Single regime multivariate OU model (swifts and hummingbirds shared the same evolutionary regime) vs 2 regime multivariate OU model (swifts and hummingbirds have different evolutionary regimes). These models test if the different clades show distinct modes of evolution for the clade. Here the test is multivariate. Meaning that we are taking into account the covariance between the traits:
## make.simmap is sampling character histories conditioned on the transition matrix
##
## Q =
## humm swift
## humm 0.000000000 0.000000000
## swift 0.001694351 -0.001694351
## (estimated using likelihood);
## and (mean) root node prior probabilities
## pi =
## humm swift
## 0.5 0.5
model | AIC | delta |
---|---|---|
2 regimes | 1424.833 | 0.000000 |
1 regime | 1427.223 | 2.390183 |
Likelihood-ratio test:
LRT(mod.2.regm, mod.1.regm)
## -- Log-likelihood Ratio Test --
## Model OUM symmetric positive versus OU1 symmetric positive
## Number of degrees of freedom : 3
## LRT statistic: 8.390183 p-value: 0.03859989 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#print best model
mod.2.regm
##
## -- Summary results --
## LogLikelihood: -694.4163
## AIC: 1424.833
## AICc: 1425.62
## 18 parameters
##
## Estimated theta values
## ______________________
## elm.types sq.complx acous.spc
## humm 0.9791316 0.4774590 3.889852
## swift 1.0244504 0.4664176 4.396426
##
## ML alpha values
## ______________________
## elm.types sq.complx acous.spc
## elm.types 50.29482 10.92440 -14.71905
## sq.complx 10.92440 81.37813 -16.57136
## acous.spc -14.71905 -16.57136 14.07678
##
## ML sigma values
## ______________________
## elm.types sq.complx acous.spc
## elm.types 43.68995 16.418326 26.506826
## sq.complx 16.41833 13.532477 3.035063
## acous.spc 26.50683 3.035063 22.597034
model | AIC | delta |
---|---|---|
1 regime per clade | 1402.306 | 0.00000 |
1 regime | 1423.264 | 20.95751 |
Likelihood-ratio test:
LRT(mod.sev.regm, mod.1.regm)
## -- Log-likelihood Ratio Test --
## Model OUM symmetric positive versus OU1 symmetric positive
## Number of degrees of freedom : 24
## LRT statistic: 68.95751 p-value: 3.14161e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#print best model
mod.sev.regm
##
## -- Summary results --
## LogLikelihood: -662.1531
## AIC: 1402.306
## AICc: 1405.998
## 39 parameters
##
## Estimated theta values
## ______________________
## elm.types sq.complx acous.spc
## Bees 1.3796173 0.57955751 4.379859
## Brilliants 0.4448918 0.23554891 2.999917
## Coquettes 1.3656833 0.57824788 4.482645
## Emeralds 0.9644421 0.50703964 4.022721
## Hermits 1.0739820 0.59758598 4.017954
## Mangoes 0.7929528 0.44710163 3.428027
## Mtn. Gems 0.9529635 0.32967498 3.601510
## Swifts 1.0238807 0.46663848 4.395562
## Topazes 0.2890372 0.09593729 2.725116
##
## ML alpha values
## ______________________
## elm.types sq.complx acous.spc
## elm.types 53.97556 4.48005 -13.78145
## sq.complx 4.48005 79.26165 -12.93177
## acous.spc -13.78145 -12.93177 13.30901
##
## ML sigma values
## ______________________
## elm.types sq.complx acous.spc
## elm.types 42.69108 13.747617 26.891403
## sq.complx 13.74762 11.449907 2.184997
## acous.spc 26.89140 2.184997 22.908470
Testing for a shift between the trait optima for the groups using a univariate test. Here we make a trade-off between incorporating the covariance between the traits to potentially increase the power of the test. Note that it is possible to get distinct results between the univariate and multivariate analyses.
parameter | models | AIC | delta |
---|---|---|---|
acoustic space | OUMV | 1118.7556 | 0.0000000 |
acoustic space | OUM | 1121.9539 | 3.1983020 |
acoustic space | OU1 | 1122.7796 | 4.0239863 |
element types | OU1 | 775.4813 | 0.0000000 |
element types | OUMV | 776.8163 | 1.3349829 |
element types | OUM | 777.4475 | 1.9662220 |
sequence complexity | OU1 | 245.7121 | 0.0000000 |
sequence complexity | OUMV | 246.2745 | 0.5623816 |
sequence complexity | OUM | 247.7214 | 2.0093215 |