library(tidyverse)
library(dplyr)
df_housing <- read.csv("../data/belgium.csv", header = F)
colnames(df_housing) <- c("id","name", "number_one", "adress_one", "country", "mail", "telephone", "adress_two", "roll")

hoeveel unieke namen zitten in de dataset?

nrow(df_housing %>% distinct(name))
[1] 138

wie komt het vaakst voor?

df_housing %>% 
  group_by(name) %>% count() %>% arrange(desc(n))

welke locatie komt het vaakst voor?

df_housing %>% 
  group_by(adress_two) %>% count() %>% arrange(desc(n))

welke transacties komen het vaakst voor?

df_housing %>% 
  group_by(name, adress_two) %>% summarise(count = n()) %>% arrange(desc(count))
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CgpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShkcGx5cikKCmBgYAoKYGBge3J9CmRmX2hvdXNpbmcgPC0gcmVhZC5jc3YoIi4uL2RhdGEvYmVsZ2l1bS5jc3YiLCBoZWFkZXIgPSBGKQpjb2xuYW1lcyhkZl9ob3VzaW5nKSA8LSBjKCJpZCIsIm5hbWUiLCAibnVtYmVyX29uZSIsICJhZHJlc3Nfb25lIiwgImNvdW50cnkiLCAibWFpbCIsICJ0ZWxlcGhvbmUiLCAiYWRyZXNzX3R3byIsICJyb2xsIikKCmRmX2hvdXNpbmcgPC0gZGZfaG91c2luZ1shZHVwbGljYXRlZChkZl9ob3VzaW5nJGlkKSxdCmBgYAoKIyMgaG9ldmVlbCB1bmlla2UgbmFtZW4geml0dGVuIGluIGRlIGRhdGFzZXQ/CgpgYGB7cn0KbnJvdyhkZl9ob3VzaW5nICU+JSBkaXN0aW5jdChuYW1lKSkKYGBgCgojIyB3aWUga29tdCBoZXQgdmFha3N0IHZvb3I/CmBgYHtyfQpkZl9ob3VzaW5nICU+JSAKICBncm91cF9ieShuYW1lKSAlPiUgY291bnQoKSAlPiUgYXJyYW5nZShkZXNjKG4pKQpgYGAKCiMjIHdlbGtlIGxvY2F0aWUga29tdCBoZXQgdmFha3N0IHZvb3I/CmBgYHtyfQpkZl9ob3VzaW5nICU+JSAKICBncm91cF9ieShhZHJlc3NfdHdvKSAlPiUgY291bnQoKSAlPiUgYXJyYW5nZShkZXNjKG4pKQpgYGAKCiMjIHdlbGtlIHRyYW5zYWN0aWVzIGtvbWVuIGhldCB2YWFrc3Qgdm9vcj8KYGBge3J9CmRmX2hvdXNpbmcgJT4lIAogIGdyb3VwX2J5KG5hbWUsIGFkcmVzc190d28pICU+JSBzdW1tYXJpc2UoY291bnQgPSBuKCkpICU+JSBhcnJhbmdlKGRlc2MoY291bnQpKQpgYGAK