SYS2, Average_DIA, Average_DIA2, Delta_Sys, Delta_Dia)
df5$Age <- cut(df5$age_calculated, c(20, 30, 40, 50, 60, 70, Inf), right = 0)

#Drops NA Values
df5 <- df5 %>% drop_na(Age)
summary(df5$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        1       10       39       36       15
summary(df5$age_calculated)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   31.00   54.00   60.00   60.12   65.00   85.00
pl16 <- ggplot(df5, aes(Age)) + geom_bar(aes(fill = Age)) + xlab("Age") + ylab("Patient Count") + theme_minimal()
pl16

#For Fun
pl17 <- pl16 + facet_grid(~Clinic)
pl17

Step 5: Analysis of BP Data, independent of other classfications: Population 153 - Number of N/A’s

4A: Summary of Diastolic BP: Average_Dia is before, Average_Dia 2 is after, Delta is Change

4A-1: Check for Normal

summary(mega$Average_DIA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   65.33   76.00   80.33   81.66   86.00  110.00       4
summary(mega$Average_DIA2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   60.00   73.00   78.33   78.54   84.17   97.33       9
summary(mega$Delta_Dia)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -27.000  -6.333  -1.750  -2.691   2.083  17.333       9
#Checking for normal data

#creating temp dataframe with the variables we are interested in specifically
df <- mega %>% select(ID, Average_DIA, Average_DIA2)
df <- df %>% gather(key = "BP", value = "Readings", Average_DIA:Average_DIA2)

#creation of Box Plots to assess visually
pl <- ggplot(df,aes( x= BP, y = Readings)) + geom_boxplot() + theme_gray() + xlab("Before and After") + ylab("Blood Pressure (mmHg)") + labs(c("Before", "After"))
pl2 <- ggplot(mega, aes(x = ID, y = Delta_Dia)) + geom_boxplot() + theme_gray() + xlab("Change in Disatolic Pressure") + ylab("Blood Pressure (mmHg)")

#creation of Quantile Plots (QQ) to Check visually
pl3 <- ggplot(df, aes(sample = Readings)) +stat_qq()
pl4 <- ggplot(mega, aes(sample = Delta_Dia)) + stat_qq()

pl
## Warning: Removed 13 rows containing non-finite values (stat_boxplot).

pl2
## Warning: Continuous x aesthetic -- did you forget aes(group=...)?
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

pl3
## Warning: Removed 13 rows containing non-finite values (stat_qq).

pl4
## Warning: Removed 9 rows containing non-finite values (stat_qq).

4A-2: Statistical Analysis

t.test(mega$Average_DIA, mega$Average_DIA2)
## 
##  Welch Two Sample t-test
## 
## data:  mega$Average_DIA and mega$Average_DIA2
## t = 2.7906, df = 210.42, p-value = 0.005744
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.9166364 5.3273944
## sample estimates:
## mean of x mean of y 
##  81.66208  78.54006

Step 4B: Analysis of Systolic BP: Average Sys is before, Average Sys 2 is after, Delta is Change

summary(mega$Average_SYS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   109.0   127.0   136.3   137.1   144.0   188.7       4
summary(mega$Average_SYS2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    93.0   122.3   132.2   132.4   140.2   205.0       9
summary(mega$Delta_Sys)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -46.167 -11.333  -3.333  -4.418   3.333  36.333       9
df <- mega %>% select(ID, Average_SYS, Average_SYS2)
df <- df %>% gather(key = "BP", value = "Readings", Average_SYS:Average_SYS2)

#creation of Box Plots to assess visually
pl5 <- ggplot(df,aes( x= BP, y = Readings)) + geom_boxplot() + theme_gray() + xlab("Before and After") + ylab("Blood Pressure (mmHg)") + labs(c("Before", "After"))
pl6 <- ggplot(mega, aes(x = ID, y = Delta_Sys)) + geom_boxplot() + theme_gray() + xlab("Change in Systolic Pressure") + ylab("Blood Pressure (mmHg)")

#creation of Quantile Plots (QQ) to Check visually
pl7 <- ggplot(df, aes(sample = Readings)) +stat_qq()
pl8 <- ggplot(mega, aes(sample = Delta_Sys)) + stat_qq()

pl5
## Warning: Removed 13 rows containing non-finite values (stat_boxplot).

pl6
## Warning: Continuous x aesthetic -- did you forget aes(group=...)?
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

pl7
## Warning: Removed 13 rows containing non-finite values (stat_qq).

pl8
## Warning: Removed 9 rows containing non-finite values (stat_qq).

Step 4C: Tests Entire population of all BP users for significance

t.test(mega$Average_SYS, mega$Average_SYS2)
## 
##  Welch Two Sample t-test
## 
## data:  mega$Average_SYS and mega$Average_SYS2
## t = 2.321, df = 208.33, p-value = 0.02125
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.7081224 8.6942829
## sample estimates:
## mean of x mean of y 
##  137.1483  132.4471

Both tests indicate that, among the entire population, there is a significant difference in both systolic and diastolic pressure before and afterwards. Let’s continue by testing the different subsets.

Our first varaible mesaures the amount of times that people visited at least 6 times. a 0 indicate no, 6 indicates yes.

#There are 42 people who visisted less than 6 times, and 70 who visisted more than 6 times.
summary(mega$six)
##  0  1 
## 43 70
#Creation of temp dataset to analyze
df <- mega %>% select(ID, six, Average_SYS, Average_SYS2)
df <- df %>% gather(key = "BP", value = "Readings", Average_SYS:Average_SYS2)

#creation of Box Plots to assess visually
pl9 <- ggplot(df,aes( x= BP, y = Readings, fill = six)) + geom_boxplot() + theme_gray() + xlab("Before and After") + ylab("Blood Pressure (mmHg)") + labs(c("Before", "After"))

pl10 <- ggplot(mega, aes(x = ID, y = Delta_Sys, fill = six)) + geom_boxplot() + theme_gray() + xlab("Change in Systolic Blood Pressure") + ylab("Blood Pressure (mmHg)")

pl9
## Warning: Removed 13 rows containing non-finite values (stat_boxplot).

pl10
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

print("6 or more Visits")
## [1] "6 or more Visits"
df2 <- mega %>% subset(six == 1)
summary(df2$Clinic)
## Campus  SAFHC   SEHC   TWHC 
##     13     37     10     10
summary(df2$Average_SYS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   109.0   127.3   136.8   137.5   144.0   176.3       2
summary(df2$Average_SYS2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    93.0   122.3   132.0   132.5   139.2   205.0       7
summary(df2$Delta_Sys)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -41.333 -10.833  -4.333  -4.545   2.833  36.333       7
t.test(df2$Average_SYS, df2$Average_SYS2)
## 
##  Welch Two Sample t-test
## 
## data:  df2$Average_SYS and df2$Average_SYS2
## t = 1.8183, df = 122.54, p-value = 0.07146
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.442084 10.414617
## sample estimates:
## mean of x mean of y 
##  137.4730  132.4868
print("5 or fewer visits")
## [1] "5 or fewer visits"
df3 <- mega %>% subset(six == 0)
summary(df3$clinic)
##        CAMPUS    FHC   PHHC   RFPC  SAFHC   SAHC   SEHC  TWUHC 
##      1      8      3      0      1     17      0      8      5
summary(df3$Average_SYS)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   114.7   126.7   135.3   136.6   143.3   188.7       2
summary(df3$Average_SYS2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   103.0   126.0   133.0   132.4   141.7   162.0       2
summary(df3$Delta_Sys)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -46.167 -11.333  -2.000  -4.224   5.333  24.667       2
t.test(df3$Average_SYS, df3$Average_SYS2)
## 
##  Welch Two Sample t-test
## 
## data:  df3$Average_SYS and df3$Average_SYS2
## t = 1.4177, df = 78.989, p-value = 0.1602
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.70640 10.15355
## sample estimates:
## mean of x mean of y 
##  136.6098  132.3862

Diastoic Blood Pressure for Patients, 6 or more or fewer than six

df <- mega %>% select(ID, six, Average_DIA, Average_DIA2)
df <- df %>% gather(key = "BP", value = "Readings", Average_DIA:Average_DIA2)

pl11 <- ggplot(df,aes( x= BP, y = Readings, fill = six)) + geom_boxplot() + theme_gray() + xlab("Before and After") + ylab("Blood Pressure (mmHg)") + labs(c("Before", "After"))

pl12 <- ggplot(mega, aes(x = ID, y = Delta_Dia, fill = six)) + geom_boxplot() + theme_gray() + xlab("Change in Systolic Blood Pressure") + ylab("Blood Pressure (mmHg)")

pl11
## Warning: Removed 13 rows containing non-finite values (stat_boxplot).

pl12
## Warning: Removed 9 rows containing non-finite values (stat_boxplot).

print("6 or more Visits")
## [1] "6 or more Visits"
summary(df2$Clinic)
## Campus  SAFHC   SEHC   TWHC 
##     13     37     10     10
summary(df2$Average_DIA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   65.33   75.33   80.50   81.70   85.50  110.00       2
summary(df2$Average_DIA2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   60.00   73.50   78.33   78.37   85.50   96.00       7
summary(df2$Delta_Dia)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -27.000  -6.333  -1.333  -2.624   1.833  17.333       7
t.test(df2$Average_DIA, df2$Average_DIA2)
## 
##  Welch Two Sample t-test
## 
## data:  df2$Average_DIA and df2$Average_DIA2
## t = 2.1941, df = 128.92, p-value = 0.03002
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3275301 6.3393700
## sample estimates:
## mean of x mean of y 
##  81.69853  78.36508
print("5 or fewer visits")
## [1] "5 or fewer visits"
summary(df3$clinic)
##        CAMPUS    FHC   PHHC   RFPC  SAFHC   SAHC   SEHC  TWUHC 
##      1      8      3      0      1     17      0      8      5
summary(df3$Average_DIA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   68.33   77.67   80.33   81.60   86.00   97.33       2
summary(df3$Average_DIA2)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   65.00   73.00   79.00   78.81   83.00   97.33       2
summary(df3$Delta_Dia)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
## -21.500  -5.000  -1.833  -2.793   2.667   5.667       2
t.test(df3$Average_DIA, df3$Average_DIA2)
## 
##  Welch Two Sample t-test
## 
## data:  df3$Average_DIA and df3$Average_DIA2
## t = 1.7309, df = 78.286, p-value = 0.08741
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4192304  6.0045962
## sample estimates:
## mean of x mean of y 
##  81.60163  78.80894

Results seem to indicate that people who attend FP more have a better result. Lets take a deeper look. df3 has people subsetted based on their total visit count

tester <- function(dd, x, y, z, q) {
  
  pltemp <- ggplot(dd, aes(sample = x + y)) +stat_qq()
  print(pltemp)
  pltemp2 <- ggplot(dftemp, aes(sample = z + q)) +stat_qq()
  print(pltemp2)
  
  dd <- dd %>% gather(key = "BP", value = "Readings", Average_SYS:Average_DIA2)
  pltemp3 <- ggplot(dd,aes( x = BP, y = Readings)) + geom_boxplot() + theme_gray() + xlab("Before and After") + ylab("Blood Pressure (mmHg)") + labs(c("Before",       "After"))
  print(pltemp3)

  print("Sys Result")
  test <- t.test(x, y)
  print(test)
  print("Dia Result")
  test2 <- t.test(z, q)
  print(test2)
}
#The Filter
dftemp <- df6 %>% filter(Visit == '(1,5]')

tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 2 rows containing non-finite values (stat_qq).

## Warning: Removed 2 rows containing non-finite values (stat_qq).

## Warning: Removed 8 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.4177, df = 78.989, p-value = 0.1602
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.70640 10.15355
## sample estimates:
## mean of x mean of y 
##  136.6098  132.3862 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 1.7309, df = 78.286, p-value = 0.08741
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4192304  6.0045962
## sample estimates:
## mean of x mean of y 
##  81.60163  78.80894

The above results are for 1-5 Visits. Let’s look at 6-10.

dftemp <- df6 %>% filter(Visit == '(5,10]')
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 12 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.001, df = 48.876, p-value = 0.3218
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.495175 16.401769
## sample estimates:
## mean of x mean of y 
##  138.9405  133.4872 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 1.5201, df = 51.27, p-value = 0.1346
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.106480  8.011242
## sample estimates:
## mean of x mean of y 
##  83.03571  79.58333
dftemp <- df6 %>% filter(Visit == '(10,15]')
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.2299, df = 27.843, p-value = 0.229
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.847886 15.403442
## sample estimates:
## mean of x mean of y 
##  134.1111  128.3333 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.1543, df = 27.999, p-value = 0.03997
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##   0.2583992 10.2527119
## sample estimates:
## mean of x mean of y 
##  77.04444  71.78889
dftemp <- df6 %>% filter(Num_Visits > 15)

summary(dftemp$Visit)
##    (1,5]   (5,10]  (10,15]  (15,30] (30,Inf] 
##        0        0        0       13       12
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 3 rows containing non-finite values (stat_qq).

## Warning: Removed 3 rows containing non-finite values (stat_qq).

## Warning: Removed 6 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.1282, df = 42.475, p-value = 0.2656
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.924393 10.344999
## sample estimates:
## mean of x mean of y 
##  137.8467  134.1364 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 0.61334, df = 44.881, p-value = 0.5428
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.618557  6.787042
## sample estimates:
## mean of x mean of y 
##  82.99333  81.40909

The analysis seems to indicate that we don’t have enough people to discover significance if we break them up into smaller chunks based on visist numbers. Let’s test the AA population. For that, we’ll use DF 4

dftemp <- df4 %>% filter(race_ethnicity == 'black' | race_ethnicity == 'black, native' | race_ethnicity == 'black, white' | race_ethnicity == 'white, black, native' | race_ethnicity == 'latino, white, black, native, asian' | race_ethnicity == 'latino, black' | race_ethnicity == 'white, black' | race_ethnicity == 'black, asian')
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 12 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 2.0569, df = 145.86, p-value = 0.04148
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1840284 9.2150583
## sample estimates:
## mean of x mean of y 
##  137.4667  132.7671 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.3558, df = 145.24, p-value = 0.01982
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.4792826 5.4730462
## sample estimates:
## mean of x mean of y 
##  82.12000  79.14384
dftemp <- df4 %>% filter(race_ethnicity == 'black')
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 12 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.6769, df = 123.51, p-value = 0.09608
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7538962  9.1151193
## sample estimates:
## mean of x mean of y 
##  138.2344  134.0538 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.1922, df = 122.97, p-value = 0.03025
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3015158 5.9115218
## sample estimates:
## mean of x mean of y 
##  82.19792  79.09140

The results indicate that, among all people who identified as African American there was a signficiant difference in Sys and Diastolic BP.

Let’s take a look at age next. For that, we’ll use DF5.

Individually, none of the data seems to coorelate with age.

dftemp <- df5 %>% filter(age_calculated < 50)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        1       10        0        0        0
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 1 rows containing non-finite values (stat_qq).

## Warning: Removed 1 rows containing non-finite values (stat_qq).

## Warning: Removed 2 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.596, df = 16.278, p-value = 0.1297
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.610935 25.738208
## sample estimates:
## mean of x mean of y 
##  141.0303  129.9667 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 0.89828, df = 16.813, p-value = 0.3817
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.327151 13.215030
## sample estimates:
## mean of x mean of y 
##  86.39394  82.45000
dftemp <- df5 %>% filter(age_calculated < 60 & age_calculated >= 50)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0        0       39        0        0
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 1 rows containing non-finite values (stat_qq).

## Warning: Removed 1 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.6338, df = 73.591, p-value = 0.1066
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.078333 10.894123
## sample estimates:
## mean of x mean of y 
##  135.8158  130.9079 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 1.4514, df = 73.909, p-value = 0.1509
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.9404505  5.9843102
## sample estimates:
## mean of x mean of y 
##  82.60526  80.08333
dftemp <- df5 %>% filter(age_calculated < 70 & age_calculated >= 60)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0        0        0       36        0
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 3 rows containing non-finite values (stat_qq).

## Warning: Removed 3 rows containing non-finite values (stat_qq).

## Warning: Removed 10 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 0.62073, df = 64.569, p-value = 0.537
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -6.068367 11.540738
## sample estimates:
## mean of x mean of y 
##  139.0392  136.3030 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 1.5955, df = 63.746, p-value = 0.1155
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.7588299  6.7772494
## sample estimates:
## mean of x mean of y 
##  81.19608  78.18687
dftemp <- df5 %>% filter(age_calculated >= 70)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0        0        0        0       15
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 0.77404, df = 27.835, p-value = 0.4454
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.453725 12.075947
## sample estimates:
## mean of x mean of y 
##  135.7556  132.4444 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 0.94643, df = 27.248, p-value = 0.3522
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.619350  7.108239
## sample estimates:
## mean of x mean of y 
##  75.82222  73.57778

Let’s try Bigger Buckets

dftemp <- df5 %>% filter(age_calculated < 70 & age_calculated >= 50)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0        0       39       36        0
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 14 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.499, df = 140.91, p-value = 0.1361
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.250498  9.095438
## sample estimates:
## mean of x mean of y 
##  137.3380  133.4155 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.1428, df = 140.72, p-value = 0.03385
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.2118517 5.2640221
## sample estimates:
## mean of x mean of y 
##  81.93981  79.20188
dftemp <- df5 %>% filter(age_calculated >= 50)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0        0       39       36       15
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 4 rows containing non-finite values (stat_qq).

## Warning: Removed 14 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.676, df = 170.86, p-value = 0.09557
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.6789142  8.3169343
## sample estimates:
## mean of x mean of y 
##  137.0651  133.2461 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.2608, df = 170.91, p-value = 0.02503
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.3380543 4.9902002
## sample estimates:
## mean of x mean of y 
##  80.88506  78.22093
dftemp <- df5 %>% filter(age_calculated < 70 & age_calculated >= 40)
summary(dftemp$Age)
##  [20,30)  [30,40)  [40,50)  [50,60)  [60,70) [70,Inf) 
##        0        0       10       39       36        0
tester(dftemp, dftemp$Average_SYS, dftemp$Average_SYS2, dftemp$Average_DIA, dftemp$Average_DIA2)
## Warning: Removed 5 rows containing non-finite values (stat_qq).

## Warning: Removed 5 rows containing non-finite values (stat_qq).

## Warning: Removed 16 rows containing non-finite values (stat_boxplot).

## [1] "Sys Result"
## 
##  Welch Two Sample t-test
## 
## data:  x and y
## t = 1.952, df = 159.14, p-value = 0.05269
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.05649847  9.65985214
## sample estimates:
## mean of x mean of y 
##  137.6829  132.8812 
## 
## [1] "Dia Result"
## 
##  Welch Two Sample t-test
## 
## data:  z and q
## t = 2.3444, df = 159.98, p-value = 0.02029
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.4665897 5.4548534
## sample estimates:
## mean of x mean of y 
##  82.48780  79.52708

So, excluding the oldest patients and the youngest patient also gets significant results.

dftemp <- bp_dataset %>% select(Clinic)
pl20 <- ggplot(dftemp, aes(Clinic)) + geom_bar(aes(fill = Clinic), width = .7) + ggtitle("Patients by Clinic") + theme_minimal() + coord_flip() + theme(axis.title.x=element_blank()) + theme(legend.position = "none") + scale_fill_brewer(palette="Spectral") 

pl20